14.4 25, 27, 28, 35 25–30 Find the di¤erential of the function. 25. z = e 2x cos 2 t dz = zx dx + zt dt = 2e 2x cos 2 t dx 2 e 2x sin 2 t dt = 2e 2x (cos 2 t dx + sin 2 t dt). 27. m = p5 q 3 dm = mp dp+mq dq = 5p4 q 3 dp+3p5 q 2 dq = p4 q 2 (5q dp + 3p dq). v 28. T = 1 + uvw v2w 1 dT = Tu du+Tv dv+Tw dw = dv 2 du+ (1 + uvw) (1 + uvw)2 v2u dw. (1 + uvw)2 35. Use di¤erentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height 12 cm if the tin is 0:04 cm thick. The volume of a cylinder is V = r2 h, where r is the radius and h is the height. So dV = 2 rh dr + r2 dh. If dt is the thickness of the tin, then dr = dt and dh = 2dt, so dV = (2 rh + 2 r2 ) dt = (96 + 32 ) 0:04 = 5:12 cubic centimeters of tin. Note that V = 42 12 = 192 cubic centimeters. Dumb problem? Exact computation where 8 is the outer diameter and 12 is the outer height: 42 12 (4 0:04)2 (12 0:08) = 5:0753 Where 8 is the inner diameter and 12 is the inner height: (4 + 0:04)2 (12 + 0:08) 42 12 = 5:1649 Where 8 is the average diameter and 12 is the average height: (4 + 0:02)2 (12 + 0:04) (4 0:02)2 (12 0:04) = 5:12 14.5 1, 3, 5, 7, 9, 11, 13, 15, 21, 23, 27, 31, 33, 35, 43 1–6 Use the chain rule to …nd dz=dt or dw=dt. These are a bit tedious. 1. z = x2 + y 2 + xy, x = sin t, y = et dz=dt = zx cos t + zy et = (2x + y) cos t + (2y + x) et = (2 sin t + et ) cos t+(2et + sin t) et = sin 2t+2e2t +et (cos t + sin t) 1 p 3. z = 1 + x2 + y 2 , x = ln t, y = cos t dz=dt = zx =t zy sin t = p 1 2 2 (x=t y sin t) = 1+x +y p 1 1+ln2 t+cos2 t y=z ((ln t) =t cos t sin t) 5. w = xe , x = t2 , y = 1 t, z = 1 + 2t dw=dt = wx 2t wy + 2wz = ey=z (2t (x=z) 2 (xy=z 2 )) 7–12 Use the chain rule to …nd @z=@s and @z=@t. These are a bit tedious. 7. z = x2 y 3 , x = s cos t, y = s sin t @z=@s = zx cos t + zy sin t = 2xy 3 cos t + 3x2 y 2 sin t = 2s4 cos2 t sin3 t + 3s4 cos2 t sin3 t = 5s4 cos2 t sin3 t @z=@t = zx s sin t + zy s cos t = 2xy 3 s sin t + 3x2 y 2 s cos t = 2s5 cos t sin4 t+3s5 cos3 t sin2 t = 3 cos2 t 2 sin2 t s5 cos t sin2 t 9. z = sin cos , = st2 , = s2 t @z=@s = z t2 + z 2st = t2 cos cos 2st sin sin = 2 2 2 2 2 t cos st cos s t 2st sin st sin s t @z=@t = z 2st + z s2 = 2st cos cos s2 sin sin = 2 2 2 2 2 2st cos st cos s t s sin st sin s t p 11. z = er cos , r = st, = s2 + t2 p p s @z=@s = zr t + z s= s2 + t2 = ter cos er sin = s2 +t2 p p s est t cos s2 + t2 p sin s2 + t2 2 2 p s +t p t @z=@t = zr s + z t= s2 + t2 = ser cos er sin = s2 +t2 p p t est s cos s2 + t2 p sin s2 + t2 s2 + t2 13. If z = f (x; y) where f is di¤erentiable, and x = g (t) g (3) = 2 g 0 (3) = 5 fx (2; 7) = 6 y = h (t) h (3) = 7 h0 (3) = 4 fy (2; 7) = 8 …nd dz=dt when t = 3. When t = 3 we have x = g (3) = 2 and y = h (3) = 7. So dz=dt = fx (2; 7) g 0 (3) + fy (2; 7) h0 (3) = 6 5 2 8 ( 4) = 62 15. Suppose f is a di¤erentiable function of x and y, and g (u; v) = f (eu + sin v; eu + cos v). Use the table of values to calculate gu (0; 0) and gv (0; 0). f g f x fy (0; 0) 3 6 4 8 (1; 2) 6 3 2 5 gu (u; v) = fx (eu + sin v; eu + cos v) eu +fy (eu + sin v; eu + cos v) eu so gu (0; 0) = fx (1; 2) + fy (1; 2) = 7. gv (u; v) = fx (eu + sin v; eu + cos v) cos v fy (eu + sin v; eu + cos v) sin v so gv (0; 0) = fx (1; 2) + 0 = 2. 