Recent Advances in Magneto-Optics Katsuaki Sato Department of Applied Physics Tokyo University of Agriculture & Technology ICFM2001 Crimia October 1-5, 2001 CONTENTS 1. 2. 3. Introduction Fundamentals of Magneto-Optics Magneto-Optical Spectra • 4. Recent Advances in Magneto-Optics • • • 5. Magneto-optics in nano-structures Nonlinear magneto-optical effect Scanning near-field magneto-optical microscope Current Status in Magneto-Optical Devices • • • 6. Experiments and theory Magneto-optical disk storages Magneto-optical isolators for optical communication Other applications Summary ICFM2001 Crimia October 1-5, 2001 1. Introduction • Magneto-Optical Effect:Discovered by Faraday on 1845 • Phenomenon:Change of Linear Polarization to Elliptically Polarized Light Accompanied by Rotation of Principal Axis • Cause:Difference of Optical Response between LCP and RCP • Application: – – – – Magneto-Optical Disk Optical Isolator Current Sensors Observation Technique ICFM2001 Crimia October 1-5, 2001 2.Fundamentals of Magneto-Optics • MO Effect in Wide Meaning Any change of optical response induced by magnetization • MO Effect in Narrow Meaning Change of intensity or polarization induced by magentization – Faraday effect – MOKE(Magneto-optical Kerr effect) – Cotton-Mouton effect ICFM2001 Crimia October 1-5, 2001 2.1 Faraday Effect • (a) Faraday Configuration: – Magnetization // Light Vector • (b)Voigt Configuration: – Magnetization Light Vector ICFM2001 Crimia October 1-5, 2001 Faraday Effect • MO effect for optical transmission – Magnetic rotation(Faraday rotation)F – Magnetic Circular Dichroism(Faraday Ellipticity) F • Comparison to Natural Optical Rotation – Faraday Effect is Nonreciprocal (Double rotation for round trip) – Natural rotation is Reciprocal (Zero for round trip) • Verdet Constant – F=VlH (For paramagnetic and diamagnetic materials) ICFM2001 Crimia October 1-5, 2001 Illustration of Faraday Effect Rotation of Principal axis For linearly polarized light incidence, Elliptically Polarized light Linearly polarized light • Elliptically polarized light goes out (MCD) • With the principal axis rotated (Magnetic rotation) ICFM2001 Crimia October 1-5, 2001 Faraday rotation of magnetic materials Materials wavelength (nm) 578 temperature (K) RT Mag. field (T) 2.4 Fe rotation (deg) 3.825・105 Co 1.88・105 546 〃 2 Ni 1.3・105 826 120 K 0.27 Y3Fe5O12 250 1150 100 K Gd2BiFe5O12 1.01・104 800 RT MnSb 2.8・105 500 〃 MnBi 5.0・105 633 〃 YFeO3 4.9・103 633 〃 NdFeO3 4.72・104 633 〃 CrBr3 1.3・105 500 1.5K EuO 5・105 104 660 4.2 K 2.08 CdCr2S4 3.8・103 35(80K) 1000 4K 0.6 figure of merit(deg/dB) 44 1.43 ICFM2001 Crimia October 1-5, 2001 2.2 Magneto-Optical Kerr Effect • Three kinds of MO Kerr effects – Polar Kerr(Magnetization is oriented perpendicular to the suraface) – Longitudinal Kerr(Magnetization is in plane and is parallel to the plane of incidence) – Transverse Kerr (Magnetization is in plane and is perpendicular to the plane of incidence) ICFM2001 Crimia October 1-5, 2001 Magneto-optical Kerr effect M Polar M Longitudinal ICFM2001 Crimia October 1-5, 2001 M Transverse MO Kerr rotation of magnetic materials rotation Photon energy temperature field (deg) (eV) (K) (T) Fe 0.87 0.75 RT Co 0.85 0.62 〃 Ni 0.19 3.1 〃 Gd 0.16 4.3 〃 Fe3O4 0.32 1 〃 MnBi 0.7 1.9 〃 PtMnSb 2.0 1.75 〃 1.7 CoS2 1.1 0.8 4.2 0.4 CrBr3 3.5 2.9 4.2 EuO 6 2.1 