PowerPoint プレゼンテーション

The Role of Environmental Shear and Thermodynamic condition
in Determining the Structure and Evolution of
Mesoscale Convective Systems during TOGA COARE
Mon. Wea. Rev. 1998
M. A. LeMone, E. J. Zipser and S. B. Trier
Today’s contents
1 線状MCSの論文のレビュー (Histrocal Reviews of line-shaped MCS )
2 LeMoneの論文紹介 (Introduction of LeMone’s paper)
3 自分の研究との関わり合い (Future work of my study)
発表者: 清水 慎吾
Shingo SHIMIZU
はじめに
Characteristic of linear MCS
線状メソ対流系の特徴
•2~10個の対流セルがある決まった方向に並んだ強い雨域
(convective line)
•104km2以上の広い面積をもつ弱い雨域(stratiform region)
stratiform region Large area of
Weak rain region
convective line
Area of several
Convective cells
(Houze,1990)
線状MCS全体としての研究課題 (common subject)
•三次元構造(対流域と層状域)、気流構造の解明
①
•発生・発達・組織化・維持のmechanismの解明
②
•より大きな場との相互作用(環境場、大きな場へのフィードバック) ③
(運動量輸送、熱輸送、放射特性)
線状MCSの研究年表
① structure
② mechanism ③ environment
観測解析
数値実験
数値実験
二次元モデル
Newton 1950 ①
線状MCSの内部構造(Reflectivity)
Moncrieff
1976,78,81
②②
鉛直シアーとcold poolの関係(対流性と層状性の雨域の特徴)
Moncrieff
1976,78,81
Zipser 1977 ①
(上昇流の維持過程)
Thorpe
1982
③
Thorpe
1982
Barns 1984
線状MCSと環境風の関係
②②
Rottuno
1985,88
Rottuno 1985,88
Bluestein 1985,87 ③
(下層、中層鉛直シアー)
Weisman
1986,92,93
三次元モデル
Houze 1990 ③
Weisman
1986,92,93
移動方向、走向、組織化過程
鉛直シアーとcold poolの関係
Fovell 1988
②
(上昇流の維持過程)
Fovell
1988
Smull 1985,87a,87b ①
線状MCSの気流構造 ②
上昇流の維持過程
Biggerstaff 1991 ①
二次元モデル
Wang 1990
鉛直シアーとcold
poolの関係
Keenan 1992
① ③
線状MCSの地域特性
(組織化過程)
Alexander 1992
Schiesser 1995
LeMene 1998 ③
地域特性の比較
線状MCSと環境場(UV,T,RH)
Main theme 1
環境風に対して、ライン状対流域がどのような走向をもつのか?
(the relation between environmental wind and line orientation)
Barnes and Sieckman(1984) ~ Review of past studies ~
GATEの観測結果から
900~500hPaの
ラインに直交shear :
大 → fast-moving
小 → slow-moving
(ただし、ライン平行shear:中)
(more or less than 7 m/s )
Alexander and Young(1992)
950~750hPaに5m/s以上の風速差
EMEXの観測結果から
YES→ shear直交型(shear-perpendicular)
NO→ shear平行型(parallel to 800~400 hPa shear )
TOGA-COAREの観測概要と観測領域
Toropical Ocean Global Atmosphere(TOGA)Coupled Atmosphere-Ocean Response Experiment(COARE)
(1992-1993年)
TOGA-COAREのHPより
Five category (Lemone,98)
slow-moving
Fast-moving
①shear直交型
②shear平行型
③小規模scale対流群
④shear無縁型
⑤非組織化型
①shear直交型
下層(1000~800hPa)
shearに直交
② shear平行型
中層(800~400hPa)
shearに平行
① ② 混合型は?
⑤
①
②
①②
目的 (objective)
①環境風に対して、ライン状対流域がどのような走向をもつのか?
(The relation between environmental vertical wind shear
and convective line orientation)
②ライン状対流域が維持に、重要な環境場の熱力学パラメータ
は?
(What environmental thermodynamical factor determines
the maintenance of convective line ?)
