STATISTICS IN TRANSITION new series An International Journal of the Polish Statistical Association CONTENTS From the Editor ................................................................................................ Submission information for authors ................................................................ 183 187 Sampling methods and estimation ONYEKA A. C., A class of product-type exponential estimators of the population mean in simple random sampling scheme .................................. SRIVASTAVA M., GARG N., The class of estimators of finite population mean using incomplete multi-auxiliary information ..................................... ÜNALAN T., AYHAN H. Ö., Probability sample selection method in household surveys when current data on regional population is unavailable .................................................................................................... WYWIAŁ J. L., Sampling designs proportionate to sum of two order statistics of auxiliary variable ....................................................................... 189 201 217 231 Research articles LONGFORD N. T., SALAGEAN I. C., The effect of unemployment benefits on labour market behaviour in Luxembourg ................................... LIBERDA B., PĘCZKOWSKI M., Households’ saving mobility in Poland .. 249 273 Other articles MŁODAK A., Coherence and comparability as criteria of quality assessment in business statistics ................................................................... OKRASA W., WITEK B., Statistics as a profession – statistician as an occupation: observations and comments from a panel of experts ................. 287 319 Conferences The regional statistics – current situation and fundamental challenges (Borys T.) ...................................................................................................... The 22nd Didactic Conference on Teaching Quality Evaluation Methods (Kupis-Fijałkowska A.) ................................................................................. Summer School of Baltic-Nordic-Ukrainian Network on Survey Statistics 2013 (Liberts M.) .......................................................................................... 329 337 341 Announcement The International Year of Statistics/Statistics 2013 (Witkowski J.) ................ Volume 14, Number 2, Summer 2013 343 EDITOR IN CHIEF Prof. W. Okrasa, University of Cardinal Stefan Wyszyński, Warsaw, and CSO of Poland [email protected]; Phone number 00 48 22 — 608 30 66 ASSOCIATE EDITORS Sir Anthony B. University of Oxford, Atkinson, UK M. Belkindas, The World Bank, Washington D.C., USA Z. Bochniarz, University of Minnesota, USA A. Ferligoj, University of Ljubljana, Ljubljana, Slovenia M. Ghosh, University of Florida, USA Y. Ivanov, Statistical Committee of the Commonwealth of Independent States, Moscow, Russia K. Jajuga, Wrocław University of Economics, Wrocław, Poland G. Kalton, WESTAT, Inc., USA M. Kotzeva, Statistical Institute of Bulgaria M. Kozak, University of Information Technology and Management in Rzeszów, Poland D. Krapavickaite, Institute of Mathematics and Informatics, Vilnius, Lithuania M. Krzyśko, Adam Mickiewicz University, Poznań, Poland J. Lapins, Statistics Department, Bank of Latvia, Riga, Latvia FOUNDER/FORMER EDITOR R. Lehtonen, A. Lemmi, University of Helsinki, Finland Siena University, Siena, Italy A. Młodak, Statistical Office Poznań, Poland C. A. O'Muircheartaigh,University of Chicago, Chicago, USA V. Pacakova, University of Economics, Bratislava, Slovak Republic R. Platek, (Formerly) Statistics Canada, Ottawa, Canada P. Pukli, Central Statistical Office, Budapest, Hungary S.J.M. de Ree, Central Bureau of Statistics, Voorburg, Netherlands I. Traat, University of Tartu, Estonia V. Verma, Siena University, Siena, Italy V. Voineagu, National Commission for Statistics, Bucharest, Romania J. Wesołowski, Central Statistical Office of Poland, and Warsaw University of Technology, Warsaw, Poland G. Wunsch, Université Catholiąue de Louvain, Louvain-la-Neuve, Belgium J. L. Wywiał, University of Economics in Katowice, Poland Prof. J. Kordos, Formerly Central Statistical Office, Poland EDITORIAL BOARD Prof. Janusz Witkowski (Chairman), Central Statistical Office, Poland Prof. Jan Paradysz (Vice-Chairman), Poznań University of Economics Prof. Czesław Domański, University of Łódź Prof. Walenty Ostasiewicz, Wrocław University of Economics Prof. Tomasz Panek, Warsaw School of Economics Prof. Mirosław Szreder, University of Gdańsk Władysław Wiesław Łagodziński, Polish Statistical Association Editorial Office Marek Cierpiał-Wolan, Ph.D.: Scientific Secretary [email protected] Beata Witek: Secretary [email protected]. Phone number 00 48 22 — 608 33 66 Rajmund Litkowiec: Technical Assistant Address for correspondence GUS, al. Niepodległości 208, 00-925 Warsaw, POLAND, Tel./fax:00 48 22 — 825 03 95 ISSN 1234-7655 STATISTICS IN TRANSITION-new series, Summer 2013 183 STATISTICS IN TRANSITION-new series, Summer 2013 Vol. 14, No. 2, pp. 183–185 FROM THE EDITOR 7KLV LVVXH LV FRPSRVHG RI WKUHH VHFWLRQV IROORZHG E\ WZR W\SHV RI QRWHV RQH RQ WKH SDVW FRQIHUHQFHV WKH RWKHU RQ D IXWXUH PHHWLQJ RI VSHFLDO LPSRUWDQFH GXH WR LWV VFDOH DQG FKDUDFWHU DV D SDUW RI WKH RQJRLQJ FHOHEUDWLRQV RI WKH <HDU RI 6WDWLVWLFV 7KLV LV D NLQG RI LQQRYDWLRQ ZRUWKZKLOH PHQWLRQLQJ DW WKH RXWVHW LQ RUGHU WR OHW WKH SHUVRQV UHVSRQVLEOH IRU RUJDQL]LQJ VXFK D W\SH RI VFLHQWLILF PHHWLQJV DQG LQWHUHVWHG LQ SRSXODUL]DWLRQ RI LW RQ RXU FROXPQ NQRZ DERXW VXFK D SRVVLELOLW\ RIIHUHG IURP QRZ RQ $QRWKHU QHZ WKLQJ WR EH LPSOHPHQWHG ZLWK WKH EHJLQQLQJ RI WKH QH[W \HDU LV WR LQFUHDVH WKH QXPEHU RI LVVXHV WR IRXU SHU \HDU LQVWHDG RI WKUHH VR IDU 0XFK RI WKH VXFFHVV RI WKLV SODQHG LQQRYDWLRQ ZLOO GHSHQG RQ RXU NH\ FROODERUDWRUV SRWHQWLDO DXWKRUV DQG SHHUUHYLHZHUV DV WKLV ZRXOG LPSO\ WKH QHFHVVLW\ WR VKRUWHQ DQ HIIHFWLYH WLPH RI SURGXFWLRQ RI DQ LVVXH 7KLV YROXPH VWDUWV DV XVXDO ZLWK WKH VHFWLRQ GHYRWHG WR VDPSOLQJ PHWKRGV DQG HVWLPDWLRQ ,W LV RSHQHG E\ A. C. Onyeka's SDSHU A Class of Product-Type Exponential Estimators of The Population Mean in Simple Random Sampling Scheme ,W SUHVHQWV D FODVV RI SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV IRU HVWLPDWLQJ WKH SRSXODWLRQ PHDQ XVLQJ NQRZQ YDOXHV RI VRPH SRSXODWLRQ SDUDPHWHUV RI DQ DX[LOLDU\ FKDUDFWHU XQGHU WKH VLPSOH UDQGRP VDPSOLQJ ZLWKRXW UHSODFHPHQW 656:25 VFKHPH $ PRGLILHG H[SRQHQWLDO HVWLPDWRU LV SURSRVHG EDVHG RQ ERWK WKH UDWLRW\SH DQG WKH SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV 3URSHUWLHV RI WKH SURSRVHG HVWLPDWRUV DUH REWDLQHG XS WR ILUVW RUGHU DSSUR[LPDWLRQ 7KH PRGLILHG H[SRQHQWLDO HVWLPDWRU XQGHU RSWLPXP FRQGLWLRQV LV VKRZQ WR EH PRUH HIILFLHQW WKDQ WKH VLPSOH VDPSOH PHDQ DQG WKH UDWLRW\SH DQG SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV DV SURYHQ DOVR E\ DQ HPSLULFDO LOOXVWUDWLRQ 7KH DUWLFOH The Class of Estimators of Finite Population Mean Using Incomplete Multi-Auxiliary Information E\ Meenakshi Srivastava DQG Neha Garg GLVFXVVHV D FODVV RI HVWLPDWRUV IRU WKH PHDQ RI WKH ILQLWH SRSXODWLRQ XVLQJ DYDLODEOH LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ 6RPH VSHFLDO FDVHV RI WKLV FODVV RI HVWLPDWRUV DUH FRQVLGHUHG DQG WKHRUHWLFDO UHVXOWV DUH QXPHULFDOO\ VXSSRUWHG $OO WKH SURSRVHG HVWLPDWRUV DUH PRUH HIILFLHQW IRU PHDQ HVWLPDWLRQ $XWKRUV FRQFOXGH WKDW WKH PD[LPXP XVH RI DYDLODEOH LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ FDQ LQFUHDVH WKH HIILFLHQF\ RI WKH HVWLPDWRUV Turgay Ünalan DQG H. g]WDú $\KDQ GHYRWH WKHLU SDSHU RQ Probability Sample Selection Method in Household Surveys when Current Data on Regional Population is Unavailable WR WKH SUREOHPV ZLWK HVWDEOLVKLQJ WKH DSSURSULDWH SUREDELOLW\ RI VHOHFWLRQ RI VXUYH\HG KRXVHKROGV ZKHQ WKH TXDOLW\ VDPSOLQJ IUDPH LV QRW DYDLODEOH 6XFK VLWXDWLRQV DUH WDNLQJ SODFH LQ GHYHORSLQJ FRXQWULHV ZKHUH VXUYH\V SODQQHG IRU IXWXUH SHULRGV ORQJ DIWHU WKH FHQVXV GDWH 184 W. Okrasa: From the ... FDQQRW EH UHSUHVHQWDWLYH 7KLV FUHDWHV XQGHUFRYHUDJH DQG ELDV IRU HVWLPDWLRQV 7KHUHIRUH SRSXODWLRQ SURMHFWLRQV DQG GDWD DGMXVWPHQW PHWKRGRORJLHV DUH SURSRVHG WR SURYLGH D UHSUHVHQWDWLYH SUREDELOLW\ VHOHFWLRQ RI WKH XSGDWHG SRSXODWLRQ 7KH PHWKRG FRQWDLQV WKH FRUUHFWLRQ RQ WKH GLIIHUHQFHV RI WKH VXP RI VWUDWD DQG DJJUHJDWHG YDOXHV ([DPSOHV DUH DOVR SURYLGHG WR GHPRQVWUDWH WKH SRWHQWLDOV RI WKH SURSRVHG PHWKRGRORJ\ -DQXV] / :\ZLDá V SDSHU Sampling Designs Proportionate to Sum of Two Order Statistics of Auxiliary Variable GLVFXVVHV WKH FDVH RI D FRQGLWLRQDO VDPSOLQJ GHVLJQ SURSRUWLRQDO WR WKH VXP RI WZR RUGHU VWDWLVWLFV 6HYHUDO VWUDWHJLHV LQFOXGLQJ WKH +RUYLW]7KRPSVRQ HVWLPDWRU DQG UDWLRW\SH HVWLPDWRUV DUH FKHFNHG IRU WKHLU DFFXUDF\ DQG FRPSDUHG RQ WKH EDVLV RI FRPSXWHU VLPXODWLRQ ZKLFK DOORZV RQH WR H[SHFW WKH HVWLPDWLRQ VWUDWHJLHV ZLWK WKH VDPSOLQJ GHVLJQ ,Q JHQHUDO WKH DFFXUDFLHV RI WKH FRQVLGHUHG UDWLR W\SH VWUDWHJLHV VKRZHG WR EH WKH EHVW DPRQJ DOO WKH VWUDWHJLHV FRQVLGHUHG LQ WKH DQDO\VLV 6RPH UHVHUYDWLRQ WR WKHVH FRQFOXVLRQ LV KRZHYHU DGYLVHG JLYHQ WKDW WKH HPSOR\HG FRPSXWHU VLPXODWLRQ ZDV EDVHG RQ VSHFLDO GDWD VHW DQG WKDW D VLPXODWLRQ DQDO\VHV RQ D ODUJHU VFDOH LV VWLOO QHHGHG WR HVWDEOLVK VXFK D W\SH RI JHQHUDOLW\ 7ZR UHVHDUFK SDSHUV PDNH XS WKH research articles VHFWLRQ Nicholas T. Longford DQG Ioana C. Salagean LQ WKHLU SDSHU The Effect of Unemployment Benefits on Labour Market Behaviour in Luxembourg HVWLPDWH WKH HIIHFW RI DZDUGLQJ XQHPSOR\PHQW EHQHILWV RQ JDLQLQJ ORQJWHUP HPSOR\PHQW DIWHU DQ XQHPSOR\PHQW VSHOO DQG RQ WKH WLPH LW WDNHV WR DFKLHYH LW 7R WKLV DLP WKH\ DSSO\ WKH SRWHQWLDO RXWFRPHV IUDPHZRUN DQG WKH\ FRQFOXGH WKDW VXFK DZDUGV UHJDUGHG DV D WUHDWPHQW DUH DVVRFLDWHG ZLWK SRRUHU ODERXU IRUFH RXWFRPHV WKDQ QR DZDUGV 7KH DXWKRUV VKRZ WKDW WKHLU FRQFOXVLRQV DUH XQHTXLYRFDOO\ QHJDWLYH DERXW WKH EHQHILW 8QHPSOR\PHQW VSHOOV DVVRFLDWHG ZLWK EHQHILWV WHQG WR EH ORQJHU HYHQ DIWHU PDWFKLQJ RQ EDFNJURXQG ,Q DUWLFOH Households’ Saving Mobility in Poland Barbara Liberda DQG 0DUHN 3ĊF]NRZVNL H[DPLQH WKH PRELOLW\ RI 3ROLVK KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV GXULQJ WKH \HDUV DQG FRPSDUH LW ZLWK WKH KRXVHKROGV¶ VDYLQJ PRELOLW\ GXULQJ WKH \HDUV XVLQJ SDQHO GDWD FRQVWUXFWHG IURP WKH +RXVHKROG %XGJHW 6XUYH\V 7KH 0DUNRY PRELOLW\ PDWUL[ ZDV HPSOR\HG WR HVWLPDWH WKH ORQJWHUP HUJRGLF GLVWULEXWLRQ RI KRXVHKROGV DFFRUGLQJ WR WKH VDYLQJ UDWHV 7KH ORQJWHUP KRXVHKROGV¶ GLVWULEXWLRQ UHYHDOV D WHQGHQF\ WRZDUGV SRODUL]DWLRQ RI KRXVHKROGV LQ WHUPV RI VDYLQJ UDWHV +RZHYHU WKH SRODUL]DWLRQ VKRZHG WR EH DV\PPHWULFDO WRZDUGV WKH KLJKHVW VDYLQJ UDWH JURXSV ZKDW DOORZV WKH DXWKRUV WR FRQFOXGH WKDW LW H[SODLQV ZK\ 3ROLVK KRXVHKROGV FRXOG PDLQWDLQ ULVLQJ VDYLQJV GXULQJ WKH KLJKO\ XQFHUWDLQ SHULRG RI WKH ILQDQFLDO FULVLV LQ 7KH PDLQ SDUW RI WKH other articles VHFWLRQ FRQVWLWXWHV $QGU]HM 0áRGDN V SDSHU Coherence and Comparability as Criteria of Quality Assessment in Business Statistics. 7KH SUREOHPV RI FRKHUHQFH DQG FRPSDUDELOLW\ H[FHHG WKH FODVVLFDO QRWLRQ RI DQDO\VLV RI VXUYH\ HUURUV GXH WR LQFOXGLQJ WKH TXHVWLRQ RI KRZ UHVXOWV RI WZR RU PRUH VXUYH\V FDQ EH XVHG WRJHWKHU DQG KRZ WKH UHOHYDQW GDWD FDQ STATISTICS IN TRANSITION-new series, Summer 2013 185 HIIHFWLYHO\ EH FRPSDUHG WR REWDLQ D EHWWHU SLFWXUH RI VRFLDO DQG HFRQRPLF SKHQRPHQD RYHU YDULRXV DVSHFWV HJ VSDFH RU WLPH 7KLV SDSHU GLVFXVVHV FKDUDFWHULVWLFV RI WKH PDLQ FRQFHSWV RI FRKHUHQFH DQG FRPSDUDELOLW\ DV ZHOO DV D GHVFULSWLRQ RI GLIIHUHQFHV DQG VLPLODULWLHV EHWZHHQ WKHVH WZR QRWLRQV 7\SHV RI FRKHUHQFH DQG YDULRXV DVSHFWV RI SHUFHSWLRQ RI WKHVH QRWLRQV LQ EXVLQHVV VWDWLVWLFV DUH DQDO\VHG 0DLQ VRXUFHV RI ODFN RI FRKHUHQFH DQG FRPSDUDELOLW\ IDFWRUV DIIHFWLQJ WKHP HJ PHWKRGRORJ\ WLPH UHJLRQ HWF DQG PHWKRGV RI WKHLU PHDVXUHPHQW LQ FRQWH[W RI LQIRUPDWLRQ REWDLQHG IURP EXVLQHVVHV DUH DOVR SUHVHQWHG 7KH QH[W SDSHU Statistics As a Profession - Statistician As an Occupation: Observations and Comments From a Panel of Experts E\ Wlodzimierz Okrasa DQG Beata Witek KDV D ELW GLIIHUHQW FKDUDFWHU DV EHLQJ EDVHG RQ WKH UHVXOWV REVHUYDWLRQV DQG FRPPHQWV RI D VSHFLDOO\ RUJDQL]HG SDQHO WR GLVFXVV WKH LVVXH RI WKH VWDWXV DQG WKH UROH RI VWDWLVWLFV DV D GLVFLSOLQH DORQJ ZLWK WKH FKDOOHQJLQJ LVVXH RI KRZ WR HQVXUH WKDW LWV IROORZHUV VWDWLVWLFLDQV PHHW WKH TXDOLW\ VWDQGDUGV LQ WKH PRUH DQG PRUH GHPDQGLQJ SURIHVVLRQDO HQYLURQPHQW 0DMRU SDQHO V FRQWULEXWRUV ZHUH OHDGLQJ UHSUHVHQWDWLYHV RI DFDGHPLD 3URI 3URI &] 'RPDQVNL - ']LHFKFLDU] 0 .U]\ĞNR 0 5RFNL DQG - :\ZLDá &RQWULEXWLRQV IURP KLJKO\ FRPSHWHQW DXGLHQFH DUH LQFOXGHG DV ZHOO 7KUHH QRWHV RQ WKH SDVW FRQIHUHQFHV IROORZHG E\ DERYH PHQWLRQHG DQQRXQFHPHQW RQ WKH XSFRPLQJ FRQIHUHQFH GHYRWHG WR WKH ,QWHUQDWLRQDO <HDU RI 6WDWLVWLFV FRQFOXGH WKLV YROXPH :áRG]LPLHU] 2NUDVD (GLWRU STATISTICS IN TRANSITION-new series, Summer 2013 187 STATISTICS IN TRANSITION-new series, Summer 2013 Vol. 14, No. 2, pp. 187 SUBMISSION INFORMATION FOR AUTHORS Statistics in Transition – new series (SiT) LV DQ LQWHUQDWLRQDO MRXUQDO SXEOLVKHG MRLQWO\ E\ WKH 3ROLVK 6WDWLVWLFDO $VVRFLDWLRQ 376 DQG WKH &HQWUDO 6WDWLVWLFDO 2IILFH RI 3RODQG RQ D TXDUWHUO\ EDVLV GXULQJ ± LW ZDV LVVXHG WZLFH DQG VLQFH WKUHH WLPHV D \HDU $OVR LW KDV H[WHQGHG LWV VFRSH RI LQWHUHVW EH\RQG LWV RULJLQDOO\ SULPDU\ IRFXV RQ VWDWLVWLFDO LVVXHV SHUWLQHQW WR WUDQVLWLRQ IURP FHQWUDOO\ SODQQHG WR D PDUNHWRULHQWHG HFRQRP\ WKURXJK HPEUDFLQJ TXHVWLRQV UHODWHG WR V\VWHPLF WUDQVIRUPDWLRQV RI DQG ZLWKLQ WKH QDWLRQDO VWDWLVWLFDO V\VWHPV ZRUOGZLGH 7KH 6L7-ns VHHNV FRQWULEXWRUV WKDW DGGUHVV WKH IXOO UDQJH RI SUREOHPV LQYROYHG LQ GDWD SURGXFWLRQ GDWD GLVVHPLQDWLRQ DQG XWLOL]DWLRQ SURYLGLQJ LQWHUQDWLRQDO FRPPXQLW\ RI VWDWLVWLFLDQV DQG XVHUV ± LQFOXGLQJ UHVHDUFKHUV WHDFKHUV SROLF\ PDNHUV DQG WKH JHQHUDO SXEOLF ± ZLWK D SODWIRUP IRU H[FKDQJH RI LGHDV DQG IRU VKDULQJ EHVW SUDFWLFHV LQ DOO DUHDV RI WKH GHYHORSPHQW RI VWDWLVWLFV $FFRUGLQJO\ DUWLFOHV GHDOLQJ ZLWK DQ\ WRSLFV RI VWDWLVWLFV DQG LWV DGYDQFHPHQW ± DV HLWKHU D VFLHQWLILF GRPDLQ QHZ UHVHDUFK DQG GDWD DQDO\VLV PHWKRGV RU DV D GRPDLQ RI LQIRUPDWLRQDO LQIUDVWUXFWXUH RI WKH HFRQRP\ VRFLHW\ DQG WKH VWDWH ± DUH DSSURSULDWH IRU Statistics in Transition new series. 'HPRQVWUDWLRQ RI WKH UROH SOD\HG E\ VWDWLVWLFDO UHVHDUFK DQG GDWD LQ HFRQRPLF JURZWK DQG VRFLDO SURJUHVV ERWK ORFDOO\ DQG JOREDOO\ LQFOXGLQJ EHWWHULQIRUPHG GHFLVLRQV DQG JUHDWHU SDUWLFLSDWLRQ RI FLWL]HQV DUH RI SDUWLFXODU LQWHUHVW (DFK SDSHU VXEPLWWHG E\ SURVSHFWLYH DXWKRUV DUH SHHU UHYLHZHG E\ LQWHUQDWLRQDOO\ UHFRJQL]HG H[SHUWV ZKR DUH JXLGHG LQ WKHLU GHFLVLRQV DERXW WKH SXEOLFDWLRQ E\ FULWHULD RI RULJLQDOLW\ DQG RYHUDOO TXDOLW\ LQFOXGLQJ LWV FRQWHQW DQG IRUP DQG RI SRWHQWLDO LQWHUHVW WR UHDGHUV HVS SURIHVVLRQDOV 0DQXVFULSW VKRXOG EH VXEPLWWHG HOHFWURQLFDOO\ WR WKH (GLWRU VLW#VWDWJRYSO IROORZHG E\ D KDUG FRS\ DGGUHVVHG WR 3URI :ORG]LPLHU] 2NUDVD *86 &HQWUDO 6WDWLVWLFDO 2IILFH $O 1LHSRGOHJáRĞFL 5 :DUVDZ 3RODQG ,W LV DVVXPHG WKDW WKH VXEPLWWHG PDQXVFULSW KDV QRW EHHQ SXEOLVKHG SUHYLRXVO\ DQG WKDW LW LV QRW XQGHU UHYLHZ HOVHZKHUH ,W VKRXOG LQFOXGH DQ DEVWUDFW RI QRW PRUH WKDQ FKDUDFWHUV LQFOXGLQJ VSDFHV ,QTXLULHV FRQFHUQLQJ WKH VXEPLWWHG PDQXVFULSW LWV FXUUHQW VWDWXV HWF VKRXOG EH GLUHFWHG WR WKH (GLWRU E\ HPDLO DGGUHVV DERYH RU ZRNUDVD#VWDWJRYSO )RU RWKHU DVSHFWV RI HGLWRULDO SROLFLHV DQG SURFHGXUHV VHH WKH 6L7 *XLGHOLQHV RQ LWV :HE VLWH http://www.stat.gov.pl/pts/15_ENG_HTML.htm STATISTICS IN TRANSITION-new series, Summer 2013 189 STATISTICS IN TRANSITION-new series, Summer 2013 Vol. 14, No. 2, pp. 189–200 A CLASS OF PRODUCT-TYPE EXPONENTIAL ESTIMATORS OF THE POPULATION MEAN IN SIMPLE RANDOM SAMPLING SCHEME A. C. Onyeka ABSTRACT 7KH SUHVHQW VWXG\ SURSRVHV D FODVV RI SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV IRU HVWLPDWLQJ WKH SRSXODWLRQ PHDQ RI WKH VWXG\ YDULDEOH XVLQJ NQRZQ YDOXHV RI VRPH SRSXODWLRQ SDUDPHWHUV RI DQ DX[LOLDU\ FKDUDFWHU XQGHU WKH VLPSOH UDQGRP VDPSOLQJ ZLWKRXW UHSODFHPHQW 656:25 VFKHPH )XUWKHUPRUH WKH VWXG\ DOVR SURSRVHV D PRGLILHG H[SRQHQWLDO HVWLPDWRU EDVHG RQ ERWK WKH UDWLRW\SH DQG WKH SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV 3URSHUWLHV RI WKH SURSRVHG HVWLPDWRUV XQGHU WKH 656:25 VFKHPH DUH REWDLQHG XS WR ILUVW RUGHU DSSUR[LPDWLRQ 7KH PRGLILHG H[SRQHQWLDO HVWLPDWRU XQGHU RSWLPXP FRQGLWLRQV LV VKRZQ WR EH PRUH HIILFLHQW WKDQ WKH VLPSOH VDPSOH PHDQ DQG WKH UDWLRW\SH DQG SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV 7KH WKHRUHWLFDO UHVXOWV DUH VXSSRUWHG E\ DQ HPSLULFDO LOOXVWUDWLRQ Key words: UDWLRW\SH DQG SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV DX[LOLDU\ FKDUDFWHU VLPSOH UDQGRP VDPSOLQJ PHDQ VTXDUH HUURU $06 &ODVVLILFDWLRQ ' 1. Introduction 7KH XVH RI LQIRUPDWLRQ RQ DX[LOLDU\ FKDUDFWHU WR LPSURYH HVWLPDWHV RI SRSXODWLRQ SDUDPHWHUV RI WKH VWXG\ YDULDEOH LV D FRPPRQ SUDFWLFH LQ VDPSOH VXUYH\V HVSHFLDOO\ ZKHQ WKHUH LV D VWURQJ OLQHDU UHODWLRQVKLS EHWZHHQ WKH VWXG\ DQG DX[LOLDU\ YDULDEOHV 6HYHUDO DXWKRUV KDYH PDGH FRQWULEXWLRQV LQ WKLV UHJDUG LQFOXGLQJ 6XNKDWPH DQG 6XNKDWPH DQG &RFKUDQ 6LQJK DQG 7DLORU VXJJHVWHG WKH XVH RI NQRZQ FRUUHODWLRQ FRHIILFLHQW EHWZHHQ DX[LOLDU\ FKDUDFWHUV IRU WKH HVWLPDWLRQ RI ILQLWH SRSXODWLRQ PHDQ .KRVKQHYLVDQ HW DO VXJJHVWHG D IDPLO\ RI HVWLPDWRUV RI WKH SRSXODWLRQ PHDQ XVLQJ NQRZQ YDOXHV RI SRSXODWLRQ SDUDPHWHUV LQ VLPSOH UDQGRP VDPSOLQJ 7DLORU DQG 6KDUPD XVHG NQRZQ FRHIILFLHQW RI YDULDWLRQ DQG FRHIILFLHQW RI NXUWRVLV RI DQ 'HSDUWPHQW RI 6WDWLVWLFV )HGHUDO 8QLYHUVLW\ RI 7HFKQRORJ\ 30% 2ZHUUL 1LJHULD (PDLO DOR\RQ\HND#\DKRRFRP 190 A. C. Onyeka: A class of product-type … DX[LOLDU\ FKDUDFWHU LQ HVWLPDWLQJ ILQLWH SRSXODWLRQ PHDQ RI WKH VWXG\ YDULDEOH 6KDUPD DQG 7DLORU VXJJHVWHG D PRGLILHG UDWLRFXPGXDO WR UDWLR HVWLPDWRU XVLQJ NQRZQ SRSXODWLRQ PHDQ RI DQ DX[LOLDU\ FKDUDFWHU 2Q\HND XVHG NQRZQ YDOXHV RI SRSXODWLRQ SDUDPHWHUV RI DQ DX[LOLDU\ FKDUDFWHU WR LPSURYH HVWLPDWHV RI SRSXODWLRQ PHDQ LQ SRVWVWUDWLILHG UDQGRP VDPSOLQJ ,Q XVLQJ DX[LOLDU\ LQIRUPDWLRQ GLIIHUHQW W\SHV RI HVWLPDWRUV KDYH EHHQ FRQVLGHUHG LQFOXGLQJ WKH XVXDO UDWLRW\SH SURGXFWW\SH DQG UHJUHVVLRQW\SH HVWLPDWRUV 5HFHQWO\ VRPH DXWKRUV KDYH LQWURGXFHG GXDO DQG H[SRQHQWLDO HVWLPDWRUV /HW \ DQG [ UHVSHFWLYHO\ GHQRWH WKH VWXG\ DQG DX[LOLDU\ FKDUDFWHUV LQ D ILQLWH SRSXODWLRQ RI 1 XQLWV DQG OHW \ L [ L L « Q GHQRWH VDPSOH YDOXHV RI \ DQG [ LQ D UDQGRP VDPSOH RI Q XQLWV GUDZQ E\ VLPSOH UDQGRP VDPSOLQJ ZLWKRXW UHSODFHPHQW 656:25 PHWKRG ,Q XVLQJ NQRZQ SRSXODWLRQ PHDQ ; RI DQ DX[LOLDU\ FKDUDFWHU [ WR LPSURYH HVWLPDWHV RI WKH SRSXODWLRQ PHDQ < RI WKH VWXG\ YDULDEOH \ %DKO DQG 7XWHMD LQWURGXFHG UDWLR DQG SURGXFW W\SH H[SRQHQWLDO HVWLPDWRUV RI WKH IRUPV W5 ª ;[ º \ H[S « » ¬ ;[ ¼ W3 ª [; º \ H[S « » ¬ [; ¼ DQG ZKHUH \ [ LV WKH VDPSOH PHDQ RI WKH VWXG\ DX[LOLDU\ YDULDEOH 6LQJK DQG 9LVKZDNDPD LQ WKHLU VWXG\ XVHG VRPH PRGLILHG H[SRQHQWLDO UDWLRW\SH DQG SURGXFWW\SH HVWLPDWRUV LQ HVWLPDWLQJ SRSXODWLRQ PHDQ LQ GRXEOH VDPSOLQJ VFKHPH 6LQJK HW DO D IROORZLQJ .DGLODU DQG &LQJL DQG .KRVKQHYLVDQ HW DO SURSRVHG D FODVV RI UDWLRW\SH H[SRQHQWLDO HVWLPDWRUV RI WKH SRSXODWLRQ PHDQ LQ VLPSOH UDQGRP VDPSOLQJ XVLQJ NQRZQ YDOXHV RI SRSXODWLRQ SDUDPHWHUV RI DQ DX[LOLDU\ FKDUDFWHU RI WKH IRUP W ª D; E D[ E º \ H[S « » ¬ D; E D[ E ¼ ª D; [ º \ H[S « » ¬ D; [ E ¼ ZKHUH D z E DUH HLWKHU UHDO QXPEHUV RU IXQFWLRQV RI NQRZQ SDUDPHWHUV RI WKH DX[LOLDU\ YDULDEOH [ VXFK DV FRHIILFLHQW RI YDULDWLRQ & [ FRHIILFLHQW RI VNHZQHVV E [ FRHIILFLHQW RI NXUWRVLV E [ VWDQGDUG GHYLDWLRQ V DQG FRUUHODWLRQ FRHIILFLHQW U ,W LV ZRUWK