Configuration Interaction in Quantum Chemistry Jun-ya HASEGAWA Fukui Institute for Fundamental Chemistry Kyoto University 1 Prof. M. Kotani (1906-1993) 2 Contents • • • • • Molecular Orbital (MO) Theory Electron Correlations Configuration Interaction (CI) & Coupled-Cluster (CC) methods Multi-Configuration Self-Consistent Field (MCSCF) method Theory for Excited States • Applications to photo-functional proteins 3 Molecular orbital theory 4 Electronic Schrödinger equation • Electronic Schrödinger eq. w/ Born-Oppenheimer approx. Hˆ ri , rA ri E ri for fixed rA ri : Coordinates for electrons rA : Coordinates for nucleus • Electronic Hamiltonian operator (non-relativistic) Hˆ Tˆ Vˆen Vˆee Vnn elec elec nuc Z Z 1 2 elec nuc Z A 1 i A B i 2 i A ri rA i j ri r j A B rA rB • Potential energy – E = E rA parametrically depends on rA • Wave function – The most important issue in electronic structure theory – ri parametrically depends on rA 5 Many-electronwave function • Orbital approximation: product of one-electron orbitals , ri , , rj , r r 1 1 2 2 i ri j r j • The Pauli anti-symmetry principle Pˆi j , ri , , rj , , rj , , ri , Pˆi j : Permutation operator • Slater determinant SD r1 , r2 , 1 r1 1 r2 1 2 r1 2 r2 N! N r1 N r2 1 rN 2 rN N rN Aˆ 1 r1 i ri N rN Aˆ : Anti - symmetrizer – Anti-symmetrized orbital products – One-electron orbitals are the basic variables in MO theory 6 One-electron orbitals • Linear combination of atom-centered Gaussian functions. AO i r Cr ,i r Cr ,i : MO coefficient, the variable in MO theory r : Contracted atom - centered Gaussian functions r ri , rA , lx , l y , lz g ri , rA , lx , l y , lz , d ,r g : Primitive Gaussian function d ,r : Contraction coefficient (pre - defined) • Primitive Gaussian function g ri , rA , lx , l y , lz , xi x A x yi y A y zi z A z exp a ri rA l l l 2 a : Exponent of Gaussian function (pre - defined) 7 Variational determination of the MO coefficients • Energy functional E Hˆ hi J i , j K i , j elec elec i i j hi : One - electron integrals, J i , j : Coulomb integral, K i , j : Exchange integral hi i Tˆ Vˆen i J i , j i j i j i* r1 *j r2 r1 r2 i r1 j r2 dr1dr2 1 K i , j i j ji i* r1 *j r2 r1 r2 j r1 i r2 dr1dr2 1 • Lagrange multiplier method L E i , j i j i , j i, j i , j : Multiplier, Real symmetric, i , j = j ,i , when i are real function. Constratint : Orthonormalization of i , i j i , j 8 Hartree-Fock equation • Variation of MO coefficients L r Tˆ Vˆen i r j i j r j ji k ,i r i Cr ,k j 2 j r2 • Hartree-Fock equation r1 r2 f r ,s Cs ,i S r ,s Cs ,i i ,k c.c. 0 1 r r1 s r1 f r ,s r Tˆ Vˆen s r j s j r j j s r r1 j r1 j Sr ,s r s r j s r2 j r2 s r1 r2 1 • A unitary transformation that diagonalizes the multiplier matrix T mcan m,l U mi i ,kU k ,l Crcan ,i Cr ,mU m ,i m i ,k • Canonical Hartree-Fock equation can can f r ,s Cscan ,i S r , s Cs ,i i →Eigenvalue equation Eigenvalue: Multiplier (orbital energy) Eigenvector: MO coefficients 9 Restricted Hartree-Fock (RHF) equation • Spin in MO theory: (a)spin orbital formulation → spatial orbital rep. ) (b) Restricted i i i i i i (c) Unrestricted i i fr ,sCs,i Hartree-Fock Sr ,sCs ,i i • Restricted (RHF) equation for a closed shell (CS) Nocc system f r ,s r Tˆ Vˆen s 2 r j s j r j j s j RHF RHF Hˆ , Sˆ 2 0 Sˆ 2 CS 0 0 1 CS • RHF wf an eigenfunction ofspin a proper relation