Themenliste für das/Topics for Hauptseminar Technische Elektronik/ Seminar on Topics in Integrated Systems Technology Sommersemester 2015 All topics are offered in German or English T1: Comparison of Direct Up-Conversion and Polar Transmitter Architectures for Cellular Wireless Communications One of the major topics in semiconductor companies for the next years is the Internet of Things, enabling more and more devices to communicate with each other. Depending on the requirements on data rate, mobility, etc., different communication standards as WiFi, Bluetooth or cellular communication (e.g. GSM, UMTS, LTE) are used. As many devices are portable and run from batteries, their mobile communication transceivers implementing these functionalities are key components and have to be highly integrated circuits with strong requirements on wireless performance and power consumption. At the moment two major transmitter architectures are used for all of these standards: direct up-conversion transmitters, based on I/Q modulators, and polar transmitters, based on polar modulators [1, 2]. I/Q modulators use directly the I and Q parts of the transmit symbol to form the output waveform, whereas the polar modulators use magnitude and phase information calculated from the I/Q symbols. Both have advantages and disadvantages, depending on the communication standard(s) implemented and the general requirements of the manufacturer on the device in which they are used. The goal of this work is to give an introduction to both transmitter architectures and to discuss them under the aspect of complexity and wireless performance. [1] [2] J. Groe, “Polar transmitters for wireless communications,” Communications Magazine, IEEE, vol. 45, no. 9, pp. 58–63, 2007. Sowlati, T.; Rozenblit, D.; Pullela, R.; Damgaard, M.; McCarthy, E.; Dongsoo Koh; Ripley, D.; Balteanu, F.; Gheorghe, I., "Quad-band GSM/GPRS/EDGE polar loop transmitter," Solid-State Circuits, IEEE Journal of , vol. 39, no. 12, pp.2179,2189, Dec. 2004 T2: High Density Flash Architectures The ongoing evolution of mobile applications requires ever increasing amounts of non-volatile memory. NOR flash usually is used for code storage that requires execute in place (XIP) operation, whereas NAND flash allows higher memory density and throughput at higher latency for big data storages. Since both topologies are facing their limits when shrinking further, new architectures have to be found that overcome the issues. Lithographic bounds, break down issues, coupling problems and other difficulties, that arise when memory is packed more densely, have to be faced by novel approaches. Search for innovative flash memory technologies presented in literature and give an overview of the most promising ones. Include NOR as well as NAND architectures and highlight their benefits and challenges. Lots of publications on that topic can be found in the IEEE Xplore database. Here are some examples: [1] [2] [3] [4] De Vos, J. et al., ”A scalable Stacked Gate NOR/NAND Flash Technology compatible with high-k and metal gates for sub 45nm generations.”, IEEE International Conference on Integrated Circuit Design and Technology (ICICDT), 2006 Kadowaki, T. et al, “A New Architecture for High-Density High-Performance SGT NOR Flash Memory”, IEEE Transactions on Circuits and Systems, 2008 Yoon, K. et al., “A Vertical 4-Bit SONOS Flash Memory and a Unique 3-D Vertical NOR Array Structure”, IEEE Transactions on Nanotechnology, 2010 Eun-Seok, C., “A Novel 3D Cell Array Architecture for Tera-bit NAND Flash Memory”, IEEE International Memory Workshop (IWM), 2011 T3: DC-DC converter: control techniques for high efficiency step-down converters (in English) The reduction of the size of the IC and the increasing trend towards system-on-chip applications, such as portable electronic products (PDA, digital camera, MP3 player etc.) lead the designers to include many more functional modules. Therefore there is an overall increase in the power consumption of the systems. Since this trend runs parallel to the lowering of the power supply of the ICs, battery-powered products need highly efficient voltage conversion circuits (step-down conversion from Vbat to Vdd) to affect the battery life as little as possible. Linear power regulators cannot be used because they can handle only low power levels and voltage difference between input and output since they waste energy according to the power difference into heat. Consequently, high-efficiency switched-mode DC-DC converters, employing semiconductor power switches, have been developed rapidly in recent years. For many applications like cell phones, sensors etc., the system works under heavy-load only during the issued task, and then it works most of the time under light-load condition (standby). Therefore the optimization of this working condition is becoming a dominant concern in the field of DC-DC design; especially for low power implementations the simplicity and efficiency of the implementation of the control circuitry is a key feature. The aim of this seminar topic is to investigate and analyze some of the most efficient solutions presented in literature (or even from the industry field) and compare the advantages and disadvantages of the different approaches. T4: Time Dependent Dielectric Breakdown (TDDB) in high-k CMOS Technologien Eine der größten Herausforderungen