PHQWLRQLQJ WKDW WKH FKRLFH RI WKH YDOXHV RI D DQG E LQ 191 STATISTICS IN TRANSITION-new series, Summer 2013 SUDFWLFH GHSHQGV ODUJHO\ RQ WKH DYDLODELOLW\ RI NQRZQ SRSXODWLRQ SDUDPHWHUV ZKLFK DGPLWWHGO\ DUH QRW IUHTXHQWO\ NQRZQ 7KH HVWLPDWRU LQ LV RQO\ XVHIXO ZKHQ VXFK SRSXODWLRQ SDUDPHWHUV DUH NQRZQ RIWHQ IURP SUHYLRXV VXUYH\V ,Q VDPSOLQJ WKHRU\ SUHIHUHQFH LQ WHUPV RI WKH NQRZQ SDUDPHWHU WR XVH LV XVXDOO\ JLYHQ WR WKRVH SDUDPHWHUV WKDW \LHOG VPDOOHU YDULDQFH RU PHDQ VTXDUHG HUURU ZKHQ XVHG WR FRQVWUXFW HVWLPDWRUV $JDLQ QRWLFH WKDW VRPH RI WKH SRSXODWLRQ SDUDPHWHUV OLNH U DQG & [ DUH XQLWOHVV ,I VXFK XQLWOHVV TXDQWLWLHV DUH XVHG IRU WKH TXDQWLW\ E LQ LW LPSOLHV WKDW WKH\ DUH DVVRFLDWHG ZLWK WKH PHDVXUHPHQW XQLW RI [ DQG LQ IDFW WKH\ DVVXPH WHPSRUDULO\ WKH VDPH PHDVXUHPHQW XQLW RI [ 2UGLQDULO\ WKLV DVVXPSWLRQ ZRXOG QRW FDXVH DQ\ VHULRXV GLVWRUWLRQ LQ WKH YDOXH DQG PHDVXUHPHQW XQLW RI WKH H[SUHVVLRQ D ; [ E LQ LI WKH YDOXH RI E GRHV QRW H[FHHG XQLW\ 7KH HVWLPDWRU W LV ELDVHG IRU < ZLWK PHDQ VTXDUH HUURU REWDLQHG XS WR ILUVW RUGHU DSSUR[LPDWLRQ DV 06( W ZKHUH T > § I · ¨ ¸ < & \ T& [ T . © Q ¹ D; . D; E U& \ &[ I Q 1 @ DQG & \ & [ DQG U DUH WKH FRHIILFLHQW RI YDULDWLRQ RI \[ DQG WKH FRUUHODWLRQ FRHIILFLHQW UHVSHFWLYHO\ 6LQJK HW DO E FRQVLGHUHG VRPH UDWLRW\SH H[SRQHQWLDO HVWLPDWRUV LQ VWUDWLILHG UDQGRP VDPSOLQJ 6KDEELU DQG *XSWD VXJJHVWHG H[SRQHQWLDO HVWLPDWRU IRU ILQLWH SRSXODWLRQ PHDQ LQ WZR SKDVH VDPSOLQJ VFKHPH ZKHQ DX[LOLDU\ YDULDEOHV DUH DWWULEXWHV *URYHU DQG .DXU LPSURYHG RQ WKH ZRUN FDUULHG RXW E\ $EG(OIDWWDK HW DO E\ SURSRVLQJ UDWLRW\SH H[SRQHQWLDO HVWLPDWRUV RI ILQLWH SRSXODWLRQ PHDQ LQ VLPSOH UDQGRP VDPSOLQJ VFKHPH XVLQJ DQ DX[LOLDU\ DWWULEXWH 6LQJK HW DO VXJJHVWHG H[SRQHQWLDO UDWLR DQG H[SRQHQWLDO SURGXFW W\SH HVWLPDWRUV IRU HVWLPDWLQJ XQNQRZQ SRSXODWLRQ YDULDQFH XVLQJ LQIRUPDWLRQ RQ WZR DX[LOLDU\ FKDUDFWHUV ,Q WKH SUHVHQW VWXG\ ZH KDYH H[WHQGHG WKH ZRUN FDUULHG RXW E\ 6LQJK HW DO D E\ VXJJHVWLQJ D FODVV RI SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV IRU HVWLPDWLQJ WKH ILQLWH SRSXODWLRQ PHDQ RI WKH VWXG\ YDULDEOH XVLQJ NQRZQ YDOXHV RI SRSXODWLRQ SDUDPHWHUV RI DQ DX[LOLDU\ YDULDEOH 7KH SUHVHQW VWXG\ DOVR SURSRVHV D PRGLILHG H[SRQHQWLDO HVWLPDWRU EDVHG RQ ERWK WKH UDWLRW\SH DQG SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV DQG FRPSDUHV WKH HIILFLHQF\ RI WKH PRGLILHG H[SRQHQWLDO HVWLPDWRU ZLWK WKRVH RI WKH VLPSOH VDPSOH PHDQ WKH UDWLRW\SH H[SRQHQWLDO HVWLPDWRU DQG WKH SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU 3URSHUWLHV RI WKH SURSRVHG HVWLPDWRUV HVSHFLDOO\ WKH ELDVHV DQG PHDQ VTXDUHG HUURUV RI WKH HVWLPDWRUV DUH REWDLQHG XS WR ILUVW RUGHU DSSUR[LPDWLRQV XQGHU WKH 656:25 VFKHPH 192 A. C. Onyeka: A class of product-type … 2. The proposed product-type exponential estimator )ROORZLQJ 6LQJK HW DO D ZH SURSRVH D FODVV RI SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV RI WKH SRSXODWLRQ PHDQ < LQ 656:25 VFKHPH DV W ª D[ E D; E º \ H[S « » ¬ D[ E D; E ¼ H \< DQG H < ª D[ ; º \ H[S « » ¬ D[ ; E ¼ /HW [; ; VR WKDW ( H ( H (H 9 \ < § I · ¨ ¸& \ © Q ¹ (H 9 [ ; § I · ¨ ¸& [ © Q ¹ (HH &RY \ [ <; § I ¨ © Q · ¸.& [ ¹ 5HZULWLQJ LQ WHUPV RI H DQG H DQG H[SDQGLQJ XS WR ILUVW RUGHU DSSUR[LPDWLRQ LQ H[SHFWHG YDOXH JLYHV W < < >H TH THH TH @ DQG W < < >H TH THH @ 7DNLQJ H[SHFWDWLRQ RI DQG DQG XVLQJ ± WR PDNH WKH QHFHVVDU\ VXEVWLWXWLRQV JLYHV WKH ELDV DQG PHDQ VTXDUH HUURU RI WKH SURSRVHG SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W UHVSHFWLYHO\ DV § I ·§ < · % W ¨ ¸¨ ¸T. T& [ © Q ¹© ¹ 193 STATISTICS IN TRANSITION-new series, Summer 2013 DQG 06( W § I ¨ © Q > · ¸ < & \ T& [ T . ¹ @ 3. Modified exponential estimators )ROORZLQJ DXWKRUV OLNH &RFKUDQ DQG 6LQJK HW DO D ZH SURSRVH D PRGLILHG FODVV RI H[SRQHQWLDO HVWLPDWRUV W DV D OLQHDU IXQFWLRQ RI WKH H[SRQHQWLDO HVWLPDWRUV W DQG W :H JLYH WKH PRGLILHG H[SRQHQWLDO HVWLPDWRU DV W DW D W ZKHUH D DQG D DUH ZHLJKWLQJ IUDFWLRQV VXFK WKDW D D ,Q SUDFWLFH D DQG D VKRXOG EH FKRVHQ VR DV WR PLQLPL]H WKH PHDQ VTXDUH HUURU RI WKH HVWLPDWRU W +RZHYHU WKH YDOXH RI D LV H[SHFWHG WR EH JUHDWHU WKDQ WKDW LV JUHDWHU WKDQ WKH YDOXH RI D ZKHQ WKHUH LV D VWURQJ SRVLWLYH OLQHDU UHODWLRQVKLS EHWZHHQ WKH VWXG\ DQG DX[LOLDU\ YDULDWHV VLQFH PRVW UDWLRW\SH HVWLPDWRUV DUH NQRZQ WR SHUIRUP ZHOO XQGHU VXFK D FRQGLWLRQ &RQYHUVHO\ WKH YDOXH RI D LV H[SHFWHG WR EH JUHDWHU WKDQ RU JUHDWHU WKDQ WKH YDOXH RI D ZKHQ WKHUH LV D VWURQJ QHJDWLYH FRUUHODWLRQ EHWZHHQ WKH VWXG\ DQG DX[LOLDU\ YDULDWHV VLQFH PRVW SURGXFWW\SH HVWLPDWRUV DUH NQRZQ WR SHUIRUP ZHOO XQGHU VXFK D FRQGLWLRQ )ROORZLQJ &RFKUDQ WKH EHVW RSWLPDO FKRLFHV RI D DQG D DUH UHVSHFWLYHO\ REWDLQHG DV D 9 9 9 9 9 D 9 9 9 9 9 DQG ZLWK WKH UHVXOWDQW RSWLPXP PHDQ VTXDUH HUURU RI W JLYHQ DV 06( RSW W 99 9 9 9 9 194 A. C. Onyeka: A class of product-type … ZKHUH 9LL LV WKH PHDQ VTXDUH HUURU W L L DQG 9 LV WKH FRYDULDQFH WHUP RI WKH HVWLPDWRUV W DQG W 5HZULWLQJ LQ WHUPV RI H DQG H DQG H[SDQGLQJ XS WR ILUVW RUGHU DSSUR[LPDWLRQ LQ H[SHFWHG YDOXH JLYHV W < < >H TH THH TH @ VR WKDW XVLQJ DQG ZH REWDLQ XS WR ILUVW RUGHU DSSUR[LPDWLRQ LQ H[SHFWHG YDOXH W < W < < >H TH @ 7DNLQJ H[SHFWDWLRQ RI JLYHV WKH FRYDULDQFH WHUP RI WKH HVWLPDWRUV W DQG W DV § I &RY W W ¨ © Q · ¸< & \ T &[ ¹ $FFRUGLQJO\ LW IROORZV IURP DQG WKDW > @ · ¸ < & \ T& [ T . ¹ > @ 9 06( W § I · ¨ ¸ < & \ T& [ T . © Q ¹ 9 06( W § I ¨ © Q 9 § I · &RY W W ¨ ¸< & \ T &[ © Q ¹ 8VLQJ ± WR PDNH WKH QHFHVVDU\ VXEVWLWXWLRQV LQ ± JLYHV WKH EHVW RSWLPDO FKRLFHV RI D DQG D WRJHWKHU ZLWK WKH DVVRFLDWHG PLQLPXP PHDQ VTXDUH HUURU RI WKH PRGLILHG H[SRQHQWLDO HVWLPDWRU W DV D T . T D T . T STATISTICS IN TRANSITION-new series, Summer 2013 195 § I · 06( RSW W ¨ ¸ < U & \ © Q ¹ ,Q SUDFWLFH WKH ZHLJKWLQJ IUDFWLRQV D DQG D VKRXOG EH FKRVHQ YHU\ FORVH WR WKH H[SUHVVLRQV JLYHQ LQ DQG UHVSHFWLYHO\ :H QRWH WKDW LV WKH VDPH DV WKH YDULDQFH RI WKH FXVWRPDU\ UHJUHVVLRQ HVWLPDWRU 7KLV LQGLFDWHV WKDW WKH HIILFLHQF\ RI WKH SURSRVHG PRGLILHG H[SRQHQWLDO HVWLPDWRUV PD\ QRW EH LPSURYHG EH\RQG WKDW RI WKH XVXDO UHJUHVVLRQW\SH HVWLPDWRU 4. Efficiency comparison 7KH YDULDQFH RI WKH VLPSOH VDPSOH PHDQ \ LQ 656:25 VFKHPH LV JLYHQ E\ § I · 9 \ ¨ ¸< & \ © Q ¹ &RPSDULQJ DQG LW IROORZV WKDW WKH UDWLRW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG E\ 6LQJK HW DO D ZRXOG SHUIRUP EHWWHU WKDQ WKH VDPSOH PHDQ LQ WHUPV RI KDYLQJ D VPDOOHU PHDQ VTXDUH HUURU LI . T § U& \ ·§ D; E · ¨¨ ¸¸¨¨ ¸¸ ! © & [ ¹© D; ¹ 1RWLFH WKDW WKHUH LV D VOLJKW PDWKHPDWLFDO HUURU LQ WKH HIILFLHQF\ FRQGLWLRQ JLYHQ E\ 6LQJK HW DO D ZLWK UHVSHFW WR WKH VLJQ RI WKH LQHTXDOLW\ RI RI 6LQJK HW DO D &RPSDULQJ WKH SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG LQ WKH SUHVHQW VWXG\ ZLWK WKH VDPSOH PHDQ \ LW IROORZV IURP DQG WKDW WKH SURSRVHG SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W ZRXOG SHUIRUP EHWWHU WKDQ WKH VDPSOH PHDQ LQ WHUPV RI KDYLQJ D VPDOOHU PHDQ VTXDUH HUURU LI . T § U& \ ·§ D; E · ¸¸¨ ¨¨ ¸ © & [ ¹© D; ¹ 7R FRPSDUH WKH HIILFLHQF\ RI WKH SURSRVHG PRGLILHG H[SRQHQWLDO HVWLPDWRU W ZLWK WKRVH RI WKH HVWLPDWRUV \ W DQG W ZH REVHUYH IURP DQG WKDW 196 A. C. Onyeka: A class of product-type … Lemma I: 7KH SURSRVHG PRGLILHG H[SRQHQWLDO HVWLPDWRU W XQGHU RSWLPXP FRQGLWLRQV DQG LV PRUH HIILFLHQW WKDQ WKH VDPSOH PHDQ \ LQ WHUPV RI KDYLQJ D VPDOOHU PHDQ VTXDUH HUURU LI U ! ZKLFK LV DOZD\V WUXH Lemma II: 7KH SURSRVHG PRGLILHG H[SRQHQWLDO HVWLPDWRU W XQGHU RSWLPXP FRQGLWLRQV DQG LV PRUH HIILFLHQW WKDQ WKH UDWLRW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG E\ 6LQJK HW DO D LI U& \ T& [ ! ZKLFK LV DOZD\V WUXH Lemma III: 7KH SURSRVHG PRGLILHG H[SRQHQWLDO HVWLPDWRU W XQGHU RSWLPXP FRQGLWLRQV DQG LV PRUH HIILFLHQW WKDQ WKH SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG LQ WKH SUHVHQW VWXG\ LI U& \ T& [ ! ZKLFK LV DOZD\V WUXH 7KH LPSOLFDWLRQ RI WKH DERYH WKUHH OHPPDV LV WKDW RQFH WKH ZHLJKWLQJ IUDFWLRQV D DQG D DUH FKRVHQ YHU\ FORVH WR WKHLU RSWLPDO YDOXHV JLYHQ LQ DQG UHVSHFWLYHO\ WKHQ WKH SURSRVHG PRGLILHG H[SRQHQWLDO HVWLPDWRU W ZRXOG EH PRUH HIILFLHQW WKDQ WKH VDPSOH PHDQ \ WKH UDWLRW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG E\ 6LQJK HW DO D DQG WKH SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG LQ WKH SUHVHQW VWXG\ 5. Numerical Illustration )RU WKH SXUSRVH RI HPSLULFDO LOOXVWUDWLRQ RI RXU WKHRUHWLFDO UHVXOWV FRQVLGHU WKH IROORZLQJ ILYH PHPEHUV W M L M L HDFK RI WKH HVWLPDWRUV W DQG W (VWL PDWRU L W L ª ;[ º \ H[S « » ¬ ;[ ¼ º ª ;[ W \ H[S « » ¬ ; [ & [ ¼ W W L D E W ª [; º \ H[S « » ¬ [; ¼ W ª º [; \ H[S « » ¬ [ ; & [ ¼ &[ 197 STATISTICS IN TRANSITION-new series, Summer 2013 (VWL PDWRU L W L W L ª ;[ º \ H[S « » ¬ ; [ U ¼ ª & [ ; [ º W \ H[S « » ¬ & [ ; [ U ¼ W W ª º U; [ \ H[S « » ¬ U; [ & [ ¼ D E W ª [; º \ H[S « » ¬ [ ; U ¼ U W ª & [ [ ; º \ H[S « » ¬ & [ [ ; U ¼ &[ U W ª º U[ ; \ H[S « » ¬ U[ ; & [ ¼ U &[ 7KH PHDQ VTXDUH HUURUV RI WKH HVWLPDWRUV W M L M L DUH HDVLO\ REWDLQHG XVLQJ DQG 7R LOOXVWUDWH WKH HIILFLHQF\ RI WKH HVWLPDWRUV FRQVLGHU WKH IROORZLQJ WZR VHWV RI GDWD JLYHQ LQ 7DLORU HW DO Data I: -RKQVWRQ SDJH \ 3HUFHQWDJH RI KLYHV DIIHFWHG E\ GLVHDVH [ 'DWH RI IORZHULQJ RI D SDUWLFXODU VXPPHU VSHFLHV QXPEHU RI GD\V IURP -DQXDU\ 1 Q < ; & \ & [ U 8VLQJ 'DWD , WKH FRPSXWHG SHUFHQWDJH UHODWLYH HIILFLHQFLHV RI WKH HVWLPDWRUV RYHU WKH VLPSOH VDPSOH PHDQ HVWLPDWRU \ DUH GLVSOD\HG LQ 7DEOH Table 1. 3HUFHQWDJH 5HODWLYH (IILFLHQF\ 35( RYHU WKH 6DPSOH 0HDQ \ (VWLPDWRUV \ W L W L L W Data II: -RKQVWRQ SDJH \ 3HUFHQWDJH RI KLYHV DIIHFWHG E\ GLVHDVH [ 0HDQ -DQXDU\ 7HPSHUDWXUH & 1 Q < ; & \ & [ U 198 A. C. Onyeka: A class of product-type … 8VLQJ 'DWD ,, WKH FRPSXWHG SHUFHQWDJH UHODWLYH HIILFLHQFLHV RI WKH HVWLPDWRUV RYHU WKH VLPSOH VDPSOH PHDQ HVWLPDWRU \ DUH GLVSOD\HG LQ 7DEOH Table 2. 3HUFHQWDJH 5HODWLYH (IILFLHQF\ 35( RYHU WKH 6DPSOH 0HDQ \ (VWLPDWRUV \ W L W L L W 7DEOHV DQG UHYHDO WKDW WKH UDWLRW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG E\ 6LQJK HW DO D DQG WKH SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG LQ WKH SUHVHQW VWXG\ DUH QRW DOZD\V RU XQLIRUPO\ PRUH HIILFLHQW WKDQ WKH VLPSOH VDPSOH PHDQ \ H[FHSW ZKHQ WKH HIILFLHQF\ FRQGLWLRQV DQG DUH UHVSHFWLYHO\ VDWLVILHG $JDLQ WKH QXPHULFDO UHVXOWV LQ 7DEOHV DQG FRQILUPHG DV H[SHFWHG WKDW WKH SURSRVHG SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W LV SUHIHUUHG RYHU WKH UDWLRW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG E\ 6LQJK HW DO D ZKHQ WKHUH LV D VWURQJ QHJDWLYH FRUUHODWLRQ EHWZHHQ WKH VWXG\ DQG DX[LOLDU\ FKDUDFWHUV ZKLOH WKH HVWLPDWRU W LV SUHIHUUHG RYHU WKH HVWLPDWRU W ZKHQ WKHUH LV D VWURQJ SRVLWLYH FRUUHODWLRQ EHWZHHQ WKH VWXG\ DQG DX[LOLDU\ YDULDEOHV 7KH QXPHULFDO UHVXOWV DOVR FRQILUPHG WKDW XQGHU WKH RSWLPXP FRQGLWLRQV DQG WKH PRGLILHG H[SRQHQWLDO HVWLPDWRU W ZKLFK LV D OLQHDU IXQFWLRQ RI WKH HVWLPDWRUV W DQG W LV PRUH HIILFLHQW WKDQ WKH VDPSOH PHDQ \ DQG WKH H[SRQHQWLDO HVWLPDWRUV W DQG W 6. Conclusion :H KDYH H[WHQGHG WKH ZRUN FDUULHG RXW E\ 6LQJK HW DO D E\ GHYHORSLQJ D FODVV RI SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV RI WKH SRSXODWLRQ PHDQ LQ 656:25 VFKHPH XVLQJ NQRZQ SRSXODWLRQ SDUDPHWHUV RI DQ DX[LOLDU\ FKDUDFWHU 7KH SURSRVHG FODVV RI SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV XQGHU FHUWDLQ HIILFLHQF\ FRQGLWLRQV LV VKRZQ WR EH PRUH HIILFLHQW WKDQ WKH XVXDO VDPSOH PHDQ HVWLPDWRU \ LQ WHUPV RI KDYLQJ D PHDQ VTXDUH HUURU VPDOOHU WKDQ WKH YDULDQFH RI \ $OVR QXPHULFDO LOOXVWUDWLRQV FRQILUPHG WKDW ZKHQ WKHUH LV D VWURQJ QHJDWLYH FRUUHODWLRQ EHWZHHQ WKH VWXG\ DQG DX[LOLDU\ YDULDEOHV WKH SURSRVHG SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU LV SUHIHUUHG RYHU WKH UDWLRW\SH H[SRQHQWLDO HVWLPDWRU SURSRVHG E\ 6LQJK HW DO D )XUWKHUPRUH LQ WKH SUHVHQW VWXG\ ZH KDYH GHYHORSHG D PRGLILHG H[SRQHQWLDO HVWLPDWRU ZKLFK LV D OLQHDU IXQFWLRQ RU FRPELQDWLRQ RI ERWK WKH UDWLRW\SH DQG SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV %\ STATISTICS IN TRANSITION-new series, Summer 2013 199 XVLQJ WKH RSWLPDO ZHLJKWLQJ IUDFWLRQV LQ WKH SURSRVHG PRGLILHG H[SRQHQWLDO HVWLPDWRUV WKH PRGLILHG H[SRQHQWLDO HVWLPDWRU LV IRXQG WR EH PRUH HIILFLHQW WKDQ WKH XVXDO VDPSOH PHDQ HVWLPDWRU \ WKH UDWLRW\SH H[SRQHQWLDO HVWLPDWRUV W SURSRVHG E\ 6LQJK HW DO D DQG WKH SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG LQ WKH SUHVHQW VWXG\ ,Q SUDFWLFH WKHUHIRUH ZH VXJJHVW WKDW WKH ZHLJKWLQJ IUDFWLRQV LQ WKH PRGLILHG H[SRQHQWLDO HVWLPDWRU EH FKRVHQ YHU\ FORVH WR WKHLU RSWLPDO FKRLFHV LQ DQG LQ RUGHU WR UHDOL]H WKH IXOO EHQHILWV RI XVLQJ WKH SURSRVHG PRGLILHG RU LPSURYHG H[SRQHQWLDO HVWLPDWRUV RI < LQ 656:25 VFKHPH REFERENCES $%'(/)$77$+ $ 0 (/6+(53,(1< ( $ 02+$0(' 6 0 $%'28 2 ) ,PSURYHPHQW LQ HVWLPDWLQJ WKH SRSXODWLRQ PHDQ LQ VLPSOH UDQGRP VDPSOLQJ XVLQJ LQIRUPDWLRQ RQ DX[LOLDU\ DWWULEXWH $SSOLHG 0DWKHPDWLFV DQG &RPSXWDWLRQ 9RO ± %$+/ 6 787(-$ 5 . 5DWLR DQG 3URGXFW W\SH H[SRQHQWLDO HVWLPDWRU ,QIRUPDWLRQ DQG 2SWLPL]DWLRQ 6FLHQFHV 9RO ;,, , ± &2&+5$1 :* 6DPSOLQJ WHFKQLTXHV UG HGLWLRQ -RKQ :LOH\ DQG 6RQV 1HZ <RUN *529(5 / . .$85 3 $Q LPSURYHG H[SRQHQWLDO HVWLPDWRU RI ILQLWH SRSXODWLRQ PHDQ LQ VLPSOH UDQGRP VDPSOLQJ XVLQJ DQ DX[LOLDU\ DWWULEXWH $SSOLHG 0DWKHPDWLFV DQG &RPSXWDWLRQ 9RO 1R ± .$',/$5 & &,1*, + ,PSURYHPHQW LQ HVWLPDWLQJ WKH SRSXODWLRQ PHDQ LQ VLPSOH UDQGRP VDPSOLQJ $SSOLHG 0DWKHPDWLFV /HWWHUV ± .+26+1(9,6$1 0 6,1*+ 5 &+$8+$1 3 6$:$1 1 60$5$1'$&+( ) $ JHQHUDO IDPLO\ RI HVWLPDWRUV IRU HVWLPDWLQJ SRSXODWLRQ PHDQ XVLQJ NQRZQ YDOXH RI VRPH SRSXODWLRQ SDUDPHWHUV )DU (DVW -RXUQDO RI 7KHRUHWLFDO 6WDWLVWLFV ± 21<(.$ $ & (VWLPDWLRQ RI SRSXODWLRQ PHDQ LQ SRVWVWUDWLILHG VDPSOLQJ XVLQJ NQRZQ YDOXH RI VRPH SRSXODWLRQ SDUDPHWHUV 6WDWLVWLFV LQ 7UDQVLWLRQQHZ VHULHV ± 6+$%%,5 - *837$ 6 (VWLPDWLRQ RI )LQLWH 3RSXODWLRQ 0HDQ LQ 7ZR 3KDVH 6DPSOLQJ :KHQ $X[LOLDU\ 9DULDEOHV $UH $WWULEXWHV +DFHWWHSH -RXUQDO RI 0DWKHPDWLFV DQG 6WDWLVWLFV 9RO 1R ± 200 A. C. Onyeka: A class of product-type … 6+$50$ % 7$,/25 5 $ 1HZ 5DWLR&XP'XDO WR 5DWLR (VWLPDWRU RI )LQLWH 3RSXODWLRQ 0HDQ LQ 6LPSOH 5DQGRP 6DPSOLQJ *OREDO -RXUQDO RI 6FLHQFH )URQWLHU 5HVHDUFK 9RO ,VVXH 9HU ± 6,1*+ 5 &+$8+$1 3 6$:$1 1 60$5$1'$&+( ) D ,PSURYHPHQW LQ HVWLPDWLQJ WKH SRSXODWLRQ PHDQ XVLQJ H[SRQHQWLDO HVWLPDWRU LQ VLPSOH UDQGRP VDPSOLQJ %XOOHWLQ RI 6WDWLVWLFV (FRQRPLFV 9RO $ ± 6,1*+ 5 &+$8+$1 3 6$:$1 1 60$5$1'$&+( ) ,PSURYHG H[SRQHQWLDO HVWLPDWRU IRU SRSXODWLRQ YDULDQFH XVLQJ WZR DX[LOLDU\ YDULDEOHV ,WDOLDQ -RXUQDO RI 3XUH DQG $SSOLHG 0DWKHPDWLFV 1R ± 6,1*+ 5 .80$5 0 &+$8'+$5< 0 . .$',/$5 & E ,PSURYHG H[SRQHQWLDO HVWLPDWRU LQ VWUDWLILHG UDQGRP VDPSOLQJ 3DNLVWDQ -RXUQDO RI 6WDWLVWLFV DQG 2SHUDWLRQV 5HVHDUFK 9RO 9 1R ± 6,1*+ + 3 7$,/25 5 (VWLPDWLRQ RI ILQLWH SRSXODWLRQ PHDQ XVLQJ NQRZQ FRUUHODWLRQ FRHIILFLHQW EHWZHHQ DX[LOLDU\ FKDUDFWHUV 6WDWLVWLFD $QQR /;9 ± 6,1*+ + 3 9,6+:$.$0$ * . 0RGLILHG H[SRQHQWLDO UDWLR DQG SURGXFW HVWLPDWRUV IRU ILQLWH SRSXODWLRQ PHDQ LQ GRXEOH VDPSOLQJ $XVWULDQ -RXUQDO RI 6WDWLVWLFV 9RO 1R ± 68.+$70( 3 9 68.+$70( % 9 6DPSOLQJ WKHRU\ RI VXUYH\V ZLWK DSSOLFDWLRQV ,RZD 6WDWH 8QLYHUVLW\ 3UHVV $PHV 86$ 7$,/25 5 6+$50$ % . $ 0RGLILHG 5DWLR&XP3URGXFW (VWLPDWRU RI )LQLWH 3RSXODWLRQ 0HDQ 8VLQJ .QRZQ &RHIILFLHQW RI 9DULDWLRQ DQG &RHIILFLHQW RI .XUWRVLV 6WDWLVWLFV LQ 7UDQVLWLRQQHZ VHULHV -XO 9RO 1R ± 7$,/25 5 7$,/25 5 3$50$5 5 .80$5 0 'XDO WR UDWLR FXPSURGXFW HVWLPDWRU XVLQJ NQRZQ SDUDPHWHUV RI DX[LOLDU\ YDULDEOHV -RXUQDO RI 5HOLDELOLW\ DQG 6WDWLVWLFDO 6WXGLHV 9RO ,VVXH ± STATISTICS IN TRANSITION-new series, Summer 2013 201 STATISTICS IN TRANSITION-new series, Summer 2013 Vol. 14, No. 2, pp. 201–216 THE CLASS OF ESTIMATORS OF FINITE POPULATION MEAN USING INCOMPLETE MULTIAUXILIARY INFORMATION Meenakshi Srivastava , Neha Garg ABSTRACT ,Q WKLV SDSHU D FODVV RI HVWLPDWRUV LV FRQVLGHUHG IRU HVWLPDWLQJ WKH PHDQ RI WKH ILQLWH SRSXODWLRQ XWLOL]LQJ DYDLODEOH LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ 6RPH VSHFLDO FDVHV RI WKLV FODVV RI HVWLPDWRUV DUH FRQVLGHUHG 7KH DSSUR[LPDWH H[SUHVVLRQV IRU ELDV DQG PHDQ VTXDUH HUURU RI WKH VXJJHVWHG HVWLPDWRUV KDYH DOVR EHHQ GHULYHG DQG WKHRUHWLFDO UHVXOWV DUH QXPHULFDOO\ VXSSRUWHG Key words: ELDV PHDQ VTXDUH HUURU PXOWLDX[LOLDU\ LQIRUPDWLRQ 1. Introduction 7KH XVH RI DX[LOLDU\ LQIRUPDWLRQ IRU LPSURYLQJ WKH SUHFLVLRQ RI WKH HVWLPDWRUV LV ZHOO NQRZQ ZKHQ WKH YDULDEOH XQGHU VWXG\ < DQG WKH DX[LOLDU\ YDULDEOH ; DUH FRUUHODWHG ,Q ODUJH VFDOH VXUYH\V ZH RIWHQ FROOHFW GDWD RQ PRUH WKDQ RQH DX[LOLDU\ YDULDEOH DQG VRPH RI WKHVH PD\ EH FRUUHODWHG ZLWK < 2ONLQ 5DM 5DR DQG 0XGKRONDU 6ULYDVWDYD 6LQJK $JUDZDO DQG 3DQGD 'DODEHKDUD DQG 6DKRR 6DKRR DQG %DOD $EX'D\\HK HW DO $KPHG 6LQJK HW DO .DGLODU DQG &LQJL 3HUULO 6LQJK HW DO HWF FRQVLGHUHG VRPH HVWLPDWRUV ZKLFK XWLOL]H LQIRUPDWLRQ RQ VHYHUDO DX[LOLDU\ YDULDEOHV ZKLFK DUH FRUUHODWHG ZLWK WKH YDULDEOH XQGHU VWXG\ ,Q PDQ\ VLWXDWLRQV ZH PD\ KDYH LQIRUPDWLRQ RQ VHYHUDO DX[LOLDU\ YDULDEOHV EXW HDFK YDULDEOH PD\ QRW EH NQRZQ IRU HDFK SRSXODWLRQ XQLW 6LQJK FRQVLGHUHG WKH FRQFHSW RI VWUDWLILFDWLRQ IRU ZHLJKWLQJ WKH JLYHQ LQFRPSOHWH DX[LOLDU\ LQIRUPDWLRQ 6ULYDVWDYD DQG *DUJ VXJJHVWHG D FODVV RI HVWLPDWRUV IRU HVWLPDWLQJ WKH ILQLWH SRSXODWLRQ PHDQ XWLOL]LQJ DYDLODEOH LQFRPSOHWH PXOWL DX[LOLDU\ LQIRUPDWLRQ ZKHQ IUDPH LV XQNQRZQ IRU HDFK VWUDWXP 'HSDUWPHQW RI 6WDWLVWLFV ,QVWLWXWH RI 6RFLDO 6FLHQFHV 'U % 5 $PEHGNDU 8QLYHUVLW\ $JUD 83 ,QGLD (PDLO PVULYDVWDYDBLVV#KRWPDLOFRP 6FKRRO RI 6FLHQFHV ,QGLUD *DQGKL 1DWLRQDO 2SHQ 8QLYHUVLW\ 1HZ 'HOKL ,QGLD (PDLO QHKDJDUJ#JPDLOFRP 202 M. Srivastava, N. Garg: The class of estimators … 7KH DLP RI WKH SUHVHQW SDSHU LV WR GHYHORS D JHQHUDO FODVV RI ZHLJKWHG HVWLPDWRUV EDVHG RQ LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ DV WR VKRZ WKDW LW LV DOZD\V EHWWHU WR XVH DGGLWLRQDO DX[LOLDU\ YDULDEOHV ZKLFK DUH FRUUHODWHG ZLWK < 7KH JHQHUDO FODVV RI ZHLJKWHG HVWLPDWRUV KDV EHHQ FRQVWUXFWHG ZKHQ IUDPH LV NQRZQ IRU HDFK VWUDWXP *HQHUDOO\ WKH VWUDWLILFDWLRQ LV GRQH RQ WKH EDVLV RI KHWHURJHQHLW\ LQ WKH SRSXODWLRQ ZLWK UHVSHFW WR WKH VWXG\ YDULDEOH < %XW ZH YLHZ VWUDWLILFDWLRQ LQ WKH RWKHU ZD\ ,Q RXU FDVH WKH KHWHURJHQHLW\ RI WKH SRSXODWLRQ LV FRQVLGHUHG ZLWK UHVSHFW WR WKH XQHTXDO QXPEHU RI DX[LOLDU\ YDULDEOHV :H VWUDWLI\ WKH SRSXODWLRQ LQ WHUPV RI WKH LQIRUPDWLRQ SURYLGHG E\ WKH S DX[LOLDU\ YDULDEOHV 7KXV WKHUH ZLOO EH D VWUDWXP IRU ZKLFK QR DX[LOLDU\ LQIRUPDWLRQ LV DYDLODEOH S VWUDWD IRU ZKLFK RQO\ RQH DX[LOLDU\ YDULDEOH RXW RI S DX[LOLDU\ YDULDEOHV LV NQRZQ 6LPLODUO\ WKHUH ZLOO EH p C VWUDWD IRU ZKLFK WKH WZR DX[LOLDU\ YDULDEOHV DUH NQRZQ p C VWUDWD IRU ZKLFK WKUHH DX[LOLDU\ YDULDEOHV DUH NQRZQ DQG VR RQ 8OWLPDWHO\ ZH ZLOO KDYH D VWUDWXP IRU ZKLFK DOO WKH S DX[LOLDU\ YDULDEOHV DUH NQRZQ ,W LV VHHQ WKDW WKH JLYHQ PHWKRG FRQVLGHULQJ VWUDWLILFDWLRQ RI SRSXODWLRQ RQ WKH EDVLV RI XQHTXDO QXPEHU RI DX[LOLDU\ YDULDEOH LV FDSDEOH RI JLYLQJ PRUH SUHFLVH UHVXOWV WKDQ VLPSOH VDPSOH PHDQ SHU XQLW 2. Notations /HW XV FRQVLGHU D ILQLWH SRSXODWLRQ 8 8 8 81 RI 1 LGHQWLILDEOH XQLWV WDNLQJ YDOXHV RQ D VWXG\ YDULDEOH < DQG S DX[LOLDU\ YDULDEOHV ; ; « ;S ZKLFK DUH FRUUHODWHG ZLWK < $X[LOLDU\ YDULDEOHV ; ; ;S DUH NQRZQ IRU WRWDO 0 0 « 0S XQLWV RI WKH SRSXODWLRQ UHVSHFWLYHO\ )RU WKH PD[LPXP XWLOL]DWLRQ RI DYDLODEOH LQFRPSOHWH DX[LOLDU\ LQIRUPDWLRQ WKH SRSXODWLRQ LV GLYLGHG LQWR GLIIHUHQW VWUDWD DFFRUGLQJ WR WKH NQRZQ QXPEHU RI DX[LOLDU\ YDULDEOHV DQG D UDQGRP VDPSOH RI Q XQLWV LV GUDZQ IURP WKHVH JURXSV ZLWK VLPSOH UDQGRP VDPSOLQJ ZLWKRXW UHSODFHPHQW S & M 1XPEHU RI VWUDWD IRU ZKLFK M DX[LOLDU\ YDULDEOHV DUH NQRZQ M « S. 3RSXODWLRQ VL]H 6DPSOH VL]H 6L]H RI WKH VWUDWXP IRU ZKLFK QR DX[LOLDU\ YDULDEOH LV NQRZQ 6L]H RI WKH VWUDWXP IRU ZKLFK DX[LOLDU\ YDULDEOH ;L LV