Department of Geography Grundlagen Fernerkundung - 14 Wrap up GEO123.1, FS2015 Michael Schaepman & Hendrik Wulf, 5/22/15 Page 2 Department of Geography Fernerkundung ! ! ist das berührungsfreie Messen und Interpretieren von reflektierter oder emittierter elektromagnetischer Strahlung. ! umfasst die gesamte Erdoberfläche einschließlich der Erdatmosphäre. ! wird durch satelliten-, flugzeug-, dronen- und handgetragende Sensoren (Kameras und Scanner) ermöglicht. Department of Geography Systeme & Anwendungen Bei der Fernerkundung finden passive oder aktive Systeme Verwendung. Passive Systeme zeichnen die von der Erdoberfläche reflektierte Sonnenstrahlung auf sowie die von der Erdoberfläche emittierte Eigenstrahlung (z.B. Thermalkamera). Im Gegensatz dazu senden aktive Systeme Mikrowellen- oder Laserstrahlen aus und empfangen deren reflektierte Anteile (z.B. Radarsysteme und Laseraltimeter). Fernerkundungsdaten sind insbesondere in den Geowissenschaften/ Geographie von großer Bedeutung, da eine globale Beobachtung der Erdoberfläche/Atmosphäre in hoher räumlicher Auflösung nur mit Hilfe von Fernerkundungssensoren möglich ist. Neben dem synoptischen Überblick über große Räume ermöglichen satellitengestützte Fernerkundungssensoren zudem eine wiederholte (zum Teil tägliche) Abdeckung ein und desselben Gebietes. Department of Geography Strahlungspfade der Fernerkundung Department of Geography Strahlungskomponenten an einem Sensor Ls E0 Latm L gnd "u "d L g,adj Lg,dir Edif Egnd ! Department of Geography Das elektromagnetische Spektrum < 0.3 µm Ultraviolet / UV 0.7 µm – 1.3 µm ‘near IR’ / NIR 0.4 µm – 0.5 µm ‘blue’ / VIS 1.3. µm – 3 µm ‘shortwave IR’ / SWIR 0.5 µm – 0.6 µm ‘green’ / VIS 3 µm – 14 µm ‘thermal IR’ / TIR 0.6 µm – 0.7 µm ‘red’ / VIS 1 mm – 1 m ‘microwave’ Department of Geography Solar radiation spectrum Solarkonstante 1’361 W/m2 Department of Geography Räumliche, spektrale und zeitliche Auflösung Department of Geography Spektralbereiche und Systeme Überblick über Fernerkundungssensoren und Systeme System Spektralbereich Photographische Kameras UV – NIR Solid State Kameras VIS – IR Multispektralscanner UV – IR Abbildende Spektrometer VIS – IR Radiometer UV – MW Radar, SAR MW Lidar VIS – NIR Sonar Audiowellen Department of Geography Spektrale Auflösung Department of Geography Die atmosphärische Interaktion 4 Typen der Streuung der Strahlung in der Atmosphäre - Rayleigh Streuung - Raman Streuung - Mie Streuung - unselektive Streuung Department of Geography Definition des räumlichen Referenzsystems Department of Geography Spekulare und diffuse Reflektanz Department of Geography Geometrische Effekte, die eine Veränderung der Reflektanz zur Folge haben Department of Geography Direktionale Effekte 09:58 13:40 17:12 Department of Geography Komponenten einer auf ein Laubblatt eintreffenden Strahlung Department of Geography Charakteristische Reflexionskurve eines grünen Blattes Department of Geography Reflexionskurven für Blätter mit unterschiedlichem Wassergehalt Department of Geography Characterizing Land Surface Processes – Temporal! Photos: M. Kneubühler 09.04.1999 ! ! ! ! ! ! ! 09.06.1999 ! ! ! ! ! ! ! 