^ó‡外GLV}‰“vを用いたy‹qh |ŠV‰U“による VŠJ–Œの形¬

Journal of the Ceramic Society of Japan
Paper
112 [11] 599–603 (2004)
^ó‡OGLV}‰“vðp¢½y‹qh|ŠV‰U“Éæé
VŠJ–ŒÌ`¬
·ÀNOEc†üEÁ¡çqEi¡LFÞ
_Þì§YÆZp‡¤†ŠC243–0435 _Þì§CV¼sº¡ò 705–1
Þ
(L)R“^~l[V‡“ER“g[‹ET[rXC229–1134 _Þ짊ʹsºãò 529–3
Formation of Silica Coatings from Perhydropolysilazane Using
Vacuum Ultraviolet Excimer Lamp
Yasuhiro NAGANUMA, Satomi TANAKA, Chihiro KATO and Toyohiko SHINDOÞ
Kanagawa Industrial Technology Research Institute, 705–1, Shimo­imaizumi, Ebina­shi, Kanagawa
Þ
Contamination Control Services, 529–3, Shimokuzawa, Sagamihara­shi, Kanagawa 229–1134
243–0435
Silica coatings have been prepared by the spin­coating technique with the 172 nm vacuum ultraviolet (VUV) ir­
radiation using a Xe2Þexcimer lamp. Perhydropolysilazane was used as a precursor. The chemical states, compo­
sition and optical transmittance of VUV­irradiated films were investigated by Fourier transform infrared, X­ray
photoelectron, UV­visible absorption spectroscopies. The results showed that VUV irradiation was effective to
remove hydrogen and nitrogen from the coating film and to incorporate oxygen to the film, so that the film
transforms into silica. The effects of VUV treatment on the film were found to be dependent on oxygen concen­
tration in surrounding gas. It was suggested that the effect of oxidation reaction due to active oxygen species
and/or ozone is larger than that of the cleavage of a chemical bonding by photon energy.
[Received June 4, 2004; Accepted September 22, 2004]
Key­words : Perhydropolysilazane, Silica, Thin film, Spin­coating, Vacuum ultraviolet light, Excimer lamp
A. 
¾
VŠJR[eB“OŒÍCKXoŠA«CπիC»wI