RHF RHF ˆ , Sˆ operators: Sˆz is 0 H 0 CS CS z 10 Electron correlations − Introduction to Configuration Interaction − 11 Definition of “electron correlations” in Quantum Chemistry • Electron correlations defined as a difference from Full-CI energy E Corr E Full CI E HF E HF : Energy of a single determinant (independent particle) E Full CI : Full - CI energy (exact limit) for a set of one - electron basis functions Restricted HF • Two classes of electron correlations Dynamical correlations Static correlation is dominant. – Lack of Coulomb hole Static (non-dynamical) correlations – Bond dissociation, Excited states – Near degeneracy No explicit separation between dynamical and static correlations. Numerically Exact Dynamical correlation is dominant. Fig. Potetntial energy curves of H2 molecule. 6-31G** basis set. [Szabo, Ostlund, “Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory”, Dover] Dynamical correlations: lack of Coulomb hole • Slater det. : Products of one-electron function ˆ r r r r SD i i i j 1 1 1 2 →Independent particle model • Possibility of finding two electrons at r1 , r2 case 1 r s r s SD r1 , r2 P r1 , r2 i 1 1 i 1 : H2–like molecule 1 2 i r2 s2 i r2 s2 SD r1 , r2 2 ds1ds2 i r1 i r2 2 2 i i i i No correlation between r1 and r2 : P r1 , r2 is a product of one - electron density. – At r1 = r2 , P r1 , r2 0 Lack of Coulomb hole – Introducing dynamical correlations via configuration interaction • Interacting a doubly excited configuration r1 , r2 C1 Aˆ i r1 s1 i r2 s2 C2 Aˆ a r1 s1 a r2 s2 • Some particular sets of C1 and C2 decrease P r1 ,r2 . P r1 , r2 C1i r1 i r2 C2a r1 a r2 2 – At r2 r1 lim P r1 , r2 C1 i r1 C2 a r1 r2 r1 2 2 2 C1C2 0 • Chemical intuition: Changing the orbital picture p i xa q i xa x C2 C1 12 → r1 , r2 C1 Aˆ p r1 s1 q r2 s2 Aˆ p r1 s1 q r2 s2 2 - Left-right correlation • in olefin compounds 2 2 p i xa -x = q i xa +x = x C2 C1 12 • Avoiding electron repulsion by introducing configuration 2 2 No correlations included = - Configuration interaction 15 Angular correlation • One-step higher angular momentum 2s 2 px 2 • p i xa -x = q i xa +x = 2 x C2 C1 12 Avoiding electron repulsion by introducing 2s 2 px configuration 2 = 2 - Configuration interaction No correlations included 16 Static correlations: improper electronic structure • 2-electron system in a dissociating homonuclear diatomic molecule a A B i A B A B • Changing orbital picture into a local basis: A , B r1 , r2 Aˆ A r1 B r1 s1 A r2 B r2 s2 Aˆ A r1 s1 A r2 s2 Aˆ A r1 s1 B r2 s2 Ionic configuration: 2 e on A Covalent config.: 2 e at each A and B Aˆ B r1 s1 A r2 s2 Aˆ B r1 s1 B r2 s2 Covalent config.: 2 e at each A and B Ionic configuration: 2 e on B – Each configuration has a fixed weight of 25 %. – No independent variable that determines the weight for each configuration when the bond-length stretches. Introducing static correlations via configuration interaction • Interacting a doubly excited configuration CI C1 C2 ia,,ia C1 C2 Aˆ A r1 s1 B r2 s2 Aˆ B r1 s1 A r2 s2 B r2 A r1 A B A r2 B r1 A B C1 C2 Aˆ A r1 s1 A r2 s2 Aˆ B r1 s1 B r2 s2 A r1 A r2 A – Some particular C1 , C2 configurations. B A r1 A r2 A B change the weights of covalent and ionic Configuration Interaction (CI) and Coupled-Cluster (CC) wave functions 19 Some notations • Notations c b a – Occupied orbital