17.07.1999 !02.05.1999 !27.05.1999! !24.06.1999 !05.07.1999! !26.07.1999 !12.08.1999! Department of Geography Characterizing Land Surface Processes – Spectral! Daten: M. Kneubühler Department of Geography Imaging Spectroscopy In literature, the terms imaging spectroscopy, imaging spectrometry, hyperspectral, superspectral, and ultraspectral imaging are often used interchangeably. Even though semantic differences might exist, a common definition is: –" Imaging spectrometry is the simultaneous acquisition of spatially coregistered images, in many, spectrally contiguous bands, measured in calibrated radiance units, from a remotely operated platform. –" Imaging spectroscopy is the simultaneous acquisition of spatially coregistered images, in many, spectrally contiguous bands, measured as reflectance, from a remotely operated platform. Department of Geography Image Cube Concept !"#$%&'()*+',-./&01/2')3345'6./07&%'()5',89:';/2<=>>?'>@'A&1>7&',&2B"2#*'' Department of Geography Data cube – Spectral information Department of Geography Data Acquisition a)" Film camera b)" Frame camera c)" Scanner d)" Pushbroom imager e)" Whiskbroom imager f)" Pushbroom imaging spectrometer Department of Geography Begriffe Mikrowellen: Elektromagnetische Wellen - Wellenlängen:1 m - 1 mm - Frequenzen: 300 MHz - 300 GHz Radiometer: Instrument zur (passiven) Messung elektromagnetischer Strahlung Bildgebender passiver Sensor - Imager: - Sounder: Radar: Sonar: Instrument zur Messung von Profilen RAdio Detection And Ranging - aktives System, Detektion und Distanzmessung - SAR: Synthetic Aperture Radar - SLAR: Side-Looking Airborne Radar - Altimeter: Höhenmessung (nicht abbildend) - Scatterometer: Messung der Rückstreuung (nicht abbildend) SOund Navigation And Ranging - Aktives System analog zu Radar, arbeitet mit Schallwellen Department of Geography Strahlengang bei einem passiven MikrowellenSystem Department of Geography Ursprung von passiven Mikrowellenstrahlen Emitted from object: !" z.B. Wärme-Abgabe, radioaktive Strahlung, Sonnenenergie Emitted by atmosphere: !" z.B. Polarlicht, chemische Prozesse wie Ozon-Abbau Reflected from Surface: !" Sonnenenergie Transmitted from subsurface: !" Erdstrahlen, radioaktive Strahlung, elektromagnetische Wellen hervorgerufen durch seismische Phänomene Department of Geography Summary: Passive Microwaves Applications Oceans: !" Sea Surface Temperature & Salinity !" Sea Ice !" Surface wind velocities Land: !" Soil moisture !" Snow melt & water equivalent Atmosphere: !" Water vapor Department of Geography Aktive Mikrowellen - Fernerkundung Aktive Sensoren !" Radar !" Altimeter !" Scatterometer !" SLAR / SAR (abbildend) Quelle der Strahlung !" System selber Vorteile !" Unabhängig von Beleuchtung (Sonne) und somit Zeit (Tag/Nacht) !" System-Design (Art der Quellstrahlung) ist definierbar Department of Geography Aktive Mikrowellen - Fernerkundung Systeme mit realer Apertur Systeme mit synthetischer Apertur (Real Aperture Radar RAR) Tracking Radars Altimeter Scatterometer SLAR SAR Side-Looking Airborne Radar Synthetic Aperture Radar Abbildende Verfahren Department of Geography Aktive Mikrowellensysteme: Seitensichtradar Department of Geography Konzept-Vergleich: Synthetischen vs. Reale Apertur Ein Radar mit synthetischer Apertur erlaubt eine sehr gute Auflösung in Flugrichtung (Bewegungsrichtung des Sensors). Dies wird durch synthetisches Zusammenfügen vieler Radarechos erreicht, welche ein Objekt aus verschiedenen Winkeln zeigen. Department of Geography Vergleich SLAR- vs. SAR Gurnigel, BE Gute Auflösungen in beiden Bilddimensionen Bilder © RSL / Fraunhofer FHR Department of Geography Effekte der Geländegeometrie