ÏH«CdC⏫C§¾«Æ¢Á½íXÌÁ«ðà±Ʃ
çC¼±ÌfoCXÌwÔ⏌Ct»K‰XÌCI“noh
~ŒCv‰X`bNŒ“YâfBXvŒCpn[hR[gCà
®Ì_»h~ŒÈÇLÍÍÉgp³êÄ¢éDVŠJŒÌì»
ÉÍh‰C@ÆµÄ CVDi»wCŠ¬·j@â PVDi¨C
Š¬·j@ÈǪCEGbg@ƵÄÍ]‹–Q‹@â MOD
iL@பðj@ÈǪp¢çêéDOÒÍärIá·Åà
ǿȌð`¬Å«éªC‚¿È^ó•uðKvÆ·é½ßR
Xgª‚¢DêûCãÒÍí³ÅÈÖȕuªg¦é½ßRX
gªÀ¢CܽCϿȌðåÊÏɬŒÅ«éÆ¢¤˜_à
éDµ©µCR[eB“Oµ½Œ†Éc¶·é…ªâL@¨
ðæ蜢Äk§ÈŒð¾é½ßÉÍCêÊÉ500‹
CÈã̂
·ÅÌMˆªKvÆÈèCR[eB“OÉp¢éîªÏM
«Ì‚¢Þ¿ÉÀçêĵܤD
»ÝCärIá·ÌMˆÅVŠJŒð¾éû@ƵÄCy
‹qh|ŠV‰U“iperhydropolysilazane, PHPSj™ÌZ‰
~bNOìÌ|Š}[1),2) ðåC† é¢Í…öC†É¨¢Ä
450‹
CöxÌ·xÅĬ·éû@ªñ³êÄ¢é3),4)DPHPS
ÌVŠJÖÌ]»Í(1), (2)®É¦·æ¤ÉCSi–N ‹‡ðð£
·éÆÆàÉCŒ†É O ðæèžÝCN ð O Éu··é½ž
Éæé±ÆªmçêĨèCXÈé᷻̽ßÉG}ÌYÁ
™ªsíêÄ¢éD
–SiH2NH–{O2 ¨ SiO2{NH3
–SiH2NH–{2H2O ¨ SiO2{NH3{2H2
å«­CõqÌìpÌÝÅ´q̋‡ðØfÅ«éDܽCg
·ª200 nm ȺŠé VUV õÍ_fÉzû³êé±ÆÅC­
¢_»Íðàˆ«_fiO(1D)jâI]“iO3j𶬷éD
_fÉæé VUV õÌzûɨ¢ÄÍCzû³êéõÌg·É
æ轞ßöªÙÈèCÁÉCg·172 nm Ì VUV õð­·é
Xe2ÞGLV}‰“vÅÍCi3)`(5)®É¦·æ¤È½žÉæ
èC‚ZxÌ O(1Djâ O3 𶬷é±ÆªÂ\Å é6)`8)D
O2{h[¨ O(3P){O(1Dj
O(3P){O2 ¨ O3
O3{h[¨ O(1D){O2
(3)
(4)
(5)
±Ìæ¤È VUV õÉæé»w‹‡ÌØfâ_»ìpÍCVŠR
“EGnât»pl‹ÌõôòC‚ªqÞ¿Ìõ\Êü¿9) È
Çɞp³êÄ¢éDܽCVŠJŒÌ`¬É¨¢ÄàGLV
}‰“vðp¢½û@ªñ³êÄ¢éDAwazu Æ Onuki10),11)
ÍCeg‰gLVV‰“iTMOSj©çA‹L‹îÈÇðœŽ
·é±ÆÉæèCº·ÅVŠJŒð`¬µ½DZhang Æ Boyd12)
ÍCeg‰GgLVV‰“iTEOSjÌ]‹–Q‹R[eB“O
ŒðCÆ˞ÉÁMµÄL@¬ªðªð·é±ÆÉæèCVŠ
JŒð`¬µÄ¢éD±êçÌñÅÍCõqÌGl‹M[É
æè»w‹‡ªØf³êé±ÆðLøɘpµÄ¢éD{¤†
ÅÍCTMOS â TEOS ÆÙÈè O ðÜÜÈ¢ PHPS ðá·Å
VŠJÖ]»³¹é½ßÉC_f̈«íɨ¯é­¢_»ì
pð˜p·é±ÆðÚIƵ½D»±ÅC–Œ`¬žÌÆ˵
ÍCɨ¯é_fZxÌe¿âCõqGl‹M[Éæ鋇Ø
fÌKv«ð²×é½ßÉCPHPS ntðp¢½Xs“R[
eB“OŒÉCÆËððÏ¦Ä VUV õðÆ˵½Æ«ÌŒ
¿É¢ğ¢µ½D
(1)
(2)
ßNC‚oÍÈ^ó‡OiVUVjæÌõ¹ÆµÄGLV}‰
“vªÀp»³êÄ«½5)DVUV õÍC1 õq ½èÌGl‹
M[ªCÙÆñÇ̨¿É¨¯é´q̋‡Gl‹M[æèà
599
600
^ó‡OGLV}‰“vðp¢½y‹qh|ŠV‰U“ÉæéVŠJ–ŒÌ`¬
Fig. 1. Schematic diagram of the VUV irradiation apparatus.