NQRZQ; L « S 1LM 6L]H RI WKH VWUDWXP IRU ZKLFK DX[LOLDU\ YDULDEOH ;L DQG ;M DUH NQRZQ L M L M « S 1LMN 6L]H RI WKH VWUDWXP IRU ZKLFK DX[LOLDU\ YDULDEOH ;L ;M DQG ;N DUH NQRZQ L M N L M N « S 1«S 6L]H RI WKH VWUDWD IRU ZKLFK DOO S DX[LOLDU\ YDULDEOH ; ; « ;S LV NQRZQ L M N L M N « S 1 Q 1 1LL 203 STATISTICS IN TRANSITION-new series, Summer 2013 ZKHUH 1LL 1LM 1LMN « 1«L«S 0L S S 7RWDO QXPEHU RI VWUDWD LH 1L 3RSXODWLRQ VL]H RI WKH LWK VWUDWXP L ¦ S &L L VXFK WKDW S ¦ 1L S S 1 L QL WK 6DPSOH VL]H RI WKH L VWUDWXP L S « VXFK WKDW S ¦ QL Q L <LN 9DOXH RI WKH NWK REVHUYDWLRQ RQ YDULDEOH XQGHU VWXG\ LQ LWK VWUDWXP L « S & M M « S N 1L WK ; LMN 9DOXH RI WKH N REVHUYDWLRQ RQ MWK DX[LOLDU\ YDULDEOH LQ LWK VWUDWXP L « S & M M « S N 1L <L 3RSXODWLRQ PHDQ RI WKH < YDULDEOH LQ LWK VWUDWXP \ L 6DPSOH PHDQ RI WKH < YDULDEOH LQ LWK VWUDWXP ; LM 3RSXODWLRQ PHDQ RI WKH MWK DX[LOLDU\ YDULDEOH LQ LWK VWUDWXP [ LM 6DPSOH PHDQ RI WKH MWK DX[LOLDU\ YDULDEOH LQ LWK VWUDWXP 6L 3RSXODWLRQ PHDQ VTXDUH HUURU RI Y YDULDEOH LQ LWK VWUDWXP 6LM 3RSXODWLRQ PHDQ VTXDUH HUURU RI WKH MWK DX[LOLDU\ YDULDEOH LQ LWK VWUDWXP & L &RHIILFLHQW RI YDULDWLRQ RI WKH YDULDEOH XQGHU VWXG\ < LQ LWK VWUDWXP LH & L & LM <L &RHIILFLHQW RI YDULDWLRQ RI WKH MWK DX[LOLDU\ YDULDEOH LQ LWK VWUDWXP LH & LM ULM 6L 6LM ; LM &RUUHODWLRQ FRHIILFLHQW EHWZHHQ WKH YDULDEOHV < YDULDEOH XQGHU VWXG\ DQG ;LM WKH MWK DX[LOLDU\ YDULDEOH LQ WKH LWK VWUDWXP 204 M. Srivastava, N. Garg: The class of estimators … U LMK &RUUHODWLRQ FRHIILFLHQW EHWZHHQ WKH YDULDEOHV ;M DQG ;K M z K LQ ELM WKH LWK VWUDWXP 5HJUHVVLRQ FRHIILFLHQW RI WKH YDULDEOHV < YDULDEOH XQGHU VWXG\ DQG ;LM WKH MWK DX[LOLDU\ YDULDEOH LQ WKH LWK VWUDWXP 1L 1 :L 3URSRUWLRQ RI XQLWV LQ WKH LWK VWUDWXP LH :L Q 1 I 6DPSOLQJ IUDFWLRQ LH I IL 6DPSOLQJ IUDFWLRQ LQ WKH LWK VWUDWXP LH I L Dij :HLJKWV DWWDFKHG WR WKH MWK DX[LOLDU\ YDULDEOH LQ WKH LWK VWUDWXP DGGLQJ XS WR . LM U LM QL 1L &L M « S & LM 7KH IROORZLQJ ILJXUH VKRZV WKH FRQVWUXFWLRQ RI VWUDWD RQ WKH EDVLV RI DYDLODEOH LQFRPSOHWH WKUHHDX[LOLDU\ LQIRUPDWLRQ ; ; DQG ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 < ; < < ; < < ; ; ; < ; ; < ; ; Q Q < ; ; ; 1 Q Q Q Q Figure 2.1. &RQVWUXFWLRQ RI VWUDWD Q Q Q 205 STATISTICS IN TRANSITION-new series, Summer 2013 3. Suggested general class of estimators 1RZ ZH FDQ VXJJHVW WKH IROORZLQJ JHQHUDO FODVV RI HVWLPDWRUV XVLQJ LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ S ¦ :L J L \ L [ L \ SU L S ¦ D LMJ LM \ L [ LM DQG ZKHUH J L \ L [ L M J LM \ L [ LM LV WKH [ LM 1 L [ LMN N IXQFWLRQ \L RI J \ [ \ LN N \ 1 L DQG 7KH ELDV DQG PHDQ VTXDUHG HUURU RI \ S DUH DV IROORZV S S S L L M ¦ :L (J L \ L [ L ¦ :L ¦ D LM(J LM \ L [ LM ( \ SU S ¦ :L 06(J L \ L [ L 06( \ SU L MSE g i y i x i FDQ HDVLO\ EH REWDLQHG IRU GLIIHUHQW YDOXHV RI WKH IXQFWLRQ J E\ JHQHUDOL]LQJ WKH SURFHGXUH XVHG E\ 2ONLQ 7KXV 06(J L \ L [ L § © QL 1L ZKHUH ¨¨ § ¨¨ © QL 1L · ¸¸ Y LMK ¹ ·S S ¸¸¦ ¦ D LMD LK Y LMK ¹M K &RYJ LM J LK ,Q PDWUL[ QRWDWLRQ § 06(J L \ L [ L ¨¨ © QL 1L · ¸¸ D L 9L D L c ¹ a a ZKHUH WKH PDWUL[ 9L YLMK DQG D L WUDQVSRVH RI D L a a D L D L D LS D L c EHLQJ WKH a 206 M. Srivastava, N. Garg: The class of estimators … 3.1. Optimum values of Dij for j = 1, 2, …, p ,W LV IDLUO\ VLPSOH WR HVWDEOLVK WKDW WKH RSWLPXP DLM LV JLYHQ E\ 6XP RI WKH HOHPHQWV RI WKH M WK FROXPQ RI 9L D LM 6XP RI DOO WKH S HOHPHQWV LQ 9L ZKHUH Vi LV WKH PDWUL[ LQYHUVH WR 9L XVLQJ WKH RSWLPXP ZHLJKWV WKH PHDQ VTXDUH HUURU LV IRXQG WR EH § · ¸¸ 6XP RI DOO WKH S HOHPHQWV LQ 9L 06( J L \ L [ L ¨¨ Q 1 L¹ © L 4. Some special cases of the suggested class of estimators Case I. :KHQ HDFK ;M M « S LV SRVLWLYHO\ FRUUHODWHG ZLWK < LQ HDFK VWUDWXP RXU HVWLPDWRU ZLOO FRQYHUW LQWR ZHLJKWHG UDWLR HVWLPDWRU JLYHQ DV \ SUUDW S S L M ¦ :L ¦ D LMJ LMUDW \ L [ LM \L ; LM [ LM ZKHUH J LMUDW \ L [ LM %LDV \ SUUDW (\ SUUDW < S S IL ª ¦ :L Q ««<L ¦ D LM &LM . LM L ¬ M L 06( \ SUUDW ^ S > º `» » ¼ S S IL :L <L &L D LMD LK U LMK & LM& LK QL L M K U LM& L & LM U LK & L & LK ¦ ¦¦ @ Case II. :KHQ HDFK ;M M «« S LV SRVLWLYHO\ FRUUHODWHG ZLWK < LQ HDFK VWUDWXP ZH FDQ DOVR XVH ZHLJKWHG UHJUHVVLRQ HVWLPDWRU JLYHQ DV \ SUUHJ S S L M ¦ :L ¦ D LMJ LM UHJ \ L [ LM ZKHUH J LMUHJ \ L [ LM \ L E LM ; LM [ LM 207 STATISTICS IN TRANSITION-new series, Summer 2013 %LDV \ SUUHJ (\ SUUHJ < 06( \ SUUHJ S ¦ :L Q I L >6L ¦ ¦ D LMD LK ELMELK ULMK 6LM6LK L S L S M K E LMULM6L6LM E LK ULK 6L6LK @ Case III. ,I HDFK ;M M «« S LV QHJDWLYHO\ FRUUHODWHG ZLWK < LQ HDFK VWUDWXP WKHQ RXU HVWLPDWRU ZLOO FRQYHUW LQWR ZHLJKWHG SURGXFW HVWLPDWRU JLYHQ DV S S L M ¦ :L ¦ D LMJ LMSURG \ L [ LM \ SUSURG ZKHUH J LMSURG \ L [ LM %LDV \ SUSURG \L [ LM ; LM S ª S º L ¬ M ¼ ¦ :L Q I L «<L ¦ D LM&LM . LM » » L « 06( \ SUSURG S > S S IL :L <L &L D LMD LK ULMK & LM& LK QL L M K ULM& L & LM ULK & L & LK ¦ ¦¦ @ 5. Empirical study 7KH DERYH WKHRUHWLFDO GHYHORSPHQWV DUH DSSOLHG RQ WZR DUWLILFLDOO\ FRQVWUXFWHG SRSXODWLRQV ,Q GDWD VHW RQH WKH SRSXODWLRQ FRQVLVWV RI 1 REVHUYDWLRQV )RU H[DPSOH WKH \LHOG UDWHV RI WKH FURS FDQ EH WDNHQ DV D VWXG\ YDULDEOH < DQG QR RI VKRRWV FDQHV DYHUDJH KHLJKW RI VKRRWV FDQH DQG DYHUDJH ZLGWK RI WKH UG OHDI FDQ EH FRQVLGHUHG DV WKUHH DX[LOLDU\ YDULDEOHV ; ; DQG ; UHVSHFWLYHO\ )RU WKH SXUSRVH RI FRPSXWDWLRQ D VDPSOH RI VL]H Q KDV EHHQ GUDZQ E\ 656:25 IURP WKH ILUVW SRSXODWLRQ DQG D VDPSOH RI Q XQLWV KDV EHHQ GUDZQ E\ 656:25 IURP WKH VHFRQG GDWD VHW RI VL]H 1 %RWK WKH SRSXODWLRQV DUH JLYHQ LQ WKH $SSHQGL[ ,Q ERWK WKH GDWD VHWV WKH LQIRUPDWLRQ RQ DOO WKH WKUHH DX[LOLDU\ YDULDEOHV ZDV PLVVLQJ IRU GLIIHUHQW SRSXODWLRQ XQLWV DQG KHQFH WKHUH ZLOO EH VWUDWD 7KH FRPSXWHG VDPSOH VL]H IRU HDFK VWUDWXP E\ SURSRUWLRQDO DOORFDWLRQ DQG WKH 208 M. Srivastava, N. Garg: The class of estimators … REVHUYHG VWDWLVWLFV DERXW WKH SRSXODWLRQ LQ FDVH RI LQFRPSOHWH DX[LOLDU\ LQIRUPDWLRQ DUH JLYHQ LQ WKH IROORZLQJ WDEOHV Data Set I Table 1. 3RSXODWLRQ SDUDPHWHUV :LWKRXW 6WUDWLILFDWLRQ Y S y 6WUDWXP , 1 Q Q Y X . S S U E 1 ,,, S Y 1 ,, Q Y X . S U E S 1 Q ,9 9 Y X . S S U E 1 Q Y X X S U U S U S . . E X X E 9, 1 Q Y 209 STATISTICS IN TRANSITION-new series, Summer 2013 S U U U S . S . E Y X X S U U U E 1 Q 9,, S . S . 1 Q Y X X X S U S U E E U U U U S . . . S E E E 9,,, Data Set II Table 2. 7KH 3RSXODWLRQ SDUDPHWHUV Y S y :LWKRXW 6WUDWLILFDWLRQ , 6WUDWXP 1 Q Y 1 ,, 6WUDWXP Q Y S S S X . U E 210 M. Srivastava, N. Garg: The class of estimators … 1 ,,, 6WUDWXP Q Y X S U Y X S U S . E 1 Q ,9 6WUDWXP S E 1 Q Y 9 6WUDWXP . X X U . S S U U S . E E 1 Q Y 9, 6WUDWXP X S U U S S X U . . E E 1 Q Y 9,, 6WUDWXP S S S X U U X U . . E E 1 Q 9,,, 6WUDWXP Y X U X S U X U S 211 STATISTICS IN TRANSITION-new series, Summer 2013 U S U . . S E E U . E 7KH DERYH GDWD VHW LV XVHG WR FRPSXWH WKH ELDVHV DQG PHDQ VTXDUH HUURUV RI WKH HVWLPDWRUV DV GLVFXVVHG LQ VHFWLRQ DQG DQG WKHVH HVWLPDWRUV DUH FRPSDUHG L ZLWK HDFK RWKHU LQ DFFRUGDQFH ZLWK WKHLU 06( YDOXHV LL ZLWK UHVSHFW WR PHDQ SHU XQLW Table 3. 7KH %LDVHV 0HDQ 6TXDUH (UURUV DQG WKH 5HODWLYH (IILFLHQFLHV RI GDWD VHW , Estimators y y pr.rat y pr.reg Bias MSE Relative Efficiency Table 4. 7KH %LDVHV 0HDQ 6TXDUH (UURUV DQG WKH 5HODWLYH (IILFLHQFLHV RI GDWD VHW ,, Bias MSE Relative Efficiency y y pr.rat y pr.reg Estimators 6. Discussion and conclusion 7KH SURSRVHG FODVV RI HVWLPDWRUV XVLQJ LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ KDV EHHQ FRPSDUHG ZLWK VLPSOH PHDQ SHU XQLW HVWLPDWRU LQ ZKLFK DX[LOLDU\ LQIRUPDWLRQ KDV QRW EHHQ XVHG ,W LV VHHQ WKDW DOO WKH SURSRVHG HVWLPDWRUV DUH PRUH HIILFLHQW IRU PHDQ HVWLPDWLRQ IRU ERWK WKH GDWD VHW WDNHQ L $ FULWLFDO UHYLHZ RI WDEOH DQG UHYHDOV WKDW WKRXJK WKH UDWLR HVWLPDWRU RI VXJJHVWHG FODVV LV ELDVHG y pr reg LV XQELDVHG EHFDXVH ZH KDYH FRQVLGHUHG LW IRU SUHDVVLJQHG YDOXH RI ELM WKH DPRXQW RI ELDV LV DOPRVW QHJOLJLEOH IRU y pr rat 212 LL M. Srivastava, N. Garg: The class of estimators … :KHQ ZH FRPSDUH WKH 9 y ZLWK ERWK RI WKH SURSRVHG HVWLPDWRUV ZH ILQG WKDW 9 y ZKLFK LV FRQVLGHUDEO\ KLJKHU WKDQ WKH 06( y pr rat DQG 06( y pr reg IRU GDWD VHW , DQG 9 y ZKLFK LV DOVR KLJKHU WKDQ WKH 06( y pr rat 06( y pr reg LLL DQG IRU GDWD VHW ,, 7KH WUHQG EHFRPHV PRUH FOHDU ZKHQ ZH FRPSDUH WKH UHODWLYH HIILFLHQF\ IURP WDEOH DQG LH WKH JDLQ LQ UHODWLYH HIILFLHQF\ RI WKH HVWLPDWRUV RI VXJJHVWHG FODVV LV VXEVWDQWLDOO\ KLJKHU DV FRPSDUHG WR XVXDO SHU XQLW HVWLPDWRU ,W LV HYLGHQW IURP WKH DERYH UHVXOWV WKDW WKH SURSRVHG HVWLPDWRUV HVWDEOLVK WKH VXSUHPDF\ RYHU y LQ WKH HVWLPDWLRQ RI PHDQ XVLQJ VWUDWLILFDWLRQ RQ WKH EDVLV RI DYDLODEOH LQFRPSOHWH DX[LOLDU\ LQIRUPDWLRQ 7KXV ZH VHH WKDW WKH PD[LPXP XVH RI DYDLODEOH LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ FDQ LQFUHDVH WKH HIILFLHQF\ RI WKH HVWLPDWRUV STATISTICS IN TRANSITION-new series, Summer 2013 213 REFERENCES $%8'$<<(+ : $ $+0(' 0 6 $+0(' 5 $ 0877/$. + $ 6RPH (VWLPDWRUV RI D )LQLWH 3RSXODWLRQ 0HDQ 8VLQJ $X[LOLDU\ ,QIRUPDWLRQ $SSO 0DWK &RPSXW ± $*5$:$/ 0 & 3$1'$ . % 0XOWLYDULDWH 3URGXFW (VWLPDWRUV -RXU ,QG 6RF $JUL 6WDW ± $*5$:$/ 0 & 3$1'$ . % 2Q 0XOWLYDULDWH 5DWLR (VWLPDWLRQ -RXU ,QG 6WDW $VVRF ± $+0(' 0 6 6RPH (VWLPDWRUV IRU D )LQLWH 3RSXODWLRQ 0HDQ 8QGHU 7ZR6WDJH 6DPSOLQJ 8VLQJ 0XOWLYDULDWH $X[LOLDU\ ,QIRUPDWLRQ $SSO 0DWK &RPSXW ± &2&+5$1 : * 6DPSOLQJ 7HFKQLTXH UG HGLWLRQ :LOH\ DQG 6RQV 1HZ <RUN '$/$%(+$5$ 0 6$+22 / 1 $ &ODVV RI (VWLPDWRUV LQ 6WUDWLILHG 6DPSOLQJ ZLWK 7ZR $X[LOLDU\ 9DULDEOHV -RXU ,QG 6RF $JUL 6WDW ± .$',/$5 & &,1*, + $ 1HZ (VWLPDWRU 8VLQJ 7ZR $X[LOLDU\ 9DULDEOHV $SSO 0DWK &RPSXW ± 2/.,1 , 0XOWLYDULDWH 5DWLR (VWLPDWLRQ IRU )LQLWH 3RSXODWLRQ %LRPHWULND ± 3(55,/ 3 ) ,PSURYHG 5DWLR&XP3URGXFW 7\SH (VWLPDWRUV 6WDWLVWLFV LQ 7UDQVLWLRQ ± 5$- ' 2Q D 0HWKRG RI 8VLQJ 0XOWL$X[LOLDU\ ,QIRUPDWLRQ LQ 6DPSOH 6XUYH\ -RXU $PHU 6WDW $VVRF ± 5$2 3 6 5 6 08'+2/.$5 * 6 *HQHUDOL]HG 0XOWLYDULDWH (VWLPDWRU IRU WKH 0HDQ RI )LQLWH 3RSXODWLRQ -RXU $PHU 6WDW $VVRF ± 6$+22 - %$/$ 0 . $ 1RWH RQ WKH (VWLPDWLRQ RI WKH 3RSXODWLRQ 0HDQ LQ 6WUDWLILHG 5DQGRP 6DPSOLQJ 8VLQJ 7ZR $X[LOLDU\ 9DULDEOHV %LRP - ± 68.+$70( 3 9 68.+$70( % 9 6DPSOLQJ 7KHRU\ RI 6XUYH\V ZLWK $SSOLFDWLRQV ,RZD 6WDWH 8QLYHUVLW\ 3UHVV $PHV ,RZD 86$ 6,1*+ + 3 83$'+<$<$ / 1 &+$1'5$ 3 $ *HQHUDO )DPLO\ RI (VWLPDWRUV IRU (VWLPDWLQJ 3RSXODWLRQ 0HDQ 8VLQJ 7ZR $X[LOLDU\ 9DULDEOHV LQ 7ZR3KDVH 6DPSOLQJ 6WDWLVWLFV LQ 7UDQVLWLRQ 'HF ± 214 M. Srivastava, N. Garg: The class of estimators … 6,1*+ 5 $ 1RWH RQ WKH 8VH RI ,QFRPSOHWH 0XOWL$X[LOLDU\ ,QIRUPDWLRQ LQ 6DPSOH 6XUYH\V $XVW - 6WDW ± 6,1*+ 5 &+$8+$1 3 6$:$1 1 2Q WKH %LDV 5HGXFWLRQ LQ /LQHDU 9DULHW\ RI $OWHUQDWLYH WR 5DWLR&XP3URGXFW (VWLPDWRU 6WDWLVWLFV LQ 7UDQVLWLRQ $XJ ± 6,1*+ 0 $ 1RWH RQ WKH 8VH RI 0XOWLDX[LOLDU\ ,QIRUPDWLRQ &RPPXQ 6WDWLVW 7KHR0HWK ± 65,9$67$9$ 0 *$5* 1 $ &ODVV RI (VWLPDWRUV RI )LQLWH 3RSXODWLRQ 0HDQ 8VLQJ ,QFRPSOHWH 0XOWL$X[LOLDU\ ,QIRUPDWLRQ ZKHQ )UDPH LV 8QNQRZQ $OLJDUK - 6WDWLVW ± 65,9$67$9$ 6 . $ *HQHUDOL]HG (VWLPDWRU IRU WKH 0HDQ RI D )LQLWH 3RSXODWLRQ 8VLQJ 0XOWL$X[LOLDU\ ,QIRUPDWLRQ -RXU $PHU 6WDW $VVRF -XQH ± 215 STATISTICS IN TRANSITION-new series, Summer 2013 APPENDIX Data Set I 6WUDWXP , < 6WUDWXP ,, < ; 6WUDWXP ,,, < ; 6WUDWXP ,9 < ; 6WUDWXP 9 < ; ; 6WUDWXP 9, < ; ; 6WUDWXP 9,, < ; ; 6WUDWXP 9,,, < ; ; ; 216 M. Srivastava, N. Garg: The class of estimators … Data Set II 6WUDWXP , < 6WUDWXP ,, < ; 6WUDWXP ,,, < ; 6WUDWXP ,9 < ; 6WUDWXP 9 < ; ; 6WUDWXP 9, < ; ; 6WUDWXP 9,, < ; ; 6WUDWXP 9,,, < ; ; ; STATISTICS IN TRANSITION-new series, Summer 2013 217 STATISTICS IN TRANSITION-new series, Summer 2013 Vol. 14, No. 2, pp. 217–230 PROBABILITY SAMPLE SELECTION METHOD IN HOUSEHOLD SURVEYS WHEN CURRENT DATA ON REGIONAL POPULATION IS UNAVAILABLE Turgay Ünalan , + g]WDú $\KDQ ABSTRACT $YDLODELOLW\ RI WKH SHUIHFW VDPSOLQJ IUDPH RQO\ H[LVWV LQ GHYHORSHG FRXQWULHV ZKLFK FRYHUV D YHU\ VPDOO SURSRUWLRQ RI WKH ZRUOG FRXQWULHV 2Q WKH RWKHU KDQG LQ GHYHORSLQJ FRXQWULHV OLVWV RI WKH ODWHVW SRSXODWLRQ FHQVXV FRXQWV DUH JHQHUDOO\ XVHG DV WKH VDPSOLQJ IUDPH IRU VDPSOH VXUYH\V 7KHUHIRUH LQ GHYHORSLQJ FRXQWULHV VXUYH\V ZKLFK DUH SODQQHG IRU IXWXUH SHULRGV ORQJ DIWHU WKH FHQVXV GDWH FDQQRW EH UHSUHVHQWDWLYH RI WKH UHODWHG WLPH SHULRG LI WKH VDPH FHQVXV FRXQWV DUH XWLOL]HG ,QVWHDG SRSXODWLRQ SURMHFWLRQV DQG GDWD DGMXVWPHQW PHWKRGRORJLHV PXVW EH XVHG WR SURYLGH D UHSUHVHQWDWLYH SUREDELOLW\ VHOHFWLRQ RI WKH XSGDWHG SRSXODWLRQ 7KLV DUWLFOH SURSRVHV D SRSXODWLRQ SURMHFWLRQ DQG DGMXVWPHQW PHWKRGRORJ\ LQ RUGHU WR HVWDEOLVK WKH LGHDO VHOHFWLRQ SUREDELOLW\ IRU KRXVHKROG VXUYH\V 7KH PHWKRG FRQWDLQV WKH FRUUHFWLRQ RQ WKH GLIIHUHQFHV RI WKH VXP RI VWUDWD DQG DJJUHJDWHG YDOXHV &RPSDUDWLYH H[DPSOHV DUH DOVR SURYLGHG WR FODULI\ WKH SURSRVHG PHWKRGRORJ\ Key words: GDWD DGMXVWPHQW KRXVHKROG VXUYH\V SRSXODWLRQ SURMHFWLRQ SURMHFWLRQ PHWKRGRORJ\ VDPSOH VHOHFWLRQ VHOHFWLRQ SUREDELOLW\ 1. Introduction 7KH WHFKQLTXHV XVHG WR PDNH SRSXODWLRQ SURMHFWLRQV FDQ EH FODVVLILHG DV WUHQG H[WUDSRODWLRQ PRGHOV RU FXUYH ILWWLQJ WHFKQLTXHV DQG FRKRUW FRPSRQHQW SURMHFWLRQ PRGHOV 7KHVH PRGHOV DUH XVHIXO ZKHQ ZH RQO\ QHHG WR SURMHFW WKH WRWDO DQG GRPDLQ SRSXODWLRQV 7KHUHIRUH WKH\ XVH WRWDO SRSXODWLRQ ILJXUHV IURP WKH SDVW WR SURMHFW IXWXUH SRSXODWLRQ OHYHOV $PRQJ WKH SRVVLEOH DOWHUQDWLYH FXUYH ILWWLQJ PHWKRGV OLNH linear, geometric, exponential DQG logistic WKH PRVW ZLGHO\ XVHG PRGHO IRU SRSXODWLRQV LV WKH H[SRQHQWLDO PRGHO 6WDWLVWLFV DQG 0RQLWRULQJ 6HFWLRQ 81,&() 1HZ <RUN 86$ (PDLO WXQDODQ#XQLFHIRUJ 'HSDUWPHQW RI 6WDWLVWLFV 0LGGOH (DVW 7HFKQLFDO 8QLYHUVLW\ $QNDUD 7XUNH\ (PDLO RD\KDQ#PHWXHGXWU 218 T. Ünalan, H. Ö. Ayhan: Probability sample … 7KHUH DUH WZR W\SHV RI SRSXODWLRQ HVWLPDWLRQ WHFKQLTXHV QDPHO\ LQWHUFHQVDO HVWLPDWH between two censuses DQG SRVWFHQVDO HVWLPDWH immediate ,QWHUFHQVDO HVWLPDWHV DUH NQRZQ DV interpolation DQG SRVWFHQVDO HVWLPDWHV DUH UHIHUUHG WR DV extrapolation (VWLPDWHV DQG SURMHFWLRQV FDQ EH RQ WKH EDVLV RI HLWKHU de jure XVXDO UHVLGHQW RU de facto SK\VLFDOO\ SUHVHQW HQXPHUDWLRQ EDVLV IRU SRSXODWLRQV ,Q PRVW FDVHV WKH\ DUH EDVHG RQ de facto SRSXODWLRQ EDVLV 7KH SDSHU FRQFHUQV WKH SUREOHP RI OLPLWHG LPSRUWDQFH LQ GHYHORSHG FRXQWULHV ZKHUH XSGDWHV RI KRXVHKROG SRSXODWLRQ SURMHFWLRQV DUH UHODWLYHO\ IUHTXHQW EHWZHHQ FHQVXVHV DQG WKH SURSRVHG PHWKRG FDQ EH XQQHFHVVDU\ +RZHYHU WKH SUREOHP FDQ EH UHODWLYHO\ IUHTXHQW DQG ZRUWK VWXG\LQJ LQ FRXQWULHV ZLWK SRRU SRSXODWLRQ VWDWLVWLFV 7KHUHIRUH WKH JRDO RI WKLV SDSHU LV WR SURYLGH D SRSXODWLRQ SURMHFWLRQ PHWKRG DQG DGMXVWPHQW SURFHGXUHV LQ RUGHU WR GHWHUPLQH UHSUHVHQWDWLYH SUREDELOLW\ VDPSOH VHOHFWLRQ IRU KRXVHKROG VXUYH\V LQ FRXQWULHV ZKHUH WKH XSGDWHG VDPSOLQJ IUDPH GRHV QRW H[LVW 2Q WKH RWKHU KDQG LW FDQ DOVR EH D XVHIXO H[DPSOH RI WKH VROXWLRQ RI WKH SUREOHP RI FRQGXFWLQJ VXUYH\V LQ FDVH RI ODFN RI UHFHQW GDWD RQ SRSXODWLRQ WKH QXPEHU RI KRXVHKROGV E\ UHJLRQV 7KH SDSHU KDV D UHYLHZ RI WKH FXUUHQWO\ NQRZQ SRSXODWLRQ SURMHFWLRQ WHFKQLTXHV $Q RYHUYLHZ RI WKH SRSXODWLRQ SURMHFWLRQ WHFKQLTXHV LV LOOXVWUDWHG LQ WKH IROORZLQJ VHFWLRQ $Q H[SRQHQWLDO PRGHO DQG DGMXVWPHQW SURFHGXUHV IRU WKH SRSXODWLRQ SURMHFWLRQV DUH DOVR SURSRVHG $ FDVH VWXG\ LOOXVWUDWHG GHWDLOV RI WKH DGMXVWPHQW PHWKRGRORJLHV ZKLFK DUH VXSSRUWHG E\ QXPHULFDO DSSOLFDWLRQV 2. Overview of population projection techniques 7KH WHFKQLTXHV XVHG WR PDNH SRSXODWLRQ SURMHFWLRQV FDQ EH FODVVLILHG XQGHU WZR FDWHJRULHV FXUYH ILWWLQJ RU WUHQG PRGHOV DQG FRKRUW FRPSRQHQW SURMHFWLRQ PRGHOV Curve Fitting Models DUH XVHIXO ZKHQ ZH RQO\ QHHG WR SURMHFW WKH WRWDO SRSXODWLRQ 7KHUHIRUH WKH\ XVH WRWDO SRSXODWLRQ ILJXUHV IURP WKH SDVW WR SURMHFW IXWXUH SRSXODWLRQ OHYHOV Cohort Component Models DUH PRUH GDWD LQWHQVLYH EHFDXVH WKH\ GLVDJJUHJDWH WRWDO SRSXODWLRQ ILJXUHV LQWR DJHJHQGHU cohorts )XUWKHU WKH GLIIHUHQW components RI SRSXODWLRQ FKDQJH ELUWKV GHDWKV DQG PLJUDWLRQ DUH WDNHQ LQWR DFFRXQW DQG SDVW ILJXUHV IRU WKHVH FRPSRQHQWV DUH DSSOLHG WR WKH FXUUHQW DJHVH[ FRKRUWV 7KH FRKRUW FRPSRQHQW PHWKRG LV JURXQGHG LQ WKH basic demographic equation EHFDXVH WKHUH DUH WKUHH ZD\V WKDW D SRSXODWLRQ FDQ FKDQJH LQ VL]H DQG FRPSRVLWLRQ ELUWKV GHDWKV DQG PLJUDWLRQ %DVLFDOO\ WKH cohort component method VXUYLYHV HDFK DJHVH[ SRSXODWLRQ VXEJURXS DW D FHUWDLQ WLPH IRUZDUG WR WLPH DGGV LQ WKH QHZ ELUWKV DQG LQPLJUDQWV DQG VXEWUDFWV RXWPLJUDQWV &OHDUO\ WR REWDLQ PRUH SUHFLVH DQG PRUH GHWDLOHG LQIRUPDWLRQ DERXW WKH FXUUHQW DQG IXWXUH SRSXODWLRQ WKH LQFOXVLRQ RI DJH LQ WKH SURMHFWLRQ WHFKQLTXHV LV D QHFHVVDU\ DGGLWLRQ STATISTICS IN TRANSITION-new series, Summer 2013 219 ,QIRUPDWLRQ RQ WKH FRKRUW FRPSRQHQW PHWKRG KDV EHHQ JLYHQ KHUH EHFDXVH WKH PHWKRG LV DQ DOWHUQDWLYH WR WKH FXUYH ILWWLQJ RU WUHQG PRGHOV 'XH WR DYDLODEOH GDWD UHTXLUHPHQWV WKH FRKRUWFRPSRQHQW PHWKRG LV QRW ILQDOO\ XVHG LQ WKLV VWXG\ 6HYHUDO SRSXODWLRQ SURMHFWLRQ WHFKQLTXHV DQG FRPSXWHU SURJUDPV DUH DYDLODEOH IRU JHQHUDO SXUSRVHV LQ WKH OLWHUDWXUH 'DYLV /XW] 9DXSHO DQG $KOEXUJ 6KRUWHU 6HQGHN DQG %D\RXP\ 6WRYHU 8QLWHG 1DWLRQV YDQ ,PKRII DQG .HLOPDQ YDQ ,PKRII *URHQZROG DQG 1DYDQHHWKDP $PRQJ WKHVH HDUO\ ERRNV RQ SRSXODWLRQ SURMHFWLRQ PHWKRGV DQG PRGHOV DUH FRYHUHG E\ &R[ +LQGH 1HZHOO 3ROODUG <XVXI DQG 3ROODUG 6KU\RFN 6LHJHO DQG DVVRFLDWHV 5HFHQW ERRNV RQ SRSXODWLRQ SURMHFWLRQV FRYHUV WKH FODVVLFDO PHWKRGRORJLHV 3UHVWRQ +HXYHOLQH DQG *XLOORW %RQJDDUWV DQG %XODWDR 0DQ\ UHVHDUFK SURMHFWV KDYH DOVR EHHQ FRPSOHWHG RQ SRSXODWLRQ SURMHFWLRQV E\ YDULRXV UHVHDUFKHUV *URHQZROG DQG 1DYDQHHWKDP 'DYLV /XW] 9DXSHO DQG $KOEXUJ 6WDWH ,QVWLWXWH RI 6WDWLVWLFV 8QLWHG 1DWLRQV DQG &RPSXWHU SDFNDJH SURJUDPV DUH DOVR GHYHORSHG DQG ZLGHO\ XVHG RQ WKH SRSXODWLRQ SURMHFWLRQV DQG VRPH VHOHFWHG H[DPSOHV DUH FRYHUHG E\ /HHWH 6KRUWHU 6HQGHN DQG %D\RXP\ 6WRYHU 9DQ ,PKRII 3URMHFWLRQV EDVHG RQ JURZWK UDWHV DVVXPH FRQVWDQW DULWKPHWLF JHRPHWULF RU H[SRQHQWLDO JURZWK WR HVWLPDWH SRSXODWLRQV EHWZHHQ GDWHV RU WR SURMHFW QXPEHUV IRU D IHZ \HDUV DKHDG +RZHYHU DV WKH FRQVWDQW JURZWK UDWH LV VHOGRP FDVH LQ UHDO OLIH SURMHFWLRQV EDVHG RQ JURZWK UDWHV DUH HLWKHU OLPLWHG WR VKRUW WLPH VSDQV RU WKH JURZWK UDWHV DUH YDULHG IURP RQH LQWHUYDO WR DQRWKHU $OKR DQG 6SHQFHU *URHQHZROG DQG 1DYDQHHWKDP +LQGH 5RZODQG $OO RI WKH WUHQG H[WUDSRODWLRQ PRGHOV FDQ EH XVHG WR SUHSDUH LQWHUFHQVDO DQG SRVWFHQVDO HVWLPDWHV 3. Exponential model for population projection 7KHUH DUH PDQ\ GLIIHUHQW WHFKQLTXHV IRU WKH SRSXODWLRQ SURMHFWLRQV $PRQJ WKHVH ZH ZRXOG OLNH WR LOOXVWUDWH WKH XVH RI WKH H[SRQHQWLDO PRGHO IRU WKH SRSXODWLRQ SURMHFWLRQV )RU WKLV PHWKRGRORJ\ LW LV HVVHQWLDO WR REWDLQ DQG XVH DQQXDO SRSXODWLRQ JURZWK UDWHV ,Q SUDFWLFH WKH UHFHQW SDVW SRSXODWLRQ JURZWK UDWHV DUH GHWHUPLQHG IURP WKH WZR ODWHVW SRSXODWLRQ FHQVXVHV LI DYDLODEOH IRU WKH UHODWHG GRPDLQV )RU VLPSOLFLW\ ZH FDQ FDOO WKHVH DV data source k and k+1 7KH SUHYLRXV DQQXDO SRSXODWLRQ JURZWK UDWHV IRU WKH FRUUHVSRQGLQJ GRPDLQV FDQ EH REWDLQHG E\ XVLQJ WKH SRSXODWLRQ FRXQWV RI WKH DYDLODEOH GDWD VRXUFHV 8VLQJ WKH VDPH GRPDLQ GLPHQVLRQV WKH IXWXUH SURMHFWHG SRSXODWLRQ FDQ EH ODEHOOHG DV data source k+2 IRU FRQYHQLHQFH *HQHUDOO\ WKH UHODWHG SRSXODWLRQ GRPDLQV RU VWUDWD ZLOO FRUUHVSRQG WR WKH segregated class boundaries LQ VXUYH\ VDPSOLQJ PHWKRGRORJ\ )LJXUH LOOXVWUDWHV WKH UHODWLRQVKLS DPRQJ GRPDLQV 220 T. Ünalan, H. Ö. Ayhan: Probability sample … Data source (k): 3UHYLRXV FHQVXV rh r N k Data source (k+1): /DWHVW FHQVXV NÖ h k Wh N h k N k 7RWDO N k 7RWDO Adjusted by a r NÖ k N k N hk Data source (k+2): 3ODQQHG VXUYH\ rÖh 7RWDO Gh a NÖ k N k Figure 1. *UDSKLFDO LOOXVWUDWLRQ RI GDWD VRXUFHV DQG SRSXODWLRQ VWUXFWXUHV 7KH SRSXODWLRQ GRPDLQV DUH HYDOXDWHG DV VWDWLVWLFDO UHJLRQV ZKLFK DUH EDVHG RQ (85267$7¶V ³Nomenclature of Statistical Territorial Units´ NUTS