LEIBNIZ-Konferenz „Technologie der Mikroelektronik der Schlüssel

LEIBNIZ-Konferenz
Industrielle Revolution 4.0 im historischen Kontext
Michael Raab
„Technologie der Mikroelektronik
der Schlüssel für die digitale Revolution“
Dresden, 19.März 2015
19. Leibnizkonferenz
1MDRAM Speicherchip aus Dresden
Chipfläche 65.5mm2
AMD – Jerry Sanders
„It is all about people“
First full functional 1MDRAM
August 1988
Estimated number of produced parts in Dresden: 30kdice between Sept 1988 and 1990
Development without economical effect but
LEIBNIZ-Konferenz, Industrielle Revolution 4.0 im historischen Kontext
2
Technology 1MDRAM-1µm (1988) vs 32nm (2010)
Scaling by factor of ~30 in 22years, 10Tech Nodes in between
Si Substrate
(125mm wafer)
16 mask layer
(6 Implants)
1 Layer of Metal
(Al/Si)
SOI Substrate
(300mm wafer)
55 mask layer
(20 Implants)
11 Layers of Metal
(Cu)
Poly Silicon Gate
HK Metal Gate
MoSi Bitleitung
5th Gen Strained Silicon
Gate Length: 1000nm
Gate Length: 35nm
DRAM Cell Size = 32.4µm2
SRAM Cell Size = 0.258µm2
LEIBNIZ-Konferenz, Industrielle Revolution 4.0 im historischen Kontext
3
High Advanced Technologies in Dresden
2000
2002
2003
2004
2006
2008
2010
180nm
130nm
130nm
90nm
65nm
45nm
32/28nm
Low-K
dielectric
SOI
Immersion
Lithography
HKMG
Cu
Interconnect
Strained-Si
Multi-Strain
Transistor
 8 technologies successfully developed through Joint
Development Alliance and AMD/GLOBALFOUNDRIES collaboration
 All technologies run in high volume manufacturing
 32nm and 28nm volume manufacturing at GLOBALFOUNDRIES
Cu
 Further scaling in GLOBALFOUNDRIES-Dresden only with EU
and Germany funding, support and focus
LEIBNIZ-Konferenz, Industrielle Revolution 4.0 im historischen Kontext
Cu
Pores in
dielectric
ULK
4
ITRS Roadmap
14nm
22nm
22nm
14nm
10nm
9nm
7nm
2011
2014
2016
2018  2019
2022
LEIBNIZ-Konferenz, Industrielle Revolution 4.0 im historischen Kontext
5
From Bipolar to CMOS at highest performance
10µm
1µm
1013 Bipolar PMOS NMOS
CMOS
1012
100nm
Voltage
Scaling
1011
Pwr Eff
Scaling
New Nanostructures
GLOBALFOUNDRIES
AMD
1965 Data (Moore)
Memory
Microprocessor
1010
Transistors/Die
10nm
109
108
AM/ZM Dresden
45nm
107
65nm
106
130nm
105
32nm
~ 1.4 – 1.5 billion
transistors per die,
28nm
~ 9billion transistors
per die, 450mm2
180nm
104
U61000
103
U264
102
dev
U253
101
Source:
Intel / P. Gargini
ISS Europe 2009
D120
100
1960
1970
1980
1990
2000
2010
2020
LEIBNIZ-Konferenz, Industrielle Revolution 4.0 im historischen Kontext
2030
6
Mikroelektronik Aufwand
Cost Zusätzliche
explosion forgezielte
technology
node
Förderungen
können
20nm, 14nm …. in Europe ermöglichen
Intel/TSMC/Samsung/GLOBALFOUNDRIES/SMIC/UMC
LEIBNIZ-Konferenz, Industrielle Revolution 4.0 im historischen Kontext
7
TSMC Revenue to change from 28nm  20nm
10nm in 1H2016
1 year 28nm
Don’t stop development
followed by production
LEIBNIZ-Konferenz, Industrielle Revolution 4.0 im historischen Kontext
INTELs 14nm Technology with 2nd-Generation FINFET
Self-Aligned Double Patterning, 0.0588µm2 SRAM cell size




4th generation high-k metal gate, and 6th-generation strained silicon
Idsat improvement of 15% for NMOS and 41% for PMOS over 22nm
42nm fin and 70nm contacted gate pitch Idsat are 1.04mA/µm at Vdd 0.7V
Slopes are maintained at ~65mV/decade; DIBL is ~60mV/V and ~75 mV/V for NMOS and PMOS,
respectively
IEDM2014
LEIBNIZ-Konferenz, Industrielle Revolution 4.0 im historischen Kontext
9
Halbleitermarkt: das Herz für komplexe Systeme
Datenverarbeitung
($ 455 Milliarden)
Netzwerktechnik
($ 99 Milliarden)
Medizintechnik
($ 173 Milliarden)
Halbleiter
Automobilelektronik
($ 100 Milliarden)
($333 Milliarden,)
2014, WSTS
Mobilkommunikation
($ 223 Milliarden)
Industrieelektronik
($ 318 Milliarden)
Sector Market Size in US$
LEIBNIZ-Konferenz, Industrielle Revolution 4.0 im historischen Kontext
Interposer or TSV
Internationale Roadmap mit klaren System-Vorstellungen und 3D-Integration
SoC auch mit Interposer oder TSV
nur gemeinsam mit Basistechnologie möglich
Handbook of 3D Integration: Volume 3 - 3D Process Technology
Philip Garrou, Mitsumasa Koyanagi, Peter Ramm
LEIBNIZ-Konferenz, Industrielle Revolution 4.0 im historischen Kontext
Technology Summary enabling Industrial4.0
More Moore is now driven by
Low-Power Product
Smart System Integration
Challenge for Technology scaling
Semiconductor business enable
growing markets
Europe requires semiconductors to be
competitive in Future and Industry 4.0
Semiconductor Production in
Europe should be Industrial
demand
Dedicated Semiconductor
Founding required
LEIBNIZ-Konferenz, Industrielle Revolution 4.0 im historischen Kontext
EU - Zielstellung
EU-Ziel: 20% Mikroelektronik Fertigung
in Europa bis 2020
Notwendiger Schritt zur Umsetzung
Investition einer neuen 300mm Linie
für 14…7nm Technologie in Europa
LEIBNIZ-Konferenz, Industrielle Revolution 4.0 im historischen Kontext
13