B. À
±
R[eB“OntƵÄCPHPS ÌLVŒ“ntiN‰ŠA
“gWƒp“CNN110jðóßµÄgpµ½DZxª 5÷Ìn
tðVŠR“EGn(100)ãÉC1500 rpm Å 2 min Xs“R[
gµ½D»Ìã40‹
CÅ10 min £‡³¹CR[eB“OŒð¾
½D±ÌŒÉ Xe2ÞGLV}‰“viNH[NVXe€Y»C
QEX–230SX, 100 W/m2 jðp¢ÄCg·172 nm Ì VUV õð
1 h Æ˵½DÆËðÆµÄCŽ¿Æ‰“v‹Ì—£i Dj
Í 2 mm é¢Í20 mm Ƶ½DܽDÆ˵ÍC͂fÆ£
‡óC𬇳¹é±ÆÉæé_fZxiCOjª 2÷Ìê‡ÆC
£‡óCÌÝÌ20÷ðÝèµ½D»µÄC±êçÌCÌð 1 L/
min ̬ÊŎ¿Æ‰“v‹ÌÔɬµ½DÆ˕uÌTªð
}Pɦ·DܽCR[eB“OŒð£‡µ½ãC300‹
C é
¢Í500‹
CÌMˆ·xiTHjÅ40 min ÁMµ½–Œà컵
½D
–ŒÌÔOzûXyNg‹ðt[ŠGÏ·ÔOªõiFT–IRj
õxvi‡Ã»ìŠ»CFTIR–8200PCjÉæè§ß@ðp¢
Ä4000©ç400 cm|1 Ìg”ÍÍŪ赽DŒ\ÊyÑà”
Ìg¬É¢ÄCX üõdqªõiXPSjªÍ•uiA‹ob
NEt@C»CMODEL–5500jÉæè]¿µ½DX ü¹Æµ
Ä Mg Ka üðoÍ350 W ÅgpµC[³ûüªÍɨ¯éX
pb^Š“OÉÍ Ar CI“ðÁ¬d³ 2 kV ÅÆ˵½Dg·
200`700 nm ɨ¯éõw§ß¦ð‡O‹ªõõxviú§
»ìŠ»CU–3000jðp¢Äªèµ½DȨCõw§ß¦ª
èpŽ¿ÉÍCR[eB“OîÂƵÄÎpK‰Xðp¢½D
C. ‹ÊÆl@
}QÉ PHPS ntðXs“R[gµ½ŒÉ¢ÄC£‡ãC
300‹
CyÑ500‹
CÅMˆ ãC D 2 mm Å CO 2÷ é¢ Í
20÷CD20 mm Å CO2÷ é¢Í20÷ÌðÅõÆËãÉ
¾çê½ FT–IR XyNg‹ð¦·D£‡µ½Œ©çÌXyNg
‹ÉÍ3370, 2160, 840 cm|1 tßÉ»ê¼êCN–H, Si–H, Si–N
ÉA®³êézûs[NªÏª³ê½D±êçÌs[NÍMˆ
·xÌã¸ÉÆàÈ¢¸­·éD¯žÉCSi–O–Si ÉA®³
êé1060 cm|1 tßÌzûs[N­xª­­ÈèC500‹
CÅÌ
MˆãÉÍCVŠJÖ®SÉ]»µÄ¢é±Æªª©éD±
êÍCi1), (2)®Ìæ¤È PHPS ÌVŠJÖÌ]»½žÆµÄ
à¾Å«éD£‡ãÌR[eB“OŒÉCMˆÌãíèÉõ
ÆËðsÁ½ê‡à¯lÌÏ»ª©çê½Dµ©µCÆËð
ÉæèXyNg‹Ì`óÍÙÈèCÆ˗£Åär·éÆC2
mm ÌÆ«æèà20 mm ÌûªCÆËÉæé Si–N zûs[N
̸­ªå«­CVŠJÖÌ]»ªiñÅ¢½DXÉCD20
mm ÌÆ«ÍCCO2÷ é¢Í20÷Ƶ½Æ«Ì¼ûÆàÉC
300‹
CÅMˆðµ½Æ«æèàVŠJÖÌ]»ªiޱƪ
Fig. 2. FT–IR spectra of spin­coated films dried, heat­treated and
VUV­irradiated. TH is heat treatment temperature. CO and D are oxy­
gen concentration and distance between the lamp window and the
sample, respectively.
