Department of Geography Grundlagen Fernerkundung - 6 GEO123.1, FS2015 Michael Schaepman, Felix Morsdorf, Hendrik Wulf 3/17/15 Page 1 Department of Geography What is illustrated here? Department of Geography Literature: LiDAR Remote Sensing Lillesand et al. (2015), Chapter 6: Microwave and LiDAR Sensing. p. 385 - 484 Vosselman and Mass (2010): Airborne and Terrestrial Laser Scanning Department of Geography Begriffe LiDAR: Light Detection And Ranging - aktives System analog zu RADAR - funktioniert im UV, VIS, IR Bereich - primäre Anwendung: Distanzmessung Laser: ALS: Light Amplification by Stimulated Emission of Radiation - hohe Intensität, enger Frequenzbereich, grosse Koheränzlänge Airborne Laser Scanning - flugzeug oder helikoptergestütztes System - Erstellung von Gelände und Oberflächenmodellen Department of Geography Lernziele Welche Komponenten besitzt ein Airborne Laser Scanner und wie wirken diese zusammen ? Was ist der Unterschied von LiDAR und ALS ? Welche Art von Daten kann man mit Airborne Laser Scanning erfassen ? Was sind typische Anwendungen ? Wie unterscheidet sich ALS von passiven bildgebenden Verfahren ? Department of Geography Übersicht zur Vorlesung •! Motivation •! Messprinzip : Was ist LiDAR und was ist Laser Scanning? •! Hauptanwendungen •! Weitere Anwendungen •! Beispiele aus Atmosphäre •! Ausblick auf die aktuelle Forschung Department of Geography Einleitung LiDAR – Light Detection And Ranging –! Aktives Fernerkundungssystem –! UV-, IR- oder Strahlen des sichtbaren Lichts Hauptanwendungen von LIDAR –! Präzise Modellierung der Erdoberfläche –! Digitale Höhenmodelle –! Messung von Partikeln und Molekülen in der Erdatmosphäre –! –! z.B. Aerosole, Ozon, H2O Windmessungen Oft als Synonym verwendet (aber nicht das Gleiche): Laser-Scanning Department of Geography Laser Altimetry: ICESat (NASA) & Cryosat (ESA) Helm et al. 2014 (The Cryosphere) Department of Geography Antarctica elevation and topography Department of Geography Findelen Gletscher Jörg et al. 2012 (RSE) Department of Geography Technical principles: LASER Department of Geography LASER: Prinzip Wichtigste Eigenschaften von Laserlicht gegenüber “normalem” Licht: Hohe Intensität, stark gebündelt, kohärent und monochromatisch Wikipedia.de Department of Geography LASER: Prinzip Wikipedia.de Cross section of Object(s) $ =+>>-:-0;+5?.@:811.1-@;+80./08:,32 !" Department of Geography *+,-./012 " % $3% $3" $ !$3& !& 789-:.5;.1-0<-:./08:,32 789-:.5;.:-@-+C-: # !! # !" " $B.#$ $3& # #3& 4506-./,2 %$ !#! *+,-./012 *+,-./012 "( )! & # ' =+>>-:-0;+5?.@:811.1-@;+80./08:,32 A % #$ ! & ## ' #" !3& % #!( #% ) #& " % %3& $3' $3% $3% $3" $3" $3& !$3& # #3& $ "3&# $3&" 4506-./,2 4506-./,2 ! #3& !3& *+,-./012 Detektor $ !" " % ' ) #$ #" # $3) Laser S/E $3' $3% $3" $ !# $ !$3& Uhr $3& # Laser echo at receiver !& # $B.#$ # " ! % #3& 4506-./,2 T0 ' ( ) T0 ) $3' $3% $3" " "3& ! !3& % *+,-./012 & $3) 789-:.5;.:-@-+C-: "3& $3) $3' Cross section of Object(s) R= " # $3) $$ !#$ (T1 2 #" $3' Laser at receiver sender Laser pulse echo at cg #$ $3) $ !# R ) # Light Detection And Ranging (LiDAR) Objekt ' T1 A #$ ## #" #! #% #& LiDAR Echoaufzeichnung Department of Geography •! Speziell für Vegetation können mehrere Echos reflektiert werden •! Verschiedene Methoden, um das zurückgestreute Signal zu verarbeiten !! erstes/letztes Echo !! mehrere Echos (bis zu sieben) !! Digitalisierung des vollen Signals (full-waveform) Zeit [ns] Leistung am Empfänger Zeitlicher Verlauf eines Laserecho beim Empfänger Distanz [m] Department of Geography LiDAR auf Flugzeugen: erste Versuche (1979!) ed from pubs.casi.ca by Geographisches Institut der Univ. Zuerich on 01/09/14 For personal use only. Vol. 39, No. S1, Suppl. 1 2013 Figure 1. Forest profiles (figures 2, 3, 4, and 6 from Solodukhin et al. (1979)) near Lake Shirskoye, approximately 60 km south of Leningrad (now St. Petersburg). The backdrop is a picture of Lake Shirskoye. The profile was acquired using an airborne laser mounted in an AN-2 biplane flying 40 m AGL. defoliated by the gypsy moth (Lymantria dispar L.); canopy measure tree heights. ‘‘In this application the tree canopy R. How did we get here? An early history forestryAtlidar Canadian closure was of near-zero. the north end of the line, the acts much as a Nelson, water surface, reflecting a portion of the Journal of Remote Sensing, 2013, 39, S6-S17 hardwood forest had not suffered the gypsy moth outbreak energy directly back to the aircraft while a part of the energy Department of Geography LiDAR & Laser Scanning - Unterschiede LiDAR - nur