FODVVLILFDWLRQ 7KH RYHUDOO SRSXODWLRQ VL]H N LV HTXDO WR WKH VXP RI GRPDLQ SRSXODWLRQV H ¦ N h k H N k DQG h ¦ N h k N k h 7KH IROORZLQJ IRUP RI WKH H[SRQHQWLDO JURZWK PRGHO LV XVHG IRU SRSXODWLRQ SURMHFWLRQ RI GRPDLQV )RU VRPH GHVLJQV SRSXODWLRQ GRPDLQV PD\ FRUUHVSRQG WR SRSXODWLRQ VWUDWD N h k N h k N h k k k N h k e rh H[S >r k k h th k k DQG t h k k @ 7KH HVWLPDWHG DQQXDO JURZWK UDWH RI SDVW SRSXODWLRQ FDQ EH REWDLQHG E\ k k h r ª N h k º OQ « k » ¬ Nh ¼ t h k k STATISTICS IN TRANSITION-new series, Summer 2013 221 6HYHUDO DOWHUQDWLYH VFHQDULRV FDQ DOVR EH XVHG IRU GHWHUPLQLQJ WKH IXWXUH JURZWK UDWH RI WKH SRSXODWLRQ 8QOHVV WKHUH LV QR VSHFLDO UHDVRQ OLNH migration RU mortality RI SRSXODWLRQ FKDQJH IRU WKH IXWXUH SHULRG WKH SDVW DQQXDO JURZWK UDWH RI WKH SRSXODWLRQ PD\ DOVR EH XVHG DV D IXWXUH SRSXODWLRQ JURZWK UDWH 7KDW LV rh k k rÖh k k ( k , k ) WKH IXWXUH SRSXODWLRQ 7DNLQJ WKH IXWXUH GRPDLQ JURZWK UDWH DV rˆh JURZWK RI WKH GRPDLQV FDQ EH SURMHFWHG E\ WKH XVH RI WKH IROORZLQJ PRGHO 7KH WRWDO SRSXODWLRQ SURMHFWLRQ FDQ EH REWDLQHG DV NÖ h k N h k H[S > rÖh k k t h k k @ H DQG ILQDOO\ ¦ NÖ k h h NÖ k 4. Proposed population adjustment methodology 7RWDO SRSXODWLRQ UHIHUV WR WKH KRXVHKROG SRSXODWLRQ members of household LQVWLWXWLRQDO SRSXODWLRQ armed forces, dormitory, hospital, prison, etc. DQG PRELOH SRSXODWLRQ homeless, nomadic tribes, etc )RU D UHSUHVHQWDWLYH KRXVHKROG EDVHG VDPSOH VXUYH\ WKH WDUJHW SRSXODWLRQ LV FRQVLGHUHG WR EH HTXDO WR WKH KRXVHKROG SRSXODWLRQ :KHQ WKH LQIRUPDWLRQ LV DYDLODEOH RQ WKH DPRXQW RI LQVWLWXWLRQDO SRSXODWLRQ > INS N h @ DQG PRELOH SRSXODWLRQ > N hMOB @ WKHVH DPRXQWV KDV WR EH VXEWUDFWHG a IURP WKH DGMXVWHG WRWDO SRSXODWLRQ > N h k @ LQ RUGHU WR REWDLQ WKH KRXVHKROG SRSXODWLRQ > NÖ h HH @ IRU HDFK GRPDLQ $\KDQ DQG (NQL 7KLV VLPSOH UHODWLRQ LV JLYHQ EHORZ Nˆ h( HH ) ~ N h( k ) >N h( INS ) N h( MOB ) @ $\KDQ DQG (NQL DOVR SURYLGHG UHDO QXPHULFDO FRXQW GDWD RQ WKH ³LQVWLWXWLRQDO SRSXODWLRQ´ ZKLFK ZDV EDVHG RQ UHJLRQDO HVWLPDWHV RI WKH *HQHUDO 3RSXODWLRQ &HQVXV RI 7XUNH\ ,I WKHVH LQIRUPDWLRQ LV DYDLODEOH WKHQ LW KDV WR EH XVHG RWKHUZLVH WKH FRPSRQHQW FDQ EH QHJOHFWHG DQG WDNHQ DV ]HUR IRU SUDFWLFDO SXUSRVHV 5HFHQW GHYHORSPHQWV WRZDUGV WKH FROOHFWLRQ UHOHDVH DQG XVH RI VSHFLDO LQIRUPDWLRQ FUHDWHG VRPH GUDZEDFNV 1RZDGD\V WKHUH PD\ DOVR EH VRPH SROLWLFDO DQGRU 222 T. Ünalan, H. Ö. Ayhan: Probability sample … VWUDWHJLF UHDVRQV IRU QRW VWDWLQJUHOHDVLQJ VRPH RI WKH LQVWLWXWLRQDO SRSXODWLRQ LQIRUPDWLRQ FRPSRQHQWV IRU VPDOO GRPDLQV 8QGHU VXFK FLUFXPVWDQFHV WKH de jure EDVHG KRXVHKROG SRSXODWLRQ HQXPHUDWLRQ PD\ QRW EH SRVVLEOH )RU WKH LOOXVWUDWLRQ RI WKH SURSRVHG PHWKRGRORJ\ WKH LQIRUPDWLRQ SURYLGHG IRU WKH data sources k DQG k+1 FRUUHVSRQGV WR WKH WZR SUHYLRXV SRSXODWLRQ FHQVXV UHVXOWV RI WKH UHODWHG GRPDLQV 7KHUHIRUH GRPDLQ WRWDOV DQG RYHUDOO WRWDO LQIRUPDWLRQ ZLOO EH LGHQWLFDO 2Q WKH RWKHU KDQG LQIRUPDWLRQ ZKLFK LV EDVHG RQ SRSXODWLRQ SURMHFWLRQV IRU data source k+2 ZLOO QRW KDYH WKH VDPH GHVLUHG SURSHUWLHV ,Q RWKHU ZRUGV WKH VXP RI GRPDLQV ZLOO EH HTXDO WR WKH H[LVWLQJ GRPDLQ WRWDO EXW WKLV ZLOO QRW EH HTXDO WR WKH WRWDO SURMHFWLRQ HVWLPDWH RI WKH RYHUDOO SRSXODWLRQ ,Q RUGHU WR EDODQFH WKH UHODWLRQVKLS EHWZHHQ WKH GRPDLQ WRWDOV DQG WKH RYHUDOO WRWDO DQ DGMXVWPHQW LV UHTXLUHG 7KLV FDQ EH FDOOHG DV WKH total population projection adjustment 7KLV DGMXVWPHQW ZLOO FRUUHFW WKH GLIIHUHQFH EHWZHHQ WKH sum of the projected domain populations DQG total population projections 7KH VXP RI GRPDLQ SRSXODWLRQV ZLOO EH HTXDO WR WKH H[LVWLQJ GRPDLQ WRWDO RI H ¦ NÖ k h NÖ k %XW WKLV ZLOO QRW EH HTXDO WR WKH WRWDO SURMHFWLRQ HVWLPDWH RI h WKH RYHUDOO SRSXODWLRQ 7KDW LV ¦ NÖ h k a NÖ k z N k 1 N H[S>U N N t k k @ DVVXPLQJ WKDW r k k ar k k DV EHIRUH H h z ,Q RUGHU WR EDODQFH WKH UHODWLRQVKLS EHWZHHQ WKH GRPDLQ WRWDOV DQG WKH RYHUDOO WRWDO DQ DGMXVWPHQW LV UHTXLUHG 7KLV FDQ EH FDOOHG DV WKH ³WRWDO SRSXODWLRQ SURMHFWLRQ DGMXVWPHQW´ 7KLV DGMXVWPHQW ZLOO FRUUHFW WKH GLIIHUHQFH EHWZHHQ WKH ³VXP RI WKH SURMHFWHG GRPDLQ SRSXODWLRQV´ DQG ³WRWDO SRSXODWLRQ SURMHFWLRQV´ 7KDW LV NÖ k a N k /HW XV VKRZ WKH GLIIHUHQFH EHWZHHQ WKH DERYH WRWDO SURMHFWLRQV DV ' Gh ~ N ( k ) NÖ k § NÖ h k · ¸ ¨ ¨ NÖ k ¸ ' Wh ' ¹ © a N h k NÖ h k G h Ö k ZKHUH N ZKHUH Wh H ¦ NÖ k h h NÖ h k NÖ k 223 STATISTICS IN TRANSITION-new series, Summer 2013 7KHQ WKH VXP RI WKH DGMXVWHG SURMHFWLRQ WRWDOV IRU GRPDLQV ZLOO EH HTXDO WR a k N ¦ h H h a N k 5. A case study 7KH ODWHVW 3RSXODWLRQ &HQVXV RI 7XUNH\ 2FWREHU LV XVHG DV D UHIHUHQFH WLPH ORFDWLRQ RI SRSXODWLRQ SURMHFWLRQV IRU DQ LQWHQGHG VDPSOH VXUYH\ ZKLFK LV SODQQHG IRU 2FWREHU 7KH VDPSOH GHVLJQ ZKLFK LV EDVHG RQ WKH &ODVVLILFDWLRQ RI 6WDWLVWLFDO 5HJLRQV 1876±/HYHO UHIHUV WR UHJLRQV RI 7XUNH\ DQG LV WDNHQ DV WKH ³UHSRUWLQJ GRPDLQV´ LQ WKH VXUYH\ OLWHUDWXUH 7KH UHJLRQV DUH QRW SODQQHG WR UHSUHVHQW DQ\ JHRJUDSKLFDO RU VRFLRHFRQRPLFDO EUHDNGRZQ RI WKH FRXQWU\ LQ WKLV FDVH 7KH SRSXODWLRQ SURMHFWLRQV IRU WKH \HDU DUH DFKLHYHG RQ WKH EDVLV RI WKH LQIRUPDWLRQ SURYLGHG IURP WZR SUHYLRXV SRSXODWLRQ FHQVXVHV RI 7XUNH\ ZKLFK LV JLYHQ LQ 7DEOH Table 1. 5HFHQW SRSXODWLRQ FHQVXVHV RI 7XUNH\ DQG SRSXODWLRQ SURMHFWLRQV IRU GRPDLQV 'RPDLQ 3UHYLRXV 3URMHFWHG ZHLJKWV RI $PRXQW RI /DWHVW $QQXDO $GMXVWHG SRSXODWLRQ SRSXODWLRQ JURZWK UDWH SRSXODWLRQ SURMHFWHG SRSXODWLRQ SURMHFWLRQ 'RPDLQV FHQVXV RI SRSXODWLRQ IRU SODQQHG SRSXODWLRQ DGMXVWPHQWV IRU SODQQHG FHQVXV IRU h 2000-2012 October IRU October VXUYH\ VXUYH\ GRPDLQV 1990 2000 October October k k Wh k k 2012 2012 h G Nh Nh rÖ k NÖ h h a k Nh 224 T. Ünalan, H. Ö. Ayhan: Probability sample … Table 1. 5HFHQW SRSXODWLRQ FHQVXVHV RI 7XUNH\ DQG SRSXODWLRQ SURMHFWLRQV IRU GRPDLQV FRQW 'RPDLQ 3URMHFWHG ZHLJKWV RI $PRXQW RI $GMXVWHG /DWHVW $QQXDO 3UHYLRXV SRSXODWLRQ SRSXODWLRQ JURZWK UDWH SRSXODWLRQ SURMHFWHG SRSXODWLRQ SURMHFWLRQ 'RPDLQV FHQVXV FHQVXV RI SRSXODWLRQ IRU SODQQHG SRSXODWLRQ DGMXVWPHQWV IRU SODQQHG h IRU October 2000-2012 IRU October VXUYH\ VXUYH\ 2000 GRPDLQV 1990 October October k k Wh 2012 2012 h Gh N k N k rÖ a k Nh k NÖ h h h 56473035 67803927 0.0182857 1.010516 - 887959 84440600 85328559 Total 84440600 Source: Partly based on T.S.I. (2003). 7KH GLIIHUHQFH EHWZHHQ WKH overall total projection DQG WKH sum of the domain projections VLPSO\ DULVHV IURP WKH IDFW WKDW LQ k+1 WKH IDVW JURZLQJ FRPSRQHQWV h KDYH EHFRPH ELJJHU WKDQ WKH\ ZHUH LQ k KHQFH DVVXPLQJ rh YDOXHV WR EH FRQVWDQW IURP k+1 WR k+2 ZLOO DOZD\V JLYH ODUJHU VXP RI WKH GRPDLQ SURMHFWLRQV FRPSDUHG WR DVVXPLQJ r WR EH FRQVWDQW ZKLFK JLYHV RYHUDOO WRWDO SURMHFWLRQ 7KLV PDWKHPDWLFDO QHFHVVLW\ KDUGO\ QHHGV QXPHULFDO LOOXVWUDWLRQ RI WKLV W\SH XQOHVV WKH GLVFUHSDQF\ LV DQDO\VHG HJ DV D IXQFWLRQ RI WKH YDULDWLRQ LQ rh LI rh FRQVWDQW U WKHQ WKH WZR WRWDO SURMHFWLRQV ZLOO EH LGHQWLFDO 5.1. Comparison of overall selection probabilities for households 2YHUDOO VHOHFWLRQ SUREDELOLWLHV IRU KRXVHKROGV FDQ EH GHWHUPLQHG IURP WKH KRXVHKROG EDVHG LQIRUPDWLRQ RI WKH SRSXODWLRQ LQIRUPDWLRQ IRU HDFK GRPDLQ 7KLV LQIRUPDWLRQ FDQ EH REWDLQHG E\ GLYLGLQJ WKH WRWDO SRSXODWLRQ RI HDFK GRPDLQ E\ WKH FRUUHVSRQGLQJ DYHUDJH KRXVHKROG VL]H IRU WKLV GRPDLQ 225 STATISTICS IN TRANSITION-new series, Summer 2013 +HUH NÖ h k Hh S Hh MÖ h S ¦ H hi ZKHUH h DYHUDJH KRXVHKROG VL]H LV ZKHUH S LV WKH QXPEHU RI VXEGRPDLQV 7KH RYHUDOO VHOHFWLRQ i SUREDELOLW\ RI WKH GRPDLQV ZLOO EH HTXDO WR WKH RYHUDOO VDPSOLQJ IUDFWLRQV 7KDW LV Pr Fh( DU ) f h( DU ) mh ˆ M h h 2YHUDOO VDPSOH VHOHFWLRQ SUREDELOLWLHV IRU KRXVHKROGV FDQ EH GHWHUPLQHG E\ REWDLQLQJ KRXVHKROG EDVHG LQIRUPDWLRQ IURP WKH SRSXODWLRQ LQIRUPDWLRQ IRU HDFK GRPDLQ 7KLV LQIRUPDWLRQ FDQ EH REWDLQHG E\ GLYLGLQJ WKH WRWDO SRSXODWLRQ RI HDFK GRPDLQ E\ WKH FRUUHVSRQGLQJ DYHUDJH KRXVHKROG VL]H IRU WKLV GRPDLQ ZKLFK LV JLYHQ LQ 7DEOH 7KH RYHUDOO VHOHFWLRQ SUREDELOLW\ RI WKH GRPDLQV ZLOO EH HTXDO WR WKH RYHUDOO VDPSOLQJ IUDFWLRQV ,Q WKLV VWXG\ RYHUDOO VHOHFWLRQ SUREDELOLWLHV DUH FRPSDUHG IRU SURMHFWHG DQG QRQSURMHFWHG SRSXODWLRQV 7KH UHVXOWV KDYH LQGLFDWHG XQGHUUHSUHVHQWDWLRQ LQ WKH SUREDELOLWLHV RI VHOHFWLRQ IRU QRQSURMHFWHG SRSXODWLRQV DQG FRQVHTXHQWO\ WKH VHOHFWHG VDPSOH HVWLPDWHV ZLOO DOVR EH ELDVHG Table 2. &RPSDUDWLYH HVWLPDWHV RI VHYHUDO SRSXODWLRQ VL]HV 'RPDLQV H /DWHVW FHQVXV SRSXODWLRQ +RXVHKROG VXUYH\ SRSXODWLRQ NÖ h k N h k Total $YHUDJH VL]H RI KRXVHKROGV 67803927 Hh 85328559 4.50 1R RI 3RSXODWLRQ KRXVHKROGV MÖ h 18961902 :KHQ LQIRUPDWLRQ IRU LQVWLWXWLRQDO SRSXODWLRQ DQG PRELOH SRSXODWLRQV DUH QRW DYDLODEOH WKHQ XQIRUWXQDWHO\ WKH SURMHFWHG WRWDO VXUYH\ SRSXODWLRQ DQG KRXVHKROG VXUYH\ SRSXODWLRQ KDV WR EH WDNHQ DV HTXDO 7KDW LV NÖ h k > a N h k N h INS N h MOB @ a N h k NÖ h k 226 T. Ünalan, H. Ö. Ayhan: Probability sample … &RPSXWHG VDPSOH VL]HV RI GRPDLQV IRU IL[HG VDPSOLQJ IUDFWLRQV DUH JLYHQ LQ 7DEOH Table 3. &RPSXWHG VDPSOH VL]H RI GRPDLQV IRU D IL[HG VDPSOLQJ IUDFWLRQ RI fh 6DPSOH VL]H EDVHG RQ ODWHVW FHQVXV RI 'RPDLQV h 6DPSOH VL]H RI KRXVHKROG VXUYH\ SRSXODWLRQ IRU nh k nh k Total 67805 6DPSOH VL]H RI KRXVHKROGV IRU mh 85329 18962 5.2. Alternative sampling fractions A. For a fixed overall sampling fraction (1). %DVHG RQ WKH SRSXODWLRQ IURP WKH ODWHVW SRSXODWLRQ FHQVXV UHVXOWV f k h nh k N h k k h F DQG f k (2). %DVHG RQ WKH SRSXODWLRQ IURP WKH DGMXVWHG SRSXODWLRQ SURMHFWLRQ UHVXOWV f k h nh k NÖ k h f k Fh k DQG VLPLODUO\ 227 STATISTICS IN TRANSITION-new series, Summer 2013 :KHQ WKHUH DUH QR YDOXHV IRU LQVWLWXWLRQDO DQG PRELOH SRSXODWLRQ WKH UHVXOWLQJ YDOXHV ZLOO EH WKH VDPH HVWLPDWHV IRU DOO VWUDWD (3). %DVHG RQ WKH QXPEHU RI GZHOOLQJ XQLWV RU KRXVHKROGV IURP WKH HVWLPDWHG KRXVHKROG SRSXODWLRQ UHVXOWV mh MÖ f h DU DQG DU h F h f DU . 7KH gain DQG relative gain IURP DOWHUQDWLYH VDPSOH VL]HV FDQ EH H[DPLQHG E\ XVLQJ WKH IROORZLQJ IRUPXODWLRQ 7KH JDLQ LQ VDPSOH VL]H n k n k G n 7KH UHODWLYH JDLQ LQ VDPSOH VL]H RG n >n k n k @ n k > @ 7KLV UHIOHFWV XQGHUUHSUHVHQWDWLRQ RI VDPSOH VHOHFWLRQ SUREDELOLW\ RYHU WKH WZHOYH \HDU SHULRG $V DQ DOWHUQDWLYH LW LV SRVVLEOH WR FRPSDUH DOWHUQDWLYH VHOHFWLRQ SUREDELOLWLHV IRU WKH FDVH RI D IL[HG VDPSOH VL]H $OO WKLV PHUHO\ VD\V WKDW LI D VDPSOH LV VHOHFWHG RQO\ IURP SDVW OLVWV RI HOHPHQWDU\ XQLWV D QRPLQDO I ZRXOG JLYH VPDOOHU Q RU WR JHW D JLYHQ Q ZRXOG QHHG ODUJHU I ± FRPSDUHG WR LI WKH VDPH SURFHGXUH ZHUH DSSOLHG WR XSGDWHG OLVWV 7KH HODERUDWHG DQG RIWHQ UHSHDWHG FRPSXWDWLRQV DGG OLWWOH WR WKLV EDVLF SRLQW 3URMHFWHG SRSXODWLRQ LI DFFXUDWH WHOOV XV E\ KRZ PXFK n n f f N ( k ) . N ( k ) B. For a fixed sample size (1). )L[HG VDPSOH VL]H LV XVHG IURP WKH ODWHVW SRSXODWLRQ FHQVXV UHVXOWV nh k f h k N h k DQG n k f k N k k )RU WKLV FDVH WKH VDPH IL[HG VDPSOH VL]H n LV XVHG LQ IXWXUH VDPSOH VHOHFWLRQV 7KH gain DQG relative gain IURP IL[HG VDPSOH VL]HV FDQ EH H[DPLQHG E\ XVLQJ WKH IROORZLQJ UHODWLRQ 7KH JDLQ LQ VDPSOLQJ IUDFWLRQ LV 228 T. Ünalan, H. Ö. Ayhan: Probability sample … f k f k G f 7KH UHODWLYH JDLQ LQ VDPSOLQJ IUDFWLRQ LV RG f RG f > @ ZKHUH f ( k ) f ( HH ) nh( k ) Nˆ h( k ) >f ( HH ) f ( k ) @ f ( HH ) nh( k ) . ( k ) Nh . (2). ([SDQVLRQ IDFWRU FDQ DOVR EH XVHG IRU FRPSDULVRQ 7KH UHODWLYH JDLQ LQ H[SDQVLRQ IDFWRUV RG F >F RG F > @ k F k @ F k $JDLQ WKH FRPSDULVRQ UHIOHFWV XQGHUUHSUHVHQWDWLRQ IRU VDPSOH VHOHFWLRQ SUREDELOLW\ RYHU WKH VSHFLILHG SHULRG 6. Conclusions 7KLV VWXG\ UHIOHFWHG WKH UHVXOWV RI WKH LPSRUWDQFH RI WKH XSGDWHG SRSXODWLRQ FRXQWV DV WKH EDVLV IRU UHSUHVHQWDWLYH VDPSOH VHOHFWLRQ 7KH HDUOLHU FRPSXWDWLRQV EDVHG RQ FHQVXV GDWD UHIOHFWV WKH SRSXODWLRQ XQGHUFRYHUDJH HUURU ZKHQ FRPSDUHG WR UHVXOWV ZKLFK DUH EDVHG RQ ODWHVW DGMXVWHG PHWKRGRORJLHV &RPSDULVRQ RI UHODWLYH JDLQV FDQ EH LQWHUSUHWHG GLIIHUHQWO\ IRU D IL[HG VDPSOH VL]H DQG IRU D IL[HG VDPSOLQJ IUDFWLRQ ,Q ERWK FDVHV WKH ODWHVW DQG PRUH UHILQHG LQIRUPDWLRQ SURYLGHV EHWWHU UHSUHVHQWDWLRQ RI WKH SRSXODWLRQ FRYHUDJH 5DWKHU WKDQ XVLQJ XSGDWHG SRSXODWLRQ SURMHFWLRQV WKH XVH RI WKH ODWHVW SRSXODWLRQ FRXQWV DUH YHU\ FRPPRQ LQ GHYHORSLQJ FRXQWULHV 7KHVH ILJXUHV DUH FUHDWLQJ XQGHUFRYHUDJH HUURU DQG VHULRXV ELDV IRU SRSXODWLRQ UHSUHVHQWDWLRQ 6DPSOH DOORFDWLRQ LQWR VXEGRPDLQV FDQ DOVR EH PDGH E\ WDNLQJ WKH XUEDQUXUDO SURSRUWLRQV RI WKH ODWHVW SRSXODWLRQ FHQVXV DV ZHLJKWV IRU WKH SURSRUWLRQDO DOORFDWLRQ ZLWKLQ WKH VWDWHG GRPDLQV population size of 20000 was taken as boundary value for urban/rural domains )RU WKH VDPSOH GHVLJQ WKHUH PD\ EH RWKHU UHTXHVWV WR KDYH LQGHSHQGHQW XUEDQ DQG UXUDO GRPDLQV IRU LQIHUHQFH REMHFWLYHV ,Q WKLV FDVH VHSDUDWH SRSXODWLRQ SURMHFWLRQV KDYH WR EDVH RQ XUEDQ DQG STATISTICS IN TRANSITION-new series, Summer 2013 229 UXUDO EUHDNGRZQV ,Q DGGLWLRQ VDPSOH DOORFDWLRQV LQ VXEGRPDLQV ZLOO DOVR EH WDNLQJ FDUH RI WKH ³VL]H JURXSV RI VHWWOHPHQWV´ 7KH ILQGLQJV IURP FRPSDUDWLYH UHVXOWV RI WKH FDVH VWXG\ LQGLFDWHG WKDW IRU D IL[HG RYHUDOO VDPSOLQJ IUDFWLRQ WKH JDLQ LQ VDPSOH VL]H ZDV DQG WKH UHODWLYH JDLQ LQ VDPSOH VL]H UHIOHFWV XQGHUUHSUHVHQWDWLYH VDPSOH VHOHFWLRQ SUREDELOLW\ RYHU WKH WZHOYH\HDU SHULRG 7KH JDLQ DQG WKH UHODWLYH JDLQ LQ VDPSOLQJ IUDFWLRQ DUH IRXQG WR EH 2Q WKH RWKHU KDQG WKH JDLQ GXH WR WKH FRPSDULVRQ RI WKH H[SDQVLRQ IDFWRUV ZDV 7KHVH UHVXOWV FOHDUO\ VKRZ WKDW WKH XVH RI QHZ SUREDELOLWLHV latest overall sampling fractions ZLOO UHIOHFW EHWWHU UHSUHVHQWDWLRQ RI WKH SRSXODWLRQ ZKHQ FRPSDUHG WR ROG VHOHFWLRQ SUREDELOLWLHV Acknowledgements 7KH DXWKRUV DUH JUDWHIXO WR 3URIHVVRU 9LMD\ 9HUPD 'HSDUWPHQW RI 0HWKRGRORJ\ 8QLYHUVLW\ RI 6LHQD ,WDO\ IRU KLV YDOXDEOH FRPPHQWV RQ WKH HDUOLHU GUDIW RI WKLV SDSHU :H DOVR ZRXOG OLNH WR WKDQN WKH HGLWRU DVVRFLDWH HGLWRU DQG WKH UHIHUHHV RI WKLV MRXUQDO IRU YHU\ FRQVWUXFWLYH FRPPHQWV ZKLFK LPSURYHG WKH SDSHU LQ PDQ\ ZD\V REFERENCES $/+2 - 0 63(1&(5 % ' 6WDWLVWLFDO 'HPRJUDSK\ DQG )RUHFDVWLQJ 6SULQJHU 1HZ <RUN $<+$1 + g (.1, 6 &RYHUDJH (UURU LQ 3RSXODWLRQ &HQVXVHV 7KH &DVH RI 7XUNH\ 6XUYH\ 0HWKRGRORJ\ ± %21*$$576 - %8/$7$2 5 $ HGLWRUV %H\RQG 6L[ %LOOLRQ )RUHFDVWLQJ WKH :RUOG¶V 3RSXODWLRQ 3DQHO RQ 3RSXODWLRQ 3URMHFWLRQV 1DWLRQDO $FDGHP\ 3UHVV :DVKLQJWRQ ' & &2; 3 'HPRJUDSK\ &DPEULGJH 8QLYHUVLW\ 3UHVV &DPEULGJH '$9,6 + & 'HPRJUDSKLF 3URMHFWLRQ 7HFKQLTXHV IRU 5HJLRQV DQG 6PDOOHU $UHDV $ 3ULPHU 8%& 3UHVV 9DQFRXYHU *52(1(:2/' * 1$9$1((7+$0 . 7KH 3URMHFWLRQ RI 3RSXODWLRQV 'DWD $SSUDLVDO %DVLF 0HWKRGV DQG $SSOLFDWLRQV &HQWUH IRU 'HYHORSPHQW 6WXGLHV DQG 81 3RSXODWLRQ )XQG .HUDOD +,1'( $ 'HPRJUDSKLF 0HWKRGV $UQROG 3XEOLVKHUV /RQGRQ /((7( 5 3HRSOH 8VHU V 0DQXDO 2YHUVHDV 'HYHORSPHQW $GPLQLVWUDWLRQ 8QLWHG .LQJGRP DQG (FRQRPLF 3ODQQLQJ 8QLW .XDOD /XPSXU PEOPLE Version 2.0 230 T. Ünalan, H. Ö. Ayhan: Probability sample … /87= : 9$83(/ - : $+/%85* ' $ HGLWRUV )URQWLHUV RI 3RSXODWLRQ )RUHFDVWLQJ $ 6XSSOHPHQW WR 9RO 3RSXODWLRQ DQG 'HYHORSPHQW 5HYLHZ 3RSXODWLRQ &RXQFLO 1HZ <RUN 1(:(// & 0HWKRGV DQG 0RGHOV LQ 'HPRJUDSK\ %HOKDYHQ 3UHVV /RQGRQ 32//$5' $ + <868) ) 32//$5' * 1 'HPRJUDSKLF 7HFKQLTXHV 3HUJDPRQ 3UHVV 6\GQH\ 35(6721 6 + +(89(/,1( 3 *8,//27 0 'HPRJUDSK\ 0HDVXULQJ DQG 0RGHOLQJ 3RSXODWLRQ 3URFHVVHV %ODFNZHOO 3XEOLVKHUV 2[IRUG 52:/$1' ' 7 'HPRJUDSKLF 0HWKRGV DQG &RQFHSWV 2[IRUG 8QLYHUVLW\ 3UHVV 2[IRUG 6+257(5 ) 6(1'(. 5 %$<280< < &RPSXWDWLRQDO 0HWKRGV IRU 3RSXODWLRQ 3URMHFWLRQV :LWK 3DUWLFXODU 5HIHUHQFH WR 'HYHORSPHQW 3ODQQLQJ 6HFRQG (GLWLRQ 7KH 3RSXODWLRQ &RXQFLO 1HZ <RUN FIVFIV Version 11.0 6+5<2&. + 6 6,(*(/ - 6 DQG DVVRFLDWHV 7KH 0HWKRGV DQG 0DWHULDOV LQ 'HPRJUDSK\ $FDGHPLF 3UHVV ,QF )ORULGD 67$7( ,167,787( 2) 67$7,67,&6 7KH 3RSXODWLRQ RI 7XUNH\ ± 'HPRJUDSKLF 6WUXFWXUH DQG 'HYHORSPHQW :LWK 3URMHFWLRQV WR WKH 0LG VW &HQWXU\ 6WDWH ,QVWLWXWH RI 6WDWLVWLFV 3XEOLFDWLRQ 1R $QNDUD 7XUNH\ 6729(5 - 'HPSURM $ 'HPRJUDSKLF 3URMHFWLRQ 0RGHO IRU 'HYHORSPHQW 3ODQQLQJ 7KH )XWXUHV *URXS *ODVWRQEXU\ DEMPROJ Version 3.0 7 6 , &HQVXV RI 3RSXODWLRQ 6RFLDO DQG (FRQRPLF &KDUDFWHULVWLFV RI 3RSXODWLRQ 7XUNH\ 7XUNLVK 6WDWLVWLFDO ,QVWLWXWH 3XEOLFDWLRQ 1XPEHU $QNDUD 7XUNH\ 81,7(' 1$7,216 3URMHFWLRQ 0HWKRGV IRU ,QWHJUDWLQJ 3RSXODWLRQ 9DULDEOHV LQWR 'HYHORSPHQW 3ODQQLQJ 9ROXPH , 0HWKRGV IRU &RPSUHKHQVLYH 3ODQQLQJ 0RGXOH 2QH &RQFHSWXDO ,VVXHV DQG 0HWKRGV IRU 3UHSDULQJ 'HPRJUDSKLF 0HWKRGV 8QLWHG 1DWLRQV 3XEOLFDWLRQV 67(6$6(55$GG 1HZ <RUN 81,7(' 1$7,216 3URMHFWLRQ 0HWKRGV IRU ,QWHJUDWLQJ 3RSXODWLRQ 9DULDEOHV LQWR 'HYHORSPHQW 3ODQQLQJ 9ROXPH , 0HWKRGV IRU &RPSUHKHQVLYH 3ODQQLQJ 0RGXOH 7ZR 0HWKRGV IRU 3UHSDULQJ 6FKRRO (QUROPHQW /DERXU )RUFH DQG (PSOR\PHQW 3URMHFWLRQV 8QLWHG 1DWLRQV 3XEOLFDWLRQV 67(6$6(55$GG 1HZ <RUN 9$1 ,0+2)) ( .(,/0$1 1 /,352 $Q $SSOLFDWLRQ RI D '\QDPLF 'HPRJUDSKLF 3URMHFWLRQ 0RGHO WR +RXVHKROG 6WUXFWXUH LQ WKH 1HWKHUODQGV 1HWKHUODQGV ,QWHUGLVFLSOLQDU\ 'HPRJUDSKLF ,QVWLWXWH 7KH +DJXH 1HWKHUODQGV 9$1 ,0+2)) ( /LSUR 8VHU V *XLGH 1HWKHUODQGV ,QWHUGLVFLSOLQDU\ 'HPRJUDSKLF ,QVWLWXWH 7KH +DJXH LIPRO Version 3.0 STATISTICS IN TRANSITION new series, Summer 2013 231 STATISTICS IN TRANSITION new series, Summer 2013 Vol.14, No. 2, pp. 231-248 SAMPLING DESIGNS PROPORTIONATE TO SUM OF TWO ORDER STATISTICS OF AUXILIARY VARIABLE Janusz L. Wywiał1 ABSTRACT In this paper the case of a conditional sampling design proportional to the sum of two order statistics is considered. Several strategies including the Horvitz-Thompson estimator and ratio-type estimators are discussed. The accuracy of these estimators is analyzed on the basis of computer simulation experiments. Key words: sampling design, order statistic, sample quantile, auxiliary variable, Horvitz-Thompson statistic, inclusion probabilities, sampling scheme, ratio estimator. 1. Introduction Sampling designs are usually constructed on the basis of an auxiliary variable observations in order to improve the accuracy of estimation of population parameters. For instance, the sampling design of Lahiri (1951), Midzuno (1952) and Sen (1953) proportional to the sample mean of the positive valued auxiliary variable leads to unbiasednees of the well known ordinary ratio estimator. Wywial (2008, 2009) proposed sampling designs dependent on order statistics of the auxiliary variable. Here that approach is continued because the sampling design proportional to the sum of two auxiliary variable order statistics is proposed. The conditional version of this sampling design is considered in order to improve the estimation effects. The review of the sampling designs or schemes dependent on auxiliary variables and their conditional versions is considered by Till´e (2006). 1 Katowice University of Economics, Poland, [email protected]. 232 Janusz L. Wywiał: Sampling designs proportionate to sum ... 