ª©Á½D±êÍCi3)`(5)®É¦µ½ O(1Djâ O3 Éæé_
»ÉæèCŒ†É O ªæèžÜêVŠJª`¬³ê½àÌÆ
l¦çêéD
MˆyÑõÆ˵½–ŒÌ\Êg¬É¢Ä]¿·é½ß
É XPS ªèðsÁ½D}RÉϪ³ê½ XPS O1s, N1s, Si2p
XyNg‹ð¦·D300‹
CÅMˆµ½Œ©çÍCC Æ O, Si
ÌÙ©ÉCN ª­­Ïª³ê½DܽCD20 mm ÅõÆ˵
½Œ©çÍCí¸©É N ªÏª³ê½ªC500‹
CÅMˆµ½
ŒÆCD2 mm ÅõÆ˵½Œ©çÍ N ªÙÆñÇϪ³ê
È©Á½D±êæèCŒÖÌÆ˪Œ\Êɶݷé N ðœ
Ž·é±ÆªmF³ê½DÆËã̌ɨ¯é Si2p XyNg
‹ÍC¢¸êÌÆËðÌê‡àCs[Nª103.7 eV tßÉÊ
uµCVŠJɨ¯és[NÊu13)Ææ­êvµ½D
–Œà”Ìg¬É¢IJ×é½ßÉCXPS Éæé[³û
üªÍðsÁ½D}SÉC»ê¼êMˆyÑõÆËã̌É
¨¯éfvXvt@C‹ð¦·D»Ì‹ÊC300‹
CÌMˆ
ÅÍCŒàÉà N ªc¶µÄ¢éªC500‹
CÅÌMˆãÉ
ÍCN ªÏª³ê¸CÏêÈVŠJŒª`¬³êé±Æªª
©Á½DȨCŒúùmÌ SiO2 ŒÌ[³ûüªÍÉæèàÆ
ß½Xpb^Œ[gðp¢ÄCXpb^žÔðŒúÉ·Zµ½
ƱëC500‹
CÅMˆã̌ÌúÝÍñ45 nm Æ©Ïàçê
½D
MˆÌãíèÉõÆ˵½ŒÍCÆËðÉæè[³ûü
̳fªzª˜µ­ÙÈÁ½DD2 mm ÌðÅÍCŒÌÅ
\Ê©çVŠR“EGnÆÌEÊÉü©¤r†ÅCO ÌZxª
˜µ­¸­µCN ÌZxªÁµ½DÂÜèC} 3 ̋ÊÆ ·ÀNO ¼
Journal of the Ceramic Society of Japan
112 [11] 2004
601
Fig. 3. O1s, N1s and Si2p XPS spectra from spin­coated films heat­treated and VUV­irradiated. TH is heat treatment temperature. CO and D are
oxygen concentration and distance between the lamp window and the sample, respectively.
Fig. 4. XPS depth profiles of spin­coated films heat­treated and VUV­irradiated. TH is heat treatment temperature. CO and D are oxygen con­
centration and distance between the lamp window and the sample, respectively.