21–26 Use the chain rule to …nd the indicated partial derivatives. 21. z = x4 + x2 y, x = s + 2t u, y = stu2 ; @z @z @z , , when s = 4, t = 2, u = 1 @s @t @u For those values of s; t; u we have x = 7 and y = 8, so @z = zx +zy tu2 = 4x3 +2xy+x2 tu2 = 4 73 +112+49 2 = 1582 @s @z = zx 2 + zy su2 = 8x3 + 4xy + x2 su2 = 8 73 + 224 + 49 4 = @t 3164 @z = zx + zy 2stu = 4x3 2xy + 2x2 stu = 4 73 112 + @s 2 49 8 = 700 23. w = xy + yz + zx; x = r cos , y = r sin , z = r ; @w @w , when r = 2, = =2 @r @ For those values of r and we have x = 0, y = 2, and z = , so @w = wx cos + wy sin + wz = 0 + (x + z) + (x + y) =2 = @r 0+ + =2 @w = wx r sin +wy r cos +wz r = (y + z) r+0+(x + y) r = @ (x z) r = 2 27–30 Use Equation 6 to …nd dy=dx. 27. y cos x = x2 + y 2 Without using equation 6 we just di¤erentiate with respect to x treating y as a function to get y 0 cos x y sin x = 2x + 2yy 0 , so y 0 = (2x + y sin x) = (cos x 2y). 3 Using equation 6 we set F (x; y) = y cos x x2 y 2 , so dy=dx = Fx =Fy = (2x + y sin x) = (cos x 2y). 31–34 Use Equations 7 to …nd @z=@x and @z=@y. 31. x2 + 2y 2 + 3z 2 = 1 Set F (x; y; z) = x2 + 2y 2 + 3z 2 1. Then @z=@x = Fx =Fz = 2x= (6z) = x= (3z), and @z=@y = Fy =Fz = 4y= (6z) = 2y= (3z). 33. ez = xyz Set F (x; y; z) = ez xyz. Then Then @z=@x = Fx =Fz = yz= (ez xy), and @z=@y = Fy =Fz = xz= (ez xy). 35. The temperature at a point (x; y) is T (x; y), measured in degrees Celsius. A p bug crawls so that its position after t seconds is given by x = 1 + t, y = 2 + t=3, where x and y are measured in centimeters. The temperature function satis…es Tx (2; 3) = 4 and Ty (2; 3) = 3. How fast is the temperature rising on the bug’s path after 3 seconds? p Note that x0 (t) = 1=2 1 + t and y 0 (t) = 1=3, so x0 (3) = 1=4 andpy 0 (3) = 1=3. We are asked to compute f 0 (3) where f (t) = 1 + t; 2 + t=3 . By the chain rule, T f 0 (3) = Tx (2; 3) x0 (3) + Ty (2; 3) y 0 (3) = 4 (1=4) + 3 (1=3) = 2 43. One side of a triangle is increasing at a rate of 3 cm/s and a second side is decreasing at a rate of 2 cm/s. If the area of the triangle remains constant, at what rate does the angle between the two sides change when the …rst side is 20 cm long, the second side is 30 cm, and the angle is =6? If the length of the two sides are denoted by a and b, and the angle between them by , then the area of the triangle is 21 ab sin . We know that a0 = 3 and b0 = 2. We want to determine 0 . So di¤erentiate the constant ab sin to get a0 b sin + ab0 sin + ab 0 cos = 0 Plugging in a = 20, b = 30, and = =6 gives 3 30 (1=2) + 20 ( 2) (1=2) + 600 4 0 p 3=2 = 0 so 25 + 300 whence 0 = 0 p 3=0 p 1= 12 3 . Is it reasonable that 5 0 is negative?
© Copyright 2024 ExpyDoc