Distanzmessung topographic LiDAR - Distanzmessung + Position/Ausrichtung zur Bestimmung einer Koordinate, profilierender LiDAR (z.B. GLAS, SLICER) (Airborne) Laser Scanning (ALS) - Distanzmessung + Position/Ausrichtung + Scanner, zur Strahlablenkung quer zur Flugrichtung, Abdeckung eines Schwates d.h. ein LiDAR ist Teil eines ALS, aber nicht das Gleiche! Department of Geography Messprinzip I Department of Geography Messprinzip II Department of Geography LiDAR & Laser Scanning - Unterschiede Department of Geography LiDAR & Laser Scanning - Unterschiede Department of Geography Range Messprinzip III First Echo Full waveform Last Echo Intensity Department of Geography Airborne laser scanning 23 http://oceanservice.noaa.gov/facts/lidar.html Department of Geography 3D Rohdaten Department of Geography Oberflächen- und Terrain-Modelle Digitales Geländemodell (DGM) Digitales Oberflächenmodell (DOM) 25 Department of Geography Oberflächen- und Terrain-Modelle Objekthöhenmodell (OHM = DOM - DGM) 26 Department of Geography Anwendungsbeispiele GIS Orthorektifizierung von Luftbildern Infrastruktur und Planung Gefahren- und Risikomanagement Forstwesen ... Referenzdaten fuer die SAR-Geokodierung Überall dort wo eine präzise Modellierung der Erdoberfläche benötigt wird Department of Geography Anwendungen: Küstenschutz • •! 28 Regelmässige Befliegungen ermöglichen Abschätzung des Erosionsabtrages Sandaufspülungen können zielgerichtet vorgenommen werden Aerodata International Surveys, Belgium Department of Geography Anwendungen: Flutmodellierung DSM mit Bäumen •! Gebäude verhalten sich anders zu Wasser als Vegetation Vegetation muss aus DSM ausgeschnitten werden •! !! Baumstämme haben aber doch einen Einfluss auch Ausbreitung und Höhe der Flut Dieser muss (wenn signifikant) explizit modelliert werden !! •! 29 Forstinventur ! DSM ohne Bäume Department of Geography Anwendungen: Korridormapping •! • Vegetation wächst an Leitungen heran Laserscanning beste uns sicherste Methode, um die Abstände der Leitungen zu anderen Objekten zu bestimmen 400 m über Grund fliegender Hubschrauber ermöglicht • ! ! hohe Punktdichten leichtes Folgen des Leitungsverlaufes 30 Toposys Department of Geography Anwendungen: Archäologie •! Befestigungen im Wald werden sichtbar ! !! Siedlung aus der Eisenzeit 31 aus: Aerial archaeology and airborne laser scanning at the iron age hillfort Schwarzenbach-Burg, Michael Doneus, Wolfgang Neubauer Department of Geography Anwendungen: Gebäudeextraktion & Stadtmodelle Elberink, S. O. & Vosselman, G., Quality analysis on 3D building models reconstructed from airborne laser scanning data, ISPRS 32 Journal of Photogrammetry and Remote Sensing, 2011, 66, 157 165 database, independent of the software systems used. The aim of the 3D test bed was to collect all the (enriched) data that is generated in the use cases in one central database in a CityGML data scheme. However, our experiences show that it is not straightforward to convert the data that the pilot Department of Geography partners generated in the use cases into CityGML. Four partners have worked on converting the generatedUltimativ data into CityGML, they are iDelft, Bentley, MOSS, and Anwendungen: 3D GIS Toposcopie. Figure 5 shows the work in progress of Bentley. 3D GIS aus ALS, TLS und Katasterinformationen - Rotterdam, NL Figure 5. Integrated view of data generated in all uses cases Stoter, J.; Vosselman, G.; Goos, J.; Zlatanova, S.; Verbree, E.; Klooster, R. & Reuvers, M.,Towards a National 3D Spatial Data Infrastructure:33Case of The Netherlands, Photogrammetrie Fernerkundung - Geoinformation, 2011, 2011, 405-420 Bentley collected the generated data of all uses cases in their CAD environment. Department of Geography Anwendungen: Fusion mit Bilddaten Orthorektifizierung von Luft- und Satellitenbildern ! Kombination von LIDAR mit Bildsensoren Department of Geography Anwendungen: Bathymetrie SHOALS-1000T OF THE NEXT GENERATION AIRBORNE L ASER BATHYMETRY 150 138 126 113 101 89 77 65 53 40 28 16 4 -8 -21 -33 -45 -50 35 Image: SHO ALS-1000T digital elevation model of Port Everglades, Florida. DEM combines hydrographic and topographic data collected by SHO ALS-1000T, resolving key features such as the dredged shipping channel and buildings and vegetation along the shoreline. Inset: Close-up of shoreline DEM, as collected using SHO ALS-1000T's 10-kHz topographic laser. Department of Geography Anwendungen: Forstwesen Morsdorf, F.; Meier, E.; Kötz, B.; Itten, K.I.; Dobbertin, M. & Allgöwer, B. LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management