CDF実験の現状と将来 金 信弘 筑波大学物理学系 For the CDF Collaboration 物理学セミナー(大阪市立大学) 2002年11月21日 はじめに CDF実験の成果 CDF実験の現状 CDF実験の今後の計画 素粒子と素粒子間の力(素粒子物理標準理論) 物質を構成する粒子(フェルミオン) クォーク アップ(0.002) ダウン(0.005) 電荷 2/3 - 1/3 チャーム(1.3) トップ(175 ) ストレンジ(0.14) ボトム( 4.2) レプトン 電子(0.0005) 電子ニュートリノ ミュー粒子(0.106) ミューニュートリノ タウレプトン(1.8) タウニュートリノ -1 0 力を伝える粒子(ゲージボソン) 強い力 グルオン(0) 電磁気力 弱い力 光子(0) W粒子(80) Z粒子(91) ( )内の数字はGeVの 単位で書かれた質量 質量の起源(ヒッグス機構) ヒッグスポテンシャル V (f) = m2f2 /2 + lf4 /4 ( l m2 > 0 (ビッグバン直後) 真空の相転移(対称性の破れ) m2 < 0 (現在) 大統一理論 三つの力(電磁力、弱い力、 強い力)は、宇宙創生直後の高 温時には対称性が成り立ち、同 一の力であった。それが冷えて きたときに対称性が破れて異な る力に見えるようになった。 超対称性理論 すべてのフェルミオン(ボソン)には超対称粒 子のボソン(フェルミオン)のパートナーが存在 する。この超対称性を仮定すると、三つの力の 大統一がある高温状態で成り立つ。 この理論は有望であると考えられている。この 理論が正しければ、質量150GeV/c2以下のヒッ グス粒子が存在するし、また標準理論で期待さ れる以上のK中間子、τ粒子、B中間子の稀崩 壊が起こる。 ビッグバン宇宙と素粒子物理 大統一理論 真空の相転移 粒子反粒子対称性の破れ 電弱統一理論 ヒッグス粒子 CDF実験の主要な成果 陽子反陽子衝突実験(米国フェルミ国立加速器研究所) 1987年 実験開始 1994年 トップクォーク発見 1998年 Bc中間子発見 2001年3月 実験再開 ヒッグス粒子探索 B中間子のCP非保存 トップクォークの物理 MW vs. MTOP Higgs Mass Constraint From Mtop(CDF,D0), MW(CDF,D0,LEPII) and other electroweak results, MHiggs < 215 GeV/c2 at 95% C.L. Ref. LEP ElectroweakWorking Group, CERN EP/2000-016 ヒッグス粒子(標準模型)の生成断面積と崩壊分岐比 生成断面積 生成断面積x分岐比 CDF Run I VH searches ( 106 pb-1) WH 0 bb Expect: 305 st 6.00.6 dt Observe: 36 st W / Z H 0 qq ' bb Expect: 600 events 6 dt Observe: 580 events ZH 0 bb ZH 0 bb Expect: 3.20.7 st Observe: 5 Expect: 39.24.4 st 3.90.6 dt Observe: 40 st 4 dt VH Production Cross Section Limit 95% CL Limit is about 30 times higher than SM prediction for Mhiggs = 115GeV/c2. 2TeV陽子反陽子衝突実験(米国フェルミ国立加速器研究所) 2001年4月~2004年 Run2a ( 2fb-1 ) 2005年~2008年 Run2b ( >13fb-1 ) The CDF Collaboration North America 3 Natl. Labs 28 Universities Europe 1 Research Lab 6 Universities 1 University 1 Universities 4 Universities Totals 112 countries 58 institutions 581 physicists - 2 Research Labs 1 University 1 University Asia 5 Universities 1 Research Lab 1 University 3 Universities Tevatron History and Future Discovery of top, Bc, … MW, Mtop, sin2b, … measurements 2 x 1032 cm-2 s-1 Tevatron Collider Luminosity 2 fb-1 0.1 fb-1 2000 Run : 0 s : Ia 1.8 TeV Ib 5 x 1032 cm-2 s-1 2002 2004 15 fb-1 2006 IIa IIb 1.96 TeV 2008 Tevatron status • Tevatron operations started in March 2001 – Luminosity goals for run 2a: Initial Luminosity July 01 • 5-8x1031 cm-2sec-1 w/o Recycler • 2x1032 cm-2sec-1 with Recycler Now – Achieved: • 3.8x1031 cm-2sec-1 in October ’02 • Now recovered from June shutdown to improve p-bar cooling • 120 pb-1 delivered until October ’02 – 90 pb-1 are on tape – 10 – 20 pb-1 used for analyses shown here (details) plans Integr. Luminosity Delivered 120 pb-1 90 pb-1 On tape CDFII Detector Muon System Central Calor. New Old Solenoid Partially New Muon Plug Calor. Time-of-Flight Drift Chamber Front End Electronics Triggers / DAQ (pipeline) Online & Offline Software Silicon Microstrip Tracker Detector Performance:SVX • Silicon detectors: – Typical S/N ~12 – Alignment