2. Sampling design Let U be a fixed population of the size N . The observation of a variable under study and of an auxiliary variable are denoted by yi and xi , i = 1, . . . , N , respectively. Moreover, let 0 < xi ≤ xi+1 , i = 1, . . . , N − 1. Our problem is the estimation of the population average y¯ = N1 k∈U yk . Let us consider the sample space S of the samples s of the fixed effective size 1 < n < N . The sampling design is denoted by P (s), so P (s) ≥ 0 for all s ∈ S and s∈S P (s) = 1. Let (X(j) ) be the sequence of the order statistics of observations of auxiliary variable in the sample s. It is well known that the sample quantile of the order α ∈ (0; 1) is defined as follows: Qs,α = X(r) where r = [nα] + 1, the function [nα] means the integer part of the value nα, r = 1, 2, ..., n. Let us note that X(r) = Qs,α for r−1 ≤ α < nr . In this paper it will be more conven nient to consider the order statistic rather than the quantile. Let G(r, u, i, j) = {s : X(r) = xi , X(u) = xj }, r = 1, .., n − 1; u = 2, ..., n, r < u be the set of all samples whose r -th and u -th order statistics of the auxiliary variable are equal to xi and xj , respectively, where r ≤ i < j ≤ N − n + u. N −n+r N −n+u G(r, u, i, j) = S. i=r (1) j=i+u−r The size of the set G(r, u, i, j) is denoted by g(r, u, i, j) = Card(G(r, u, i, j)) and i−1 j−i−1 N −j g(r, u, i, j) = , (2) r−1 u−r−1 n−u N n N −n+r N −n+u = Card(S) = Card j=i+u−r N −n+r N −n+u = = G(r, u, i, j) i=r N −n+r N −n+u Card(G(r, u, i, j)) = i=r j=i+u−r g(r, u, i, j), i=r P X(r) = xi , X(u) = xj = j=i+u−r g(r, u, i, j) N n . (3) Let h(xj , xi ) be a non-negative function of values xj , xi of the order statistics X(u) and X(r) , respectively. Moreover let f (xj , xi , c) = h(xj , xi ) if h(xj , xi ) ≥ c, 0 f or h(xj , xi ) < c. (4) STATISTICS IN TRANSITION new series, Summer 2013 233 and N −n+r N −n+u z(r, u, c) = f (xj , xi , c)g(r, u, i, j). i=r (5) j=i+u−r The straightfoward generalization of the Wywiał’s (2009) sampling design is as follows. Definition 1.1. The conditional sampling design proportional to the nonnegative functions of the order statistics X(u) , X(r) is as follows: Pr,u (s|c) = f (xj , xi , c) z(r, u, c) for s ∈ G(r, u, i, j) (6) where i < j, r ≤ i ≤ N − n + r and r < u ≤ j ≤ N − n + u, 0 ≤ c ≤ c0 . As it is well known, the inclusion probability of the first order is determined by the equations: πk (r, u, c) = Pr,u (s : k ∈ s|c) = {s:k∈s} Pr,u (s|c), k = 1, ..., N. Now, the upper possible value c0 of the constant c should be stated in such a way that πk (r, u, c) > 0 for all k = 1, ..., N . It is important because under the just defined condition the well known Horvitz-Thompson estimator (considered in the sections 3) is unbiased for the a population mean. The above defined sampling design is treated as conditional (unconditional) when c > 0 (c = 0), see the definition of the conditional sampling design considered by Till´e (1999, 2006). Particularly, let h(xj , xi ) = xj + xi . Thus f (xj , xi , c) = xj + xi f or xj + xi ≥ c, 0 f or xj + xi < c. (7) We have to assume that 0 ≤ c ≤ c0 = x1 + xN . Thus, under this assumption the inclusion probabilities πN (r, u, c) > 0 for all i = 1, ..., N . When c > c0 , x1 + xi < c for all i = 2, ..., N and π1 (r, u, c) = 0 and πk (r, u, c) ≥ 0 for k = 2, ..., N . In this case, as it is well known, the Horvitz-Thompson’s statistic is a biased estimator of the population mean. Let δ(x) be such a function that if x ≤ 0 then δ(x) = 0 otherwise δ(x) = 1. Moreover, δ(x)δ(x − 1) = δ(x − 1). The following two theorems are the straightforward generalizations of those ones proved by Wywiał(2009). 234 Janusz L. Wywiał: Sampling designs proportionate to sum ... Theorem 1. The inclusion probabilities of the first order for the conditional sampling design Pr,u (s|c) are as follows: πk (r, u, c) = 1 = δ(r − 1) z(r, u, c) j−i−1 u−r−1 N −n+r N −n+u i=rδ(r−k)+(k−1)δ(k+1−r)δ(N −n+r−k) j=i+u−r i−2 r−2 N −j f (xj , xi , c) + δ(k − r)δ(N − n + u − k)δ(u − r − 1) n−u min(k−1,N −n+r) N −n+u i=r j=max(i+u−r,k+1) i−1 r−1 j−i−2 u−r−2 N −j f (xj , xi , c)+ n−u + δ(k − u)δ(n − u)δ(N − n + u − k + 1) k−u+r−1 k−1 i=r j=i+u−r i−1 r−1 j−i−1 u−r−1 N −n+r N −n+u δ(k−N +n−u) i=r j=i+u−r i−1 r−1 N −j−1 f (xj , xi , c) + δ(n − u) n−u−1 j−i−1 u−r−1 + δ(k + 1 − r)δ(N − n + r − k + 1) N −n+u j=k+u−r j−k−1 u−r−1 N −j−1 f (xj , xi , c)+ n−u−1 k−1 r−1 N −j f (xj , xk , c)+δ(k−u+1)δ(N −n+u−k+1) n−u N −k n−u k−u+r i=r i−1 r−1 k−i−1 f (xk , xi , c) u−r−1 (8) Theorem 2. The inclusion probabilities of the second order for the conditional sampling design Pr,u (s|c) are as follows: πk,t (r, u, c) = P (k, t ∈ s1 )+P k ∈ s1 , X(r) = xt +P (k ∈ s1 , t ∈ s2 ) + + P k ∈ s1 , X(u) = xt + P (k ∈ s1 , t ∈ s3 ) + P X(r) = xk , t ∈ s2 + + P X(r) = xk , X(u) = xt + P X(r) = xk , t ∈ s3 + P (k, t ∈ s2 ) + + P k ∈ s2 , X(u) = xt + P (k ∈ s2 , t ∈ s3 ) + P X(u) = xk , t ∈ s3 + + P (k, t ∈ s3 ) (9) 235 STATISTICS IN TRANSITION new series, Summer 2013 where P (k, t ∈ s1 ) = δ(r − 2)δ(N − n + r − t) · z(r, u) N −n+r N −n+u i−3 r−3 · i=max(r,t+1) j=i+u−r j−i−1 u−r−1 N −j f (xj , xi , c). n−u P k ∈ s1 , X(r) = xt = = δ(r − 1)δ(N − n + r − k)δ(N − n + r + 1 − t)δ(t + 1 − r) · z(r, u) · t−2 r−2 N −n+u j−t−1 u−r−1 j=t+u−r N −j f (xj , xt , c), n−u P (k ∈ s1 , t ∈ s2 ) = δ(N − n + r − k)· · δ(t − r)δ(r − 1)δ(u − r − 1)δ(N − n + u − t)δ(t − k − 1) · z(r, u) min(t−1,N −n+r) N −n+u i=max(r,k+1) j=max(t+1,i+u−r) · i−2 r−2 j−i−2 u−r−2 N −j f (xj , xi , c), n−u P k ∈ s1 , X(u) = xt = δ(N − n + r − k)· · δ(t + 1 − u)δ(N − n + u + 1 − t)δ(t − k − u + r)δ(r − 1) · z(r, u) N −t · n−u t−u+r i=max(r,k+1) i−2 r−2 t−i−1 f (xt , xi , c), u−r−1 P (k ∈ s1 , t ∈ s3 ) = = δ(N − n + r − k)δ(t − u)δ(r − 1)δ(n − u)δ(t − k − u + r − 1) · z(r, u) min(t−u+r−1,N −n+r) min(t−1,N −n+u) · i=max(r,k+1) j=i+u−r i−2 r−2 j−i−1 u−r−1 N −j−1 · n−u−1 · f (xj , xi , c), 236 Janusz L. Wywiał: Sampling designs proportionate to sum ... P X(r) = xk , t ∈ s2 = = δ(k + 1 − r)δ(N − n + r + 1 − k)δ(t − r)δ(N − n + u − t)δ(u − r − 1) · z(r, u) · k−1 r−1 N −n+u j=max(t+1,k+u−r) j−k−2 u−r−2 N −j f (xj , xk , c), n−u P X(r) = xk , X(u) = xt = = δ(k + 1 − r)δ(N − n + r + 1 − k)δ(t + 1 − u)δ(N − n + u − t + 1) · z(r, u) k−1 t−k−1 N −t · δ(t + 1 − k − u + r) f (xt , xk , c), r−1 u−r−1 n−u P X(r) = xk , t ∈ s3 = = δ(k + 1 − n)δ(N − n + r + 1 − k)δ(t − u)δ(n − u)δ(t − k − u + r) · z(r, u) · k−1 r−1 P (k, t ∈ s2 ) = min(t−1,N −n+u) j−k−1 u−r−1 j=k+u−r N −j−1 f (xj , xk , c), n−u−1 δ(k − r)δ(N − n + u − t)δ(u − r − 2) · z(r, u) min(k−1,N −n+r) N −n+u i=r j=max(t+1,i+u−r) · i−1 r−1 j−i−3 u−r−3 N −j f (xj , xi , c), n−u P k ∈ s2 , X(u) = xt = = δ(k − r)δ(N − n + u − k)δ(t + 1 − u)δ(N − n + u + 1 − t)δ(u − r − 1) · z(r, u) N −t · n−u min(k−1,t−u+r) i=r i−1 r−1 t−i−2 f (xt , xi , c), u−r−2 237 STATISTICS IN TRANSITION new series, Summer 2013 P (k ∈ s2 , t ∈ s3 ) = = δ(k − r)δ(N − n + u − k)δ(t − u)δ(t − k − 1)δ(u − r − 1)δ(n − u) · z(r, u) min(k−1,t−u+r−1,N −n+r) min(t−1,N −n+u) i−1 r−1 · i=r j=max(i+u−r,k+1) j−i−2 u−r−2 N −j−1 · n−u−1 · f (xj , xi , c), P X(u) = xk , t ∈ s3 = = δ(k + 1 − u)δ(N − n + u + 1 − k)δ(t − u)δ(n − u) · z(r, u) N −k−1 · n−u−1 P (k, t ∈ s3 ) = k−n+r i=r i−1 r−1 k−i−1 f (xk , xi , c), u−r−1 δ(k − u)δ(n − u − 1) · z(r, u) min(N −n+r,k−1−u+r) min(k−1,N −n+u) · i=r j=i+u−r i−1 r−1 j−i−1 u−r−1 N −j−2 · n−u−2 · f (xj , xi , c). 3. Sampling scheme The sampling scheme implementing the sampling design Pr,u (s|c) is as follows. Firstly, population elements are ordered according to increasing values of the auxiliary variable. Let s = s1 ∪ {i} ∪ s3 ∪ {j} ∪ s3 where s1 = {k : k ∈ U, xk < xi } is the simple random sample of the size r − 1 drawn without replacement from the subpopulation U (1, i − 1) = (1, ..., i − 1), s2 = {k : k ∈ U, xj > xk > xi } is the simple random sample of the size u − r − 1 drawn without replacement from U (i + 1, j − 1) = (i + 1, ..., j − 1) and s3 = {k : k ∈ U, xk > xj } s the simple random sample of the size n − u drawn without replacement from U (j + 1, N ) = (j + 1, ..., N ). Let us note that U = U (1, i − 1) ∪ {i} ∪ U (i + 1, j − 1) ∪ {j} ∪ U (j + 1, N ). Let S (U (1, i − 1); s) be sample space of the sample s1 , let S (U (i + 1, j − 1); s) be sample space of the sample s2 and let S (U (j + 1, N ); s) be sample space of the sample s3 . Moreover, S = S (U, s)). 238 Janusz L. Wywiał: Sampling designs proportionate to sum ... The sampling scheme is given by the following probabilities: Pr,u (s|c) = P1 (s1 |i)pr,u (i|c)P2 (s2 |i, j)pr,u (j|i, c)P3 (s3 |j) (10) where P1 (s1 |i) = i−1 r−1 −1 , P2 (s2 |i, j) = j−i−1 u−r−1 −1 , P3 (s3 |j) = N −j n−u pr,u (i, j|c) , pr,u (i|c) f (xj , xi , c)g(r, u, i, j) , Pr,u (s) = z(r, u, c) pr,u (j|i, c) = pr,u (i, j|c) = s∈G(r,u,i,j) −1 , (11) (12) N −n+u 1 pr,u (i|c) = f (xj , xi , c)g(r, u, i, j). z(r, u, c) j=i+u−r (13) In order to select the sample s, firstly the i-th element of the population should be selected according to the probability function pr,u (i|c). Next, the j-the element of the population should be drawn according to the probability function pr,u (j|i, c). Finally, the samples s1 , s2 and s3 should be selected according to the sampling designs P1 (s1 ), P2 (s2 ) and P3 (s3 ), respectively. 4. Some sampling strategies The well known Horvitz-Thompson estimator (1952) is as follows: y¯HT,s = 1 N k∈s yk . πk (14) The statistic is unbiased estimator of the population mean value if πk > 0 for k = 1, ..., N . The variance and its estimator are determined by the expressions (20) and (22), respectively. The particular case of the above estimator is the well known sampling design of the simple random sample drawn without replacement whose sam−1 pling design is: P0 (s) = Nn . The variance of the mean from the simple 1 random sample y¯s = n k∈s yk drawn without replacement is D2 (¯ ys , P0 (s)) = N N −n 1 2 v(y) where v(y) = N −1 k=1 (yk − y¯) . nN Let us construct the following ratio sampling strategy for the population mean y¯ = N1 i∈U yi . We assume that yi = bxi + ei for all i ∈ U, i∈U ei = 239 STATISTICS IN TRANSITION new series, Summer 2013 0 and the residuals of that linear regression function are not correlated with the auxiliary variable. Thus, it has been assumed that the intercept of the linear regression function is equal to zero. The linear correlation coefficient between the variables y and x will be denoted by ρ. Let X(r) , Yr be two dimensional random variables where X(r) is the r-th order statistic of an auxiliary variable and Yr is the variable under study. Let us define the following ratio type estimator: y¯r,u,s = y¯s E X(r) + X(u) |c X(r) + X(u) (15) where on the basis of the expressions (3) and (5) we have E X(r) + X(u) |c = N −n+r N −n+u = f (xj , xi , c)P X(r) = xi , X(u) = xj |X(r) + X(u) ≥ c = i=r j=i+u−r N −n+r N −n+u f (xj , xi , c) i=r = j=i+u−r N −n+r i=r N −n+r i=r N −n+u j=i+u−r N −n+u j=i+u−r P X(r) = xi , X(u) = xj = P X(r) + X(u) ≥ c f (xj , xi , c)g(r, u, i, j) γ(xj , xi , c)g(r, u, i, j) N −n+r N −n+u α(r, u, c) = γ(xj , xi , c)g(r, u, i, j) = i=r j=i+u−r γ(xi , xj , c) = 1 0 for for = z(r, u, c) , (16) α(r, u, c) N P X(r) + X(u) ≥ c , n xi + xj ≥ c xi + xj < c. Let Sc = {s : x(r) + x(u) ≥ c} and Sc¯ = {s : x(r) + x(u) < c} = S − Sc where (x(r) , x(u) ) are values of the order statistics (X(r) , X(u) ). More1 1 over, let y¯c = Card(S ¯s , y¯c¯ = Card(S ¯s where Card(Sc ) = s∈Sc y s∈Sc¯ y c) c ¯) α(r, u, c). Under the stated assumptions we have: E (¯ yr,u,s , Pr,u (s|c)) = y¯s s∈Sc = y¯s s∈Sc E X(r) + X(u) |c Pr,u (s|c) = x(r) + x(u) x(r) + x(u) z(r, u, c) 1 y¯s = y¯c . = Card(Sc ) s∈S α(r, u, c) x(r) + x(u) z(r, u, c) c 240 Janusz L. Wywiał: Sampling designs proportionate to sum ... Particularly, if c = 0 then Pr,u (s|0) = Pr,u (s) and E (¯ yr,u,s , Pr,u (s)) = y¯s s∈S E X(r) + X(u) 1 Pr,u (s) = N x(r) + x(u) n y¯s = y¯. s∈S These results and the decomposition: y¯ = 1 N n 1 y¯s = N n s∈S = 1 N n y¯s + s∈Sc y¯s = s∈Sc¯ (α(r, u, c)¯ yc + (1 − α(r, u, c))¯ yc¯) = = y¯c P X(r) + X(u) ≥ c + y¯c¯P X(r) + X(u) < c lead to the following expression: E (¯ yr,u,s , Pr,u (s|c)) = y¯ for c = 0 y¯ + (¯ yc − y¯c¯) P X(r) + X(u) < c c > 0. (17) the strategy for Hence, under the unconditional sampling design Pr,u (s) (¯ yr,u,s , Pr,u (s|c)) is unbiased. The next ratio type estimator, see e.g. S¨arndal at. all (1992), is as follows: y˜s = y¯HT,s x¯ (18) x¯HT,s The parameters of the strategy (˜ ys , Pr,u (s|c)) are approximately as follows: E (˜ ys , Pr,u (s|c)) ≈ y¯, ys , Pr,u (s|c)) ≈ D2 (¯ yHT,s , Pr,u (s|c))−2hCov (¯ yHT,s , x¯HT,s , Pr,u (s|c)) + D2 (˜ xHT,s , Pr,u (s|c)) (19) + h2 D2 (¯ where h = y¯ x ¯ and Cov (¯ yHT,s , x¯HT,s , Pr,u (s|c)) = 1 N2 Δk,l k∈U l∈U yk xl πk πl , (20) D2 (¯ xHT,s , Pr,u (s|c)) = Cov (¯ xHT,s , x¯HT,s , Pr,u (s|c)) , Δk,l = πk,l −πk πl , 2 D (¯ yHT,s , Pr,u (s|c)) = Cov (¯ yHT,s , y¯HT,s , Pr,u (s|c)) . 241 STATISTICS IN TRANSITION new series, Summer 2013 The variance: D2 (¯ yr,u,s , Pr,u (s|c)) can be estimated by the following approximately unbiased estimator: ˆ 2 (˜ ˆ 2 (¯ D ys , Pr,u (s|c)) = D yHT,s , Pr,u (s|c)) + ˆ 2 (¯ xHT,s , Pr,u (s|c)) (21) yHT,s , x¯HT,s , Pr,u (s|c)) + h2r,u,s D − 2hr,u,s Cov (¯ where hr,u,s = Cov (¯ yHT,s , x¯HT,s , Pr,u (s|c)) = y¯HT,s , x¯HT,s 1 N2 Δ∗,k,l k∈s l∈s yk xl πk πl , (22) Δk,l ˆ 2 (¯ , D xHT,s , Pr,u (s|c)) = Cov (¯ xHT,s , x¯HT,s , Pr,u (s|c)) , Δ∗k,l = πk,l 2 ˆ (¯ yHT,s , Pr,u (s|c)) = Cov (¯ yHT,s , y¯HT,s , Pr,u (s|c)) . D Let us remind the following ordinary ratio estimator. x¯ yˆs = y¯s . (23) x¯s The approximate value of the variance is as follows: N (N − n) D2 (ˆ ys , P0 (s)) ≈ v(y) + h2 v(x) − 2hv(x, y) n ¯)(yk − y¯) and particularly v(y) = v(y, y), where v(x, y) = N 1−1 N k=1 (xk − x v(x) = v(x, x). The approximately unbiased estimator of the variance is as follows: N (N − n) ˆ 2 (ˆ D vs (y) + h2s vs (x) − 2hs vs (x, y) , ys , P0 (s)) = n 1 where hs = xy¯¯ss , vs (x, y) = n−1 ¯s )(yk − y¯s ) and particularly k∈s (xk − x ys , P0 (s)) is approximately vs (y) = vs (y, y), vs (x) = vs (x, x). The strategy (ˆ unbiased for the population mean y¯. It is well known that the strategy (ˆ ys , P1 (s)) is unbiased for y¯ where x¯s (24) P1 (s) = N n is the sampling design of Lahiri (1951), Midzumo (1952) and Sen (1953). 5. Simulation analysis of strategies’ accuracy The population taken into account consists of the municipalities in Sweden whose number is N = 284. The value xk , k = 1, ..., N , of the auxiliary variable x is equal to the size (in thousands) of people population in the k-th 242 Janusz L. Wywiał: Sampling designs proportionate to sum ... municipality in 1975. The value yk , k = 1, .., N , of the variable under study y is the taxation revenues (in millions of kronor) from the k-th municipality in 1985. Their observations were published by S¨arndal, Swenson and Wretman (1992), pp. 652-659. number is N = 284. Figure 1. Scatterplot of y versus x. There are three outlier observations of the variable as it is shown in Figure 1. Let σ and β3 be the standard deviation and the skewness coefficient, respectively, of the auxiliary variable in the population. In case of data without outliers (the number of municipalities is 281) x¯ = 24, 263, σ = 24, 153 and β3 = 0, 043. In case of data with outliers (the number of municipalities is N=284) x¯ = 28.810, σ = 52, 873 and β3 = 8, 427. Thus, the distribution of the variable without the outliers is almost symmetric. But the distribution of the variables with outliers is highly right skewed. The samples according to the preassigned sampling design were drawn from the just presented population. The samples were replicated 1000 times. The Figure 1 shows that the dependence between the variable under study and the auxiliary variable can be approximated by means of a linear regression with its constance equal to zero. In this case, as it is well-known, the accuracies of regression type estimators of a population mean are similar to the accuracy of the ratio type estimators. Moreover, the ratio estimators are simpler than the regression ones. Thus, that is why we consider only the ratio estimator in the analysis. 243 STATISTICS IN TRANSITION new series, Summer 2013 Let M SE(t, P (s)) be the mean square error of the strategy (t, P (s)) used to estimate the population mean y¯. The coefficient of the relative efficiency is defined as follows: M SE(t, P (s)) 100% D2 (¯ ys , P0 (s)) The results of the simulation analysis are presented by Tables and Figures 2, 3. The tables show the relative efficiency coefficients. The distributions of the estimators, generated on the basis of samples of the size n = 14 drawn by means of appropriate sampling schemes are presented by means of the well-known box-plots on Figures 2 and 3. Table 1 shows the notation of the strategies. e(t, P (s)) = Table 1. The symbols of the strategies. strategy y¯s , P0 (s) yˆs , P0 (s) yˆs , P1 (s) y¯HT,s , P1 (s) y¯HT,s , Pn−1,n (s) y¯HT,s , Pn−1,n (s|3¯ x) y˜s , Pn−1,n (s) y˜s , Pn−1,n (s|3¯ x) y¯n−1,n,s , Pn−1,n (s) y¯n−1,n,s , Pn−1,n (s|3¯ x) symbol ty0 ty1 ty2 ty3 ty4 ty4d3 ty5 ty5d3 ty6 ty6d3 efficiency − e1 e2 e3 e4 e4 e5 e5 e6 e6 Table 2. The relative efficiency coefficients (%) of the strategies. N: n 2 (0,7%) 3 (1%) 6 (2%) 9 (3%) 14 (5%) 29 (10%) e1 2.50 2.88 3.09 3.28 3.42 3.22 281 e2 2.24 2.58 2.86 3.09 3.30 3.14 e3 17.62 28.10 46.62 57.95 73.59 84.51 e1 1.56 1.88 2.73 3.78 5.04 7.22 284 e2 1.15 1.35 1.96 2.66 3.62 5.92 e3 5.60 8.64 14.87 20.49 29.33 47.44 Firstly, let us consider the strategies under the unconditional sampling designs. Table 2 shows the relative efficiency coefficients of the strategies which 244 Janusz L. Wywiał: Sampling designs proportionate to sum ... do not depend on the sampling design Pr,u (s|c). The ratio estimator under the sampling design P1 (s) is slightly better than the ratio estimator under the simple random sample and they are both significantly more accurate than the Horvtiz-Thompson estimator under the sampling design P1 (s). In general, Tables 2, 3 and 4 let us infer that the ratio type strategies are significantly better than the Horvitz-Thompson ones. This conclusion is strongly confirmed by the box-plots shown by Figures 2 and 3. The strategy (ˆ ys , P1 (s)) is the best among the six considered strategies except for the case of the population with outliers when the strategy (˜ ys , Pn−1,n (s)) is the best for n = 14 n = 29. Wywiał(2007) considered the accuracy of estimation on the basis of the sampling design proportional to one order statistic denoted by Pr (s). For some of possible values r of the sampling design Pr (s) the mean squares of the estimators were determined on the basis of the simulation analysis. The results of the analysis lead to the conclusion that the considered strategies dependent on sampling design Pr (s) are the most accurate when r = n − 1 or r = n. That is why Tables 3 and 4 deal only with the case when r = n−1 or r = n. In general, all the inclusion probabilities of the first order are expected to be proportional to the appropriate values of a positively valued auxiliary variable. Thus, in the case considered we can suppose that if r < n − 1 and r < u ≤ n, the inclusion probabilities πk (r, u, c) are not so proportional to xk as in the case when r = n − 1 and u = n for all k = 1, ..., N . Table 3. The relative efficiency coefficients (%) of the conditional strategies for Pn−1,n (s|k¯ x), k = 0, 1, 2, 3. The population with outliers, N = 284. k¯ x n 2 3 6 9 14 29 e4 6.5 9.2 18.2 21.4 25.6 34.5 0 e5 1.3 1.5 2.3 2.9 3.4 4.5 e6 2.0 1.9 3.0 5.5 13.9 56.8 e4 1.9 3.5 11.8 17.8 23.2 34.9 x¯ e5 8.6 1.1 2.0 2.8 3.2 4.6 2¯ x e6 e4 e5 2.2 4.3 0.7 2.0 3.9 0.9 2.9 5.6 1.5 5.4 9.0 2.0 13.5 15.3 2.8 58.2 29.1 4.4 3¯ x e6 e4 e5 3.2 9.8 5.4 3.0 6.3 0.5 3.0 5.7 0.9 4.4 6.2 1.3 10.0 8.4 1.9 48.7 19.8 3.6 e6 3.2 3.5 3.8 4.8 7.7 35.1 The analysis of Tables 3, 4 and Figures 2, 3 leads to the following conclusion. The relative accuracies of the sampling strategies for sampling designs Pr,u (s|c) are usually better in case of the population with outliers or extreme values. 