12 USb0.8Te 9.0 0.8 10 0.2 S CoCr 2 4 4.5 0.7 80 a-GdCo * CeSb 0.3 1.9 RT Materials 90 2 ICFM2001 Crimia October 1-5, 2001 4.0 2.3 Electromagnetism and Magnetooptics • Light is the electromagnetic wave. • Transmission of EM wave:Maxwell equation • Medium is regareded as continuum→dielectric permeability tensor – Effect of Magnetic field→mainly to off-diagonal element • Eigenequation • →Complex refractive index:two eigenvalues eigenfunctions:right and left circularpolarization – Phase difference between RCP and LCP→rotation – Amplitude difference →circular dichroism ICFM2001 Crimia October 1-5, 2001 Dielectric tensor ~ E D ε 0 xx ~ yx zx xy yy zy xz yz zz yy ~ C 1~ C 4 4 xy zy ij ij ij Isotromic media;M//z Invariant C4 for 90°rotation around z-axis xz xx zx yz xz zz xx yy yx xy yz zx zy 0 xx ~ xy 0 ICFM2001 Crimia October 1-5, 2001 yx xy xx 0 0 0 zz MO Equations (1) Maxwell Equation Eigenequation Eigenvalue ~ 2 rotrotE 2 E 0 2 c t Nˆ 2 xx xy 0 xy Nˆ 2 xx 0 0 E x 0 E y 0 zz E z Nˆ 2 xx i xy Eigenfunction:LCP and RCP Without off-diagonal terms:No difference between LCP & RCP No magnetooptical effect ICFM2001 Crimia October 1-5, 2001 MO Equations (2) Nˆ Nˆ Nˆ x x i x y x x i x y i xy xx Nˆ i x y F xx (xy1) M i (xx0) 12 (xx2) M 2 Both diagonal and off-diagonal terms contribute to Magneto-optical effect ICFM2001 Crimia October 1-5, 2001 Phenomenology of MO effect Linearly polarized light can be decomposed to LCP and RCP Difference in phase causes rotation of the direction of Linear polarization Difference in amplitudes makes Elliptically polarized light In general, elliptically polarized light With the principal axis rotated ICFM2001 Crimia October 1-5, 2001 2.4 Electronic theory of MagnetoOptics • Magnetization→Splitting of spin-states – No direct cause of difference of optical response between LCP and RCP • Spin-orbit interaction→Splitting of orbital states – Absorption of circular polarization→Induction of circular motion of electrons • Condition for large magneto-optical response – Presence of strong (allowed) transitions – Involving elements with large spin-orbit interaction – Not directly related with Magnetization ICFM2001 Crimia October 1-5, 2001 Dielectric functions derived from Kubo formula f x mn Nq 2 xx 1 n m m 0 n i 2 n20 mn f mn Nq 2 xy i n m 2 2m 0 n i 2 mn where n exp( n / kT ) exp( n / kT ) Tr exp( H 0 / kT ) exp( n / kT ) n f xj 2 m j 0 j x 0 2 f mn f mn f mn ICFM2001 Crimia October 1-5, 2001 f jo m j 0 0 x j 2 Microscopic concepts of electronic polarization E + + - Wavefunction perturbed by electric field Unperturbed wavefunction + - = + ・・ + + S-like P-like Expansion by unperturbed orbitals ICFM2001 Crimia October 1-5, 2001 Orbital angular momentum-selection rules and circular dichroism py-orbital px-orbital Lz=+1 p+=px+ipy Lz=-1 p-=px-ipy Lz=0 ICFM2001 Crimia October 1-5, 2001 s-like Role of Spin-Orbit Interaction Jz=-3/2 Jz=-1/2 L=1 LZ=+1,0,-1 L=0 Without magnetization LZ=0 Exchange splitting Jz=+1/2 Jz=+3/2 Jz=-1/2 Jz=+1/2 Exchange +spin-orbit ICFM2001 Crimia October 1-5, 2001 MO lineshapes (1) 1.Diamagnetic lineshape Excited state ”xy ’xy Lz=-1 0 Lz=+1 1 2 1+2 Ground state Lz=0 Without magnetization With magnetization Photon energy ICFM2001 Crimia October 1-5, 2001 Photon energy MO lineshapes (2) 2.Paramagnetic lineshape excited state 0 f+ f- dielectric constant f=f+ - f’xy ”xy ground