indices: i, j, k, …. – Unoccupied orbital indices: a, b, c, ….. † – Creation operator: aˆ a Annihilation operator:aˆi • Spin-averaged excitation operator 1 † Sˆia aˆa aˆi aˆa† aˆi 2 c b a i j k + i j k c b a i j k ≡ c b a i j k – Spin-adapted operator (singlet) • Reference configuration: Hartree-Fock determinant 0 0 • Excited configuration ia Sˆia 0 , ia,,jb Sˆia, ,jb 0 Sˆia Sˆ bj 0 , ia,,jb,,kc Sˆia Sˆ bj Sˆkc 0 2 – Correct spin multiplicity (Eigenfunction of Sˆ and Sˆ z operators) 20 Configuration Interaction (CI) wave function: a general form • CI expansion: Linear combination of excited configurations CI CHF HF Cia ia i ,a or CI C0 0 Cia a i i ,a C C a ,b i, j ia,,jb i , j ,a ,b a ,b a ,b i, j i, j i , j ,a ,b C C a ,b ,c i , j ,k i , j ,k ,a ,b ,c CK K ia,,jb,,kc a ,b ,c a ,b ,c i , j ,k i , j ,k K CK K i , j ,k ,a ,b ,c K c b a c b a c b a c b a i j k i j k i j k i j k ∙∙∙∙ CI Singles (CIS) CI Singles and Doubles (CISD) CI Singles, Doubles, and Triples (CISDT) Full configuration interaction (Full CI) – HF ,ia ,ia,,jb ,ia,,jb,,kc , K : Excited configurations CHF ,Cia ,Cia, ,jb ,Cia, ,jb,k,c ,CK : Coefficients – Full-CI gives exact solutions within the basis sets used. 21 Variational determination of the wave function coefficients • CI energy functional E CI Hˆ CI CI I Hˆ J CJ I ,J • Lagrange multiplier method – Constraint: Normalization condition CI CI 1 L CI Hˆ CI CI CI 1 ˆ C I H J C J CI I J C J 1 I ,J I ,J I • Variation of Lagrangian L CI I Hˆ K CI I K (c.c.) 0 CK I I ,J • Eigenvalue equation I K Hˆ I CI E K I CI I E 22 Availability of CI method – Difficulty in applying large systems Percentage (%) • A straightforward approach to the correlation problem starting from MO theory • Not only for the ground state but for the excited states • Accuracy is systematically improved by increasing the excitation order up to Full-CI (exact solution) Full-CI • Energy is not size-extensive CISD HO HO HO HO except for CIS and Full-CI R ~ large 2 2 2 H2O • Full-CI: number of configurations rapidly increases with the size of the system. – kα + kβ electrons in nα + nβ orbitals determinants → n Ck n Ck – Porphyrin: nα = nβ =384 , kα =kβ =152 → ~10221 determinants 2 H2O H2O H2O Number of water molecules Fig. Correlation energy per water molecule as a percentage of the Full-CI correlation energy (%) . The cc-pVDZ basis sets were used. 23 Coupled-Cluster (CC) wave function • CI wf: a linear expansion CI C0 0 Cia i ,a a i C a ,b a ,b i, j i, j i , j ,a ,b • CC wf: an exponential expansion Cia, ,jb,k,c a ,b ,c i , j ,k i , j ,k ,a ,b ,c CC exp Cia Sˆia Cia, ,jb Sˆia, ,jb Cia, ,jb,k,c Sˆia, ,jb,k,c i , j ,k ,a ,b ,c i ,a (CCS) i , j ,a ,b CC Singles 0 CI Singles and Doubles (CCSD) CC Singles, Doubles, and Triples (CCSDT) Cia Sˆia HF CK K K 0 ∙∙∙∙ Single excitations i ,a 1 a ,b ˆ a ,b a b ˆ a ˆb Double excitations Ci , j Si , j Ci C j Si S j 0 2! i ,a i , j ,a ,b 2 1 Cia, ,jb,k,c Sˆia, ,jb,k,c Cia C bj ,,kc Sˆia Sˆ bj ,,kc Cia C bj Ckc Sˆia Sˆ bj Sˆkc 0 i , j ,k 2! i , j ,k 3! i , j ,k a ,b , c a ,b ,c Tripleexcitations a ,b , c Non-linear terms 24 Linear terms =CI Why exponential? • Size-extensive No interaction – Non interacting two molecules A and B Hˆ A exp Sˆ A 0 A EA exp Sˆ A 0 A Hˆ B exp Sˆ 0 B B EB exp Sˆ 0 – Super-molecular calculation Hˆ A B Hˆ A E A Far away ETot EA EB