Supplementary Information Thermochemistry of Disputed Soot Formation Intermediates C4H3 and C4H5 Steven E. Wheeler, Wesley D. Allen, and Henry F. Schaefer Table S1. Open-shell T1 diagnostics92 and maximum T1 and T2 amplitudes for isomers of C4H3 and C4H5 at the cc-pVTZ ROCCSD level.a Species a T1 Diagnostic Largest T1 Largest T2 Amplitude Amplitude i-C4H3 0.024 0.111 0.105 Z-n-C4H3 0.015 0.050 0.092 E-n-C4H3 0.015 0.048 0.093 i-C4H5 0.024 0.124 0.089 Z-n-C4H5 0.014 0.039 0.107 E-n-C4H5 0.014 0.037 0.108 Computed at frozen-core TZ(2d1f,2p1d) ROCCSD(T) geometries using Psi3.111 Table S2. Incremental valence focal point table (kcal mol–1) for the energy of the C2v-symmetric structure 5 relative to i-C4H3.a Basis Set ∆Ee[ROHF] +δ[ZAPT2] +δ[CCSD] +δ[CCSD(T)] +δ(CCSDT) ∆Ee[CCSDT] i-C4H3 (4) → C2v-C4H3 (5) a cc-pVDZ 2.609 –3.814 +1.966 –0.200 +0.071 0.633 cc-pVTZ 2.587 –4.213 +2.122 –0.248 [+0.071] [0.320] cc-pVQZ 2.592 –4.344 +2.177 –0.260 [+0.071] [0.236] cc-pV5Z 2.599 –4.342 [+2.147] [–0.265] [+0.071] [0.211] cc-pV6Z 2.601 [–4.341] [+2.147] [–0.265] [+0.071] [0.214] CBS limit [2.602] [–4.340] [+2.147] [–0.265] [+0.071] [0.216] Fit a + be −cX a + bX −3 a + bX −3 a + bX −3 additive Points (X=) 4,5,6 4,5 3,4 3,4 Cut-off none none 5 5 See footnote a of Table IV. The extrapolated core-correlation correction is –0.044 kcal mol–1, resulting in a final extrapolated energy separation of 0.172 kcal mol–1. Table S3. Incremental core-correlation focal point tables (kcal mol–1) for isomerization reactions of C4H3.a Basis Set ∆fp(core)[ZAPT2] +δ[CCSD] +δ[CCSD(T)] ∆fp(core)[CCSD(T)] i-C4H3 → Z-n-C4H3 cc-pVDZ 0.118 –0.015 +0.007 0.110 cc-pVTZ 0.140 –0.028 +0.009 0.120 cc-pVQZ 0.152 [–0.028] [+0.009] [0.132] cc-pV5Z [0.156] [–0.028] [+0.009] [0.136] CBS limit [0.160] [–0.028] [+0.009] [0.141] i-C4H3 → E-n-C4H3 a cc-pVDZ 0.121 –0.015 +0.007 0.112 cc-pVTZ 0.132 –0.029 +0.008 0.112 cc-pVQZ 0.144 [–0.029] [+0.008] [0.124] cc-pV5Z [0.148] [–0.029] [+0.008] [0.128] CBS limit [0.152] [–0.029] [+0.008] [0.132] Fit a + bX −3 additive additive Points (X=) 3,4 Cut-off none See footnote a of Table IV for notation. This table pertains to the core correlation correction [∆fp(core)] to the reaction energy. Table S4. Incremental core-correlation focal point tables (kcal mol–1) for isomerization reactions of C4H5.a Basis Set ∆fp(core)[ZAPT2] +δ[CCSD] +δ[CCSD(T)] ∆fp(core)[CCSD(T)] i-C4H5 → Z-n-C4H5 cc-pVDZ 0.161 –0.020 –0.000 0.141 cc-pVTZ 0.182 –0.020 –0.003 0.159 cc-pVQZ 0.198 [–0.020] [–0.003] [0.175] cc-pV5Z [0.205] [–0.020] [–0.003] [0.181] CBS limit [0.211] [–0.020] [–0.003] [0.188] i-C4H5 → E-n-C4H5 a cc-pVDZ 0.159 –0.020 –0.000 0.139 cc-pVTZ 0.173 –0.020 –0.003 0.150 cc-pVQZ 0.189 [–0.020] [–0.003] [0.167] cc-pV5Z [0.195] [–0.020] [–0.003] [0.173] CBS limit [0.201] [–0.020] [–0.003] [0.179] Fit a + bX −3 additive additive Points (X=) 3,4 Cut-off none See footnote a of Table IV. This table pertains to the core correlation correction [∆fp(core)] to the reaction energy. Table S5. Incremental core-correlation focal point tables (kcal mol–1) for decomposition reactions of C4H4 and C4H6.a Basis Set ∆fp(core)[MP2] +δ[CCSD] +δ[CCSD(T)] ∆ fp(core)[CCSD(T)] C4H4 + C2H6 → C3H6 + C3H4 cc-pVDZ –0.004 –0.000 +0.004 –0.001 cc-pVTZ –0.028 –0.003 +0.006 –0.025 cc-pVQZ –0.041 [–0.003] [+0.006] [–0.038] cc-pV5Z [–0.045] [–0.003] [+0.006] [–0.042] CBS limit [–0.050] [–0.003] [+0.006] [–0.047] C4H6 + C2H6 → C3H6 + C3H6 a cc-pVDZ 0.009 –0.000 +0.001 0.010 cc-pVTZ –0.009 –0.003 +0.000 –0.012 cc-pVQZ –0.017 [–0.003] [+0.000] [–0.020] cc-pV5Z [–0.020] [–0.003] [+0.000] [–0.022] CBS