602
^ó‡OGLV}‰“vðp¢½y‹qh|ŠV‰U“ÉæéVŠJ–ŒÌ`¬
í¹Äl¦éÆCD2 mm ÌðÅÍCŒÌÅ\ÊÅÍ N ª
œŽ³êÄ¢éàÌÌCŒ†ÉÍ N ª½ÊÉc¶µCO àà
”ÉÏêÉÍæèžÜêĢȢ±Æªª©Á½D±êÍCŒ
Ì\ÊÍVŠJª`¬³êé±ÆÅK‰X»µC»êªáÇÆ
Èé½ßÉCŒ©çÌ N ̜ŽyьÖÌ O ÌæèžÝªj
Q³ê½½ßÆl¦çêéDܽCD2 mm ÌðÅÌ_f
ZxÉæéá¢ÆµÄC2÷ÌÆ«æèÍ20÷ÌÆ«ÌÙ¤
ªCæè[­ÜÅ O ªÏêÈZxŶݷé±ÆðmFÅ«
½D±êÍ} 2 Ì FT–IR ̋Êɨ¢ÄCSi–O ‹‡Ì`¬ª
iñÅ¢é±ÆÆàêv·éD»êÉ뵀 D20 mm ÅÍC
Œàɨ¯é O ZxÌ°˜È¸­ÍÝçê¸CÙÚÏêȌ
Ì`¬³êÄ¢é±Æªª©Á½D½¾µCCO 2÷Ìê‡
ÍCCO 20÷â TH 500‹
CÌÆ«ÆärµÄCŒ†É¨¯é
O ÌZxª‚­CO ªß½ÉæèžÜêÄ¢é±Æª„ª³ê
½DܽCŒÆVŠR“EGnÆÌEÊtßɨ¢ÄCN Ìc
¯ª©çê½D±êÍCŒàÉϙÉMªÁíé±ÆÅ N ª
œŽ³êéMˆÆÙÈèCõÆËÌê‡ÍC_»ŒÌ`¬É
¨¢ÄCŒ\Ê©çÆ˵½õÌGl‹M[Éæ鋇ÌØf
âC­¢_»ìpðàˆ«_fí̌àÖÌgUð˜pµÄ
¢é½ßÉCVŠR“EGnîÂÆÌEÊtßÅÍC»êçÌ
øʪã­ÈÁÄ¢éÂ\«ªl¦çêéD
}TÉ D20 mm (CO 2÷Æ20÷jyÑ TH 500‹
CÌð
Å컵½–ŒÌ‡O‹õ§ßXyNg‹ð¦·DȨCX
yNg‹ÍÎpK‰XîÂ̧ߦðx[X‰C“ƵÄâ³
µÄ éD¢¸ê̌à} 4 ɨ¢ÄCÙÚÏêȌg¬ªÏ
ª³ê½àÌÅ èC‹æɨ¢Ä‚¢§ß¦ð¦µ½ªC
D20 mm, CO 2÷ÌðÅ컵½ŒÍ300 nm tß©çz
û𶶽D±ÌðÅ컵½ŒÍC} 4 Ì XPS Éæéf
vXvt@C‹É¨¢ÄC»wÊ_Ig¬æèà O ªââ
ßèɶݷé±ÆðϪµÄ¢éD±êæèC300 nm tß
©çZg·¤ÌzûªCßèÈ O ÉNö·éàÌƄª·ê
Î C õ z û v ö14)`18) Æ µ Ä C p [ I L V ‰ W J ‹ i ß Si–
O–O¥jâ O3 ̶Ý19) ÉæéÂ\«ªl¦çêéD±êÉÎ
µCD20 mm, CO 20÷ÌðÅõÆ˵½ê‡ÍC‡Oæ
ɨ¢Äà TH500‹
CÌƫƯ™Ì‚¢§ß¦ðàŒðì
»Å«½D
åC³ºÅ‰“v‹©çÆË³ê½ VUV õ̧ߦÍCi6)
®Ìæ¤É çí³êé20)`22)D
I
exp
I0
(
)
CO D
~
|e~
100 10
(6)
±±ÅCI ͧßõ­xCI0 ÍüËõ­xCe Íg·172 nm Ì
VUV õɨ¯é O2 ÌzûW”Å èCe15 cm|1 Ƶ½6) D
i6)®æèàÆß½CÆ˵ÍCª CO2÷ é¢Í20÷ÌÆ
«ÌÆ˗£Éηé VUV õ̧ߦð}Uɦ·D±êæ
èCD2 mm Å CO20÷Ìê‡ÆCD20 mm Å CO2÷Ì
ê‡ÌŽ¿\ÊɞB·éõÌ­xͯ¶Å èCO(1 Djâ
O3 ̶¬Ê௶ŠéÆl¦çêéDµ©µC} 2 â} 4
ɨ¢ÄϪ³ê½æ¤ÉCD20 mm ÌÆ«Ìûª 2 mm æ
èàŒ†É N ªc¶¹¸CVŠJÖÌ]»ªiñÅ¢½D±
Ìæ¤ÈŒ¿Ìᢪ¶¶½vöƵÄÍC} 1 ɦ·Æ˕