beim Design von CMOS RF-Schaltungen in high-k Technologien sind die niedrigen Versorgungsspannungen im Bereich von 1V. Dadurch können viele Systemanforderungen von RF-Schaltungen wie etwa die maximale Ausgangsleistung eines Leistungsverstärkers nicht erfüllt werden. Daher werden CMOS RF-Schaltungen in vielen Fällen bei Versorgungsspannungen, die höher als die nominale Versorgungsspannung sind, betrieben. Dies führt einerseits zu einer beschleunigten Alterung der Schaltung durch klassische Degradationsmechanismen wie BTI (Bias Temperature Instability) oder HCI (Hot Carrier Injection), deren Auswirkungen auf die Schaltungsperformance meist jedoch tolerierbar sind. Daneben besteht jedoch vor allem die Gefahr eines GateDurchbruchs (TDDB), der nicht toleriert werden kann, da dieser unmittelbar zu einem Ausfall der betroffenen Schaltung führt. In diesem Hauptseminar sollen zunächst die physikalischen Ursachen von TDDB in high-k Technologien anhand aktueller Publikationen erarbeitet werden. Ein weiterer Schwerpunkt liegt auf der Gegenüberstellung der unterschiedlichen Messmethoden für TDDB, unter anderem für DC/AC und RF-Stresstests. Abschließend soll die Abhängigkeit des TDDB von der Frequenz und die sich daraus ergebende Schlussfolgerung für den Betrieb von RF-Schaltungen herausgearbeitet werden. Für die Bearbeitung dieses Themas ist sowohl das Verständnis von als auch das Interesse an komplexen physikalischen Vorgängen in CMOS Transistoren notwendig. T5: Fault Tolerance in Multi-Processor-System-On-Chips (MPSoC’s) The feature size shrinkage in modern CMOS technology increases the occurrence of permanent and transient physical failures = faults in circuit operation. These reliability problems make dependability and fault tolerance one of the major challenges of future technologies. Production lines of major manufacturers already include means to tolerate single defective cores in MPSoC’s (Multiprocessor System-on-Chip), where multiple individual processors (or processor elements) can be used in parallel. An important issue is to find an appropriate compromise between the reliability enhancement and complexity overhead as well as the power consumption of such solutions. Non-critical systems may tolerate a specific degree of transient unavailability and/or performance-degradation, allowing the system to take adaptive strategies that attempt repairing/fixing means before flagging units as faulty. The aim of this topic is to investigate and analyze some of the existing solutions to deal with faulty and defective components in MPSoC’s and to compare their advantages and disadvantages. [1] [2] [3] J. H. Collet, P. Zajac, M. Psarakis and D. Gizopoulos, “Chip Self-Organization and Fault Tolerance in Massively Defective Multicore Arrays”, In: IEEE Transactions on Dependable and Secure Computing, Vol. 8, No. 2, DOI: 10.1109/TDSC.2009.53, pp. 207-2017, 2011 N. Hébert, G. M. Almeida, P. Benoit, G. Sassatelli and L. Torres, “A cost-effective solution to increase system reliability and maintain global performance under unreliable silicon in MPSoC“, In: Int. Conf. on Reconfigurable Computing and FPGAs (ReConFig), DOI: 10.1109/ReConFig.2010.43, pp. 346 - 351, 2010 E. Wachter, A. Erichsen, L. Juracy, A. Amory and F. G. Moraes, “A Fast Runtime Fault Recovery Approach for NoC-Based MPSoCS for Performance Constrained Applications”, In: 27th Symposium on Integrated Circuits and Systems Design (SBCCI), DOI: 10.1145/2660540.2660986, pp. 1-7, 2014 T6: Low Power Circuit Design with Tunneling Field Effect Transistors (TFETs) (in English) As MOSFET devices get smaller, certain fundamental limits to the technology are being reached. One of the more promising technologies to replace traditional MOSFETs are TFETs. TFETs work using a different operating principle than MOSFETs and can overcome many of the technological issues currently affecting circuit design. At its simplest level, a TFET works by controlling the amount of current that can quantum mechanically tunnel through the device. This tunneling current promises benefits such as operating at very low voltages, reduced leakage currents, and offers the possibility to implement the n-type and p-type devices for complementary logic with the same device! Of course, TFETs are not a silver bullet and come with their own issues. The traditional SRAM design does not function well with TFETs and inverters do not have rail-to-rail behaviour. Despite these and other issues, this technology promises benefits theoretically impossible for MOSFETs as long as we use the TFETs in our design properly. This seminar topic will look into the advantages and disadvantages of TFETs compared to MOSFETs and how these affect design decisions in TFET circuits. T7: TFET Technology Tunnelling Field-Effect Transistors (TFET’s) have recently gained a lot interest due to their ability to save a lot of power in electronic circuits. The inverse subthreshold slope in a commonly used MOSFET is physically limited to a minimum value of 60mV/dec. This limitation prevents further downscaling of the supply voltage in order to reduce power consumption in electronic circuits. In theory, TFET’s can have an inverse subthreshold slope smaller than 60mV/dec and therefore are a potential replacement for MOSFET’s in low-power applications. The structure of a TFET is similar to a MOSFET except for the doping