limit [–0.021] [–0.003] [+0.000] [–0.025] Fit a + bX −3 additive additive Points (X=) 3,4 Cut-off none See footnote a of Table IV. This table pertains to the core correlation correction [∆fp(core)] to the reaction energy. Table S6. Incremental core-correlation focal point tables (kcal mol–1) for isodesmic reaction of i-C4H3 and i-C4H5.a Basis Set ∆ fp(core)[ZAPT2] +δ[CCSD] +δ[CCSD(T)] ∆ fp(core)[CCSD(T)] i-C4H3 + CH4→ C4H4 + CH3 cc-pVDZ 0.117 –0.005 +0.008 0.120 cc-pVTZ 0.112 –0.014 +0.012 0.110 cc-pVQZ 0.121 [–0.014] [+0.012] [0.119] cc-pV5Z [0.125] [–0.014] [+0.012] [0.123] CBS limit [0.129] [–0.014] [+0.012] [0.126] i-C4H5 + CH4→ C4H6 + CH3 a cc-pVDZ 0.161 –0.010 +0.002 0.152 cc-pVTZ 0.153 –0.006 +0.001 0.148 cc-pVQZ 0.168 [–0.006] [+0.001] [0.162] cc-pV5Z [0.173] [–0.006] [+0.001] [0.167] CBS limit [0.178] [–0.006] [+0.001] [0.172] Fit a + bX −3 additive additive Points (X=) 3,4 Cut-off none See footnote a of Table IV. This table pertains to the core correlation correction [∆fp(core)] to the reaction energy. Table S7. Harmonic vibrational frequencies (cm–1) for C4H4 and isomers of C4H3, computed at the cc-pVDZ ROCCSD(T) level of theory. IR intensities (km mol–1) are in parentheses. Species a′ a′′ C4H4 (vinylacetylene,1) 206 (2) 297 (4) 524 (1) 670 (0) 883 (3) 914 (25) 1097 (4) 979 (23) 1304 (1) 1432 (2) 1655 (6) 2146 (1) 3167 (3) 3186 (7) 3271 (8) 3461 (56) E-n-C4H3 (2) 209 (5) 306 (14) 511 (3) 571 (55) 616 (34) 662 (16) 816 (18) 784 (0) 1015 (8) 1252 (3) 1609 (3) 2148 (1) 3094 (5) 3255 (1) 3462 (57) Z-n-C4H3 (3) 199 (0) 314 (1) 491 (6) 567 (33) 613 (40) 663 (16) 875 (11) 860 (46) 997 (21) 1253 (1) 1594 (4) 2139 (0) 3166 (3) 3250 (1) 3461 (57) i-C4H3 (4) 149 (4) 245 (2) 378 (7) 509 (9) 435 (37) 575 (28) 871 (1) 8501 (37) 983 (1) 1428 (1) 1722 (5) 1962 (7) 3104 (4) 3209 (3) 3451 (74) Table S8. Harmonic vibrational frequencies (cm–1) for 1,3-butadiene-2-yl, computed at the cc-pVDZ ROCCSD(T) level of theory. IR intensities (km mol–1) are in parentheses. Species 1,3-butadiene-2-yl (5) a1 870 (0) b1 118i b2 214 (4) 1436 (0) 96 (12) 464 (6) 1754 (1) 351 (15) 564 (31) 1927 (2) 976 (0) 844 (40) 3102 (5) 3158 (5) 3450 (82) Table S9. Harmonic vibrational frequencies (cm–1) for C4H6, computed at the cc-pVDZ ROCCSD(T) level of theory. IR intensities (km mol–1) are in parentheses. ag au bg bu C4H6 506 (0) 172 (0) 748.1 (0) 289 (2) (1,3-butadiene,6) 898 (0) 524 (9) 898.1 (0) 989 (1) 1219 (0) 896 (59) 970.7 (0) 1299 (3) 1300 (0) 1027 (32) Species 1402 (3) 1468 (0) 1638 (9) 1701 (0) 3154 (18) 3151 (0) 3168 (13) 3164 (0) 3256 (27) 3255 (0) Table S10. Harmonic vibrational frequencies (cm–1) for isomers of C4H5, computed at the cc-pVDZ ROCCSD(T) level of theory. IR intensities (km mol–1) are in parentheses. Species E-n-C4H5 (7) a′ a′′ 199 (6) 171 (4) 544 (4) 488 (0) 849 (41) 507 (3) 892 (1) 711 (33) 1064 (1) 917 (19) 1173 (1) 983 (1) 1360 (1) 3192 (6) 1489 (2) 1866 (3) 3109 (12) 3160 (7) 3172 (5) 3283 (7) Z-n-C4H5 (8) 287 (1) 155 (0) 480 (2) 562 (0) 871 (27) 695 (24) 937 (7) 886 (27) 1164 (0) 895 (26) 1245 (1) 1000 (28) 1301 (2) 1431 (1) 1597 (3) 1669 (4) 3141 (4) 3156 (8) 3177 (8) 3238 (1) 3258 (12) i-C4H5 (9) 292 (6) 165 (0) 505 (3) 550 (40) 817 (13) 713 (9) 947 (2) 815 (0) 1181 (3) 897 (30) 1238 (1) 1002 (17) 1300 (1) 1433 (1) 1602 (3) 1680 (3) 3074 (9) 3156 (7) 3184 (6) 3250 (1) 3258 (12) 1,3-butadiene-2-yl (10) 231 (1) 72 (1) 472 (1) 388 (4) 868 (0) 692 (2) 971 (1) 840 (38) 1149 (2) 909 (26) 1285 (1) 968 (19) 1390 (5) 1440 (0) 1634 (10) 1700 (0) 3083 (5) 3107 (13) 3166 (4) 3213 (4) 3267 (8)
© Copyright 2024 ExpyDoc