in R-f good • R-z ongoing Details Full silicon acceptance is in sight … The last 10% of the job takes the second 90% of the effort (but not time!) • Commissioning: – L00 > 95% – SVXII > 90% – ISL > 80% • ISL completing cooling work % of silicon ladders powered and read-out by silicon system vs. time Back Back to index Detector Performance:TOF • TOF resolution within 10 –20% of 100ps design value – Improving calibrations and corrections S/N = 1942/4517 S/N = 2354/93113 TOF Detector Performance:XFT Offline track XFT track Efficiency curve: XFT cut at PT = 1.5 GeV/c • XFT: L1 trigger on tracks – full design resolution DpT/p2T = 1.8% (GeV-1) Df = 8 mrad Detector Performance:SVT 8 VME crates Find tracks in Si in 20 ms with offline accuracy Secondary VerTex L2 trigger Online fit of primary Vtx Beam tilt aligned D resolution as planned 48 mm (33 mm beam spot transverse size) Online track impact param. 90% Efficiency 80% s=48 mm Physics with CDF-II • Use data to understand the new detector: – energy scales in calorimeter and tracking systems – detector calibrations and resolutions – tune Monte Carlo to data • Use data to do physics analyses – Quality of standard signatures – Rates of basic physics signals – Surprisingly some results are already of relevance in spite of the limited statistics list • summary of a lot of work EM Calorimeter scale • 638 Z e+e in 10 pb-1 s(M) ~ 4 GeV FB asymmetry NZ = 247 Central-central • Check Z mass in data and simulation after corrections – Central region: • Mean: +1.2% data, -0.6% sim. • Resolution: +2% simulation Central-West plug – Forward region (Plug): • Mean: +10/6.6% data, +2.0% simulation • Resolution: +4% simulation NZ (W+E) = 391 Central-East plug Reconstruct Z ee; measure AFB Both e ||<1 NZ(CC) = 247 s(M) ~ 4 GeV Uses silicon to tag e± charge Both e ||>1 NZ(PP) = 160 Central-Plug Dielectron Mass One ||<1, one ||>1 NZ(CP) = 391 AFB will be an additional handle in Z’ searches Measurements with high Et ± e • Good modeling of observed W e distributions Selection details MET resolution from MB data consistent with Run 1 MET detail Measure s•B(We 0.16 soon! W cross section: sW*BR(We) (nb) = 2.60±0.07stat±0.11syst ±0.26lum Background (8%): - QCD: 260 ± 34 ± 78 - Z ee: 54 ± 2 ± 3 - Wt: 95 ± 6 ± 1 5547 candidates in 10 pb-1 High-Pt muons: Z m+m • Clear Z m+m signal – require COT•CMU•CMP – CDF’s purest muons: ~8l m1 CMU m2 CMP 57 candidates 66<M<116 GeV NZ = 53.2±7.5 ±2.7 Measurement of sB(Wm), R 4561 candidates in 16 pb-1 (require COT•CMU•CMP) 12.5% background: - Z mm: 247 ± 13 - Wt: 145 ± 10 - QCD: 104 ± 53 - Cosmics: 73 ± 30 s•B(Wm) = 2.70±.04stat±.19syst ±.27lum Many uncertainties, e.g. lumi, cancel in ratio: R = s•B(Wm) / s•B(Zmm) = 13.66±1.94stat±1.12syst (1.5s from SM) G(W) = 1.67±0.24stat±0.14syst MT Measure a precisely predicted ratio establish tight feedback loop on muon detection, reconstruction, and simulation W t • Evidence for typical t