B exp Sˆ Hˆ exp Sˆ 0 0 E E exp Sˆ Sˆ 0 0 Hˆ B exp Sˆ A SˆB 0 A0 B Hˆ A exp Sˆ A exp SˆB 0 A0 B A A ↔ CI case Hˆ A Hˆ B Sˆ A Hˆ B EB B B B A Sˆ A , SˆB 0 A B B A B SˆB 0 A0B E A EB Sˆ A SˆB 0 A0B • A part of higher-order excitations described effectively by products of lower-order excitations. – Dynamical correlations is two body and short range. Solving CC equations • Schrödinger eq. with the CC w.f. ˆ H E exp Cia Sˆia Cia, ,jb Sˆia, ,jb Cia, ,jb,k,c Sˆia, ,jb,k,c i , j ,a ,b i , j , k , a ,b ,c i ,a 0 0 • CC energy: Project on HF determinant E 0 Hˆ exp Cia Sˆia Cia, ,jb Sˆia, ,jb Cia, ,jb,k,c Sˆia, ,jb,k,c i , j , a ,b i , j ,k ,a ,b ,c i ,a 0 • Coefficients: Project on excited configurations (CCSD case) a† a ˆa a ,b ˆ a ,b ˆ ˆ 0 Si H E exp Ci Si Ci , j Si , j 0 0 i , j ,a ,b i ,a a ,b † a ˆa a ,b ˆ a ,b ˆ ˆ 0 Si , j H E exp Ci Si Ci , j Si , j 0 0 i , j ,a ,b i ,a – Non-linear equations. – Number of variable is the same as CI method. – Number of operation count in CCSD is O(N6), similar to CI method. 26 Hierarchy in CI and CC methods and numerical performance – Higher-order effect was included via the non-linear terms. • In a non-equilibrium structure, the convergence becomes worse than that in the equilibrium structure. Error from Full-CI (hartree) • Rapid convergence in the CC energy to Full-CI energy when the excitation order increases. Excitation order in wf. SD SDT SDTQ SDTQ5 SDTQ56 CI法 ~kcal/mol “Chemical accuracy” CC法 Fig. Error from Full-CI energy. H2O molecule with cc-pVDZ basis sets.[1] Table. Error from Full-CI energy. H2O at equilibrium structure (Rref) and OH bonds elongated twice (2Rref)). cc-pVDZ sets were used.[1] – Conventional CC method is for molecules in structure. [1]“Molecularequilibrium Electronic Structure Theory”, Helgaker, Jorgensen, Olsen, Wiley, 2000. 27 cc-pVDZ Statistics: Bond length • Comparison with the experimental data (normal distribution [1]) • H2, HF, H2O, HOF, H2O2, HNC, NH3, … (30 molecules) • “CCSD(T)” : Perturbative Triple correction to CCSD energy cc-pVTZ cc-pVQZ HF MP2 CCSD CCSD(T) CISD [1]“Molecular Electronic Structure Theory”, Helgaker, Jorgensen, Olsen, Wiley, 2000. Error/pm=0.01Å Error/pm=0.01Å Error/pm=0.01Å 28 Statistics: Atomization energy Error from experimental value in kJ/mol (200 kJ/mol=48.0 kcal/mol) • • Normal distribution F2, H2, HF, H2O, HOF, H2O2, HNC, NH3, etc (total 20 molecules) [1]“Molecular Electronic Structure Theory”, Helgaker, Jorgensen, Olsen, Wiley, 2000. 29 Statistics: reaction enthalpy • Normal distribution • CO+H2→CH2O HNC→HCN H2O+F2→HOF+HF N2+3H2→2NH3 etc. (20 reactions) • Increasing accuracy in both theory and basis functions, calculated data approach to the experimental values. Error from experimental data in kJ/mol (80 kJ/mol=19.0 kcal/mol) [1]“Molecular Electronic Structure Theory”, Helgaker, Jorgensen, Olsen, Wiley, 2000. 30 Multi-Configurational Self-Consistent Field method 31 Beyond single-configuration description • Single-configuration description – Applicable to molecules in the ground state at near equilibrium structure Hartree-Fock method • Multi-configuration description – Bond-dissociation, excited state, …. – Quasi-degeneracy → Linear combination of configurations to describe STATIC correlations A A B + A B B • Multi-Configuration Self-Configuration Field (MCSCF) w.f. MCSCF Config . i i Ci , i Aˆ 12 N elec – Ci : CI coefficients, i : MO coefficients Optimized – Complete Active Space SCF (CASSCF) method CI part = Full-CI: all possible electronic configurations are involved. 