~ 観測計画間の比較(GATE,EMEXとの比較) ~
データ(data)
飛行機搭載radarによる反射強度分布データ
(radar reflectivity observed by three airplanes.)
(20 cases during 1992 – 1993 in TOGA-COARE)
3台の飛行機による (three airplane observation)
•直接観測(potential theta, specific humidity,winds)
•飛行機からのドロップゾンデ(dropsonde)
ゾンデデータ(radiosonde)
データ(analysis method)
走向の評価
飛行機による
radar観測
環境場の評価
Radiosonde
(6km~)
dropsonde
(1km~6km)
In situ measurement
(1km~6km)
(30m~1km)
Definition of “inflow environment”
storm-relative inflow の風上150 km ×150 kmの領域において
•高度300m以下で混合層がよく発達した場 (qv,θ一様場)
•高度400m以下で降水がない (no liquid water)
目的1
Objective 1
環境風に対して、ライン状対流域がどのような走向をもつのか?
The relation between environmental vertical wind shear
And
Orientaion of Line-shaped MCS
データ(Case selection)
20 cases of
line-MCS
Each case studies
were reported by
(Observation)
Jorgensen(97)
Lewis(98)
(Numerical simulation)
Trier(96,98)
Reflectivity and hodograph
①Shear直交型
下層(1000~800hPa)
shearに直交
高度300mの
ラインの走向
と
移動速度の
走向に直交する
成分
15 dBZがoutline
25 dBZがshade
low-level shear : Large
Definition of “Large shear”
2 (1.25) m/s per 100 hPa
4 m/s (1000-800 hPa)
5 m/s (800-400 hPa)
Fast-moving (7 m/s)
(perpendicular to convective line)
CAPE
Reflectivity and hodograph
②Shear平行型
中層shearに平行
low-level shear :
Small
mid-level shear :
Strong
Slow-moving
(almost stationary)
20 dBZがoutline
30 dBZがshade
Reflectivity and hodograph
①②混合型
下層shearに直交
中層shearに平行
low-level shear :
Strong
mid-level shear :
Strong
Fast-moving
Secondary band
20 dBZがoutline
30 dBZがshade
Time evolution of orientation
30分後
After 30 min
20 dBZがoutline
30 dBZがshade
Reflectivity and hodograph
①②混合型
下層shearに直交
中層shearに平行
low-level shear :
Strong
mid-level shear :
Strong
Fast-moving
(except for 6 Feb)
20 dBZがoutline
30 dBZがshade
Reflectivity and hodograph
①②混合型
下層shearに直交
中層shearに平行
low-level shear :
Strong
mid-level shear :
Strong
Fast-moving
20 dBZがoutline
30 dBZがshade
Summary of objective 1
The relation between vertical shear and
Line orientation
1)If strong low-level shear exists,
→ shear-perpendicular type
2)If strong mid-level shear exists
without strong low-level shear,
→ shear-parallel type
3)If strong both low- and midlevel shear exists,
→ primary bands first form
perpendicular to low-level shear
→After that, secondary bands form
trailing or leading primary band
parallel to mid-level shear
目的2
Objective 2
ライン状対流域が維持に重要な
環境場の熱力学パラメータは?
What environmental thermodynamical parameter
determines the maintenance of line-shaped MCS ?
Comparison of “convective line” lifetime between GATE and COARE
In a strong low-level vertical shear environment,
Convective line tends to be long-lived (Rottuno,1988)
In this study, the impact of thermodynamical parameters on the lifetime.
Slow-moving lines are focused.