state without magnetic field with magnetic field photon energy (b) (a) ICFM2001 Crimia October 1-5, 2001 3. Magneto-Optical Spectra • • • • • • • Measurement technique Magnetic garnets Metallic ferromagnet:Fe, Co, Ni Intermetallic compounds and alloys:PtMnSb etc. Magnetic semiconductor:CdMnTe etc. Superlattices:Pt/Co, Fe/Au etc. Amorphous:TbFeCo, GdFeCo etc. ICFM2001 Crimia October 1-5, 2001 Measurement of magneto-optical spectra using retardation modulation technique i Light source monochro mator filter /4 B chopper ellipsoidal mirror polarizer j eletromagnet sample sample P D PEM quartz A Isotropic medium analyzer detector fused silica CaF2 Ge etc. Retardation =(2/)nl sin pt =0sin pt computer l ICFM2001 Crimia October 1-5, 2001 Magnetic garnets • One of the most intensively investigated magneto-optical materials • Three different cation sites; octahedral, tetrahedral and dodecahedral sites • Ferrimagnetic • Large magneto-optical effect due to strong charge-transfer transition • Enhancement of magneto-optical effect by Bisubstitution at the dodecahedral site ICFM2001 Crimia October 1-5, 2001 Electronic level diagram of Fe3+ in magnetic garnets Jz= Jz= J=7/2 6P (6T 6 2, T1g) 5/2 - 3/2 7/2 -3/2 -7/2 3/2 -3/2 3/2 -3/2 J=5/2 -3/2 J=3/2 P+ P+ P- P- 6 S (6 A , 6 A ) 1 1g without perturbation spin-orbit interaction -5/2 5/2 tetrahedral crystal field (Td) ICFM2001 Crimia October 1-5, 2001 octahedral crystal field (Oh) Experimental and calculated magneto-optical spectra of Y3Fe5O12 Faraday rotation (arb. unit) 0.8 experiment +2 0 0.4 -2 calculation 0 -0.4 300 400 500 Wavelength (nm) ICFM2001 Crimia October 1-5, 2001 600 Faraday rotation (deg/cm) x104 Electronic states and optical transitions of Co2+ and Co3+ in Y3Fe5O12 (a) (b) ICFM2001 Crimia October 1-5, 2001 Theoretical and experimental magnetooptical spectra of Co-doped Y3Fe5O12 ICFM2001 Crimia October 1-5, 2001 Theoretical and experimental MO spectra of bcc Fe Krinchik Katayama theory ICFM2001 Crimia October 1-5, 2001 MO spectra of PtMnSb Magneto-optical Kerr rotation θK and ellipticity ηK (a) K xy xx 1 xx Diagonal dielectric functions (b) ICFM2001 Crimia October 1-5, 2001 Off-diagonal Dielectric function (c) Comparison of theoretical and experimental spectra of half-metallic PtMnSb (a) (b) (c) After Oppeneer (d) ICFM2001 Crimia October 1-5, 2001 Magneto-optical spectra of CdMnTe Photon Energy1-5, (eV) ICFM2001 Crimia October 2001 Pt/Co superlattices Pt(10)/Co(5) Pt(18)/Co(5) simulation experiment Pt(40)/Co(20) Photon energy (eV) Kerr rotation and ellipticity(min) Kerr rotation and ellipticity(min) PtCo alloy rotation elliptoicity Photon energy (eV) ICFM2001 Crimia October 1-5, 2001 MO spectra in RE-TM (1) Polar Kerr rotation (min) Wavelength (nm) ICFM2001 Crimia October 1-5, 2001 MO spectra in R-Co Wavelength (nm) 300 400 500 600 700 Polar Kerr rotation (deg) 0 -0.2 -0.4 -0.6 5 4 3 Photon Energy (eV) ICFM2001 Crimia October 1-5, 2001 2 MO spectra of Fe/Au superlattice ICFM2001 Crimia October 1-5, 2001 Calculated MO spectra of Fe/Au superlattice By M.Yamaguchi et al. ICFM2001 Crimia October 1-5, 2001 Au/Fe/Au sandwich structure By Y.Suzuki et al. ICFM2001 Crimia October 1-5, 2001 4. Recent Advances in Magneto-Optics • Nonlinear magneto-optics • Scanning near-field magneto-optical microscope (MO-SNOM) • X-ray magneto-optical Imaging ICFM2001 Crimia October 