uɨ¢ÄC‰“v‹ÆŽ¿Æ̗£ªZ¢ D2 mm ÅÍC
Ž¿ãûɶ¬µ½ O(1Djâ O3 ÍCάÉæÁĬ³êĵ
ܤDµ©µCD20 mm Å͉“v‹ÆŽ¿ÆÌÔ̚”É
¨¢ÄCÀøIȬ¬ªx­Èé½ßÉدžÔª·­ÈèC
Œ†ÖÌ O ÌæèžÝCyÑ N ÆÌu·ª£i³ê½àÌÆ
„ª³êéD
Fig. 5. Optical transmittance spectra of spin­coated films heat­treat­
ed and VUV­irradiated. TH is heat treatment temperature. CO and D
are oxygen concentration and distance between the lamp window and
the sample, respectively.
Fig. 6. Calculated values of transmittance of vacuum ultraviolet
light as a function of distance with oxygen concentration (CO) of 2÷
and 20÷ by Eq. (6).
FT–IR ªè̋ʩçCD20 mm ÌðÌÆ«CCO2÷,
20÷ÌoûÌðÅVŠJÖÌ]»ªÏª³ê½Dµ©µCCO
2÷Å`¬µ½ŒÍ‡OæÉõzûð¶¶C»ÌzûvöÆ
µÄCp[ILV‰WJ‹â O3 ̶ݪ„ª³ê½D} 6 æ
è±ÌðºÅÍCüËõÌñ55÷͎¿\ÊɞBµÄ¢é
±Æªª©èC±ÌõÌìpÉæ茆Ép[ILV‰WJ‹
â O3 ª¶¬µ½Â\«ªl¦çêéDêûCCO20÷Ƶ½
Æ«ÍCVUV õ̸ŠÉæèCŽ¿ÉÍüËõªÙÆñÇÍ
©È¢DƱëªCŒ†Ì N ͜Ž³êC‡Oæɨ¢Ä‚
¢ § ß ¦ ðà Œ ª ` ¬³ê ½ DÂ Ü è C Ž¿É ž B µ ½
VUV õÉæé»w‹‡ÌØfȵÉVŠJŒð`¬Å«½±
ƪ¢¦éDµ½ªÁÄCVUV õÌÆËð˜pµ½ PHPS ©
çÌVŠJŒÌ`¬É¨¢ÄÍCõqÌGl‹M[Éæé»w
‹‡ÌØfæèàCˆ«È O(1Djâ O3 Éæé_»ìpð˜p
·é±ÆªøÊIÅ éÆl¦çêéD
D. ‹
_
PHPS ntðXs“R[gµ½–ŒÉ¢ÄCXe2ÞGLV
}‰“vðp¢Äg·ª172 nm Ì VUV õðÆË·é±ÆÉæ
èCVŠJÖÌ]»ðŽÝC»ÌŒ¿É¢ğ¢µ½D»Ì
‹ÊC_f¶ÝºÅÌÆËÉæèCR[eB“OŒ†Ì N ª
·ÀNO ¼
Journal of the Ceramic Society of Japan
œŽ³êéÆÆàÉ O ªŒ†ÉæèžÜêé±ÆÅCVŠJ
Ö]»·é±Æªª©Á½DÆËðÉæÁÄ`¬µ½ŒÌg
¬âõwÁ«Í˜µ­ÙÈèC£‡óC†ÅÌÆËÉæèC
500‹
CÅMˆµ½Æ«Æ¯™Ìõw§ß¦ðàŒð`¬Å
«½DŒÉ^¦éÆËÌøÊƵÄÍCÆËõÌGl‹M[É
æé»w‹‡ÌØfæèàCO2 ª VUV õðzû·é±ÆÉæ
趬³ê½ O(1Djâ O3 Éæé_»ìpÌå«¢±Æª¦´
³ê½D
10)
11)
12)
13)
14)
References
1)
2)
3)
4)
5)
6)
7)
8)
9)
Seyferth, D. and Wiseman, G. H., J. Am. Ceram. Soc., Vol.