auf das SARRadarbild III © University of California, Santa Barbara Department of Geography Reflexionseigenschaften und Eindringtiefen Volumen-Streuung volume scattering Oberflächen-Streuung Surface scattering Doppelreflexion double bounce Department of Geography Begriffe LiDAR: Light Detection And Ranging - aktives System analog zu RADAR - funktioniert im UV, VIS, IR Bereich - primäre Anwendung: Distanzmessung Laser: ALS: Light Amplification by Stimulated Emission of Radiation - hohe Intensität, enger Frequenzbereich, grosse Koheränzlänge Airborne Laser Scanning - flugzeug oder helikoptergestütztes System - Erstellung von Gelände und Oberflächenmodellen Department of Geography LiDAR & Laser Scanning - Unterschiede LiDAR - nur Distanzmessung topographic LiDAR - Distanzmessung + Position/Ausrichtung zur Bestimmung einer Koordinate, profilierender LiDAR (z.B. GLAS, SLICER) (Airborne) Laser Scanning (ALS) - Distanzmessung + Position/Ausrichtung + Scanner, zur Strahlablenkung quer zur Flugrichtung, Abdeckung eines Schwates d.h. ein LiDAR ist Teil eines ALS, aber nicht das Gleiche! Department of Geography Range Messprinzip III First Echo Full waveform Last Echo Intensity Department of Geography Oberflächen- und Terrain-Modelle Digitales Geländemodell (DGM) Digitales Oberflächenmodell (DOM) 40 Department of Geography Anwendungsbeispiele GIS Orthorektifizierung von Luftbildern Infrastruktur und Planung Gefahren- und Risikomanagement Forstwesen ... Referenzdaten fuer die SAR-Geokodierung Überall dort wo eine präzise Modellierung der Erdoberfläche benötigt wird Department of Geography Anwendungsbeispiele Messung der Ozonkonzentration in ... –" ... bodennahen Luftschichten –" ... der Stratosphäre Detektion von Aerosolen Detektion von Wasserdampf, Stickstoff und Schwefelverbindungen Windmessungen (Doppler - LiDAR) Department of Geography Satellite Orbits 5/22/15 Page 43 Department of Geography Terms & Definitions: Orbits Inclination: orbit angle with respect to the equator •" near polar orbit = close to 90° •" equatorial orbit = 0° !"#$#%&'!"!"#$!%&'()*"&%!"&"'+%!&,-+.'/"& •" #$%&'(')%*(+,"%+-)'!".(/"012333"45" •" &6*7&,*.8+%*%6&!"9337:33"45" (')$*&!"%#0"&%)&/)012"%"&)3"&)+(#%&45)6& •" ;(*<&('!"=3>"45?"@:/@"5)*A%+-)'?"B9/>"+$C%D6')%*&"E$+"<(," •" FGG!"933"45?"@H/:"5)*A%+-)'?"B>/9"+$C%D6')%*&"E$+"<(," +,%-#*)$-"./)*00$12.#$3'!" •" #$*$+(DD,"-$'I$$*"B3"(5"(*<"H"E5 5/22/15 Page 44 Department of Geography Terms & Definitions: Sensor characteristics Spatial resolution: ground surface area represented by one pixel •" Instantaneous field of view (IFOV) •" Ground sampling distance (GSD) Temporal resolution: time between two image acquisitions for a given location •" Revisit time or repeat cycle (measured in days) Spectral resolution: number of spectral bands and their wavelength intervals •" Panchromatic, multispectral, imaging spectroscopy Radiometric resolution: effective bit-depth of the sensor •" Gain settings: range of brightness sensitivity •" Signal to noise ratio 5/22/15 Page 45 Department of Geography Landsat 8 (Landsat Data Continuity Mission) •" Launched: February 11, 2013 •" Scientific goal: Characterize and monitor land-cover use and change over time •" Applications: Carbon Cycle, Earth Surface, Ecosystems, and Biogeochemistry •" Sensors: Operational Land Imager Thermal Infrared Sensor •" Data: for the general public (no costs) Department of Geography Landsat 