1-5, 2001 NOMOKE (Nonlinear magneto-optical Kerr effect) • Why SHG is sensitive to surfaces? • Large nonlinear magneto-optical effect • Experimental results on Fe/Au superlattice • Theoretical analysis • Future perspective ICFM2001 Crimia October 1-5, 2001 MSHG Measurement System LD pump SHG laser Electromagnet =810nm Pulse=150fs =532nm Ti: sapphire P=600mW Mirror rep80MHz laser Filter Stage controller Berek compensator Mirror Sample Analyzer Lens Filter PMT Chopper lens polarizer Photon counting Photon counter Computer ICFM2001 Crimia October 1-5, 2001 Sample 試料回転 810nm) Sample stage 45° Rotating analyzer Filter 2 405nm) 810nm) Analyzer Optical arrangements ICFM2001 Crimia October 1-5, 2001 Azimuthal dependence of 90 100 80 60 40 20 0 20 40 60 80 100 120 60 150 30 180 0 210 330 240 270 300 (a) Linear (810nm) SHG intensity (counts/10sec.) SHG intensity (counts/10sec.) ・ Linear optical response (=810nm) The isotropic response for the azimuthal angle ・ Nonlinear optical response (=405nm) The 4-fold symmetry pattern Azimuthal pattern show 45-rotation by reversing the magnetic field 90 300 250 200 150 100 50 0 50 100 150 200 250 300 120 45 60 150 30 180 0 210 330 240 270 300 (b) SHG (405nm) [Fe(3.75ML)/Au(3.75ML)] 超格子の )配置の線形および非線形の方位角依存性 in Pout ICFM2001(P Crimia October 1-5, 2001 Calculated and experimental patterns :x=3.5 SHG intensity (counts/10sec.) SHG intensity (counts/10sec.) (a) Pin-Pout 103 2000 1500 1000 500 0 500 1000 1500 2000 120 90 103 60 120 30 180 0 210 330 270 150 100 50 0 50 100 150 90 60 150 30 180 0 210 300 330 240 270 300 APP=1310, B=26, C=-88 APS=-300, B=26, C=-88 (c) Sin-Pout (d) Sin-Sout 103 120 300 200 100 0 100 200 300 (b) Pin-Sout 150 240 Dots:exp. Solid curve:calc. 90 103 60 150 30 180 0 210 330 240 270 300 40 30 20 10 0 10 20 30 40 120 90 60 150 30 180 0 210 330 240 270 300 ASP=460, B=26, C=ASS=100, B=26, C=ICFM2001 Crimia October 1-5, 2001 88 88 Nonlinear Kerr Effect 100000 90000 f = 31.1° 80000 70000 Rotating 60000 Analyzer 50000 Analyzer 40000 Filter 30000 2 (405nm) 20000 10000 0 -20 0 20 40 60 80 100 120 140 160 180 200 Electromagnet S-polarized light ω(810nm) 45° The curves show a shift for two opposite directions of magnetic field Fe(1.75ML)/Au(1.75ML) Sin ICFM2001 Crimia October 1-5, 2001 Nonlinear Magneto-optical Microscope Sample P Objective lens L F1 F2 A CCD Schematic diagram 50m Linear and nonlinear magneto-optical images of domains in CoNi film ICFM2001 Crimia October 1-5, 2001 MO-SNOM (Scanning near-field magneto-optical microscope) • • • • • Near-field optics Optical fiber probe Optical retardation modulation technique Stokes parameter of fiber probe Observation of recorded bits on MO disk ICFM2001 Crimia October 1-5, 2001 Near-field Propagating wave Medium 1 Evanescent wave Evanescent field ic Medium 2 ic d Critical angle c Total reflection and near field Scattered wave Scattered wave by a small sphere placed in the evanescent field produced by another sphere ICFM2001 Crimia October 1-5, 2001 Levitation control methods Quartz oscillator Fiber probe bimorph Sample surface Piezoelectricallydriven xyz-stage Shear force type Piezoelectricallydriven xyz-stage Canti-lever type ICFM2001 Crimia October 1-5, 2001 Collection mode(a) and illumination mode(b) ICFM2001 Crimia October 1-5, 2001 SNOM/AFM System Photodiode LD Compensator Polarizer Bimorph Sample PEM Optical