Remote Sensing of Environment, 2004, 3, 353-362 Department of Geography 37 Department of Geography Anwendungen: Blattflächenindex (LAI) 38 Department of Geography Atmosphären-Sensing Quelle: ESO/Yuri Beletsky Department of Geography Atmosphären-Sensing: Messprinzip DIAL z.B. Ozon Differential Absorptions Lidarsystem Wellenlänge 1 Wellenlänge 2 Department of Geography Atmosphären-Sensing: Messprinzip DIAL Differential Absorption LiDAR © by H. Vogelmann ESA - AOES Medialab! Department of Geography Anwendungsbeispiele Messung der Ozonkonzentration in ... –! ... bodennahen Luftschichten –! ... der Stratosphäre Detektion von Aerosolen Detektion von Wasserdampf, Stickstoff und Schwefelverbindungen Windmessungen (Doppler - LiDAR) Department of Geography Anwendungsbeispiel 1 Ozonkonzentration in der bodennahen Luftschicht Department of Geography Anwendungsbeispiel 2 Ozonkonzentration in der Stratosphäre Quelle: www.dlr.de Department of Geography Anwendungsbeispiel 3 45 http://www.met.rdg.ac.uk/clouds/research.html Department of Geography Doppler - LiDAR: Messung des Windfeldes 46 Department of Geography Doppler - LiDAR: Messung des Windfeldes 47 Department of Geography Aktuelle Forschung Digitale Höhenmodelle: •! LiDAR in Kombination mit Bildsensoren, Hyper- und Multispektralsystemen •! 3D-Objekterkennung •! Interpretation von reflektierten Intensitätsunterschieden •! LiDAR auf Satelliten Neue Instrumentationen •! LiDAR auf Satelliten •! Full-waveform LiDAR •! Multi-spektraler LiDAR er with a very high-resolution photogrammetric camera spatial resolution) on a helicopter operated by the company GS (Sgonico, Italy). The common platform for the LiDAR and g spectrometer provided the means to acquire simultaobservations and cost efficient data acquisition, which were Department of Geography sential for the proposed multi-source land cover classificahe airborne survey was organized to cover a region of about m ! 3.6 km in very high spatial resolution. In the presented geocoding approach PARGE (Schla¨pfer and Richter, 2002). graphy and illumination effects were taken into account bas the digital surface model (DSM) provided by the LiDAR. Rema geometric inaccuracies caused by erroneous synchronization the inertial navigation system had to be corrected by a dire registration to the LiDAR data. Subsequently the physically atmospheric correction software ATCOR4 was employed to o top-of-canopy reflectance (Richter and Schla¨pfer, 2002) (F Sensorfusion: LiDAR & Bildspektrometrie 49 49 oof tiles performed very well. This can be explained by te height above ground with concurrent opaqueness of posed to semi-transparent tree canopies. These different operties caused very distinct signatures in the LiDAR , which significantly supported the separation of classes Department of moderate Geography fs and tree canopy (Fig. 3). The results for the is caused by issues with the vertical separability of laser low canopies. Furthermore, for shrubs with high canopy issues lead to the lack of the vertical information content in the LiDAR data for certain shrub canopies. This causes a LiDAR derivative signature similar to bare ground (Fig. 3). The joint classification of the multi-source imaging spectrometer and LiDAR data set leads to a significant improvement in terms of overall accuracy and kappa (Table 4). Specifically the kappa coefficient increased which implies a more balanced performance of the classification for all classes. The inclusion of Sensorfusion: Landnutzung 268 B. Koetz et al. / Forest Ecology and Management 256 (2008) 26 Table Koetz, B.;4Morsdorf, F.; van der Linden, S.; Curt,T. & Allgöwer, B. Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data Accuracy the256, SVM classifications (IS: imaging spectrometry, LiDAR: Forest Ecologyassessment and Management,of 2008, 263-271 light detection and ranging) Fig. 5. Land cover maps based on the different SVM classifications, upper map: product based on the multiple input sources IS and LiDAR, lower ma singleRemote input source IS. sensing input Overall accuracy (%) Kappa coefficient IS and LiDAR 75.4 0.716 IS cite this article in press as: Koetz, 69.15B. et al., Multi-source land 0.645 Please cover classification for forest fire management b LiDAR 0.226 spectrometry and LiDAR data, Forest31.73 Ecol. Manage. (2008), doi:10.1016/j.foreco.2008.04.025 50 Department of Geography Sensorfusion: Landnutzung MSc Thesis C. Frischknecht 51 Department of Geography 52 Department of Geography Thank you for your attention!
© Copyright 2024 ExpyDoc