7: Spectral bands 0.42 – 0.52 µm 0.52 – 0.60 µm 0.63 – 0.69 µm 0.76 – 0.90 µm 1.55 – 1.75 µm 2.08 – 2.35 µm 10.4 – 12.5 µm Department of Geography MODIS (Moderate Resolution Imaging Spectroradiometer) •" Launched: December 18, 1999 (1st of 2 sat.) •" Scientific goal: provide measurements of large-scale global dynamics •" Applications: cloud cover, radiation budget and oceanic terrestrial and lower atmospheric processes •" Sensor: multispectral radiometer •" Data: for the general public (no costs) Department of Geography MODIS products overview • Surface temperature (land and ocean) and fire detection; •" Ocean color, currents; •" Global vegetation and change maps; •" Cloud characteristics; •" Aerosol concentrations and properties; •" Temperature and moisture soundings; •" Snow cover and characteristics; 5/22/15 Page 49 Department of Geography ESA’s Earth Observation Programme 5/22/15 Page 50 Department of Geography MERIS! MEdium Resolution Imaging Spectrometer! ASAR! Advanced Synthetic Aperture Radar! GOMOS! Global Ozone Monitoring by Occultation of Stars! AATSR! Advanced Along Track Scanning Radiometer! RA-2! Radar Altimeter 2! SCIAMACHY! SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY! MIPAS! Michelson Interferometer for Passive Atmospheric Sounding! MWR! MicroWave Radiometer! LRR! Laser RetroReflector! DORIS! Doppler Orbitography and Radiopositioning Integrated by Satellite! Department of Geography ESA’s Earth Explorers Objective: Satellit Better understanding of Earth Science in various GOCE fields of interest based on innovative satellite SMOS technology Ziel der globalen Forschungen Start Bestimmung des Erdschwerefeldes 17.03.2009 Bodenfeuchte, Salzgehalt der Meere 02.11.2009 CryoSat Erfassung der planetaren 08.04.2010 Eismassen SWARM Erdmagnetfeld und Klima 22.11.2013 ADM-Aeolus Dynamik der Erdatmosphäre 2015 (geplant) EarthCARE Wolken und Aerosole 2016 (geplant) Biomass Biomasse der Wälder 2020 (geplant) Department of Geography VHR satellite imagery - Applications Defense & Security Oil, Gas, Mining Civil Engineering Agriculture Mapping & 3D Forest & Environment Disasters & Crisis Culture & Heritage Department of Geography Very high resolution satellites Satellite Organization Launch date IKONOS GeoEye 1999 Quickbird (3x) DigitalGlobe 2001-2008 WorldView-1, 2, 3 DigitalGlobe 2007, 2009, 2014 Cartosat-2 (2x) ISRO 2007-2010 GeoEye-1 GeoEye 2008 Pleiades (2x) CNES 2011-2012 Skysat 1-2 (15x) Skybox Imaging 2013-2014 Copernicus pillars Department of Geography European independence & contribution to global observing system Space Component Global, timely and easily accessible information In-Situ Component 5/22/15 Services Component Page 55 The Sentinel Family Department of Geography Sentinel 1 – SAR imaging All weather, day/night applications, interferometry 2014 / 2015 Sentinel 2 – Multi-spectral imaging Land applications: urban, forest, agriculture,.. Continuity of Landsat, SPOT Sentinel 3 – Ocean and global land monitoring Wide-swath ocean color, vegetation, sea/land surface temperature, altimetry Sentinel 4 – Geostationary atmospheric Atmospheric composition monitoring, transboundary pollution Sentinel 5 / 5P – Low-orbit atmospheric Atmospheric composition monitoring (S5 Precursor launch in 2015) 2015 / 2016 2015 / 2017 2020 2015, 2021 Department of Geography Spectral bands: Sentinel-2 vs. Landsat-8 Department of Geography Sentinel-1 applications: (1) Land 5/22/15 Page 58 Department of Geography Sentinel-1 applications: (2) Sea 5/22/15 Page 59 Department of Geography Sentinel-2 applications Agriculture, Forestry and Range !" e.g. discriminating vegetation type & state Land Use/Cover Changes !" e.g. monitoring urban growth Geology !" e.g. mapping geologic landforms Hydrology !" e.g. determining snow and ice cover Coastal Resources !" e.g. tracking shoreline erosion and flooding Environmental Monitoring !" e.g. monitoring deforestation 5/22/15 Page 60 Department of Geography Sentinel-3 applications Marine and Coastal Environment !" e.g. Sea-surface topography & temperature, circulation, water quality, wave height Polar Environment !" e.g. Sea-ice thickness Global Change Ocean !" e.g. Sea-level rise, CO2 flux Land Cover & Land-Use Change !" e.g. Forest monitoring, land-use mapping Risk Management !" e.g. Fire detection, Burnt area mapping 5/22/15 Page 61 Department of Geography Histogram or Contrast stretching DR sensor (0-255) DR display (0-255) DR sensor (60-158) DR display (0-255) Lillesand Fig. 7.13 Department of Geography Level slicing •" Discontinuous color mapping •" Subdividing the continuous range of values into discontinuous but sequential groups (called bins or classes) •" Simplest way of making classes based on spectral values 0 – 10 aquamarine 11 – 50 sienna 51 – 100 dark green 101 – 255 color scale light green to white Department of Geography Band combinations Each spectral band represents a grey-scale image. Three of these bands can be assigned to the display colors red (R), green (G) and blue (B) to obtain a full-color image. 3 bands, 0-255 each = 24 bit ‘color depth’ (16.7 million colors) blue green red Department of Geography False-color images using 7 Landsat bands Landsat bands 1 0.45-0.52 "m 2 0.52-0.60 "m 3 0.63-0.69 "m 4 0.76-0.90 "m 5 1.55-1.75 "m 6 10.40-12.50 "m 7 2.08-2.35 "m Blue Green Red Near IR Mid-IR Thermal IR Mid-IR Department of Geography Maximizing spectral contrast Green, dense Red Infrared For vegetation:! •" Reflectance is highest in NIR and lowest in RED! •" The ratio NIR / RED gives therefore the highest contrast and the best way to quantify changes! ••" ! ! This ratio changes under stress stress! Brown or sparse Red Infrared Department of Geography Spatial Image Filtering •" Filtering manipulates the image elements •" Filters are applied using kernels composed of size and weights •" Most common in image analysis: high-pass and low-pass filters Department of Geography High-pass filter (sharpening) •" Used to enhance high-frequency variations •" Disadvantage: enhances noise as well •" Kernel typically has high central value surrounded by (partially) negative weights; sum is 0 or higher •" Special case: Laplacian (2nd derivative) filter 0 -1 0 -1 5 -1 0 -1 0 Department of Geography Low-pass filter (smoothing) •" Used to suppress high-frequency variation and noise •" Kernel with small positive values. Simplest case: all values (1 / kernel size) and thus sum equals 1 •" Kernel size (3x3, 5x5, !) determines degree of smoothing •" Special case: Gaussian filter (or “Gaussian blur”) 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 Department of Geography Classification methods Albertz, 2001 Unsupervised classification Supervised classification Clustering, (Segmentation) ... Parallelepiped, Minimum distance, Maximum likelihood . . . Department of Geography