67, pp. C132–C133 (1984).
Funayama, O., Arai, M., Tashiro, Y., Aoki, H., Suzuki, T.,
Tamura, K., Kaya, H., Nishi, H. and Isoda, T., J. Ceram. Soc.
Japan (Seramikkusu Ronbunshi), Vol. 98, pp. 104–107 (1990).
Matsuo, H. and Yamada, K., Convertech, No. 4, pp. 25–29
(1995) [in Japanese].
Shimizu, Y., Toso to Toryo, No. 569, pp. 27–33 (1997) [in
Japanese].
Kogelschatz, U., Eliasson, B. and Egli, W., Pure Appl. Chem.,
Vol. 71, pp. 1819–1828 (1999).
Inoue, K., Michimori, M., Okuyama, M. and Hamakawa, Y.,
Jpn. J. Appl. Phys., Vol. 26, pp. 805–811 (1987).
Murahara, M., Hyomen Kagaku, Vol. 20, pp. 407–413 (1998)
[in Japanese].
Hishinuma, N. and Yoshioka, M., Kogaku, Vol. 30, pp.
790–794 (2001) [in Japanese].
Nakamura, M., Tanaka, S., Naganuma, Y. and Kato, C.,
Hyomen Gijutu, Vol. 53, pp. 507–510 (2002) [in Japanese].
15)
16)
17)
18)
19)
20)
21)
22)
112 [11] 2004
603
Awazu, K. and Onuki, H., Appl. Phys. Lett., Vol. 69, pp.
482–484 (1996).
Awazu, K. and Onuki, H., J. Non­Cryst. Solids, Vol. 215, pp.
176–181 (1997).
Zhang, J. Y. and Boyd, I. W., Mater. Sci. Semicond. Process.,
Vol. 3, pp. 345–349 (2000).
Moulder, J. F., Stickle, W. F., Sobol, P. E. and Bomben, K.
D.,gHandbook of X­ray Photoelectron Spectroscopy,hEds. by
Chastain, J. and King, R. C., Jr., Physical Electronics Inc.,
Eden Prairie, MN (1995) pp. 238–238.
Ohki, Y. and Nagasawa, K., Oyo Buturi, Vol. 60, pp. 708–711
(1991) [in Japanese].
Ebihara, K.,gNew Glass Handbook,hMaruzen (1991) pp.
63–65 [in Japanese].
Kawazoe, H., gPractical Manual for Amorphous Siliceous
Materials,hSipec (1999) pp. 78–78 [in Japanese].
Kawazoe, H., gPractical Manual for Amorphous Siliceous
Materials,hSipec (1999) pp. 221–223 [in Japanese].
Baba, T., Tateishi, K., Funahashi, S., Sugihara, M., Takai, S.,
Imamura, K. and Nishii, J., Mitsubishi Densen Kogyo Jihou,
Vol. 100, pp. 84–88 (2003) [in Japanese].
Kagami, T. and Hayashi, A.,gProduct and Application of
High­Purity Silica,h CMC Shuppan (2002) pp. 10–13 [in
Japanese].
Oba, Y.,gThe Glass: Cleaning & Surface Treatment,hKindai
Henshusha (1983) pp. 226–236 [in Japanese].
Mizumachi, H. and Tobayama, M., gHyomenshorigijutu
Handbook,hNTS (2000) pp. 532–538 [in Japanese].
Mitsuyuki, Y., Hyomen Gijutu, Vol. 53, pp. 502–506 (2002)
[in Japanese].