245 STATISTICS IN TRANSITION new series, Summer 2013 The Figures 2 and 3 let us infer that in the case of the population without outliers values the distributions of the estimators are almost symmetric. In the case of the population with outliers values the estimators are distributed with a large number of outliers. In this situation we cannot expect an accurate estimation. But the analysis of the Figures 2 and 3 lets us say that in the case of the population with outliers the conditional sampling design (for c > 0) leads to reduction of the number of outliers observations in the distribution of appropriate estimators. The conditional strategies which depend on the sampling design Pr,u (s|c) are usually more accurate than their appropriate unconditional versions (for c = 0). The estimators of the conditional strategies are unbiased or negligible biased estimators of the population mean. When the conditioning value c increases (the considered levels: c = 0, c = x¯, c = 2¯ x, and c = 3¯ x) the accuracies of the strategies (˜ ys , Pr,u (s|c)) and (¯ yHT,s , Pr,u (s|c)) usually increase, too. The accuracy of the strategy (˜ ys , Pr,u (s|c)) is the best among the conditional ones. The strategy (¯ yr,u,s , Pr,u (s|c)) is not worse than (¯ yHT,s , Pr,u (s|c)) except for the case of the population with outliers and of the sample size n = 29. Table 4. The relative efficiency coefficients (%) of the conditional strategies for Pn−1,n (s|k¯ x), k = 0, 1, 2, 3. The population without outliers,N = 281. k¯ x n 2 3 6 9 14 29 e4 17.7 24.5 41.8 51.8 63.8 81.7 0 e5 2.3 2.3 2.5 2.8 3.1 3.1 e6 2.7 3.1 12.7 25.3 44.6 84.3 e4 3.8 8.0 30.3 50.6 59.9 75.0 x¯ e5 1.6 1.7 2.2 2.8 3.0 3.1 e6 2.1 3.0 11.8 22.8 39.6 82.9 e4 17.6 15.9 17.1 26.3 39.9 71.8 2¯ x e5 2.5 2.0 2.2 2.3 2.8 2.9 e6 1.2 2.2 2.3 16.8 28.7 69.1 e4 32.3 14.3 14.8 26.8 36.4 56.9 3¯ x e5 3.0 2.4 2.3 2.3 2.2 2.9 e6 0.8 1.9 1.8 11.3 22.1 52.4 246 Janusz L. Wywiał: Sampling designs proportionate to sum ... Figure 2. Boxplot of the estimator distributions in the population without outliers for n=14 Figure 3. Boxplot of the estimator distributions in the population without outliers for n=14 STATISTICS IN TRANSITION new series, Summer 2013 247 6. Conclusions The inclusion probabilities of the conditional sampling design proportionate to the sum of two order statistics are presented. They let us determine the variance of the Horvitz-Thompson estimator as well as its estimate. The simulation analysis lets us expect the estimation strategies with the sampling design Pn−1,n (s|c) not to be less accurate than the strategies with sampling design Pr,u (s|c). In general, the accuracies of the considered ratio type strategies: (˜ ys , Pn−1,n (s|c)), (ˆ ys , P1 (s)) or (ˆ ys , P0 (s)) are the best among the all strategies considered in the analysis. The accuracies of these three strategies are comparable. Moreover, the conditional strategies for c = k¯ x, k > 0 are slightly better than the appropriate unconditional ones. Let us underline that the above conclusions cannot be treated as sufficiently general because they have been derived on the basis of a partial computer simulation analysis based on special data set taken into account. But it seems that those results can be an inspiration for larger simulation analyses or studies of the formal properties of the sampling design. Acknowledgement The research was supported by the grant number N N111 434137 from the Ministry of Science and Higher Education. 248 Janusz / :\ZLDá 6DPSOLQJ GHVLJQV SURSRUWLRQDWH WR VXP … REFERENCES +259,7= ' * 7+203621 ' - $ JHQHUDOL]DWLRQ RI WKH VDPSOLQJ ZLWKRXW UHSODFHPHQW IURP ILQLWH XQLYHUVH Journal of the American Statistical Association, 9RO ± /$+,5, * : $ PHWKRG IRU VDPSOH VHOHFWLRQ SURYLGLQJ XQELDVHG UDWLR HVWLPDWRU Bulletin of the International Statistical Institute, 9RO SS ± 0,'=812 + 2Q WKH VDPSOLQJ V\VWHP ZLWK SUREDELOLW\ SURSRUWLRQDO WR WKH VXP RI VL]HV Annals of the Institute of Statistical Mathematics, 9RO SS ± 6$51'$/ & ( 6:(16621 % :5(70$1 - Model Assisted Survey Sampling. 6SULQJHU 9HUODJ 1HZ <RUN%HUOLQ+HLGHOEHUJ/RQGRQ 3DULV7RN\R+RQJ .RQJ%DUFHORQD%XGDSHVW 6(1 $ 5 2Q WKH HVWLPDWH RI YDULDQFH LQ VDPSOLQJ ZLWK YDU\LQJ SUREDELOLWLHV Journal of the Indian Society of Agicultural Statistics 5 SS ± 7,//( < (VWLPDWLRQ LQ 6XUYH\V 8VLQJ &RQGLWLRQDO ,QFOXVLRQ 3UREDELOLWLHV &RPSOH[ 'HVLJQ Survey Methodology 9RO 1R SS ± 7,//( < Sampling algorithms 6SULQJHU :<:,$à - / 6LPXODWLRQ DQDO\VLV RI DFFXUDF\ HVWLPDWLRQ RI SRSXODWLRQ PHDQ RQ WKH EDVLV RI VWUDWHJ\ GHSHQGHQW RQ VDPSOLQJ GHVLJQ SURSRUWLRQDWH WR WKH RUGHU VWDWLVWLF RI DQ DX[LOLDU\ YDULDEOH Statistics in Transition-new series, 9RO 1R SS ± :<:,$à - / 6DPSOLQJ GHVLJQ SURSRUWLRQDO WR RUGHU VWDWLVWLF RI DX[LOLDU\ YDULDEOH Statistical Papers, 9RO 1R SS ± :<:,$à - / 3HUIRUPLQJ TXDQWLOHV LQ UHJUHVVLRQ VDPSOLQJ VWUDWHJ\ Model Assisted Statistics and Applications, 9RO 1R SS ± STATISTICS IN TRANSITION-new series, Summer 2013 249 STATISTICS IN TRANSITION-new series, Summer 2013 Vol. 14, No. 2, pp. 249–272 THE EFFECT OF UNEMPLOYMENT BENEFITS ON LABOUR MARKET BEHAVIOUR IN LUXEMBOURG Nicholas T. Longford , Ioana C. Salagean ABSTRACT :H DSSO\ WKH SRWHQWLDO RXWFRPHV IUDPHZRUN WR HVWLPDWH WKH HIIHFW RI DZDUGLQJ XQHPSOR\PHQW EHQHILWV RQ JDLQLQJ ORQJWHUP HPSOR\PHQW DIWHU DQ XQHPSOR\PHQW VSHOO DQG RQ WKH WLPH LW WDNHV WR DFKLHYH LW :H FRQFOXGH WKDW VXFK DZDUGV UHJDUGHG DV D WUHDWPHQW DUH DVVRFLDWHG ZLWK SRRUHU ODERXU IRUFH RXWFRPHV WKDQ QR DZDUGV Key words DGPLQLVWUDWLYH UHJLVWHU ODERXU PDUNHW SURSHQVLW\ PDWFKLQJ XQHPSOR\PHQW VSHOOV 1. Introduction 7KH HIIHFW RI XQHPSOR\PHQW EHQHILWV LV H[WHQVLYHO\ VWXGLHG LQ WKH ODERXU PDUNHW DQG RWKHU HFRQRPLFV OLWHUDWXUH +XQW 5RHG DQG =KDQJ /DOLYH DQG =ZHLPOOHU DQG 8XVLWDOR DQG 9HUKR 7KH UHVHDUFK LV VWLPXODWHG E\ KLJK H[SHQGLWXUH RQ WKHVH EHQHILWV HVSHFLDOO\ DW WLPHV RI KLJKHU XQHPSOR\PHQW 6XFK H[SHQGLWXUH LV UHJDUGHG E\ VRPH DV DQ LQYHVWPHQW WKH GHVLUDEOH UHWXUQ RQ LW LV VWDEOH DQG ORQJWHUP HPSOR\PHQW DIWHU D VKRUW VSHOO RI XQHPSOR\PHQW SRVVLEO\ ZLWK VRPH WUDLQLQJ DQG VKRUWWHUP VXEVLGLVHG HPSOR\PHQW 7KH NH\ LVVXH LV ZKHWKHU DQG WR ZKDW H[WHQW WKH EHQHILWV KDYH VXFK DQ HIIHFW DQG KRZ WKH UXOHV IRU DZDUGLQJ EHQHILWV VKRXOG EH DGMXVWHG WR RSWLPDOO\ FRPELQH WKH UROHV RI ZHOIDUH VXSSRUW ZKLOH HQFRXUDJLQJ WKH UHVXPSWLRQ RI HPSOR\PHQW DQG EHLQJ IUXJDO ZLWK SXEOLF IXQGV /DOLYH YDQ 2XUV DQG =ZHLPOOHU -REV WKDW DUH FUHDWHG DV SDUW RI DFWLYH ODERXU PDUNHW SROLFLHV LQWHQGHG DV VKRUWWHUP VWRSJDSV RU DUH VXEVLGLVHG E\ RWKHU PHDQV DUH QRW UHJDUGHG DV VXFFHVVIXO RXWFRPHV LQ WKLV FRQWH[W DOWKRXJK WKH\ PD\ EH HIIHFWLYH FRQGXLWV IRU VXFK RXWFRPHV 617/ DQG 'HSDUWPHQW G¶(FRQRPLD L (PSUHVD 8QLYHUVLWDW 3RPSHX )DEUD F 5DPRQ 7ULDV )DUJDV ± %DUFHORQD 6SDLQ (PDLO VQWOQLFN#VQWOFRXN &(36,167($' $YHQXH GH OD )RQWH /± (VFK%HOYDO /X[HPERXUJ (PDLO LRDQDVDODJHDQ#FHSVOX 250 N. T. Longford, I. C. Salagean: The effect of unemployment … 7KH PHWKRGRORJLFDO FKDOOHQJH UHODWHG WR HVWLPDWLRQ RI WKH HIIHFW RI EHQHILWV LV WKH LPSRVVLELOLW\ RI GLUHFWO\ REVHUYLQJ WKH ODERXU PDUNHW EHKDYLRXU RI WZR SHUVRQV LGHQWLFDO LQ DOO UHOHYDQW DVSHFWV LQFOXGLQJ WKHLU EDFNJURXQG ZKR KDYH MXVW EHFRPH XQHPSOR\HG ± RQH ZKR UHFHLYHV EHQHILWV DQG WKH RWKHU RQH ZKR GRHV QRW 7KLV LV FRPSRXQGHG E\ WKH UXOHEDVHG QDWXUH RI DZDUGLQJ EHQHILWV ,Q SULQFLSOH WZR SHUVRQV ZLWK LGHQWLFDO EDFNJURXQG DW WKH SRLQW RI EHFRPLQJ XQHPSOR\HG ZRXOG EH WUHDWHG LGHQWLFDOO\ DQG HLWKHU ERWK RU QHLWKHU RI WKHP ZRXOG UHFHLYH EHQHILWV 1HYHUWKHOHVV ZH KDYH D FOHDU FRQFHSWLRQ RI ZKDW LV PHDQW E\ WKH HIIHFW RI WKH EHQHILWV DV WKH GLIIHUHQFH LQ WKH LQGLYLGXDO¶V IXWXUH SRVLWLRQ LQ WKH ODERXU PDUNHW HPSOR\PHQW VWDWXV DQG VHFXULW\ LQFRPH DQG WKH OLNH XQGHU WKH WZR FRQGLWLRQV UHFHLYLQJ EHQHILWV DQG QRW UHFHLYLQJ WKHP 7KH SUREOHP LV DGGUHVVHG E\ PRGHOV WKDW DFFRXQW IRU WKH V\VWHPDWLF GLIIHUHQFHV EHWZHHQ WKRVH ZKR UHFHLYH EHQHILWV WKH µWUHDWHG¶ D WHUP PRWLYDWHG E\ WKH PHGLFDO VWDWLVWLFV OLWHUDWXUH DQG WKRVH ZKR GR QRW $Q DOWHUQDWLYH DSSURDFK LV EDVHG RQ PDWFKLQJ 5RVHQEDXP ± VHOHFWLQJ VXEVHWV RI UHFLSLHQWV DQG QRQUHFLSLHQWV WKDW IRU DOO SXUSRVHV DSSHDU DV LI WKH\ ZHUH DVVLJQHG WR WKHVH WZR WUHDWPHQW JURXSV FRPSOHWHO\ DW UDQGRP $GMXVWPHQW E\ UHJUHVVLRQ XVHV DOO WKH GDWD H[SORLWV D SRZHUIXO PRGHOOLQJ IUDPHZRUN DLGHG E\ PHWKRGV RI PRGHO VHOHFWLRQ EXW LV DVVRFLDWHG ZLWK QXPHURXV FDYHDWV UHODWHG WR PRGHO DVVXPSWLRQV 2QH RI WKHP LV WKH DVVXPSWLRQ RI FRQVWDQW XQLYHUVDO GLIIHUHQFH LQ WKH RXWFRPHV IRU WKH WUHDWHG DQG XQWUHDWHG XQLWV DIWHU D VXLWDEOH DGMXVWPHQW IRU FRYDULDWHV DQG DOORZDQFH IRU PHDVXUHPHQW HUURU ,Q RXU FDVH WKHUH LV QR PHDVXUHPHQW HUURU EXW WKH DVVXPSWLRQ RI WUHDWPHQW KRPRJHQHLW\ LV QRW UHDOLVWLF ,QIOXHQWLDO REVHUYDWLRQV DUH DQRWKHU FRQFHUQ 7KH\ DUH H[WUHPH RU RXWO\LQJ REVHUYDWLRQV LQ WKH VSDFH RI WKH FRYDULDWHV DQG WKHLU UHPRYDO PD\ DOWHU WKH PRGHO ILW PXFK PRUH WKDQ WKH UHPRYDO RI DQ REVHUYDWLRQ FORVHU WR WKH FHQWUH RI JUDYLW\ RI WKH REVHUYDWLRQV ZRXOG +RZHYHU VXFK REVHUYDWLRQV DUH RIWHQ OHDVW UHOHYDQW WR WKH FRPSDULVRQ RI WKH WUHDWHG DQG QRW WUHDWHG XQLWV EHFDXVH WKHVH WZR JURXSV XVXDOO\ GLIIHU LQ WKH WDLOV RI WKHLU GLVWULEXWLRQV RI WKH FRYDULDWHV &UXPS et al. ,Q HVWLPDWLRQ ZLWK ODUJH GDWDVHWV RXU IRFXV VKRXOG EH RQ UHGXFLQJ WKH ELDV RI HVWLPDWRUV EHFDXVH WKHLU YDULDQFHV DUH VPDOO 0RGHO VHOHFWLRQ SURFHGXUHV EDODQFH WKH HIIRUW WR UHGXFH WKH ELDV UHWDLQ PRUH FRPSOH[ PRGHOV DQG YDULDQFH UHGXFH PRGHO FRPSOH[LW\ ,Q FRQWUDVW PHWKRGV EDVHG RQ PDWFKLQJ HPSKDVLVH ELDV UHGXFWLRQ 5XELQ )RU GLVFXVVLRQ RI UHODWHG LVVXHV VHH /HFKQHU +LUDQR ,PEHQV DQG 5LGGHU DQG $EDGLH DQG ,PEHQV $QRWKHU UHDVRQ IRU SUHIHUULQJ WKH DQDO\VLV E\ PDWFKHG SDLUV LV WKDW VRPH RI WKH RXWFRPH YDULDEOHV ZH GHILQH DUH QRW RQ VFDOHV WKDW FDQ EH DVVRFLDWHG ZLWK DQ\ FRPPRQ GLVWULEXWLRQV ,Q VRPH FDVHV WKH YDOXHV RI WKH RXWFRPH YDULDEOH SHUPLW RQO\ SDUWLDO RUGHULQJ 7KDW LV WKH GLIIHUHQFH RI WKH RXWFRPHV FDQQRW EH TXDQWLILHG IRU VRPH SDLUV RI XQLWV RU ZH GR QRW ZDQW WR FRPPLW RXUVHOYHV WR DQ\ SDUWLFXODU VFDOH RQ ZKLFK VXFK GLIIHUHQFHV FRXOG EH TXDQWLILHG :H SUHIHU WR IRUP PDWFKHG SDLUV DQG WDEXODWH WKH FRPSDULVRQV RI WKHLU RXWFRPHV 7KHUH DUH WKUHH SRVVLEOH HOHPHQWDU\ UHVXOWV IRU D SDLU WKH WUHDWHG XQLW KDV D VXSHULRU RXWFRPH STATISTICS IN TRANSITION-new series, Summer 2013 251 WKH WUHDWHG XQLW KDV DQ LQIHULRU RXWFRPH WKHUH LV D WLH ± WKH XQLWV KDYH RXWFRPHV WKDW ZH UHJDUG DV LGHQWLFDO RU ZH FDQQRW UHVROYH ZKLFK RXWFRPH LV VXSHULRU :H VD\ WKDW WKH WUHDWHG XQLW LV D ZLQQHU DQG WKH XQWUHDWHG XQLW LQ WKH SDLU D ORVHU LQ WKH ILUVW FDVH DQG D ORVHU LQ WKH VHFRQG 7KH balance LQ D VHW RI PDWFKHG SDLUV LV GHILQHG DV WKH GLIIHUHQFH RI WKH QXPEHU RI ZLQQHUV DQG ORVHUV LQ WKH WUHDWHG JURXS :H XVH WKH EDODQFH DV DQ HVWLPDWRU RI WKH DYHUDJH HIIHFW RI WKH WUHDWPHQW :H WKHQ GHFLGH ZKHWKHU WKH UHDOLVHG EDODQFH FRXOG GLIIHU IURP ]HUR SXUHO\ E\ FKDQFH RU LW UHIOHFWV WKH VLJQ RI WKH DYHUDJH WUHDWPHQW HIIHFW DPRQJ WKH WUHDWHG XQLWV WKDW UHFHLYH XQHPSOR\PHQW EHQHILW 7KH QXPEHU RI WLHV LQ WKH PDWFKHG SDLUV DOVR KDV D UROH LQ WKH DQDO\VLV ,I WKHUH DUH PDQ\ WLHV D PRUH UHILQHG GHILQLWLRQ RI WKH RXWFRPH YDULDEOH PD\ UHVROYH VRPH RU HYHQ PRVW RI WKHVH WLHV UHVXOWLQJ LQ D VXEVWDQWLDOO\ DOWHUHG EDODQFH RI WKH ZLQQHUV DQG ORVHUV 'HVLUDEOH DUH UHVXOWV LQ ZKLFK WKH QXPEHU RI WLHV LV PXFK VPDOOHU WKDQ WKH EDODQFH VR WKDW WKH FRQFOXVLRQ ZRXOG QRW EH DOWHUHG LI DOO WKH WLHV ZHUH UHGHILQHG DV ZLQQHUV RU ORVHUV ,Q WKLV ZD\ WKH WLHV EHFRPH WKH HOHPHQW RI D VHQVLWLYLW\ DQDO\VLV 2I FRXUVH WKH WLHV FDQQRW EH UHVROYHG LQ VRPH VHWWLQJV ZKHQ WKH RXWFRPHV DUH JHQXLQHO\ LGHQWLFDO RU QRW FRPSDUDEOH )RU D ODUJH SRSXODWLRQ ZH PLJKW DVVRFLDWH WKHVH WKUHH FRXQWV ZLWK D WULQRPLDO GLVWULEXWLRQ +RZ HYHU RXU WDUJHW LV WKH DVVHVVPHQW RI WKH WUHDWPHQW HIIHFW IRU D SDUWLFXODU VHW RI XQLWV ± WKH XQLWV WKDW KDYH EHHQ WUHDWHG :H VHHN WR HVWDEOLVK ZKDW ZRXOG KDSSHQ LI WKRVH ZKR UHFHLYHG EHQHILWV ZHUH GHQLHG WKHP 6LPSOLVWLF YLHZV LQFOXGH WKH VXJJHVWLRQ WKDW UHFHLYLQJ EHQHILWV UHGXFHV WKH XUJHQF\ RI MRE VHDUFK EXW LQFUHDVHV LWV TXDOLW\ ± WKH UHFLSLHQW LV PRUH VHOHFWLYH GLVFULPLQDWLQJ DPRQJ WKH RSWLRQV IRU QHZ HPSOR\PHQW DQG PRUH SDWLHQW LQ FRPPLWWLQJ KLP RU KHUVHOI WR D QHZ MRE :H WHVW WKLV K\SRWKHVLV E\ PDWFKHGSDLUV DQDO\VLV 7KH GDWDVHW LQ RXU DQDO\VLV LV H[WUDFWHG IURP WKH GDWDEDVHV RI WKH /X[HPERXUJ 8QHPSOR\PHQW $JHQF\ ADEM – Agence pour le développement de l’emploi DQG WKH 5HJLVWHU RI 1DWLRQDO ,QVXUDQFH &RQWULEXWLRQV RI /X[HPERXUJ ,*66 ± Inspection générale de la sécurité sociale 7KH H[WUDFWV DUH PRQWKO\ OLVWV RI XQHPSOR\HG UHJLVWHUHG DW $'(0 WRJHWKHU ZLWK VRPH EDFNJURXQG LQIRUPDWLRQ DQG ODERXU IRUFH VWDWHV DW WKH HQG RI HDFK PRQWK LQIHUUHG IURP WKH ,*66 GDWDEDVH 7KH OLVWV FRYHU WKH SHULRG IURP -DQXDU\ WR -XO\ PRQWKV 7KH UHFRUGV LQ WKHVH OLVWV DUH OLQNHG E\ WKH XQLTXH QDWLRQDO LQVXUDQFH QXPEHU 7KH OLVWV DUH UHIRUPDWWHG WR D GDWDVHW LQ ZKLFK D UHFRUG FRQWDLQV WKH VHTXHQFH RI PRQWKO\ ODERXU IRUFH VWDWHV VXSSOHPHQWHG E\ EDFNJURXQG LQIRUPDWLRQ DERXW WKH LQGLYLGXDO $ UHFRUG LV DVVRFLDWHG ZLWK DQ XQHPSOR\PHQW VSHOO DQG VR DQ LQGLYLGXDO PD\ KDYH VHYHUDO UHFRUGV LQ WKH GDWDVHW 6XFK UHFRUGV DUH QRW H[DFW GXSOLFDWHV EHFDXVH VRPH LQIRUPDWLRQ VXFK DV OHYHO RI HGXFDWLRQ DQG PDULWDO VWDWXV DUH WHPSRUDO HVSHFLDOO\ IRU \RXQJHU SHRSOH $OVR WKH DJH RI WKH SHUVRQ DW WKH WLPH RI EHFRPLQJ XQHPSOR\HG LV DQ LPSRUWDQW YDULDEOH 7KH XQLWV RI WKH DQDO\VLV DUH XQHPSOR\PHQW 8 VSHOOV TXDOLILHG E\ WKH SHULRG RI WKH VWXG\ -DQXDU\ ± 'HFHPEHU PRQWKV DQG WKH DJH RI WKH 252 N. T. Longford, I. C. Salagean: The effect of unemployment … SHUVRQ DW WKH EHJLQQLQJ RI WKH 8 VSHOO XS WR \HDUV 7KH LQIRUPDWLRQ IURP LV UHVHUYHG IRU GHILQLQJ FRYDULDWHV DQG WKH LQIRUPDWLRQ IURP SDUW IRU GHILQLQJ RXWFRPH YDULDEOHV 7KH 8 VSHOO WKDW GHILQHV WKH XQLW LV FDOOHG reference $SDUW IURP WKH WUHDWPHQW WKH UHIHUHQFH VSHOO LV DOVR DVVRFLDWHG ZLWK D SHUVRQ WKH PRQWK ZKHQ LW VWDUWV DQG LWV OHQJWK LQ PRQWKV RU WKH PRQWK ZKHQ LW HQGV 7KH WUHDWPHQW DZDUG RI XQHPSOR\PHQW EHQHILWV LV DSSOLHG WR WKH UHIHUHQFH VSHOO 2WKHU 8 VSHOOV RI WKH VDPH SHUVRQ PD\ EH WUHDWHG GLIIHUHQWO\ 7KH QH[W VHFWLRQ LQWURGXFHV D WHUPLQRORJ\ IRU VHTXHQFHV DQG JLYHV PRUH GHWDLOV RI WKH $'(0 DQG ,*66 GDWDEDVHV 7KH IROORZLQJ VHFWLRQ GLVFXVVHV WKH PHWKRG RI DQDO\VLV EDVHG RQ WKH SRWHQWLDO RXWFRPHV IUDPHZRUN 5XELQ +ROODQG 6HFWLRQ JLYHV IXUWKHU GHWDLOV VSHFLILF WR WKH PDWFKHGSDLUV DQDO\VLV 7KH DSSOLFDWLRQ WR WKH UHVROXWLRQV RI XQHPSOR\PHQW VSHOOV RI \RXQJ PHPEHUV RI WKH ODERXU IRUFH LQ ± LV GLVFXVVHG LQ 6HFWLRQ 2 Discrete sequences $ UHFRUG LQ WKH RULJLQDO GDWDVHW LV WKH VHTXHQFH RI K ODERXU IRUFH VWDWHV RI D SHUVRQ $Q HOHPHQW RI WKH VHTXHQFH FRUUHVSRQGV WR D FDOHQGDU PRQWK DQG WKH VHTXHQFH WR D FRQWLJXRXV VHW RI FDOHQGDU PRQWKV IURP -DQXDU\ XQWLO -XO\ 7KH VWDWXV KDV ILYH SRVVLEOH YDOXHV HPSOR\PHQW ( XQHPSOR\PHQW 8 HFRQRPLF LQDFWLYLW\ , WUDQVLWLRQ 7 DQG DEVHQFH $ )RU H[DPSOH D SHUVRQ ZKR KDV EHHQ FRQWLQXDOO\ HPSOR\HG RYHU D SHULRG RI K PRQWKV KDV WKH VHTXHQFH (( (( RI OHQJWK K D SHUVRQ ZKR FRPSOHWHG KLVKHU HGXFDWLRQ DQG IRXQG D MRE WKUHH PRQWKV ODWHU KDV VHTXHQFH $$ $888(( 6WDWXV $ LQ PRQWK m UHVXOWV IURP KDYLQJ D UHFRUG LQ QHLWKHU $'(0 QRU ,*66 DW DQ\ WLPH SULRU WR DQG LQFOXGLQJ PRQWK m 7KH FRPSOHWH GHILQLWLRQV RI WKH VWDWHV DUH JLYHQ LQ $SSHQGL[ $ VXEVHTXHQFH LV GHILQHG DV D VHTXHQFH IRU D FRQWLJXRXV VXEVHW RI PRQWKV $ VHTXHQFH FRPSULVHV spells $ VSHOO LV GHILQHG DV D VXEVHTXHQFH WKDW LV FRPSRVHG RI WKH VDPH VWDWXV WKURXJKRXW DQG WKH VWDWHV DW WKH LPPHGLDWHO\ SUHFHGLQJ DQG VXFFHHGLQJ WLPH SRLQWV DUH GLIIHUHQW $ VSHOO LV FKDUDFWHULVHG E\ WKH VWDWXV DQG LWV OHQJWK )RU H[DPSOH WKH VHTXHQFH RI WKH ILUVW SHUVRQ FRQWLQXDOO\ HPSOR\HG FRPSULVHV D VLQJOH VSHOO RI ( 7KLV VSHOO KDV OHQJWK JUHDWHU WKDQ RU HTXDO WR K EHFDXVH WKH SHUVRQ PD\ KDYH EHHQ HPSOR\HG LQ WKH SHULRG LPPHGLDWHO\ SUHFHGLQJ WKH EHJLQQLQJ RI RXU UHFRUGV DQG IROORZLQJ WKH HQG RI WKH UHFRUGV 7KH VHTXHQFH RI WKH VHFRQG SHUVRQ FRPSULVHV WKUHH VSHOOV $ 8 DQG ( 7KH VHFRQG VSHOO LV 8 DQG KDV OHQJWK 6XSSRVH WKH RWKHU WZR VSHOOV RI WKH SHUVRQ KDYH OHQJWKV $ DQG ( 7KHQ WKH VHTXHQFH LV FRPSOHWHO\ GHVFULEHG DV $ 8 ( $ SHUVRQ PD\ KDYH D PRUH FRPSOH[ GHVFULSWLRQ RI WKH VHTXHQFH ZLWK PDQ\ VSHOOV DQG VHYHUDO VSHOOV LQ WKH VDPH VWDWH VXFK DV $ 8 7 ( 8 ( , 7 ( ( , 7KH RUGHU RI WKH VSHOOV LV HVVHQWLDO DQG ZH GR QRW VXPPDULVH WKH VHTXHQFH E\ WKH WRWDOV RI WLPH SRLQWV PRQWKV VSHQW LQ D VWDWH VXFK DV LQ ( LQ 8 DQG VR RQ ,Q IDFW WKH ORQJHVW VSHOO RI ( RU RI 8 LV RI STATISTICS IN TRANSITION-new series, Summer 2013 253 LQWHUHVW LQ VRPH DQDO\VHV 7KH ILUVW DQG ODVW VSHOOV LQ D VHTXHQFH DUH RIWHQ censored 7KDW LV WKH ILUVW VSHOO PD\ KDYH VWDUWHG EHIRUH WKH ILUVW WLPH SRLQW PRQWK RI WKH VHTXHQFH 6LPLODUO\ WKH ODVW VSHOO LV LQFRPSOHWH LI LW FRQWLQXHV LQWR WKH IXWXUH EH\RQG WKH GDWD KRUL]RQ PRQWK K LQ RXU GDWD ,Q VRPH LQVWDQFHV WKH ILUVW VSHOO LV FRPSOHWH )RU H[DPSOH LQ WKH QH[W VHFWLRQ ZH VWXG\ VHTXHQFHV WKDW VWDUW ZLWK WKH ILUVW PRQWK RI D 8 VSHOO 7KH history RI D VSHOO RI D VHTXHQFH LV GHILQHG DV D VXEVHTXHQFH WKDW HQGV LQ WKH PRQWK LPPHGLDWHO\ EHIRUH WKH EHJLQQLQJ RI WKH VSHOO 7KH KLVWRU\ LV TXDOLILHG E\ LWV OHQJWK )RU H[DPSOH VXSSRVH D VSHOO RI D VHTXHQFH VWDUWV LQ -DQXDU\ 7KHQ WKH VXEVHTXHQFH IRU WKH PRQWKV RI LV LWV KLVWRU\ RI OHQJWK 7KH IXWXUH RI D VSHOO LV GHILQHG VLPLODUO\ DOWKRXJK ZH LQFOXGH WKH GHILQLQJ VSHOO LQ WKH VXEVHTXHQFH )RU H[DPSOH WKH IXWXUH RI OHQJWK RI D VSHOO WKDW ODVWHG IURP -DQXDU\ XQWLO )HEUXDU\ LV WKH VXEVHTXHQFH IURP -DQXDU\ XQWLO -XO\ :H GLVWLQJXLVK EHWZHHQ VHWV RI VHTXHQFHV WKDW KDYH WKH VDPH GHOLPLWLQJ VWDUWLQJ DQG HQGLQJ SRLQWV PRQWKV VXFK DV -DQXDU\ DQG -XO\ DQG VHWV LQ ZKLFK WKH VWDUW RU WKH HQG LV WULJJHUHG E\ DQ HYHQW VXFK DV WKH EHJLQQLQJ RI D 8 VSHOO ,Q WKH ODWWHU FDVH VRPH VHOHFWLRQ PD\ WDNH SODFH DV WKHUH PD\ EH XQLWV SHUVRQV ZKRVH VXEVHTXHQFHV GR QRW TXDOLI\ WR WKH VHW ,Q IDFW WKH VHOHFWLRQ WDNHV SODFH HYHQ LQ RXU RULJLQDO GDWDVHW EHFDXVH SHUVRQV ZLWK QR 8 VSHOO EHIRUH WKHLU VW ELUWKGD\ DUH QRW LQFOXGHG )XUWKHU ZH GUDZ D GLVWLQFWLRQ EHWZHHQ VHWV RI SHUVRQV LQGLYLGXDOV DQG VHTXHQFHV ,Q WKH IRUPHU HDFK SHUVRQ IURP D JLYHQ GRPDLQ LV LQFOXGHG DW PRVW RQFH ,Q WKH ODWWHU D SHUVRQ PD\ EH LQFOXGHG VHYHUDO WLPHV )RU LQVWDQFH ZH FRQVLGHU LQ WKH 6HFWLRQV DQG VHWV RI 8 VSHOOV $ SHUVRQ ZLWK VHYHUDO TXDOLI\LQJ 8 VSHOOV LV LQFOXGHG RQFH IRU HDFK VSHOO 6XFK VSHOOV RI D SHUVRQ KDYH GLIIHUHQW VWDUWLQJ PRQWKV EXW GLIIHU DOVR LQ OHQJWK DV ZHOO DV LQ WKHLU KLVWRULHV DQG IXWXUHV 2.1. ADEM and IGSS databases 7KH VHTXHQFHV RI ODERXU IRUFH VWDWHV RI OHQJWK FRYHULQJ WKH SHULRG IURP -DQXDU\ XQWLO -XO\ DUH GHILQHG IRU DOO WKH SHUVRQV ZKR KDG D 8 VSHOO LQ WKLV SHULRG KDG D FDVH ILOH RSHQ LQ $'(0 DQG WKHLU DJH ZDV LQ WKH UDQJH ± \HDUV DW WKH EHJLQQLQJ RI RQH RI WKHLU 8 VSHOOV LQ WKH SHULRG :H IRFXV RQ WKH \RXQJ EHFDXVH PDQ\ RI WKHP ZKR KDYH KDG D 8 VSHOO WHQG WR KDYH FRPSOH[ VHTXHQFHV ZKHUHDV DPRQJ ROGHU PHPEHUV RI WKH ODERXU IRUFH 8 VSHOOV WHQG WR EH ORQJHU DQG DUH RIWHQ IROORZHG E\ ORQJ VSHOOV RI ( RU , $OVR WKH \RXQJ DUH VXEVWDQWLDOO\ RYHUUHSUHVHQWHG LQ WKH 8 VSHOOV DERXW RI DOO $'(0 UHFRUGV DUH IRU SHUVRQV DJHG RU EHORZ DW WKH EHJLQQLQJ RI WKH 8 VSHOO :H FRPELQH WKH LQIRUPDWLRQ H[WUDFWHG IURP $'(0 UHFRUGV FRPSULVLQJ WKH EHJLQQLQJ DQG HQG RI HDFK 8 VSHOO ZLWK LQIRUPDWLRQ IURP ,*66 IURP ZKLFK ZH LQIHU WKH VWDWHV LQ WKH RWKHU PRQWKV ( , 7 $ VHH $SSHQGL[ IRU GHWDLOV 7KH 254 N. T. Longford, I. C. Salagean: The effect of unemployment … VHTXHQFHV DUH VXSSOHPHQWHG E\ EDFNJURXQG LQIRUPDWLRQ OLVWHG LQ 7DEOH 7KH FKRLFH DQG SXUSRVH RI WKH WUDQVIRUPHG YDULDEOHV DQG LQWHUDFWLRQV OLVWHG DW WKH ERWWRP SDUW RI WKH WDEOH LV H[SODLQHG LQ 6HFWLRQ 7KHUH DUH UHIHUHQFH VSHOOV XQLWV RI DQDO\VLV LQYROYLQJ SHUVRQV ZRPHQ DQG PHQ ZLWK DQG VSHOOV UHVSHFWLYHO\ $ SHUVRQ KDV D VHTXHQFH LQ WKH GDWDVHW IRU HYHU\ 8 VSHOO LQ WKH VWXGLHG SHULRG VXEMHFW WR WKH FRQGLWLRQ RI EHLQJ DJHG ± \HDUV