Ma 221 Homework Solutions Due 2/20/14 4.4 Page 182 18 , 19 , 24 , 34 18. y ′′ 4y 8 sin 2t The characteristic polynomial is pr r 2 4 so the roots are r 2i and therefore y h c 1 sin 2t c 2 cos 2t Consider a companion equation v ′′ 4v 8 cos 2t Multiplying the first equation by i and adding it to the second equation yields v ′′ iy ′′ v iy 8cos 2t i sin 2t 8e 2it Let w v iy. Then we have w ′′ 4w 8e 2it Since p2i 0, but p ′ 2i 4i ≠ 0, then 2it 2it 2 te w p 8te i 4i y p Im w p 2it w p 2 te i −2ite 2it i i −2itcos 2t i sin 2t Thus y p −2t cos 2t 19. 4y ′′ 11y ′ − 3y −2te −3t Consider the homogeneous equation 4y ′′ 11y ′ − 3y 0 first. pr 4r 2 11r − 3 0 −11 121 − 44−3 −11 169 −11 13 −3, 1 16 8 28 28 −3t Thus e is a homogeneous solution. y p tA 1 t A 0 e −3t A 1 t 2 A 0 t e −3t r y ′p −3A 1 t 2 2A 1 − 3A 0 t A 0 e −3t y ′′p 9A 1 t 2 9A 0 − 12A 1 t 2A 1 − 6A 0 e −3t Substituting into the DE yields after some algebra 1 −26A 1 t 8A 1 − 13A 0 e −3t −2te −3t Thus − 26A 1 −2 8A 1 − 13A 0 0 Hence A 0 8 169 , A1 1 13 and yp t 8 te −3t 169 13 24. y ′′ y 4x cos x Since cos x and sin x are homogeneous solutions, the we let y p A 1 x 2 A 0 x cos x B 1 x 2 B 0 x sin x Thus y ′p B 1 x 2 B 0 2A 1 x A 0 cos x −A 1 x 2 2B 1 − A 0 x B 0 sin x and y ′′p −A 1 x 2 4B 1 − A 0 x 2B 0 A 1 cos x −B 1 x 2 −4A 1 − B 0 x 2B 1 − A 0 sin x Substituting into the DE and combining yields 4B 1 x 2B 0 A 1 cos x −4A 1 x 2B 1 − A 0 sin x 4x cos x Hence 4B 1 4 or B 1 1 − 4A 1 0 so A 1 0 2B 0 A 1 0 so B 0 −A 1 0 2B 1 − A 0 0 so A 0 B 1 1 Thus y p x cos x x 2 sin x 34. 2y ′′′ 3y ′′ y ′ − 4y e −t The characteristic equation is pr 2r 3 3r 2 r − 4 0 p−1 −2 3 − 1 − 4 −4 ≠ 0. Thus e −t is not a homogeneous solution and y p Ae −t −t Substituting into the DE we have y ′p −Ae −t , y ′′p Ae −t , y ′′′ p −Ae −2A 3A − A − 4Ae −t e −t or −4A 1 so y p − 1 e −t 4 2
© Copyright 2025 ExpyDoc