32 MCSCF method: a second-order optimizaton • Trial MCSCF wave function is parameterized by pq ,Ci MCSCF exp ˆ 0 Pˆ C 1 C Pˆ C 0 : Reference CI state Pˆ 1 0 0 : Projector † – Orbital rotation: unitary transformation exp ˆ , ˆ ˆ ˆ pq Eˆ pq Eˆ qp Eˆ pq a †p aq +a †p aq p q – CI correction vector C i Ci i • MCSCF energy expanded up to second-order Calc. E & E 1 2 1 (2) κ κ C E 2 C E trial E trial (1) ( 2) κ 0, 0 E E 0 pq Ci C – At convergence(κ 0, C 0), E(1) 0 ˆ ˆ 0 0 : Generalized Brillouin theorem F F 0 : MCSCF condition, i PH E trial κ , C E (0) κ C E(1) pq qp 33 MCSCF applications to potential energy surfaces • CI guarantees qualitative description whole potential surfaces – From equilibrium structure to bond-dissociation limit – From ground state to excited states Soboloewski, A. L. and Domcke, W. “Efficient Excited-State Deactivation in Organic Chromophores and Biologically Relevant Molecules: Role of Electron and Proton Transfer Processes”, In “Conical Intersections”, pp. 51-82, Eds. Domcke, Yarkony, Koppel, Singapore, World Scientific, 2011. 34 Dynamical correlations on top of MCSCF w.f. • MCSCF handles only static correlations. – CAS-CI active space is at most 14 elec. in 14 orb. → For main configurations. → Lack of dynamical correlations. • CASPT2 (2nd-order Perturbation Theory for CASSCF) CASPT 2 1 Ct ,u ,v , x Eˆt ,u Eˆ v , x MCSCF t ,u ,v , x – Coefficients are determined by the 1st order eq. – Energy is corrected at the 2nd order eq. ← MP2 for MCSCF • MRCC (Multi-Reference Coupled-Cluster) I MRCC exp CK SˆK I CI K – One of the most accurate treatment for the electron correlations. 35 Theory for Excited States 36 Excited states: definition • Excited states as Eigenstates Hˆ I EI I I 1, 2, • Mathematical conditions for excited states – Orthogonality J I J ,I – Hamiltonian orthogonality J Hˆ I EI J , I • CI is a method for excited states – CI eigenequation Hˆ k Ck , I EI k Ck , I I 1, 2, – Hamiltonian matrix is diagonalized. CJT,l H l ,k Ck , I J Hˆ I EI J , I Hamiltonian orthogonality – Eigenvector is orthogonal each other C JT,l l k Ck , I J I J , I Orthogonality 37 Excited states for the Hartree-Fock (HF) ground state • From the HF stationary condition to Brillouin theorem – Parameterized Hartree-Fock state as a trial state 0 Aˆ 12 HF exp ˆ 0 , N – Unitary transformation for the orbital rotation exp ˆ , ˆ † ˆ ˆ pq Eˆ pq Eˆ qp p q Eˆ pq a †p aq +a †p aq – HF energy expanded up to the second order E trial E κ TE 1 2 κ TE κ , 0 1 2 – Stationary condition E trial 0 E(1) E( 2 )κ 0 pq 1 E p,q = 0 Eˆ pq Eˆ qp , Hˆ 0 At convergence κ = 0, E(1) = 0 38 Excited states for the Hartree-Fock (HF) ground state • CI Singles is an excited-state w. f. for HF ground state – Brillouin theorem: Single excitation is Hamiltonian orthogonal to HF state 1 E p,q = 0 Eˆ pq Eˆ qp , Hˆ 0 0 0 Eˆia Hˆ 0 0 – CIS wave function CIS Eˆ 0 C a ai i a ,i – Hamiltonian orthogonality & orthogonality ˆ ˆ 0 C a 0, 0 Hˆ CIS 0 HE ai i a ,i 0 CIS 0 Eˆ ai 0 Cia 0 a ,i → CIS satisfies the correct relationship with the HF ground state • CI Singles and Doubles (CISD) does not provide a proper