DW WKH EHJLQQLQJ RI WKH 8 VSHOO 7KH PRQWK VHTXHQFHV FRQWDLQ D WRWDO RI PLOOLRQ WLPH SRLQWV PLOOLRQ RI WKHP DUH LQ VWDWH ( LQ 8 LQ , LQ 7 DQG LQ $ :KHQ UHGXFHG WR XQLTXH SHUVRQV DIWHU GLVFDUGLQJ GXSOLFDWH UHFRUGV WKH QXPEHU RI WLPH SRLQWV LV î PLOOLRQ ZLWK (¶V 8¶V ,¶V 7¶V DQG $¶V :H GLVFDUG DOO WKH UHFRUGV ZLWK UHIHUHQFH 8 VSHOOV LQ DQG EHFDXVH WKH IRUPHU GR QRW KDYH D KLVWRU\ RI RQH \HDU ZKLFK ZH ZDQW WR XVH IRU GHILQLQJ EDFNJURXQG YDULDEOHV DQG WKH UHFRUGHG IXWXUH XS WR -XO\ RI WKH ODWWHU LV WRR VKRUW 7KXV RXU DQDO\VLV LV UHGXFHG WR UHIHUHQFH VSHOOV RI ZRPHQ DQG PHQ ZLWK XQLTXH ZRPHQ DQG PHQ 0HQ KDYH KLJKHU DYHUDJH QXPEHU RI 8 VSHOOV WKDQ ZRPHQ 2I WKH VHOHFWHG UHIHUHQFH VSHOOV DUH DVVRFLDWHG ZLWK EHQHILWV IRU ZRPHQ DQG IRU PHQ DQG DUH QRW 7KH WRS SDQHO RI )LJXUH VKRZV WKH GLVWULEXWLRQ RI WKH UHIHUHQFH VSHOOV RYHU WLPH VWDUWLQJ PRQWKV VHSDUDWHO\ IRU VSHOOV DVVRFLDWHG ZLWK EHQHILWV DQG WKRVH ZLWKRXW (YHU\ DXWXPQ 6HSWHPEHU DQG 2FWREHU WKHUH LV D SHDN LQ WKH QXPEHU RI IDLOHG DSSOLFDWLRQV ZLWK QR EHQHILWV DZDUGHG DQG D VPDOOHU SHDN LQ -DQXDU\ 7KH QXPEHUV RI VXFFHVVIXO DSSOLFDWLRQV DUH JUHDWHU LQ DXWXPQ DQG HDUO\ ZLQWHU ZLWK D VKDUS IDOO LQ )HEUXDU\ 7KH IROORZLQJ WKUHH SDQHOV GLVSOD\ WKH GLVWULEXWLRQ RI DJHV RI WKH DSSOLFDQWV 7KH\ VKRZ WKDW IDLOHG DSSOLFDWLRQV GRPLQDWH DPRQJ WKH \RXQJ DQG PHQ LQ SDUWLFXODU EXW IURP DERXW \HDUV RI DJH RQ WKH VXFFHVV UDWH LW LV FORVH WR ,W LQFUHDVHV VORZO\ ZLWK DJH 7KHUH DUH SHUVRQV ZLWK PXOWLSOH UHIHUHQFH VSHOOV WKH KLJKHVW PXOWLSOLFLW\ LV VHYHQ LQ WKUHH LQVWDQFHV IROORZHG E\ VL[ LQ HOHYHQ LQVWDQFHV 7KH PXOWLSOH UHIHUHQFH VSHOOV DUH HLWKHU WUHDWHG VXFFHVVIXO DSSOLFDWLRQV RQ DOO RFFDVLRQV QRW WUHDWHG IDLOXUHV RQ DQ\ RFFDVLRQV RU KDYH RQH RU VHYHUDO XQWUHDWHG VSHOOV IROORZHG E\ RQH RU VHYHUDO WUHDWHG VSHOOV 7KHUH DUH SHUVRQV ZLWK WZR UHIHUHQFH VSHOOV RI WKHVH SDLUV DUH ERWK XQWUHDWHG DUH ERWK WUHDWHG KDYH DQ XQWUHDWHG VSHOO IROORZHG E\ D WUHDWHG VSHOO 2I WKH SHUVRQV ZLWK WKUHH UHIHUHQFH VSHOOV KDYH WKUHH XQWUHDWHG VSHOOV HDFK WKUHH WUHDWHG VSHOOV HDFK KDYH D WUHDWHG VSHOO RQO\ LQ WKH WKLUG 8 VSHOO DQG ZLWK D VROH XQWUHDWHG VSHOO LQ WKH ILUVW 8 VSHOO LQ WKH GHVLJQDWHG SHULRG :H QRWH WKDW WKH SHUVRQV¶ KLVWRULHV PD\ LQFOXGH 8 VSHOOV WKDW KDYH QRW EHHQ UHFRUGHG EHIRUH 255 STATISTICS IN TRANSITION-new series, Summer 2013 Table 1. &RYDULDWHV XVHG LQ WKH DQDO\VLV 9DULDEOH 1RWDWLRQ 9DOXHV $JH \HDUV 6H[ 0DULWDO VWDWXV 1DWLRQDOLW\ age sex civstat natio_cat ± /HYHO RI HGXFDWLRQ edu 6SHOO 1R rk 0RQWKV VLQFH dfinetu FRPSOHWLQJ HGXFDWLRQ 0RQWKV VLQFH prem_affil WKH ILUVW UHFRUG LQ ,*66 8QHPSOR\PHQW RIILFH ccel 5HJLRQ 6XPPDU\ ± 0HDQ PHGLDQ VW GHY ZRPHQ PHQ VLQJOH RWKHU /X[HPEXUJRLV 3RUWXJXHVH RWKHU EDVLF VHFRQGDU\ WHUWLDU\ 8 VSHOO VLQFH -DQ ILUVW VHFRQG WKLUG IRXUWK RU ODWHU 0HDQ PHGLDQ VW GHY ± 0HDQ PHGLDQ VW GHY (PSOR\PHQW VHFWRU cemprec /X[HPERXUJ &LW\ (VFKVXU$O]HWWH 'LHNLUFK :LOW] DUWV DQG WHFKQLFDO PDQDJHPHQW VDOHV DJULFXOWXUH DQG IRUHVWU\ FUDIWV DQG PDQXDO IRRG FKHPLFDO PDFKLQHU\ KRWHOV DQG UHVWDXUDQWV RWKHU VHUYLFHV QR SURIHVVLRQ +LVWRU\ )XWXUH 6WDUW 'XUDWLRQ RI WKH 8 VSHOO pstat astat start dur.UN ( 8 , 7 $ ( 8 , 7 $ ± ± Transformed variables 6TXDUH RI GILQHWX 6TXDUH RI SUHPBDIILO 6TXDUH RI DJH %LPRQWKV LQ VWDWXV ( LQ PRQWKV RI KLVWRU\ Sq.dfinetu Sq.prem_affil Sq.age Pstat.SumE GILQHWX SUHPBDIILO DJH &DWHJRULFDO YDULDEOH ± ± ± ± Age.Pstat1E Age.Sex Age.Edu2 Nat.pstat1I $JH E\ VWDWXV ( LQ PRQWK í $JH E\ OHYHO RI HGXFDWLRQ Interactions $JH î SVWDW ( $JH î VH[ $JH î HGXFDWLRQ 1DWLRQDOLW\ î SVWDW , 5HJLRQ î VH[ (GXFDWLRQ î VH[ Ccel.Sex Edu.Sex Note: All the summaries are for the reference spells. FDWHJRULFDO YDULDEOHV FDWHJRULFDO YDULDEOHV 0HDQ PHGLDQ VW GHY 0HDQ PHGLDQ VW GHY 1DWLRQDOLW\ E\ VWDWXV , LQ PRQWK í 256 N. T. Longford, I. C. Salagean: The effect of unemployment … Figure 1. 5HFHLSW RI XQHPSOR\PHQW EHQHILWV IRU UHIHUHQFH VSHOOV E\ DJH DQG VH[ STATISTICS IN TRANSITION-new series, Summer 2013 257 3. Methods 2XU DQDO\VHV FRQFHUQ WKH FRPSOHWH HQXPHUDWLRQ RI $'(0 UHJLVWUDQWV LQ WKH SHULRG IURP -DQXDU\ WR 'HFHPEHU PRQWKV ZKR ZHUH ± \HDUV RI DJH DW WKH EHJLQQLQJ RI D 8 VSHOO :H KDYH GDWD IRU DQ DGGLWLRQDO \HDU EXW WKLV ZH UHVHUYH IRU WKH GHILQLWLRQ RI EDFNJURXQG YDULDEOHV 7KH XQLW RI DQDO\VLV LV D 8 VSHOO VXSSOHPHQWHG E\ LWV KLVWRU\ DQG IXWXUH 7KXV WKH XQLW LV LWVHOI D VHTXHQFH EXW D SHUVRQ PD\ EH UHSUHVHQWHG LQ WKH DQDO\VLV E\ VHYHUDO VHTXHQFHV RQH IRU HDFK 8 VSHOO (DFK UHIHUHQFH VSHOO LV DVVRFLDWHG ZLWK UHFHLSW RU QRW RI XQHPSOR\PHQW EHQHILWV :H FRQVLGHU WKH IXWXUH RI WKH UHIHUHQFH VSHOO DV WKH RXWFRPH $ SHUVRQ PD\ KDYH 8 VSHOOV FDVH ILOHV LQ $'(0 DGGLWLRQDO WR WKH UHIHUHQFH ERWK LQ LWV KLVWRU\ DQG IXWXUH 7ZR VHTXHQFHV RI D SHUVRQ ZLWK PXOWLSOH 8 VSHOOV DUH OLQNHG E\ KLVWRULHV DQG IXWXUHV WKDW DUH VKLIWHG E\ WKH GLVWDQFH LQ WLPH EHWZHHQ WKH WZR UHIHUHQFH VSHOOV :H ZDQW WR HVWDEOLVK KRZ GLIIHUHQW WKH IXWXUHV RI WKH WUHDWHG UHIHUHQFH VSHOOV ZLWK UHFHLSW RI EHQHILWV ZRXOG EH LI WKH\ ZHUH QRW WUHDWHG ZLWK QR EHQHILWV UHFHLYHG 6XFK UHVHDUFK TXHVWLRQV DUH UHJDUGHG DV counterfactual EHFDXVH WKH GLIIHUHQFH FRQVLGHUHG FDQQRW EH REVHUYHG IRU DQ\ XQLW :H KDYH QR FRQWURO RYHU WKH DVVLJQPHQW RI WKH EHQHILW VWDWXV +\SRWKHWLFDOO\ LI WKH DVVLJQPHQW FRXOG KDYH EHHQ PDGH DW UDQGRP DSSO\LQJ H[SHULPHQWDO GHVLJQ WKH DQDO\VLV ZRXOG EH UHODWLYHO\ VWUDLJKWIRUZDUG (YHQ LQ WKDW VHWWLQJ ZH FRXOG QRW HVWDEOLVK WKH GLIIHUHQFH RI WKH IXWXUHV RI D UHIHUHQFH VSHOO XQGHU WKH WZR FRQGLWLRQV ± WUHDWPHQW E\ WKH EHQHILW DQG QR WUHDWPHQW ± EHFDXVH RQO\ RQH RI WKH FRQGLWLRQV FRXOG EH UHDOLVHG +RZHYHU WKH UDQGRP DVVLJQPHQW WRJHWKHU ZLWK D VHW RI DVVXPSWLRQV GLVFXVVHG LQ 6HFWLRQ ZRXOG HQVXUH WKDW WKH DYHUDJH WUHDWPHQW HIIHFW LV HVWLPDWHG ZLWKRXW ELDV ,Q VXPPDU\ RXU IRFDO SRSXODWLRQ LV WKH VHW RI DOO 8 VSHOOV LQ WKH GHVLJQDWHG SHULRG WKDW UHVXOW LQ D XQLTXHO\ LGHQWLILHG FDVH ILOH UHFRUG DQG UHJLVWUDWLRQ LQ $'(0 7KH XQLW RI DQDO\VLV LV GHILQHG E\ LWV UHIHUHQFH VSHOO ,W KDV WR EH GLVWLQJXLVKHG IURP WKH RWKHU 8 VSHOOV LQ WKH KLVWRU\ DQG IXWXUH RI WKH SHUVRQ¶V VHTXHQFH )RU WKH KLVWRU\ ZH FRQVLGHU WKH LPPHGLDWHO\ SUHFHGLQJ PRQWKV DQG IRU WKH IXWXUH XS WR PRQWKV LPPHGLDWHO\ IROORZLQJ WKH VWDUW RI WKH UHIHUHQFH VSHOO 7KH IXWXUHV DUH FHQVRUHG E\ WKH GDWD KRUL]RQ RI -XO\ IRU DOO UHIHUHQFH VSHOOV WKDW VWDUWHG DIWHU -XQH :H GLVWLQJXLVK WKUHH FDWHJRULHV RI YDULDEOHV WUHDWPHQW LQGLFDWRUV RXWFRPHV FRYDULDWHV $ WUHDWPHQW LQGLFDWRU T LV D ELQDU\ YDULDEOH ZLWK YDOXHV ]HUR RU XQLW\ T IRU RQH WUHDWPHQW DQG T IRU WKH RWKHU (YHU\ XQLW LV DVVXPHG WR KDYH EHHQ DGPLQLVWHUHG RQH RI WKH WZR WUHDWPHQWV 7KH RQO\ SDLU RI WUHDWPHQWV ZH FRQVLGHU LV WKH UHFHLSW RI EHQHILWV DQG QRW UHFHLYLQJ WKHP :H HOHFW T IRU WKH UHFHLSW DQG T IRU WKH FRPSOHPHQW $ SHUVRQ PD\ KDYH VHYHUDO 8 VSHOOV LQ WKH 258 N. T. Longford, I. C. Salagean: The effect of unemployment … GHVLJQDWHG SHULRG EHWZHHQ -DQXDU\ DQG WKH HDUOLHU RI -XO\ DQG WKH VW ELUWKGD\ DQG HDFK RI WKHP LV WKH UHIHUHQFH VSHOO RI D VHTXHQFH WKH XQLW RI DQDO\VLV :H VSHFLI\ VHYHUDO RXWFRPH YDULDEOHV WKDW VXPPDULVH D SDUWLFXODU DVSHFW RI WKH IXWXUH RI WKH UHIHUHQFH VSHOO :H UHJDUG WKH UHVROXWLRQ FORVXUH RI DQ $'(0 FDVH ILOH WKDW FRLQFLGHV ZLWK WKH UHIHUHQFH VSHOO DV D VXFFHVV LI WKH IXWXUH FRQWDLQV DQ ( VSHOO RI OHQJWK DW OHDVW L :H VHW L UHJDUGLQJ DV D ODQGPDUN XQLQWHUUXSWHG HPSOR\PHQW RYHU D SHULRG RI RQH \HDU DIWHU D 8 VSHOO ,QVLVWLQJ RQ D ORQJHU VSHOO VXFK DV L ZRXOG OHDG WR H[FHVVLYH FHQVRULQJ E\ WKH GDWD KRUL]RQ LQ -XO\ DQG WRR IHZ VXFFHVVHV ZRXOG EH UHFRUGHG $QRWKHU YDULDEOH LV WKH OHQJWK RI WKH ORQJHVW ( VSHOO LQ WKH VHTXHQFH &RPSDULVRQV RI WKH YDOXHV RI WKLV YDULDEOH IRU VHTXHQFHV ZLWK GLIIHUHQW VWDUWLQJ SRLQWV DUH SUREOHPDWLF EHFDXVH RI WKH IL[HG GDWD KRUL]RQ +RZHYHU FRPSDULVRQV IRU WZR VHTXHQFHV ZLWK WKH VDPH VWDUWLQJ SRLQW KDYH IDFH YDOLGLW\ ,I WZR VHTXHQFHV KDYH WKH VDPH PD[LPXP OHQJWK RI ( VSHOO WKHQ ZH UHJDUG DV VXSHULRU WKH VHTXHQFH LQ ZKLFK WKH ILUVW ( VSHOO RI PD[LPXP OHQJWK ZDV DFKLHYHG HDUOLHU 6RPH RWKHU SUREOHPV DPELJXLWLHV ZLWK WKLV GHILQLWLRQ DUH GLVFXVVHG LQ 6HFWLRQ 3.1. The potential outcomes framework $Q RXWFRPH YDULDEOH < LV DVVRFLDWHG ZLWK WZR SRWHQWLDO RXWFRPH YDULDEOHV Y W LV WKH YDULDEOH GHILQHG DV WKH RXWFRPH DVVXPLQJ WKDW WUHDWPHQW t RU t ZDV DSSOLHG 2XU JRDO LV WR FRPSDUH WKH YDOXHV RI Y DQG Y RQ WKH VHW RI XQLWV WKH IXWXUHV RI WKH UHIHUHQFH VSHOOV WKDW UHFHLYHG WUHDWPHQW t 7KH YDULDEOH Y FDQ EH H[SUHVVHG DV D FRPSRVLWLRQ Y T í T Y TY DQG LWV GLVWULEXWLRQ LV D mixture RI WKH GLVWULEXWLRQV RI Y DQG Y ,QIHUHQFHV DERXW Y ± Y DUH UHODWLYHO\ HDV\ WR PDNH ZKHQ T LV LQGHSHQGHQW RI Y DQG Y DV LW ZRXOG EH LI WKH WUHDWPHQW ZHUH UDQGRPLVHG 3RWHQWLDO YHUVLRQV DVVRFLDWHG ZLWK WKH WZR WUHDWPHQWV FDQ EH GHILQHG IRU DQ\ YDULDEOH 2I FRXUVH WKH WZR YHUVLRQV PD\ EH LGHQWLFDO %DFNJURXQG YDULDEOHV GHILQHG SULRU WR DGPLQLVWHULQJ WKH WUHDWPHQW ZKLFK FRXOG QRW KDYH EHHQ LQIRUPHG E\ WKH YDOXH RI T DUH REYLRXV H[DPSOHV :H XVH DV FRYDULDWHV DQ H[WHQVLYH VHW RI YDULDEOHV OLVWHG LQ 7DEOH 7KH TXDOLI\LQJ DWWULEXWH IRU D FRYDULDWH LV WKDW LWV WZR SRWHQWLDO YHUVLRQV DUH LGHQWLFDO í WKDW LWV YDOXHV ZRXOG QRW EH DOWHUHG LI WKH WUHDWPHQW DVVLJQPHQW WKH YDOXHV RI T ZHUH FKDQJHG 9DULDEOHV GHILQHG SULRU WR WKH EHJLQQLQJ RI WKH UHIHUHQFH VSHOO DUH FRYDULDWHV :H GLVFRXQW WKH SRVVLELOLW\ WKDW WKH KLVWRU\ RI WKH UHIHUHQFH VSHOO LV LQIOXHQFHG LQ DQ\ ZD\ E\ WKH DQWLFLSDWHG YDOXH RI T LQ DQ\ IXWXUH 8 VSHOO 7KH FRYDULDWHV LQFOXGH YDULDEOHV GHILQHG RQ WKH PRQWKV RI ODERXU PDUNHW KLVWRU\ ODERXU IRUFH VWDWHV 7KLV LV EDVHG RQ D SUDJPDWLF GHFLVLRQ QRW WR ORVH LQ WKH DQDO\VLV WRR PDQ\ VSHOOV IRU ZKLFK WKLV KLVWRU\ LV QRW FRPSOHWHO\ UHFRUGHG STATISTICS IN TRANSITION-new series, Summer 2013 259 7KH SRWHQWLDO RXWFRPHV IUDPHZRUN KDV WKH DVVXPSWLRQ RI VWDEOH XQLW WUHDWPHQW YDULDEOH UHIHUUHG WR E\ WKH DFURQ\P 6879$ ,W FDQ EH VXPPDULVHG DV IROORZV LQ K\SRWKHWLFDO UHSOLFDWLRQV RI WKH VWXG\ ZLWK WKH VDPH VHW RI XQLWV WKH VDPH VHWV RI YDOXHV RI DOO YDULDEOHV H[FHSW WKH WUHDWPHQW EXW D UHSOLFDWH UHDOLVDWLRQ RI WKH WUHDWPHQW DVVLJQPHQW SURFHVV PHFKDQLVP WKH RXWFRPH IRU XQLW i LV GHWHUPLQHG HQWLUHO\ E\ WKH WUHDWPHQW DVVLJQHG ݕ LI ݐ DQG ݕ LI ݐ &ORVH VFUXWLQ\ RI WKLV FRQGLWLRQ UHYHDOV WKDW LW LV IDU IURP WULYLDO DQG LQ VHYHUDO DVSHFWV FRQWHQWLRXV LQ RXU VHWWLQJ )LUVW LW LPSOLHV WKDW WKH XQLWV GR QRW LQWHUIHUH ZLWK RQH DQRWKHU 7KDW LV WKH RXWFRPH RI RQH XQLW LV XQDIIHFWHG E\ WKH WUHDWPHQW DVVLJQHG WR DQRWKHU XQLW ,Q RXU FDVH LW HQWDLOV WKH DVVXPSWLRQ WKDW WKH IXWXUH RI RQH 8 VSHOO LV XQUHODWHG WR WKH IXWXUH RI D ODWHU 8 VSHOO RI WKH VDPH SHUVRQ 7KLV LV SDWHQWO\ IDOVH HVSHFLDOO\ IRU WZR VKRUW 8 VSHOOV WKDW DUH VHSDUDWHG E\ D VKRUW WLPH +RZHYHU WKH GHSHQGHQFH LV GLIILFXOW WR GHVFULEH DQG UHODWHV WR D VPDOO IUDFWLRQ RI WKH XQLWV 1H[W WKH UXOHV IRU DZDUGLQJ EHQHILWV DUH ZHOO NQRZQ WR DOO SDUWLHV LQYROYHG DQG VR WKH FRQGXFW RI WKH SHUVRQV WKUHDWHQHG E\ XQHPSOR\PHQW LV DIIHFWHG E\ WKH DQWLFLSDWHG SRVVLELOLW\ RI ORVV RI MRE 8QHPSOR\PHQW RIWHQ DULVHV LQ TXDQWD VHYHUDO SHUVRQV ORVLQJ WKHLU MREV DQG LV DQWLFLSDWHG $ ORW RI XQHPSOR\PHQW DULVHV DIWHU WKH FRQFOXVLRQ RI IL[HGWHUP FRQWUDFWV WKDW FRYHU WKH VDPH SHULRG RI WLPH DQG DUH DZDUGHG WR D VHW RI ZRUNHUV DW WKH VDPH WLPH (YHU\ SHUVRQ¶V EHKDYLRXU LV DIIHFWHG E\ WKH H[SHULHQFHV RI DFTXDLQWDQFHV DQG IDPLO\ PHPEHUV LQ SDUWLFXODU VR WKH WZR SRWHQWLDO RXWFRPHV GR QRW GHVFULEH WKH HQWLUH UDQJH RI SRVVLEOH YDOXHV RI WKH RXWFRPH RI D SHUVRQ )XUWKHU VRPH XQHPSOR\HG DQG WKRVH DERXW WR EHFRPH XQHPSOR\HG DUH DGYLVHG E\ DJHQWV VXFK DV XQLRQ UHSUHVHQWDWLYHV $V D FRQVHTXHQFH WKH FRQGXFW RI VRPH XQHPSOR\HG PD\ EH FRRUGLQDWHG $ SULQFLSOHG VROXWLRQ WR WKLV SUREOHP LV WR FRQVLGHU DOO FRQILJXUDWLRQV RI SODXVLEOH WUHDWPHQW DVVLJQPHQWV DQG GHILQH D SRWHQWLDO RXWFRPH YDULDEOH IRU HYHU\ RQH RI WKHP +RZHYHU WKH QXPEHU RI VXFK YDULDEOHV ZRXOG SUROLIHUDWH DQG EHFRPH XQPDQDJHDEOH HYHQ LQ VRPH VLPSOH VFHQDULRV VR SXUVXLQJ WKLV DSSURDFK LV QRW IHDVLEOH 3.2. The treatment effect :LWK WZR SRWHQWLDO RXWFRPH YDULDEOHV WKH XQLWOHYHO WUHDWPHQW HIIHFW LV GHILQHG DV WKH GLIIHUHQFH RI WKH RXWFRPHV XQGHU WKH DOWHUQDWLYH WUHDWPHQWV ¨Y Y í Y ZLWK YDOXH ¨ݕ IRU XQLW i :H LPSRVH QR FRQGLWLRQV RQ WKH GLVWULEXWLRQ RI WKLV YDULDEOH ,Q SDUWLFXODU ZH GR QRW DVVXPH WKDW ¨Y LV FRQVWDQW 7KH DYHUDJH WUHDWPHQW HIIHFW IRU D VHW RI XQLWV u LV GHILQHG DV WKH PHDQ RI WKH XQLWOHYHO WUHDWPHQW HIIHFWV ଵ σఢ௨ οݕ ¨ܻത௨ ೠ 260 N. T. Longford, I. C. Salagean: The effect of unemployment … ZKHUH ݊௨ LV WKH QXPEHU RI XQLWV LQ u. 7KH DYHUDJH WUHDWPHQW HIIHFW LV TXDOLILHG E\ WKH VHW u. ,Q RXU DQDO\VLV u LV WKH VHW RI 8 VSHOOV IRU ZKLFK T ZDV DSSOLHG $QRWKHU IDFWRU UHOHYDQW WR RXU DQDO\VLV LV WKH WUHDWPHQW DVVLJQPHQW SURFHVV PHFKDQLVP ,W LV GHILQHG E\ WKH MRLQW GLVWULEXWLRQ RI WKH WUHDWPHQWV DVVLJQHG WR WKH XQLWV LQ u. ,Q D W\SLFDO REVHUYDWLRQDO VWXG\ WKLV GLVWULEXWLRQ LV QRW NQRZQ DQG LQIHUHQFHV DERXW LW DUH GLIILFXOW WR PDNH EHFDXVH ZH KDYH RQO\ RQH UHDOLVDWLRQ RI WKLV GLVWULEXWLRQ ± WKH UHDOLVHG DVVLJQPHQW RI WKH WUHDWPHQWV WR u. ,W LV PRUH SUDFWLFDO WR WKLQN DERXW WUHDWPHQW DVVLJQPHQWV LQ DOWHUQDWLYH UHSOLFDWLRQV RI WKH VWXG\ :H FDQQRW UXOH RXW WKH SRVVLELOLW\ WKDW FHUWDLQ XQLWV ZRXOG QHYHU UHFHLYH D SDUWLFXODU WUHDWPHQW )RU WKHP WKH XQLWOHYHO WUHDWPHQW HIIHFW ¨Y LV QRW GHILQHG ,W PLJKW EH FRQVWUXFWLYH WR H[FOXGH VXFK XQLWV IURP u EHFDXVH WKH XQGHUO\LQJ TXHVWLRQ :KDW LV WKH GLIIHUHQFH" DERXW WKHP LV PHDQLQJOHVV 3.3. The missing-data perspective ,I WKH YDOXHV RI Y DQG Y ZHUH REVHUYHG IRU DOO XQLWV LQ u WKH DQDO\VLV ZRXOG EH VWUDLJKWIRUZDUG HYDOXDWLQJ WKH PHDQ RI WKH GLIIHUHQFHV LQ ,Q WKH HVWDEOLVKHG WHUPLQRORJ\ IRU PLVVLQJ GDWD WKH VHW RI ݊௨ î YDOXHV RI WKH SRWHQWLDO RXWFRPHV Y DQG Y LV UHIHUUHG WR DV WKH complete dataset 7KH REVHUYHG GDWDVHW FRPSULVLQJ D VXEVHW RI ݊௨ YDOXHV GHWHUPLQHG E\ WKH UHDOLVHG WUHDWPHQW DVVLJQPHQW LV FDOOHG WKH incomplete dataset 7KH VHWGLIIHUHQFH RI WKH WZR GDWDVHWV LV WKH VHW RI missing values $Q DQDO\VW¶V ILUVW LQVWLQFW PLJKW EH WR LPSXWH D YDOXH IRU HDFK PLVVLQJ LWHP 6XFK DQ LPSXWDWLRQ GDWD FRPSOHWLRQ UHVXOWV LQ D completed GDWDVHW 7KH WKHRU\ RI PXOWLSOH LPSXWDWLRQ 5XELQ GRFXPHQWV WKH SUREOHPDWLF QDWXUH RI WKLV DSSURDFK ,I ZH DQDO\VH D FRPSOHWHG GDWDVHW DV LI LW ZHUH WKH FRPSOHWH GDWDVHW ZH REWDLQ LQIHUHQFHV WKDW SURMHFW WRR PXFK FRQILGHQFH EHFDXVH LQ WKH DQDO\VLV ZH SUHWHQG WR KDYH PRUH LQIRUPDWLRQ WKDQ ZDV FROOHFWHG 7KH SUREOHP GRHV QRW DULVH ZKHQ WKH VWDWLVWLF RI LQWHUHVW VXFK DV DQ HVWLPDWRU LV D OLQHDU IXQFWLRQ RI WKH PLVVLQJ YDOXHV +RZHYHU ZH DOVR ZDQW WR DVVHVV WKH TXDOLW\ RI WKH HVWLPDWRU E\ HVWLPDWLQJ LWV VDPSOLQJ YDULDQFH RU VWDQGDUG HUURU DQG WKDW LV D GLVWLQFWO\ QRQOLQHDU IXQFWLRQ RI WKH PLVVLQJ YDOXHV 1RWH DOVR WKDW ZH KDYH WR GLVWLQJXLVK EHWZHHQ WKH VDPSOLQJ YDULDQFH RI WKH HVWLPDWRU WKDW UHODWHV WR FRPSOHWH GDWD DQG WKH VDPSOLQJ YDULDQFH IRU WKH FRPELQDWLRQ RI WKH SURFHVVHV RI GDWD JHQHUDWLRQ DQG QRQUHVSRQVH PLVVLQJQHVV 7KH IRUPHU VDPSOLQJ YDULDQFH LV ]HUR EHFDXVH ZH VWXG\ D IL[HG VHW RI XQLWV DQG DVVXPH WKHLU SRWHQWLDO RXWFRPHV WR EH IL[HG 0XOWLSOH LPSXWDWLRQ LV D IOH[LEOH DOWHUQDWLYH IRU DGGUHVVLQJ WKLV SUREOHP :H JHQHUDWH VHYHUDO VHWV RI SODXVLEOH YDOXHV IRU WKH PLVVLQJ LWHPV DFFRUGLQJ WR D PRGHO VSHFLILHG IRU WKHP ,Q WKH LPSXWDWLRQV ZH UHIOHFW WKH XQFHUWDLQW\ DERXW WKH PRGHO SDUDPHWHUV DV ZHOO DV WKH XQFHUWDLQW\ WKDW ZRXOG EH SUHVHQW LQ D PRGHO HYHQ LI DOO LWV SDUDPHWHUV ZHUH NQRZQ ,Q RXU VHWWLQJ WKH WUHDWPHQW DVVLJQPHQW LV WKH VROH VRXUFH RI XQFHUWDLQW\ 261 STATISTICS IN TRANSITION-new series, Summer 2013 4. Matched pairs analysis 2XU DQDO\VLV SURFHHGV E\ WKH IROORZLQJ VWHSV )LUVW ZH HVWLPDWH WKH SURSHQVLW\ RI UHFHLYLQJ D WUHDWPHQW DV D IXQFWLRQ RI WKH EDFNJURXQG YDULDEOHV 1H[W ZH IRUP SDLUV RI XQLWV RQH WUHDWHG DQG RQH QRW WUHDWHG WKDW KDYH VLPLODU SURSHQVLWLHV 7KHQ ZH HVWLPDWH WKH DYHUDJH WUHDWPHQW HIIHFW E\ DYHUDJLQJ WKH ZLWKLQ SDLU FRQWUDVWV FRPSDULVRQV ,Q WKH ILQDO VWHS ZH HVWLPDWH WKH VDPSOLQJ YDULDQFH RI WKLV HVWLPDWRU E\ UHSOLFDWLQJ WKH SURFHVVHV RI PDWFKLQJ DQG HVWLPDWLRQ 7KH IROORZLQJ VHFWLRQV JLYH GHWDLOV RI WKH VWHSV 4.1. Propensity scoring ,Q WKLV VWHS ZH ILW D ORJLVWLF UHJUHVVLRQ PRGHO LQ ZKLFK WKH RXWFRPH YDULDEOH LV WKH WUHDWPHQW DSSOLHG DQG WKH FRYDULDWHV DUH DOO WKH YDULDEOHV OLVWHG LQ 7DEOH 7KH SURSHQVLW\ LV GHILQHG DV WKH FRQGLWLRQDO SUREDELOLW\ RI WUHDWPHQW JLYHQ WKH YDOXHV RI WKH FRYDULDWHV px 3T _X x 7KH SURSHQVLW\ IRU XQLW i ZLWK WKH YHFWRU RI FRYDULDWHV ܠ LV GHILQHG DV p(ܠ 7KH SURSHQVLWLHV DUH XVHG IRU IRUPLQJ SDLUV RI XQLWV UHIHUHQFH VSHOOV RQH ZLWK T DQG WKH RWKHU ZLWK T E\ PDWFKLQJ RQ WKHLU YDOXHV RI px 7KDW LV HTXLYDOHQW WR PDWFKLQJ RQ D VWULFWO\ PRQRWRQH WUDQVIRUPDWLRQ RI WKH SURSHQVLWLHV ,Q D SHUIHFWO\ LPSOHPHQWHG H[SHULPHQW WKH SURSHQVLWLHV DUH NQRZQ )RU H[DPSOH LI XQLWV DUH DVVLJQHG WR WKH WZR WUHDWPHQW JURXSV FRPSOHWHO\ DW UDQGRP ZLWK SUREDELOLWLHV HTXDO WR WKHQ px IRU DOO x 3UREOHPV DULVH ZKHQ WKH SURWRFRO RI WKH H[SHULPHQW LV QRW DGKHUHG WR WKH OHWWHU DV ZKHQ VRPH XQLWV GHSDUW IURP WKH DVVLJQHG WUHDWPHQW UHJLPHQ RU GURS RXW IURP WKH VWXG\ 2XU DSSURDFK FDQ EH GHVFULEHG DV VHOHFWLQJ IURP WKH REVHUYHG XQLWV D VXEVHW WKDW UHVHPEOHV DV FORVHO\ DV FDQ EH DUUDQJHG LQ DOO IHDWXUHV WKDW FDQ EH FKHFNHG D GDWDVHW JHQHUDWHG E\ D SHUIHFWO\ H[HFXWHG H[SHULPHQWDO GHVLJQ 7KH PDLQ FULWHULRQ IRU WKLV LV WKDW WKH WZR JURXSV LQ WKH VHOHFWHG VXEVHW DUH EDODQFHG ± KDYH QHDULGHQWLFDO SURILOHV RI WKH FRYDULDWHV :KHQ WKHUH DUH VHYHUDO FRYDULDWHV VXFK D EDODQFH LV YHU\ GLIILFXOW WR DUUDQJH 5RVHQEDXP DQG 5XELQ VKRZHG WKDW DUUDQJLQJ WKLV EDODQFH FDQ EH UHSODFHG E\ WKH WDVN RI PDWFKLQJ RQ WKH YDOXHV RI WKH SURSHQVLW\ RU LWV PRQRWRQH WUDQVIRUPDWLRQ 8VLQJ WKH ORJLW ORJRGGV VFDOH IRU WKH VFRUHV LV DQ REYLRXV FKRLFH 7KH ORJLW LV GHILQHG DV ORJLWp ORJp í ORJ í p 7KH SURSHQVLW\ LV D YDULDEOH GHILQHG RQ WKH LQWHUYDO > @ ,W XVXDOO\ DWWDLQV PDQ\ GLVWLQFW YDOXHV PRVW RI WKHP ZLWK VPDOO IUHTXHQF\ RU HYHQ XQLTXHO\ DQG WKHUHIRUH PDWFKLQJ RQ LWV YDOXHV H[DFWO\ ZRXOG \LHOG WRR IHZ SDLUV ,Q SUDFWLFH WKH UDQJH > @ LV VSOLW LQWR D QXPEHU RI LQWHUYDOV DQG PDWFKHV DUH VRXJKW ZLWKLQ WKHP )XUWKHU WKH SURSHQVLW\ LV QRW HVWDEOLVKHG ZLWK SUHFLVLRQ EXW PHUHO\ 262 N. T. Longford, I. C. Salagean: The effect of unemployment … HVWLPDWHG 5XELQ DQG 7KRPDV VKRZHG WKDW WKH XQFHUWDLQW\ DERXW WKH SURSHQVLW\ FDQ EH LJQRUHG DQG PDWFKLQJ EDVHG RQ WKH HVWLPDWHG SURSHQVLW\ RU LWV PRQRWRQH WUDQVIRUPDWLRQ LV VXIILFLHQW $SDUW IURP WKH SURSHQVLW\ VFRUH ZH PDWFK DOVR RQ WKH GDWH ZKHQ WKH 8 VSHOO VWDUWV 7KLV LV UHIHUUHG WR DV blocking ± PDWFKLQJ VHSDUDWHO\ ZLWKLQ VXEVHWV RI WKH XQLWV LQ RXU FDVH WKH VXEVHWV DUH GHILQHG E\ WKH VWDUWLQJ GDWH PRQWK 7KLV LV HVVHQWLDO IRU VRPH RI WKH RXWFRPH YDULDEOHV ZKLFK DUH DIIHFWHG E\ FHQVRULQJ DQG IRU ZKLFK D FRPSDULVRQ RI WZR XQLWV ZLWK GLIIHUHQW VWDUWLQJ GDWHV LV SUREOHPDWLF 4.2. Matching and complete-data analysis :H GLYLGH WKH ILWWHG SURSHQVLWLHV LQWR H LQWHUYDOV VR WKDW HDFK LQWHUYDO FRQWDLQV DSSUR[LPDWHO\ WKH VDPH QXPEHU RI XQLWV 7KHVH LQWHUYDOV DUH IXUWKHU VXEGLYLGHG LQWR JURXSV DFFRUGLQJ WR WKH VWDUWLQJ GDWH RI WKH UHIHUHQFH VSHOO 7KHUH DUH XS WR H î Hƍ PDWFKLQJ JURXSV ZKHUH Hƍ LV WKH QXPEHU RI GLVWLQFW VWDUWLQJ GDWHV PRQWKV $ FRPELQDWLRQ RI LQWHUYDOV DQG GDWHV PD\ FRQWDLQ QR XQLWV RU RQO\ XQLWV ZLWK RQH YDOXH RI T :LWKLQ HYHU\ RQH RI WKH JURXSV LQ ZKLFK ERWK WUHDWPHQWV DUH UHSUHVHQWHG ZH IRUP PDWFKHG SDLUV E\ WKH IROORZLQJ SURFHVV 6XSSRVH JURXS h KDV ݊௧ XQLWV ZLWK WUHDWPHQW t ,I ݊ ݊ଵ WKHQ ZH PDWFK HDFK XQWUHDWHG XQLW t LQ WKH JURXS ZLWK D WUHDWHG XQLW t VHOHFWHG DW UDQGRP DQG ZLWKRXW UHSODFHPHQW 7KLV LV LPSOHPHQWHG LQ SUDFWLFH E\ VRUWLQJ WKH ݊ XQWUHDWHG XQLWV