decay multiplicity in W t selections t channel important for new physics searches Measurements with jets • Raw Et only: – Jet 1: ET = 403 GeV – Jet 2: ET = 322 GeV Jet expectations Raw jet distributions Hadronic Energy Scale • Use J/y muons to measure MIP in hadron calorimeters – (Run II)/(Run 1) = 0.96±0.05 q g g Plug region central calor. Plug region q Gamma-jet balancing to study jet response fb = (pTjet – pTg)/pTg Run Ib (central): fb= -0.1980 ± 0.0017 Run II (central): fb= -0.2379 ± 0.0028 Plug region corrections in progress Dfb = (4.0 ±0.4)% Measurements with jets • Jet shapes: – Narrower at higher ET – Calorimeter and tracking consistent – Herwig modeling OK 16 pb-1 used for this study Measurements with low Et m± y trigger improved – pTm > 2.0 1.5 GeV Df> 5° 2.5° • Observed yrates are consistent with expected increase due the lowering of the thresholds 13 pb-1 No Silicon 100k y Central muons only 15 MeV with Silicon s= 21.6 MeV Material & Momentum Calibration • Use J/y’s to understand E-loss and B-field corrections s(scale)/scale ~ 0.02% ! • Check with other known signals D0 Add B scale correction Tune missing material ~20% Correct for material in GEANT confirm with gee U 1S 2S Raw tracks 3S mm Meson mass measurements • B masses: – – – y(2S)J/ypp (control) Bu J/yK Bd J/yK* (K*Kp Bs J/yf (fKK BsJ/yf 18.4pb-1 More mass plots DPDG/s 0.9 y(2S) CDF 2002 3686.43 ±0.54 Bu 5280.6 ±1.7 ±1.1 0.8 Bd 5279.8 ±1.9 ±1.4 0.2 Bs 5360.3 ±3.8 ±2.1 -2.1 2.9 BJ/yK Bu 18.4pb-1 B hadron lifetimes • Inclusive B lifetime with J/y’s J/y from B = 17% Fit pseudo-ct = Lxyy*FMC*My/pTy ct=458±10stat. ±11syst. mm (PDG: 469±4 mm) • Exclusive B+J/yK lifetime ct=446 ±43stat. ±13syst. mm (PDG: 502±5 mm) # B ~ 154 Trigger selects B’s via semileptonic decays ... 1910119 candidates Run II trigger & silicon => ~3 yield/luminosity as in Run I (and likely to improve further with optimization) 34922 candidates 61647 candidates SVT selects huge charm signals! • L2 trigger on 2 tracks: – pt > 2 GeV • |D| > 100 mm (2 body) • |D| > 120 mm (multibody) 56320 D0 • Large charm samples! – Will have O( 107 ) fully reconstructed decays in 2fb-1 data set • FOCUS = today’s standard for huge: 139K D0K-p+, 110K D+K-p+p+ – A substantial fraction comes from b decays (next slide) 25570 D± Fraction of charm from b decays • D mesons: – What fraction from B? D0: D*+: D+: Ds+: • • • • K0 S 16.4-23.1% 11.4-20.0% 11.3-17.3% 34.8-37.8% Range of fract. from B using two extreme resolutions functions: - single gaussian - parametrization from K0S sample Gaussian Measure Ds, D+ mass difference • Ds± - D± mass difference – Both D fp (fKK) Dm=99.28±0.43±0.27 MeV • PDG: 99.2±0.5 MeV (CLEO2, E691) – Systematics dominated by background modeling Brand new CDF capability 11.6 pb-1 ~1400 events ~2400 events Measure Cabibbo-suppressed decay rates G(DKK)/G(DKp) = (11.17±0.48±0.98)% (PDG: 10.83±0.27) –Main systematic (8%): background subtraction (E687, E791, CLEO2) Already (PDG: comparable! G(Dpp)/G(DKp) = (3.37±0.20±0.16)% 3.76±0.17) • several ~2% systematics –This measurement has pushed theFuture? state of the art on modeling SVT sculpting--essential simulation tools for both B physics- program and e.g. high-pT b-jet triggers CP violation - mixing - rare decays Monster Kp reflection here ... Toward Bs mixing! #B± = 56±12 constant B+ D0 p+ multiplicative error ~ 15% (semileptonic) ~ 0.5% (hadronic) Need fully reconstructed (hadronic) decays to see past first couple of oscillation periods We observe hadronic B decays! Yields understood to ~20% level from detailed simulation Next steps: •Reconstruct Bs Dsp, Ds fp •Flavor tagging algorithms •Exploit 3 SVX acceptance, SVT efficiency improvements 2-body hadronic B decays observed!! CDF II simulation Width ~45MeV #B = 33±9 —sum BdKp BsKK Bdpp BsKp B h+ h – Yield lower than expected (now improved); S/N better than expected – With 2 fb-1 sample, measuring g to ~10º may be feasible, using Fleischer’s method of relating BsKK and Bdpp, and using bas input Run II Physics Goals Understanding Electroweak Symmetry Breaking EW Measurements (MW, Mtop) Higgs Boson Search the Standard Model SUSY Study CP Violation and the CKM Matrix Sin2bMeasurement Xs Measurement Searches for New Phenomena Study CP Violation and CKM Matrix Bs mixing measurement is important for complete picture of the Unitary triangle. CP Violation & CKM Matrix (cont.) With data by next summer, Bs mixing : SM prediction region fully covered. dsin2b ~ 0.12 200 pb-1 (Summer 2003) end of 2003 2 fb-1 CDF (Run I) BaBar (Winter 01) (Summer 01) Belle (Winter 01) (Summer 01) SM Int. luminosity (pb-1) (sin2b) ヒッグス粒子探索 についての記事 CERN研究所(ジュネーブ) でヒッグス粒子の候補事象が 見えた。これが事実かどうか はフェルミ研究所での陽子反 陽子衝突実験で明らかにでき る。 Electroweak Precision Measurements Tevatron Run I : Mtop = 174.3 +- 5.1 GeV/c2 MW = 80.452 +- 0.062 GeV/c2 Run IIa EW Meas : MHiggs <215 GeV @95%CL LEP II Higgs Searches : MHiggs > 113 GeV @95%CL LEP II Hint @ MHiggs= 115 GeV GW (from W high mass tail) 2.04 +- 0.15 GeV (CDF), 2.22 +- 0.17 GeV (D0) SM : 2.0937 +- 0.0025 GeV 今後のヒッグス粒子探索 •MH < 130 GeV/c2 pp →WHX →l + bb + X •125 < MH < 160 GeV/c2 pp →WHX →l +W* W*+X (like-sign dilepton +jets) •150 GeV/c2 < MH (RUN2B) 95%信頼度で検出 生成の証拠(3σ) 発見(5σ) pp →HX →WW X →l l X RUN2A(~2004) 95%信頼度でMH < 120 GeV/c2検出可能 RUN2B(2005~) 95%信頼度でMH < 190 GeV/c2検出可能 MH < 180 GeV/c2 の証拠 (3σ evidence) (RUN2A) テバトロン加速器での ヒッグス粒子探索 証拠検出可能なヒッグス粒子の質量 MH(GeV/c2 ) (95%信頼度で検出できるMH ) 100 150 200 実験開始(RUN2a) 2001年12月 実験再開(RUN2b) 2004年12月 2007年12月 LEP 2 の ヒッグス粒子 超対称性理論の軽い ヒッグス粒子の質量上限 まとめ CDF実験RUN2(2001年~)で以下の成果が期待される。 • 2003年にBs mixingの測定ができる。またsin2bが誤差で測定 できる。 • 3年間の実験で1000 t t 事象が収集され、ΔMtop ~3GeV/c2でMtop が測定できる。同時にΔMW ~40 MeV/c2でMWが測定できる。こ れらよりΔMH~0.3MH でヒッグスの質量を間接的に測定できる。 • 3年間の実験で – 95%信頼度で MH < 120GeV/c2のヒッグス粒子検出可能。 • さらに3年間のデータ収集によって – 95%信頼度で MH < 190GeV/c2のヒッグス粒子検出可能。 – MH < 180GeV/c2のヒッグス粒子の生成の証拠(3σ)。
© Copyright 2024 ExpyDoc