of drain and source. This fact allows an easy integration in a well-known CMOS process but experimental results show that it is difficult to reach sufficiently high currents with an inverse subthreshold slope smaller than 60mV/dec. Therefore new technology concepts and materials have to be explored to fabricate competitive TFET devices. This seminar topic should give an overview of current technologies and material systems used to produce TFET’s. Different concepts should be compared not only in respect to high on-state currents and high subthreshold slopes but also the compatibility to integrate the technology in a commonly used state-of-the-art CMOS process should be investigated. [1] [2] [3] [4] [5] A. C. Seabaugh and Q. Zhang, “Low-voltage tunnel transistors for beyond CMOS logic,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2095–2110, 2010. U. Avci, M. Daniel, and I. Young, “Tunnel Field-Effect Transistors: Prospects and Challenges.” Q. Zhao, S. Richter, C. Schulte-Braucks, L. Knoll, S. Blaeser, G. Luong, S. Trellenkamp, A. Schaefer, A. Tiedemann, K. Bourdelle, and others, “Strained Si and SiGe Nanowire Tunnel FETs for Logic and Analog Applications.” A. Seabaugh, “Fundamentals and current status of steep-slope tunnel field-effect transistors,” in Solid-State Device Research Conference (ESSDERC), 2011 Proceedings of the European, 2011, pp. 34–35. A. M. Ionescu, H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches.” Nature 479, 329–337 (17 November 2011) doi:10.1038/nature10679 T8: Effect of sputtering parameters on the electrical, structural, and morphological properties of ultra-thin magnetic films Nanomagnetic logic (NML) is a very promising approach for future data storage, digital logic and data processing. It offers outstanding properties such as nonvolatility, low power operation, compatibility to existing CMOS manufacturing processes and small footprint. The functionality of NML is based on magnetostatic interaction of bistable nano-scale ferromagnets. The nonvolatility of NML allows to move away from Von-Neumann-based computing to new paradigms of data processing. Many state of the art magnetic devices in research and industry are based on ultrathin multilayer ferromagnetic films with perpendicular magnetic anisotropy (PMA), e.g. HDDs, GMR sensors as well as magnetic memory and in future maybe also logic. The quality of such ultra-thin films is crucial for the correct and reliable function of magnetic logic and memory devices. Therefore it is important to study the effect of the sputtering parameters on the morphological, structural, and electricalproperties of ultra-thin films. The paper shall give an overview of key sputtering parameters and their impact on ultra-thin magnetic multilayer film. The focus should lay on initial and working pressures as well as on sputtering power using radio frequency (RF) magnetron sputtering technique to deposit ultra-thin Co/Pt and Co/Ni multilayer films. [1] [2] [3] M. Becherer et al., "Towards on-chip clocking of perpendicular Nanomagnetic Logic", SolidState Electronics, vol. 102, 2014, doi:10.1016/j.sse.2014.06.012. Mattox, Chapter 7 - Physical Sputtering and Sputter Deposition (Sputtering), In Handbook of Physical Vapor Deposition (PVD) Processing (2ed Edition), William Andrew Publishing, Boston, P. 237-286, ISBN 9780815520375 2010, http://dx.doi.org/10.1016 Carcia P.F. et al., Effect of sputter-deposition processes on the microstructure and magnetic Properties of Pt/Co multilayers. Journal of Magnetism and Magnetic Materials 121 (1993) 452460. [4] [5] Carcia, P.F. et al., Sputtered Pt/Co multilayers for magneto-optical recording, Magnetics, IEEE Transactions on (Volume:26 , Issue: 5 ), 1990, DOI:10.1109/20.104498. Wasa, K.: Handbook of Sputter Deposition Technology. William Andrew (Elsevier), 2nd edition, 2012. T9: Resolution Enhancement Techniques Als ‘Resolution Enhancement Techniques‘ (RETs) werden Methoden zur Erhöhung der Auflösung in der optischen Lithographie für die Herstellung integrierter Schaltkreise bezeichnet. Dabei steht als Motivation die Aufrechterhaltung des von Moore vorhergesagten Skalierungstrends für die CMOS-Industrie im Vordergrund. Alternative Verfahren zur optischen Lithographie, wie z.B. die EUV Lithographie haben aufgrund höherer Kosten und geringerer Ausbeute noch keinen Einzug gefunden. Im Vergleich dazu sind die eingesetzten RETs kostengünstiger und erlauben eine Auflösung unterhalb der Wellenlänge der verwendeten Lichtquelle. Zu diesen Techniken gehört unter anderem der Einsatz sog. PhasenschieberMasken (Phase Shift Mask), die optische Nahbereichskorrektur (Optical Proximity Correction), Mehrfachstrukturierung (Double Patterning), Immersionslithographie (Immersion lithography), etc. In ihrer Arbeit und ihrem Vortrag sollen diese Techniken näher erläutert werden und es soll auf zukünftige Entwicklungschancen der optischen Lithographie eingegangen werden. Kann die optische Lithographie zusammen mit den eingesetzten RETs den vorhergesagten Skalierungstrend weiterhin aufrechterhalten? [1] [2] Liebmann, Lars W. "Layout impact of resolution enhancement techniques: impediment or opportunity?." Proceedings of the 2003 international symposium on Physical design. ACM, 2003. Ito, Takashi, and Shinji Okazaki. "Pushing the limits of lithography." Nature 406.6799 (2000): 1027-1031.
© Copyright 2025 ExpyDoc