Feature space: NIR vs RED Department of Geography Common classification algorithms: overview Parallelepiped Minimum Distanz Maximum Likelihood Department of Geography Type 1 (commission) and type 2 (omission) error Klassifikation Referenz/ ground truth Klassifikation Referenz/ ground truth A B C D " A 15 0 0 0 15 B 0 9 0 0 9 C 3 1 24 2 30 D 0 0 0 10 10 " 18 10 24 12 64 Incorrectly classified classification # reference -" Type 1: Commission Error Pixels were included in the class, although they should not have been -" Type 2: Omission Error Pixels were not included in the class, although they should have been Department of Geography Producer‘s Accuracy (PA) Klassifikation Referenz Klassifikation Referenz/ ground truth A B C D " A 15 0 0 0 15 B 0 9 0 0 9 C 3 1 24 2 30 D 0 0 0 10 10 " 18 10 24 12 64 83.33 90 100 83.33 PA The producer needs to know how well her/his classification (e.g. for class A) matches with the reference == Omission Error How many pixels should have been in the class but were not count of correctly classified pixels in class Producer‘s = Accuracy count of pixels in same reference class = 15 = 0.8333 18 (~83.3%) Department of Geography User‘s Accuracy (UA) Klassifikation Referenz Klassifikation Referenz/ ground truth A B C D " UA A 15 0 0 0 15 100 B 0 9 0 0 9 100 C 3 1 24 2 30 80 D 0 0 0 10 10 100 " 18 10 24 12 64 The user needs to know how well a class (e.g. A) matches with the reality == Commission Error How many pixels are in the class but should not have been count of correctly classified pixels in class User‘s = Accuracy count of all pixels in that class = 15 15 = 1 (100%) Department of Geography Overall/ Total Accuracy (OA) Klassifikation Referenz Overall = Accuracy Klassifikation Referenz/ ground truth A B C D " A 15 0 0 0 15 B 0 9 0 0 9 C 3 1 24 2 30 D 0 0 0 10 10 " 18 10 24 12 64 Count of correctly classified pixels Grand total (total pixel count) = 58 = 0.90625 64 (~90.6%) Department of Geography Accuracy metrics – OA, PA, UA A B C D " If I classified a pixel as forest (A), there is in 100% of the UA [%] cases indeed forest at that location 15 0 0 0 15 100 Referenz/ ground truth Klassifikation Referenz Klassifikation A B 0 9 0 0 9 100 C 3 1 24 2 30 80 D 0 0 0 10 10 100 " 18 10 24 12 64 PA [%] 83.33 90 100 83.33 OA [%] 90.63 I have captured 100% of the existing arable land (C) with my classification But: 20% of the classified arable land (C) pixels has another land cover in reality But: 16.67% of the existing forest (A) was not captured Department of Geography Radialdeformation Image taken on Sept. 23, 2001 from an altitude of 3,300 feet using a Leica/LH systems RC30 camera Department of Geography Zentralperspektive und orthogonale Kartenprojektion Quelle: Bundesamt für Landestopographie swisstopo und Grundlagen Luftbildmessung 2 Department of Geography Stereoskopische Parallaxe und Höhenmessung bg hg H1, H2 R S pS=pS1+pS2 #p1, #p2 #p=#p1+#p2 bp f #h R’1, R’2 S’1, S’2 pR1, pR2 #P Flugbasis Flughöhe über Grund Bildhauptpunkt Kopfpunkt Objekt Fusspunkt Objekt Absolute Parallaxe für S Parallaxdifferenz Objekt, LB1, 2 Parallaxdifferenz im Luftbildpaar Photobasis Brennweite Objekthöhe Kopfpunkt im Luftbild 1, 2 Fusspunkt im Luftbild 1, 2 Absolute Parallaxe für R Parallaxdifferenz in der Bezugsebene S (Gelände) Parallaxe für R: pR = pR1-pR2 Parallaxe für S: pS = pS1-pS2 Parallaxedifferenz #p: pR-pS #h=(#p*Hg)/pR
© Copyright 2024 ExpyDoc