(they forms in a weak low-level vertical shear)
slow-moving line in GATE
•Typical lifetime of convective line is 4-5 hours
•Continuous propagation
slow-moving line in COARE
•Longest lifetime was 3 hours (2/17 case), the others was < 2 hours
•Discontinuously propagation (except for 2/17)
The comparison of RH profiles between GATE and COARE
Mid-level RH
(top of BL and 500 hPa)
is higher
in slow-moving GATE
than that of COARE
The lifetime of
Slow-moving lines in GATE
is longer than those in COARE
Strength of cold pool
Evaluated by
the deficit of temperature
Cold pool was weaker
in both GATE and
COARE than that of
midlatitude
Cold pool of 2/17
is weaker than that of 2/18
Lifetime of line on 2/17
Is longer than that on 2/18
The vertical profile
of Relative Humidity
(3 cases in COARE)
The RH in mid-level
(top of BL and 500 hPa)
on 17 Feb was higher than
that on 18 Feb
A weaker cold pool
on 2/17
Thermodynamical parameter
Conclusion
The relation between shear and orientation was confirmed and extended
If strong both low- and mid-level shear exists,
→ primary band first forms perpendicular to low-level shear
→ After that, secondary convective line formed
trailing or leading primary band parallel to mid-level shear
Thermodynamical parameter to determine the lifetime of convective line
In a weak low-level shear environment,
Humidity between top of boundary layer and 500 hPa determines
the lifetime of convective line (more than 1 hour longer).
Convective inhibits in GATE and COARE (less than 10 J/kg)
were smaller than those of midlatitude(60-100 J/kg)
In small CIN, and high RH at mid-level environment,
Convective line would be well-maintained.
For my study・・・・
① structure
観測解析
Newton 1950 ①
Zipser 1977 ①
③
Barns 1984
Bluestein 1985,87 ③
Houze 1990 ③
Smull 1985,87a,87b ①
Biggerstaff 1991 ①
Wang 1990
Keenan 1992
① ③
Alexander 1992
Schiesser 1995
LeMene 1998 ③
② mechanism ③ environment
数値実験
Moncrieff 1976,78,81 ②
Thorpe 1982
Rottuno 1985,88
Weisman 1986,92,93
②
Fovell 1988
②
•In various places,
•Observational or Numerical Studies
•Could be conducted in high-resolution
For my study・・・・
① structure
Convective cell’s feature
Bluestein 1985,87 ③
Fovell 1988 ②
② mechanism ③ environment
Linear MCS’s feature
Rottuno 1985,88 ②
環
境
場
の
特
性
LeMene 1998 ③
Barnes 1984 ③
Kato,1998 ① ② ③
Seko, 2002 ① ② ③
Yoshizaki,2000 ① ② ③
input (Environment)
Instability
Vertical shear
Mid-level humidity
dry
Moist
process (mechanism)
output(structure)
対流セルとシステムの関係
•対流セル
(対流セルの組織化過程)
•MCS
の特徴
Composite profiles of θe,
Obtained in
GATE and COARE
Equivalent PT of COARE
is higher than that of GATE
It depends on the difference
of SST(1-2 K higher in COARE)
The vertical gradient
of EPT is Similar
(17 K drop between
600 hPa and surface)
Mean profiles of
q,θ,θe within
boundary layer
Obtained in COARE
Below 400 m,
Mixing layer exists
Qv,PT,EPT of COARE are higher
(qv 18 g:PT: 301K:EPT : 355 K)
(GATE : 17 g : 298.5 K :348 K)
At surface
Smaller scale convection
(shallow convection and
little stratiform region)
20 dBZがoutline
30 dBZがshade
shear無縁型
(他のMCSの
Outflowによるもの)
20 dBZがoutline
30 dBZがshade
shear無縁型
20 dBZがoutline
30 dBZがshade
非組織化型
鉛直シアーが
小さい
20 dBZがoutline
30 dBZがshade
Orientation and wind shear
走向が鉛直シアーと30°以内は太字
Discussion 1
Modification of wind by convective line
Discussion 2
Frequency of linear MCS
Frequency of organization to line-shape
GATE : 90 % (Houze,96 ,Alkell 77)
COARE: 66% (Rickenbanch , 1998)
Frequency of slow or fast moving line
GATE : mainly slow-moving (avarage speed 2.9 m/s)
(slow moving : 80 cases, fast moving: 6 cases 7% )
COARE: more fast-moving can be observed relatively
(fast moving : 30 % )