fiber probe Filter Lock-in Amplifier XYZ Bent fiber probe Analyzer Ar ion laser Signal generator Photomultiplier scanner Controller (SPI3800 3800) MO-SNOM system using PEM ICFM2001 Crimia October 1-5, 2001 Computer Recorded marks on MO disk observed by MO-SNOM topography MO image ICFM2001 Crimia October 1-5, 2001 MO-SNOM image of 0.2m recorded marks on Pt/Co MO disk Resolution ↓ Topographic image MO image ICFM2001 Crimia October 1-5, 2001 Line profile Reflection type SNOM P. Fumagalli, A. Rosenberger, G. Eggers, A. Münnemann, N. Held, G. Güntherodt: Appl. Phys. Lett. 72, 2803 (1998) ICFM2001 Crimia October 1-5, 2001 XMCD (X-ray magnetic circular dichroism) Occupation of minority 3d band (b) (a) md +2 +1 0 (1) -1 (a) (14) (6) (2) mj +3/2 +1/2 mj +1/2 3d (3) (6) (12) -2 (6) (3) (3) -1/2 -3/2 -1/2 (b) Simulated XMCD spectra corresponding to transitions (a) and (b) in the left diagram 2p3/2 2p1/2 ICFM2001 Crimia October 1-5, 2001 Magnetic circular dichroism of L-edge (b) ICFM2001 Crimia October 1-5, 2001 Domain image of MO media observed using XMCD of Fe L3-edge SiN(70nm)/ TbFeCo(50nm)/SiN(20nm)/ Al(30nm)/SiN(20nm) MO 媒体 N. Takagi, H. Ishida, A. Yamaguchi, H. Noguchi, M. Kume, S. Tsunashima, M. Kumazawa, and P. Fischer: Digest Joint MORIS/APDSC2000, Nagoya, October 30-November 2, 2000, WeG-05, p.114. ICFM2001 Crimia October 1-5, 2001 Spin dynamics in nanoscale region GaAs high speed optical switch Th. Gerrits, H. van den Berg, O. Gielkens, K.J. Veenstra and Th. Rasing: Digest Joint MORIS/APDSC2000, Nagoya, October 30ICFM2001November Crimia October 2001 2, 1-5, 2000, TuC-05, p.24. Further Prospects -For wider range of researches- • Time (t):Ultra-short pulse→Spectroscopy using ps, fslasers, Pump-probe technique • Frequency ():Broad band width, Synchrotron radiation • Wavevector (k):Diffraction, scattering, magneto-optical diffraction • Length (x):Observation of nanoscale magetism, Appertureless SNOM, Spin-polarized STM, Xray microscope • Phase ():Sagnac interferrometer ICFM2001 Crimia October 1-5, 2001 5. Magneto-optical Application • Magneto-optical disk for high density storage • Optical isolators for optical communication • Other applications ICFM2001 Crimia October 1-5, 2001 Magneto-optical (MO) Recording • Recording:Thermomagnetic recording – Magnetic recording using laser irradiation • Reading out: Magneto-optical effect – Magnetically induced polarization state • • • • MO disk, MD(Minidisk) High rewritability:more than 107 times Complex polarization optics New magnetic concepts: MSR, MAMMOS ICFM2001 Crimia October 1-5, 2001 History of MO recording • • • • • • • • • • • • • • 1962 Conger,Tomlinson Proposal for MO memory 1967 Mee Fan Proposal of beam-addressable MO recording 1971 Argard (Honeywel) MO disk using MnBi films 1972 Suits(IBM) MO disk using EuO films 1973 Chaudhari(IBM) Compensation point recording to a-GdCo film 1976 Sakurai(Osaka U)Curie point recording on a-TbFe films1980 Imamura(KDD) Code-file MO memory using a-TbFe films 1981 Togami(NHK) TV picture recording using a-GdCo MO disk 1988 Commercial appearance of 5”MO disk (650MB) 1889 Commercial appearance of 3.5 ”MO disk(128MB) 1991 Aratani(Sony) MSR 1992 Sony MD 1997 Sanyo ASMO(5” 6GB:L/G, MFM/MSR) standard 1998 Fujitsu GIGAMO(3.5” 1.3GB) 2000 Sanyo, Maxell iD-Photo(5cmφ730MB) ICFM2001 Crimia October 1-5, 2001 Structure of MO disk media • MO disk structure Al reflection layer Groove Land Polycarbonate substrate SiNx layer for protection and MO-enhancement MO-recording layer (amorphous TbFeCo) Resin ICFM2001 Crimia October 1-5, 2001 MO recording How to record(1) • Temperature increase by focused laser beam • Magnetization is reduced when T exceeds Tc • Record bits by external field when cooling M Tc Temp Tc Coil External field MO media ICFM2001 Crimia October 1-5, 2001 Laser spot MO recording How to record(2) • Use of compensation point Hc writing • Amorphous TbFeCo: Ferrimagnet with Tcomp M • HC takes maximum at Tcomp – Stability of small recorded marks Fe,Co Tb FeCo Mtotal Tb RT ICFM2001 Crimia October 1-5, 2001 Tcomp Tc T アモルファスTbFeCo薄膜 TM R (Fe,Co) (Tb) TM (Fe,Co) R (Tb) ICFM2001 Crimia October 1-5, 2001 Two recording modes • Light intensity modulation (LIM): present MO – Laser light is modulated by electrical signal – Constant magnetic field – Elliptical marks • Magnetic field modulation (MFM):MD, ASMO – Field modulation by electrical signal – Constant laser intensity – Crescent-shaped marks Constant laser beam Modulated laser beam Constant field Modulated field (a)ICFM2001 LIM Crimia October 1-5,(b) 2001MFM Magnetic head Shape of Recorded Marks (a) LIM (b) MFM ICFM2001 Crimia October 1-5, 2001 MO recording How to read • Magneto-optical conversion of magnetic signal to electric signal D1 LD + D2 N S S N N S Differential detection Polarized Beam Splitter ICFM2001 Crimia October 1-5, 2001 Structure of MO Head Bias field coil Recorded marks Track pitch Focusing lens MO film Rotation of polarization Beam splitter mirror lens PBS (polarizing beam splitter) Laser diode Half wave-plate Photo-detector ICFM2001 Crimia October 1-5, 2001 Advances in MO recording 1. Super resolution 1. MSR 2. MAMMOS/DWDD 2. Use of Blue Lasers 3. Near field 1. SIL 2. Super-RENS (AgOx) ICFM2001 Crimia October 1-5, 2001 MSR (Magnetically induced super-resolution) • Resolution is determined by diffraction limit – d=0.6λ/NA, where NA=n sin α – Marks smaller than wavelength cannot α be resolved d • Separation of recording and reading layers • Light intensity distribution is utilized – Magnetization is transferred only at the heated region ICFM2001 Crimia October 1-5, 2001 Illustration of 3 kinds of MSR ICFM2001 Crimia October 1-5, 2001 AS-MO standard LD wavelength NA Disk diameter Thickness Track pitch Recording method Modulation Signal processing Velocity control Code 650 nm 0.6 120 mm 0.6 mm 0.6 μm Land/Groove MO & CAD-MSR Laser pumped MFM PRML bit density 0.235μm) PR(1,1) or PR(1,2,1) ZCAV/ZCLV NRZI+ (DC supressed) ICFM2001 Crimia October 1-5, 2001 iD-Photo specification Memory Capacity Surface memory density LD wavelength NA Disk diameter Thickness Track pitch Recording method Modulation bit density Signal processing, PRML Velocity control Code 730 MB 4.6Gbit/in2 650 nm 0.6 50.8 mm 0.6 mm 0.6 μm Land/Groove MO & CAD-MSR Pulsed laser strobe MFM 0.235μm PR(1,1) +Viterbi ZCAV NRZI+ ICFM2001 Crimia October 1-5, 2001 MAMMOS (magnetic amplification MO system) ICFM2001 Crimia October 1-5, 2001 Super-RENS super-resolution near-field system • AgOx film:decomposition and precipitation of Ag – Scattering center→near field – Ag plasmon→enhancement – reversible • Applicable to both phasechange and MO recording 高温スポット 近接場散乱 ICFM2001 Crimia October 1-5, 2001 To shorter wavelengths • DVD-ROM: Using 405nm laser, successful play back of marks was attained with track pitch =0.26m、mark length =213m (capacity 25GB) using NA=0.85 lens [i]。 [i] M. Katsumura, et al.: Digest ISOM2000, Sept. 5-9, 2000, Chitose, p. 18. • DVD-RW: Using 405nm laser, read / write of recorded marks of track pitch=0.34m and mark length=0.29m in 35m two-layered disk(capacity:27GB) was succeeded using NA=0.65 lens, achieving 33Mbps transfer rate [ii] 。 [ii] T. Akiyama, M. Uno, H. Kitaura, K. Narumi, K. Nishiuchi and N. Yamada: Digest ISOM2000, Sept. 5-9, 2000, Chitose, p. 116. ICFM2001 Crimia October 1-5, 2001 Read/Write using Blue-violet LD and SIL (solid immersion lens) NA=1.5 405nm 80nm mark 40GB SILhead 405nm LD I. Ichimura et. al. (Sony), ISOM2000 FrM01 ICFM2001 Crimia October 1-5, 2001 SIL (solid immersion lens) ICFM2001 Crimia October 1-5, 2001 Optical recording using SIL ICFM2001 Crimia October 1-5, 2001 Hybrid Recording 405nm LD Recording head (SIL) Readout MR head Achieved 60Gbit/in2 H. Saga et al. Digest MORIS/APDSC2000, TuE-05, p.92. TbFeCo disk ICFM2001 Crimia October 1-5, 2001 Optical elements for fiber communication • Necessity of optical isolators • Principles of optical isolators • Structure of optical isolators – Polarization-independent type – Polarization-dependent type • Optical multiplexing and needs of optical isolators ICFM2001 Crimia October 1-5, 2001 Optical circuit elements proposed by Dillon (a) Rotator (b) Isolator (c) Circulator (e) Latching switch (d) Modulator ICFM2001 Crimia October 1-5, 2001 Optical isolator for Laser diode module Optical isolator for LD module Optical fiber Signal source Laser diode module ICFM2001 Crimia October 1-5, 2001 Optical fiber amplifier and optical isolator isolators EDFA output input Band pass filter mixer Pumping laser ICFM2001 Crimia October 1-5, 2001 Optical Circulator B A C D ICFM2001 Crimia October 1-5, 2001 Optical add-drop and circulator circulator Fiber grating circulator ICFM2001 Crimia October 1-5, 2001 Polarization dependent isolator analyzer mag.field reflected beam polarizer Faraday rotator input ICFM2001 Crimia October 1-5, 2001 Polarization independent isolator Faraday rotator F ½ waveplate C Birefringent plate B1 Birefringent plate B2 Fiber 1 Fiber 2 Forward direction × Fiber 1 B1 F C B2 Fiber 2 × Reverse direction ICFM2001 Crimia October 1-5, 2001 Magneto-optical circulator Prism polarizer A Faraday rotator Reflection prism Half wave plate Port 2 Port 1 Port 4 Port 3 Prism polarizer B ICFM2001 Crimia October 1-5, 2001 Optical absorption in YIG ICFM2001 Crimia October 1-5, 2001 Waveguide type isolators ICFM2001 Crimia October 1-5, 2001 Mach-Zehnder type isolator ICFM2001 Crimia October 1-5, 2001 Current-field sensor ICFM2001 Crimia October 1-5, 2001 Current sensors used by power engineers Before installation Magnetic core After installation Aerial wire Hook Magneto-optical sensor head Fail-safe string Fastening screw Optical fiber ICFM2001 Crimia October 1-5, 2001 Field sensor using optical fibers ICFM2001 Crimia October 1-5, 2001 SUMMARY • Basic concepts of magneto-optics are described. • Macroscopic and microscopic origins of magneto-optics are described. • Some of the recent development of magneto-optics are also given. • Some of the recent application are summarized. ICFM2001 Crimia October 1-5, 2001
© Copyright 2024 ExpyDoc