excited-state for HF ground state ˆ ˆ Eˆ 0 4 ia | jb 2 ib | aj 0 0 HE bj ai 39 Excited states for Coupled-Cluster (CC) ground state [1] • CC wave function (or symmetry-adapted cluster (SAC) w. f.) CC exp CI SˆI HF I Excitation operators and coefficients: ˆ C a Sˆ a C S I I i i I i ,a Cia, ,jb Sˆia, ,jb i , j ,a ,b • CC w.f. into Schrödinger eq. CC Hˆ E CC 0 • Differentiate the CC Schrödinger eq. CC Hˆ E CC CC Hˆ E SˆK CC c.c. 0 CK • Generalized Brillouin theorem (GBT) → Structure of excited-state w. f. CC Hˆ E Sˆ CC 0 I [1]H. Nakatsuji, Chem. Phys. Lett., 59(2), 362-364 (1978); 67(2,3), 329-333 (1979); 334-342 (1979). Symmetry-adapted cluster-Configuration Interaction (SAC-CI)[1] • A basis function for excited states ˆ ˆ CC , PS I Pˆ 1 CC CC CC Hˆ E SˆI CC 0 GBT from CC equation – Orthogonality CC Pˆ SˆI CC 0 – Hamiltonian orthogonality ˆ ˆ CC CC Hˆ E Sˆ CC 0 CC Hˆ PS I I ˆ ˆ CC satidfies the conditions for excited - state w.f. → PS I • SAC-CI wave function ˆ ˆ CC d SAC CI PS K K K [1]H. Nakatsuji, Chem. Phys. Lett., 59(2), 362-364 (1978); 67(2,3), 329-333 (1979); 334-342 (1979). SAC-CI(SD-R)compared with Full-CI Accurate solution at Single and Double approximation→Applicable to molecules Summary 43 CIS, CISD, SAC-CI (SD-R) are compared HF/CIS CISD SAC/SAC-CI (SD-R) Wave function HF determinant Up to Doubles Electron correlations No Yes Yes Size-extensivity Yes No Yes Single excitations Singles and doubles Singles, doubles, effective higher excitations Ground state 0 Sˆ 0 Sˆ S Sˆ D 0 CCSD level exp Sˆ S Sˆ D 0 Excited state Wave function Sˆ S 0 Sˆ 0 Sˆ S Sˆ D 0 Sˆ S Sˆ D CC Electron correlations No Not enough. Near Full-CI result. Size-extensivity Yes No Yes (Numerically) Qualitative description for singly excited states No. Excitation energy is overestimated Quantitative description for singly excited states O(N6) O(N6) Applicable targets Number of operation ((N: O(N4) # of basis function) Hierarchical view of CI-related methods EQ: Equilibrium IP: Independent Particle model GS: Ground states Corr: Correlated model EX: Excited states Dynamical correlations CC Corr CC level Full-CI MRCC SAC-CI MP2 Perturbation 2nd order CIS(D), CC2 CASPT2 Hartree-Fock IP GS EQ CIS EX Excited states Uncorrelated Non-EQ Applicability to structures MCSCF Static correlations 45 Practical aspect in CI-related methods Maximum number of active orbitals Fragment based approximated methods (divide & conquer, FMO, etc.) were excluded. Nact: Number of active orbitals , MxEX: The maximum order of excitation Nact CCSD, SAC-CISD(MxEX in linear terms) ~1000 CCSDTQ (MxEX in linear terms) ~100 RASSCF RASPT2[1] 32 15 Challenge: Speed up 2 4 Challenge CASSCF, CASPT2[1] 10 16 Maximum number of excitations MxEX [1] P.-Å. Malmqvist, K. Pierloot, A. R. M. Shahi, C. J. Cramer, and L. Gagliardi, JCP 128, 204109 (2008). 46 End 47 Some important conditions for an electronic wave function • The Pauli anti-symmetry principle Pˆi j , ri , , rj , , rj , , ri , Pˆi j : Permutation operator • Size-extensivity Hˆ Tot Frag I Hˆ I (non - interacting limit, Hˆ I J = 0) E • In some CI wave functions, E Tot • Cusp conditions 1 lim rij 0 rij 0 r ij ave 2 Frag I EI Tot Frag I EI E Coordinates • Spin-symmetry adapted (for the non-relativistic Hamiltonian op.) Sˆ 2 S S 1 Sˆz M Hˆ , Sˆ 2 0 Hˆ , Sˆz 0 48
© Copyright 2024 ExpyDoc