VHOHFWLQJ ݊ XQLWV VHTXHQWLDOO\ IURP WKH VHW RI ݊ଵ WUHDWHG XQLWV LQ WKH JURXS DQG IRUPLQJ SDLUV LQ WKH REYLRXV PDQQHU /HW ݕ௧ EH WKH YDOXH RI WKH RXWFRPH YDULDEOH IRU WKH XQLW ZKLFK UHSUHVHQWV WUHDWPHQW t LQ SDLU j RI JURXS h )RU HDFK SDLU ZH HYDOXDWH WKH VLJQ RI WKH FRQWUDVW ݕଵ í ݕ RU WKH VLJQ SRVLWLYH QHJDWLYH RU WLH LV HVWDEOLVKHG ZLWKRXW ¨ ݕ HYDOXDWLQJ ¨ ݕ ZKHQ WKH GLIIHUHQFH LV QRW ZHOO GHILQHG 7KH UHVXOWV DUH WKHQ WDOOLHG DFURVV WKH SDLUV WR REWDLQ WKH FRXQWV RI ZLQQHUV ORVHUV DQG WLHV 7KHVH WDEOHV WULSOHWV GHQRWHG E\ ¨ ݕ DUH IXUWKHU WDOOLHG RYHU WKH PDWFKLQJ JURXSV WR REWDLQ D VLQJOH WULSOHW ¨y RI FRXQWV RI SDLUV LQ ZKLFK WKH UHSUHVHQWDWLYH RI WKH WUHDWPHQW LV WKH ZLQQHU ORVHU RU WKHUH LV D WLH $V DQ DOWHUQDWLYH WKH WULSOHWV FDQ EH WDOOLHG ZLWK ZHLJKWV WKDW DFFRXQW IRU WKH WUHDWHG XQLWV WKDW KDYH QRW EHHQ PDWFKHG ,I JURXS h KDV IHZHU XQWUHDWHG WKDQ WUHDWHG XQLWV ݎ ݊ଵ ݊ ! WKHQ ݊ଵ í ݊ WUHDWHG XQLWV DUH QRW PDWFKHG :H FRPSHQVDWH IRU WKHLU ORVV E\ LQFUHDVLQJ WKH FRQWULEXWLRQ RI JURXS h IURP ¨ ݕ WR ݎ ¨ ݕ ZKHUH ݎ ݊ଵ ݊ )RU JURXSV LQ ZKLFK ݊ ݊ଵ WKH FRQWULEXWLRQ WR ¨y LV QRW FKDQJHG ݎ LV VHW WR XQLW\ 7KHUH PD\ EH RQH RU VHYHUDO JURXSV LQ ZKLFK WKHUH DUH QR XQWUHDWHG XQLWV ݊ VR QRQH RI WKH WUHDWHG XQLWV DUH PDWFKHG ,Q HYHU\ PDWFKLQJ H[HUFLVH ZH PRQLWRU WKH QXPEHU RI VXFK XQLWV ,I LW LV H[FHVVLYH WKHQ ZH UHYLVH WKH GHILQLWLRQ RI WKH PDWFKLQJ JURXSV :LWK IHZHU JURXSV GHILQHG IHZHU VXFK IDLOXUHV WR PDWFK DUH OLNHO\ STATISTICS IN TRANSITION-new series, Summer 2013 263 7KH QXPEHU RI WUHDWHG XQLWV LQYROYHG LQ VXFK IDLOXUHV FDQ EH LQFOXGHG LQ D VHQVLWLYLW\ DQDO\VLV &RQVLGHU WKH IROORZLQJ WZR H[WUHPHV IRU WKH VHW RI DOO WUHDWHG XQLWV ZLWKRXW D PDWFK LI WKH\ ZHUH PDWFKHG WKH\ ZRXOG DOO EH ZLQQHUV LI WKH\ ZHUH PDWFKHG WKH\ ZRXOG DOO EH ORVHUV ,I LQ ERWK RI WKHVH VFHQDULRV ZH REWDLQ WKH VDPH LQIHUHQFH WKHQ WKH IDLOXUHV DUH LPPDWHULDO 2I FRXUVH LI WKHUH DUH PDQ\ VXFK IDLOHG PDWFKHV WKHQ ZH DUH WKUHDWHQHG ZLWK DQ LPSDVVH ZKHQ GLIIHUHQW FRQFOXVLRQV DUH DUULYHG ZLWK WKH WZR H[WUHPH DVVXPSWLRQV 7KH WLHV EHWZHHQ WKH XQLWV LQ D SDLU FDQ EH GHDOW ZLWK VLPLODUO\ 4.3. Sampling variation 5HJDUGLQJ WKH VHW RI IRFDO XQLWV VSHOOV u IRU ZKLFK ZH ZDQW WR HVWLPDWH WKH DYHUDJH HIIHFW RI WKH WUHDWPHQW DV IL[HG WKH HQWLUH SURFHVV RI JHQHUDWLQJ WKH SURSHQVLW\ VFRUHV PDWFKLQJ DQG HYDOXDWLRQ HQWDLOV D VLQJOH VRXUFH RI XQFHUWDLQW\ QDPHO\ WKH IRUPLQJ RI PDWFKHG SDLUV 7KH ORJLVWLF RU DQRWKHU UHJUHVVLRQ XVHG IRU JHQHUDWLQJ WKH SURSHQVLW\ VFRUHV ZRXOG EH DVVRFLDWHG ZLWK YDULDWLRQ if ZH FRQVLGHUHG WKH IRFDO VHW RI XQLWV DQG WKHLU DVVLJQPHQW WR WUHDWPHQW DV D UHDOLVDWLRQ RI D UDQGRP SURFHVV +RZHYHU RXU DQDO\VLV LV FRQGLWLRQHG RQ WKH WUHDWPHQW DVVLJQPHQW DQG WKH XQLWV LQFOXGHG LQ WKH DQDO\VLV DQG VR HDFK SURSHQVLW\ VFRUH LV ZLWKRXW DQ\ VDPSOLQJ YDULDWLRQ :H HVWLPDWH WKH VDPSOLQJ YDULDWLRQ DVVRFLDWHG ZLWK PDWFKLQJ E\ VLPSO\ UHSOLFDWLQJ LW VHYHUDO WLPHV :KHQ ZH GR QRW ZDQW WR UHIHU WR D VFDOH IRU WKH RXWFRPHV ZH HYDOXDWH WKH YDULDQFHV RI WKH FRXQWV RI SRVLWLYH DQG QHJDWLYH ZLWKLQ SDLU FRQWUDVWV DQG PDNH LQIHUHQFHV DERXW WKH H[SHFWDWLRQ RI WKH DYHUDJH FRQWUDVWV (¨y 5. Application :H LPSOHPHQWHG WKH PDWFKHG SDLUV DQDO\VLV DQG DVVRFLDWHG GLDJQRVWLFV LQ D FXVWRPLVHG VHW RI 5 IXQFWLRQV ,Q WKH ILUVW VWHS ZH ILW D ORJLVWLF UHJUHVVLRQ RI WKH WUHDWPHQW LQGLFDWRU RQ DOO WKH FRYDULDWHV 7KH UHJUHVVLRQ SDUDPHWHU HVWLPDWHV RU WKH TXDOLW\ RI WKH ILW DUH RI QR LQWHUHVW EHFDXVH WKH VROH SXUSRVH RI WKH ILW LV WR IRUP PDWFKHG SDLUV EDVHG RQ WKH HVWLPDWHG SURSHQVLWLHV :H KDYH D ORW RI REVHUYDWLRQV VR ZH DUH FRQFHUQHG SULQFLSDOO\ DERXW ELDV UHVXOWLQJ IURP SRRU PDWFKLQJ 7KDW LV ZK\ ZH SUHIHU WR HUU RQ WKH VLGH RI VSHFLI\LQJ D ULFKHU SURSHQVLW\ PRGHO OLWWOH HIILFLHQF\ LV ORVW E\ LQFOXGLQJ LQ WKH PRGHO D IHZ UHGXQGDQW FRYDULDWHV 7KH NH\ FULWHULRQ IRU WKH DSSURSULDWHQHVV RI WKH PRGHO LV WKDW WKH SDLUV PDWFKHG RQ SURSHQVLWLHV DUH DOVR EDODQFHG ZLWK UHVSHFW WR WKHLU GLVWULEXWLRQV RI WKH EDFNJURXQG YDULDEOHV 264 N. T. Longford, I. C. Salagean: The effect of unemployment … 7KH SURSHQVLW\ PRGHO ZLWK WKH RULJLQDO YDULDEOHV LQYROYLQJ SDUDPHWHUV RI WKHP UHODWHG WR WKH KLVWRU\ RI WKH UHIHUHQFH VSHOO WXUQHG RXW WR EH XQVDWLVIDFWRU\ EHFDXVH WKH SDLUV IRUPHG ZHUH SRRUO\ PDWFKHG RQ WKH GLVSHUVLRQV RI VHYHUDO FRQWLQXRXV YDULDEOHV :H VXSSOHPHQWHG WKH PRGHO ZLWK WKH FRYDULDWHV OLVWHG DW WKH ERWWRP RI 7DEOH LQYROYLQJ IXUWKHU SDUDPHWHUV 7KH WUDQVIRUPDWLRQV DQG LQWHUDFWLRQV ZHUH LGHQWLILHG SULQFLSDOO\ E\ WULDO DQG HUURU 1RWH WKDW WKH DGGLWLRQ RI D FRYDULDWH WR WKH PRGHO GRHV QRW DOZD\V UHVXOW LQ DQ LPSURYHG EDODQFH RI WKH RWKHU YDULDEOHV DQG PD\ HYHQ EH GHWULPHQWDO WR WKH EDODQFH RI VRPH RI WKHP 7KHUH DUH XQLWV ZLWKRXW EHQHILWV XQWUHDWHG DQG WUHDWHG XQLWV 7KH GLVWULEXWLRQ RI WKH ILWWHG SURSHQVLWLHV Ƹ ZLWKLQ WKH WUHDWPHQW JURXSV LV GLVSOD\HG LQ )LJXUH 7KH GLDJUDP VKRZV WKDW D ORW RI XQWUHDWHG XQLWV KDYH YHU\ VPDOO SURSHQVLWLHV 2QO\ D VPDOO IUDFWLRQ RI WKHP ZLOO EH XVHG LQ PDWFKHV ZLWK WKH IDU IHZHU WUHDWHG XQLWV WKDW KDYH VLPLODU YDOXHV RI WKH ILWWHG SURSHQVLW\ 0RVW WUHDWHG XQLWV ZLWK Ƹ LQ WKH UDQJH ± ZLOO EH PDWFKHG EHFDXVH WKHUH DUH VXIILFLHQWO\ PDQ\ XQWUHDWHG XQLWV ZLWKLQ HYHU\ QDUURZ UDQJH RI SURSHQVLWLHV WKH ZLGWK RI D EDU LQ WKH KLVWRJUDP )RU WUHDWHG XQLWV Figure 2. 7KH ILWWHG SURSHQVLWLHV IRU WKH WZR WUHDWPHQW JURXSV 7KH YHUWLFDO GDVKHV PDUN WKH GHFLOHV RI WKH ZLWKLQJURXS GLVWULEXWLRQV ZLWK Ƹ ! D VXEVWDQWLDO SHUFHQWDJH RI WUHDWHG XQLWV ZLOO QRW EH PDWFKHG EHFDXVH WKH\ DUH LQ D PDMRULW\ :H PDWFK RQ WKH ILWWHG SURSHQVLW\ DQG WKH VWDUW PRQWK RI WKH UHIHUHQFH VSHOO 7KH SURSHQVLWLHV DUH VSOLW E\ WKHLU GHFLOHV LQWR WHQ JURXSV ZLWK DSSUR[LPDWHO\ HTXDO QXPEHUV RI XQLWV LQ HDFK (DFK RI WKHVH JURXSV LV WKHQ VSOLW LQWR VXEJURXSV STATISTICS IN TRANSITION-new series, Summer 2013 265 DFFRUGLQJ WR WKH VWDUW RI WKH 8 VSHOO 7KHUH DUH GLVWLQFW PRQWKV ± 2I WKH FRPELQDWLRQV RI SURSHQVLW\ JURXS DQG PRQWK JURXSV FRQWDLQ QR PDWFK RQH RU ERWK WUHDWPHQW JURXSV DUH QRW UHSUHVHQWHG LQ LW JURXSV KDYH RQH PDWFKHG SDLU HDFK JURXSV KDYH WZR SDLUV DQG WKH ODUJHVW QXPEHUV RI SDLUV PDWFKHG LQ D JURXS DUH DQG LQ RQH LQVWDQFH HDFK ,Q WRWDO PDWFKHG SDLUV KDYH EHHQ IRUPHG WKH\ FRQWDLQ RI WKH WUHDWHG XQLWV 7KH VHW RI PDWFKHG SDLUV LV VDWLVIDFWRU\ LI WKH\ DUH FORVH WR EDODQFH DV WKH\ ZRXOG EH LQ DQ H[SHULPHQW ZLWK UDQGRP WUHDWPHQW DVVLJQPHQW 7KH OHIWKDQG SDQHO RI )LJXUH GLVSOD\V WKH FRQWUDVWV RI WKH PHDQV RI WKH FRQWLQXRXV YDULDEOHV IRU WKH WZR WUHDWPHQW JURXSV $ KRUL]RQWDO VHJPHQW LV GUDZQ IRU HDFK YDULDEOH EHWZHHQ WKH FRQWUDVW IRU WKH XQPDWFKHG RULJLQDO JURXSV DQG LWV QHJDWLYH 7KH YDOXH RI WKH FRQWUDVW LV PDUNHG E\ D YHUWLFDO WLFN 7KH FRQWUDVW IRU WKH PDWFKHG SDLUV ZLWK WKH RULJLQDO PRGHO LV PDUNHG E\ D JUD\ GLVF DQG WKH FRQWUDVW IRU WKH H[WHQGHG PRGHO E\ D VPDOOHU EODFN GLVF 7KH Figure 3. &KHFN RQ WKH EDODQFH RI WKH FRQWLQXRXV FRYDULDWHV IRU WKH PDWFKHG SDLUV JUD\ GLVFV DUH GUDZQ RQO\ IRU WKH ILYH YDULDEOHV LQ WKH RULJLQDO PRGHO 2ZLQJ WR EORFNLQJ WKH EDODQFH IRU start LV SHUIHFW E\ GHVLJQ 1RWH WKDW ZH EURNH VRPH UXOHV RI LQYDULDQFH VXFK DV QRW LQFOXGLQJ ERWK YDULDEOHV GHILQHG E\ WKH LQWHUDFWLRQ RI DJH DQG WKH WKUHH FDWHJRULHV RI HGXFDWLRQ ,I ZH IROORZHG WKH UXOHV D VOLJKWO\ ZRUVH EDODQFH ZRXOG EH REWDLQHG 7KH PDWFKHG SDLUV VKRXOG EH EDODQFHG QRW RQO\ LQ WKH ZLWKLQJURXS PHDQV EXW LQ WKH ZLWKLQJURXS GLVWULEXWLRQV LQ JHQHUDO 7KH ULJKWKDQG SORW GLVSOD\V WKH UDWLRV RI WKH VWDQGDUG GHYLDWLRQV RI WKH FRQWLQXRXV FRYDULDWHV IRU WKH XQPDWFKHG DQG PDWFKHG JURXSV 7KH KRUL]RQWDO VHJPHQWV DUH GUDZQ EHWZHHQ s DQG s ZKHUH s LV WKH UDWLR IRU WKH XQPDWFKHG JURXSV 7KH UDWLRV IRU WKH PDWFKHG JURXSV DUH PDUNHG E\ JUD\ DQG EODFN GLVFV IRU WKH RULJLQDO DQG H[WHQGHG SURSHQVLW\ PRGHOV 266 N. T. Longford, I. C. Salagean: The effect of unemployment … UHVSHFWLYHO\ 7KH KRUL]RQWDO D[LV LV RQ WKH ORJVFDOH 7KH UDWLRV IRU WKH PDWFKHG JURXSV GHYLDWH IURP WKH LGHDO RI RQO\ VOLJKWO\ DQG WKH H[WHQGHG PRGHO \LHOGV D EHWWHU EDODQFH IRU DOO IRXU RULJLQDO YDULDEOHV H[FHSW IRU start IRU ZKLFK WKH EDODQFH LV SHUIHFW E\ GHVLJQ 7KH EDODQFH LV QHDUO\ SHUIHFW IRU WKH VL[ DGGHG YDULDEOHV )LJXUH SUHVHQWV WKH FRUUHVSRQGLQJ SORW IRU WKH FRQWUDVWV RI WKH FDWHJRULFDO YDULDEOHV $ YDULDEOH ZLWK C FDWHJRULHV LV UHSUHVHQWHG E\ C í KRUL]RQWDO VHJPHQWV FRQQHFWLQJ WKH XQPDWFKHG EDODQFHV ZLWK WKHLU QHJDWLYHV 7KH EODFN DQG JUD\ GLVFV PDUN WKH PDWFKHG EDODQFHV EDVHG RQ WKH RULJLQDO DQG H[WHQGHG SURSHQVLW\ PRGHOV 7KH PDWFKHG EDODQFHV DUH XQLIRUPO\ FORVHU WR ]HUR IRU ERWK WKH RULJLQDO Figure 4. &KHFN RQ WKH EDODQFH RI WKH FDWHJRULFDO FRYDULDWHV IRU WKH PDWFKHG SDLUV PRGHO DQG IRU WKH PRGHO ZLWK IRXU DGGLWLRQDO YDULDEOHV DGGLWLRQDO SDUDPHWHUV GLVSOD\HG DW WKH ERWWRP RI WKH GLDJUDP +DYLQJ DFFHSWHG WKH PDWFK DV VDWLVIDFWRU\ WKH UHPDLQGHU RI WKH DQDO\VLV HQWDLOV FRPSDULQJ WKH QXPEHUV RI ZLQQHUV DQG ORVHUV LQ WKH ZLWKLQSDLU FRQWHVWV :H VFRUH WKH IXWXUH RI HDFK XQLW DV D VXFFHVV ZKHQ LW FRQWDLQV D PRQWK RU ORQJHU VSHOO RI ( DQG DV D IDLOXUH RWKHUZLVH ,Q D PDWFKHG SDLU WKH WUHDWHG STATISTICS IN TRANSITION-new series, Summer 2013 267 XQLW LV D ZLQQHU LI LW LV D VXFFHVV DQG WKH XQWUHDWHG XQLW LV D IDLOXUH 7KH WUHDWHG XQLW LV D ORVHU LI LW LV D IDLOXUH DQG WKH XQWUHDWHG XQLW LV D VXFFHVV 7KH UHVXOW LV D WLH LI WKH RXWFRPH LV WKH VDPH IRU ERWK XQLWV LQ WKH SDLU VXFFHVVHV RU IDLOXUHV :LWK WKHVH UXOHV IRU VFRULQJ WKH WUHDWHG XQLW LV D ZLQQHU LQ SDLUV DQG D ORVHU LQ SDLUV DQG SDLUV DUH WLHG 7KXV WKH HVWLPDWH RI WKH WUHDWPHQW HIIHFW LV QHJDWLYH ZLWK D EDODQFH RI XQLWV LQ IDYRXU RI WKH XQWUHDWHG JURXS 6RPH RI WKH WLHV FDQ EH UHVROYHG LI ZH FRPSDUH WKH OHQJWKV RI WKH ORQJHVW VSHOO ZLWKLQ WKH SDLUV WKDW DUH VXFFHVVHV 7KHQ WKH WUHDWHG JURXS KDV ORVHUV ZLQQHUV DQG WKHUH DUH WLHV 7KH EDODQFH LV LQFUHDVHG VXEVWDQWLDOO\ ,I ZH FRPSDUH WKH OHQJWKV RI WKH ORQJHVW VSHOOV ZLWKRXW WKH TXDOLILFDWLRQ RI L PRQWKV WKH WUHDWHG JURXS KDV ORVHUV ZLQQHUV SRVLWLYH EDODQFH RI XQLWV DQG WKHUH DUH RQO\ WLHV WKH WUHDWHG JURXS ZRXOG KDYH PRUH ORVHUV HYHQ LI DOO WKH WLHV ZHUH FRQFHGHG WR WKH XQWUHDWHG JURXS :H FDQ FRPSHQVDWH IRU WKH IDLOXUH WR PDWFK VRPH WUHDWHG XQLWV E\ ZHLJKWLQJ WKH ZLWKLQSDLU FRQWUDVWV ,I LQ PDWFKLQJ JURXS h WKHUH DUH PRUH WUHDWHG XQLWV WKDQ XQWUHDWHG ݊ଵ ! ݊ ZH DSSO\ ZHLJKWV ݎ ݊ଵ ݊ WR HDFK ZLWKLQSDLU FRQWUDVW IRUPHG LQ WKLV JURXS 2WKHUZLVH ZKHQ DOO WUHDWHG XQLWV DUH PDWFKHG WKH ZHLJKW ݎ LV VHW WR XQLW\ :KHQ DQ ( VSHOO RI DW OHDVW PRQWKV LQ WKH IXWXUH LV UHJDUGHG DV D VXFFHVV WKH WUHDWHG JURXS KDV VFRUH DQG WKH XQWUHDWHG JURXS DQG WKH WLHV DFFRXQW IRU SRLQWV 7KH WRWDO RI WKHVH WKUHH VFRUHV LV ,W FRLQFLGHV ZLWK WKH QXPEHU RI WUHDWHG XQLWV LQ WKH XQPDWFKHG VDPSOH EHFDXVH WKHUH KDSSHQ WR EH QR PDWFKLQJ JURXSV LQ ZKLFK DOO WKH XQLWV DUH WUHDWHG )RU VXFK D JURXS ZLWK ݊ WKH ZHLJKW ݎ ZRXOG QRW EH GHILQHG 7KH EDODQFH í LV PXFK JUHDWHU WKDQ LWV FRXQWHUSDUW ZLWKRXW ZHLJKWV +RZHYHU WKH VDPSOLQJ YDULDWLRQ RI WKH EDODQFH LV LQFUHDVHG EHFDXVH VRPH ZLWKLQSDLU FRQWUDVWV KDYH ODUJH ZHLJKWV 7KH ODUJHVW ZHLJKWV DUH IRU IRXU SDLUV DQG IRU QLQH SDLUV HDFK DQG IXUWKHU SDLUV KDYH ZHLJKWV JUHDWHU WKDQ ,Q WRWDO SDLUV KDYH ZHLJKWV JUHDWHU WKDQ XQLW\ RI WKHP DUH VPDOOHU WKDQ :HLJKWV JUHDWHU WKDQ XQLW\ DUH IRU SDLUV IURP PDWFKLQJ JURXSV LQ ZKLFK WUHDWHG XQLWV KDYH D PDMRULW\ )RU WKH RWKHU WZR RXWFRPH YDULDEOHV WKDW VFRUH WKH IXWXUH RI WKH UHIHUHQFH VSHOO WKH WUHDWHG JURXS KDV IDU IHZHU ZLQQHUV WKDQ ORVHUV DQG WKH EDODQFH LV PXFK JUHDWHU WKDQ LQ WKH DQDO\VLV ZLWKRXW ZHLJKWV 7KH UHVXOWV DUH VXPPDUL]HG LQ 7DEOH 7KH URZV DUH IRU WKH DQDO\VHV LQ ZKLFK RQO\ ( VSHOOV RI RQH \HDU RU ORQJHU FRXQW DV VXFFHVVHV DQDO\VLV $ RQO\ VXFK VSHOOV FRXQW EXW WZR VXFK VSHOOV DUH FRPSDUHG E\ WKHLU OHQJWKV DQDO\VLV % DQG ZKHQ WKH ORQJHVW ( VSHOO RI WKH IXWXUH FRXQWV HYHQ LI VKRUWHU WKDQ RQH \HDU DQG WKHVH PD[LPD DUH FRPSDUHG E\ WKHLU OHQJWKV DQG UHFHQF\ DQDO\VLV & %\ FRPSDULQJ WKH WZR WUHDWPHQW JURXSV ZLWKRXW PDWFKLQJ ZH REWDLQ WKH IROORZLQJ UHVXOWV ,Q DQDO\VLV $ RI WKH WUHDWHG XQLWV KDYH DQ ( VSHOO RI OHQJWK RU ORQJHU LQ WKHLU IXWXUHV FRPSDUHG WR RI WKH XQWUHDWHG ,Q DQDO\VLV % WKH PHDQ VFRUHV RI WKH WUHDWHG DQG XQWUHDWHG JURXSV DUH DQG UHVSHFWLYHO\ ,Q DQDO\VLV & WKH WUHDWHG JURXS KDV PHDQ PRQWKV DQG WKH XQWUHDWHG 268 N. T. Longford, I. C. Salagean: The effect of unemployment … Table 2. 0DWFKHGSDLUV DQDO\VLV RI WKH HPSOR\PHQW IXWXUHV 1R ZHLJKWV :HLJKWV :LQQHUV 7LHV /RVHUV :LQQHUV 7LHV $ ( VSHOO OHQJWK PRQWKV % ( VSHOO OHQJWK PRQWKV & /RQJHU ( VSHOO HDUOLHU /RVHUV Figure 5. 6XPPDU\ RI D VHW RI UHSOLFDWHV RI WKH DQDO\VHV LQ 7DEOH 7KXV WKH PDWFKHGSDLUV DQDO\VLV LV LQ DJUHHPHQW ZLWK WKH µUDZ¶ FRPSDULVRQ IRU DOO WKUHH RXWFRPH YDULDEOHV 7KH VDPSOLQJ YDULDQFH RI WKH EDODQFHV LV HVWLPDWHG E\ UHSOLFDWLQJ WKH PDWFKLQJ SURFHVV $ VHW RI UHSOLFDWLRQV LV VXPPDULVHG LQ )LJXUH 7KH SDQHOV $ ± & FRUUHVSRQG WR WKH URZV RI 7DEOH 7KH UHSOLFDWH FRXQWV RI ZLQQHUV DQG ORVHUV DUH PDUNHG E\ WKLQ KRUL]RQWDO VHJPHQWV EODFN IRU XQZHLJKWHG DQG JUD\ IRU ZHLJKWHG DQDO\VLV 7KHLU PHDQV DUH PDUNHG E\ KRUL]RQWDO GDVKHV DQG WKH EDODQFHV DUH LQGLFDWHG E\ YHUWLFDO VHJPHQWV ZLWK WKHLU YDOXHV SULQWHG WR WKH OHIW DQG VWDQGDUG HUURUV WR WKH ULJKW LQ SDUHQWKHVHV ,I WKH HVWLPDWHV RI WKH EDODQFH DQG WKHLU VWDQGDUG HUURUV DUH WDNHQ DW IDFH YDOXH WKHUH LV YHU\ VWURQJ HYLGHQFH RI QHJDWLYH EDODQFH IRU DOO WKUHH RXWFRPH YDULDEOHV ± EHQHILWV DUH DVVRFLDWHG ZLWK OHVV GHVLUDEOH RXWFRPHV RI UHIHUHQFH VSHOOV STATISTICS IN TRANSITION-new series, Summer 2013 269 ( VSHOOV LI DQ\ WKDW DUH VKRUWHU DQG DFKLHYHG ODWHU 7KH FKHFNV RQ WKH EDODQFH RI WKH FRYDULDWHV LQ )LJXUHV DQG DUH QRW D FRPSOHWH GLDJQRVWLF EHFDXVH WKH\ FDQQRW LQGLFDWH WKDW VRPH LPSRUWDQW FRYDULDWHV KDYH EHHQ RPLWWHG QRW UHFRUGHG :H FDQ RQO\ DUJXH WKDW WKH OLVW LQ 7DEOH LV TXLWH H[KDXVWLYH $V DQRWKHU OLPLWDWLRQ ZH KLJKOLJKW D SUREOHP LQ WKH GHILQLWLRQ RI WKH RXWFRPHV LQ DQDO\VLV & DQG SDUWO\ DOVR LQ % 6XSSRVH ERWK XQLWV LQ D SDLU KDYH RXWFRPH L EXW RQH XQLW LV WKH ZLQQHU EHFDXVH KLV RU KHU ( VSHOO RI OHQJWK L ZDV UHDOLVHG HDUOLHU 6XSSRVH IXUWKHU WKDW WKH TXDOLI\LQJ ( VSHOO RI WKH ORVLQJ XQLW HQGHG DW WKH HQG RI WKH UHFRUGHG IXWXUH ,W LV WKHUHIRUH OLNHO\ WKDW WKH ORVLQJ XQLW ZRXOG KDYH KDG D VXSHULRU RXWFRPH ORQJHU ( VSHOO RI PD[LPXP OHQJWK KDG ZH KDG ORQJHU UHFRUGHG IXWXUH ,I WKH ORVLQJ XQLW KDG VKRUWHU PD[LPXP ( VSHOO WKDQ WKH ZLQQHU EXW WKLV VSHOO ZHUH DW WKH HQG RI WKH UHFRUGHG IXWXUH WKHUH LV VWLOO D OLNHOLKRRG DOEHLW VPDOOHU WKDW WKH ORVLQJ XQLW ZRXOG KDYH KDG D VXSHULRU RXWFRPH LI WKH UHFRUGV RI WKH IXWXUH ZHUH ORQJHU :H UHIHU WR VXFK FDVHV DV DPELJXLWLHV )RUPDOO\ D PDWFKHG SDLU LV VDLG WR KDYH DQ DPELJXLW\ RI RUGHU M LI WKH GLIIHUHQFH RI WKHLU RXWFRPHV LV M DQG WKH ORVHU¶V TXDOLI\LQJ ( VSHOO LV DW WKH HQG RI WKH UHFRUGHG IXWXUH ,Q WKH UHSOLFDWLRQV WKH QXPEHUV RI VXFK DPELJXLWLHV DUH LQ WKH UDQJH ± ZLWK PHDQ 7KH QXPEHUV RI DPELJXLWLHV RI RUGHU UDQJH IURP WR RI RUGHU IURP WR DQG WKH\ GHFOLQH UDSLGO\ ZLWK WKH RUGHU )RU H[DPSOH WKH\ UDQJH IURP WR IRU RUGHU $OVR WKH OLNHOLKRRG WKDW WKH ORVHU ZRXOG KDYH D VXSHULRU RXWFRPH LI ZH KDG H[WHQGHG UHFRUGV IXWXUHV GLPLQLVKHV ZLWK WKH RUGHU 7KH QXPEHUV RI DPELJXLWLHV DUH GLVWULEXWHG HYHQO\ EHWZHHQ WUHDWHG DQG XQWUHDWHG XQLWV :H FDQ LQFRUSRUDWH WKH DPELJXLWLHV LQ D VHQVLWLYLW\ DQDO\VLV E\ UHFODVVLI\LQJ HYHU\ WUHDWHG ORVHU LQ D SDLU ZLWK DPELJXLW\ DV WKH ZLQQHU DQG WKH XQWUHDWHG ZLQQHU DV WKH ORVHU 6XFK DQ DQDO\VLV FDQ EH UHILQHG E\ DOORZLQJ D UHDOLVWLF SHUFHQWDJH RI ORVHUV WR UHPDLQ ORVHUV EXW WKLV LV QRW QHFHVVDU\ LQ RXU FDVH (YHQ LI HYHU\ DPELJXLW\ LQ WKH WUHDWHG JURXS LV UHFODVVLILHG WKH EDODQFH LV UHGXFHG E\ DSSUR[LPDWHO\ WKH QXPEHU RI DPELJXLWLHV LQ WKH XQZHLJKWHG DQDO\VLV & 7KLV ZRXOG QRW DOWHU WKH FRQFOXVLRQ WKDW WKH WUHDWHG XQLWV KDYH IHZHU ZLQQHUV )RU WKH ZHLJKWHG DQDO\VLV WKH DPELJXLWLHV VKRXOG EH FRXQWHG ZLWK ZHLJKWV WKH VDPH FRQFOXVLRQ LV DUULYHG DW 2WKHU DQDO\VHV DUH LQ DFFRUG ZLWK WKH UHVXOWV UHODWHG WR WKH ORQJHVW ( VSHOO )RU H[DPSOH WKH PHDQ OHQJWKV RI WKH UHIHUHQFH VSHOOV DUH PRQWKV LQ WKH WUHDWHG JURXS DQG LQ WKH XQWUHDWHG ,Q WKH PDWFKHGSDLUV DQDO\VLV WKLV GLIIHUHQFH LV UHGXFHG RQO\ VOLJKWO\ WKH UHVSHFWLYH PHDQV DUH DQG PRQWKV 7KH FRXQWV RI ZLQQHUV DQG ORVHUV DUH LQ DFFRUG ZLWK WKLV UHVXOW WKH WUHDWHG JURXS KDV ZLQQHUV DQG ORVHUV ZLWK WLHV 6RPH FDXWLRQ LV FDOOHG IRU LQ LQWHUSUHWLQJ WKLV DQDO\VLV EHFDXVH DGPLQLVWUDWLYH SURFHGXUHV PD\ EH GHOD\HG DQG LQ FDVH RI VKRUW UHIHUHQFH VSHOOV LQ SDUWLFXODU WKH DZDUG RI DQ XQHPSOR\PHQW EHQHILW PD\ EH OLQNHG ZLWK DQ LQFRUUHFW 8 VSHOO +RZHYHU ZH FDQQRW FRQGLWLRQ WKH DQDO\VLV RQ WKH OHQJWK RI WKH UHIHUHQFH VSHOO EHFDXVH LW LV DQ RXWFRPH RI WKH WUHDWPHQW 270 N. T. Longford, I. C. Salagean: The effect of unemployment … 6. Conclusion :H DSSOLHG WKH SRWHQWLDO RXWFRPHV IUDPHZRUN WR HVWLPDWH WKH HIIHFW RI DZDUGLQJ XQHPSOR\PHQW EHQHILWV RQ WKH UHVROXWLRQ RI WKH XQHPSOR\PHQW VSHOO 2XU FRQFOXVLRQV DUH XQHTXLYRFDOO\ QHJDWLYH DERXW WKH EHQHILW (YHQ DIWHU GHWDLOHG PDWFKLQJ RQ DQ H[KDXVWLYH OLVW RI EDFNJURXQG YDULDEOHV WKH RXWFRPHV DUH IDU VXSHULRU RQ DYHUDJH IRU WKRVH QRW DZDUGHG EHQHILWV ERWK LQ WHUPV RI WKH OHQJWK RI WKH ORQJHVW ( VSHOO LQ WKH UHFRUGHG IXWXUH DQG WKH VSHHG RI DFKLHYLQJ LW 8QHPSOR\PHQW VSHOOV DVVRFLDWHG ZLWK EHQHILWV WHQG WR EH ORQJHU HYHQ DIWHU PDWFKLQJ RQ EDFNJURXQG 7KH SULQFLSDO PRGHOOLQJ HIIRUW LV LQ WKH SURSHQVLW\ DQDO\VLV ZKLFK GRHV QRW LQYROYH WKH RXWFRPH YDULDEOH 7KHUHIRUH PRGHO VHOHFWLRQ GRHV QRW LQWURGXFH DQ\ ELDV &RQFHUQV WKDW RQH PLJKW KDYH DERXW WKH GLVWULEXWLRQ RI WKH RXWFRPH GR QRW DULVH LQ RXU DSSURDFK WKH RXWFRPH LV GHILQHG RQ D VFDOH WKDW EHVW UHIOHFWV RXU SXUSRVH ZLWK QR UHJDUG IRU WKH GLVWULEXWLRQ RI WKH YDOXHV :H DYRLGHG GHILQLQJ D VFDOH DOWRJHWKHU DQG EDVHG WKH DQDO\VLV RQ WKH ZLWKLQSDLU FRPSDULVRQV 2QH PLJKW DUJXH WKDW VRPH HIILFLHQF\ LV ORVW LQ WKH SURFHVV +RZHYHU WKH VDPSOH VL]H LQ WKH DQDO\VLV LV VR ODUJH WKDW YDULDQFH UHGXFWLRQ LV RI VHFRQGDU\ LPSRUWDQFH WR FRPEDWWLQJ DOO SRVVLEOH VRXUFHV RI ELDV DPRQJ ZKLFK VHOHFWLRQ ELDV QRQ LJQRUDEOH DVVLJQPHQW WR WKH WUHDWPHQW JURXSV SUHVHQWV WKH JUHDWHVW WKUHDW 7KLV FDQ EH LQWHUSUHWHG DV LQVLVWLQJ RQ D KLJKHU VWDQGDUG IRU FRPSDULQJ OLNH ZLWK OLNH 7KH DJUHHPHQW RI WKH UHVXOWV RI UDZ FRPSDULVRQV ZLWK PDWFKHGSDLUV DQDO\VLV LV QR OLFHQFH WR DSSO\ WKH VLPSOH PHWKRG 7KH µUDZ¶ FRPSDULVRQV KDYH QR FUHGLELOLW\ IRU DQ\ FDXVDO DQDO\VLV DQG WKH DJUHHPHQW RI WKHLU UHVXOWV LQ RXU DQDO\VHV LV QR LQGLFDWLRQ WKDW VXFK DQ DJUHHPHQW PD\ DULVH LQ D VLPLODU FRQWH[W :H VWXGLHG WKH HIIHFW RI XQHPSOR\PHQW EHQHILWV $ PRUH GHWDLOHG DQG DUJXDEO\ PRUH UHOHYDQW LVVXH LV WKH HIIHFW RI D FKDQJH LQ WKH UXOHV IRU DZDUGLQJ EHQHILWV 6XFK D VWXG\ LV IHDVLEOH RQO\ LI WKH SODQQHG RU FRQWHPSODWHG FKDQJHV DUH LPSOHPHQWHG HLWKHU E\ DQ H[SHULPHQW RU DGPLQLVWUDWLYHO\ VHH &DUG DQG /HYLQH &DUOLQJ +ROPOXQG DQG 9HMVLX DQG /DOLYH YDQ 2XUV DQG =ZHLPXOOHU IRU H[DPSOHV REFERENCES $%$',( $ ,0%(16 * /DUJH VDPSOH SURSHUWLHV RI PDWFKLQJ HVWLPDWRUV IRU DYHUDJH WUHDWPHQW HIIHFWV Econometrica ± &$5' ' /(9,1( 3 % ([WHQGHG EHQHILWV DQG WKH GXUDWLRQ RI 8, VSHOOV HYLGHQFH IURP WKH 1HZ -HUVH\ H[WHQGHG EHQHILW SURJUDP Journal of Public Economics ± STATISTICS IN TRANSITION-new series, Summer 2013 271 &$5/,1* . +2/0/81' % 9(-6,8 $ 'R EHQHILW FXWV ERRVW MRE ILQGLQJ" 6ZHGLVK HYLGHQFH IURP WKH V Economic Journal ± &5803 5. +27= 9 - ,0%(16 * : 0,71,. 2 $ 'HDOLQJ ZLWK OLPLWHG RYHUODS LQ HVWLPDWLRQ RI DYHUDJH WUHDWPHQW HIIHFWV Biometrika ± +,5$12 . ,0%(16 * 5,''(5 * (IILFLHQW HVWLPDWLRQ RI DYHUDJH WUHDWPHQW HIIHFWV XVLQJ WKH HVWLPDWHG SURSHQVLW\ VFRUH Econometrica ± +2//$1' 3 : 6WDWLVWLFV DQG FDXVDO LQIHUHQFH Journal of the American Statistical Association ± +817 - 7KH HIIHFW RI XQHPSOR\PHQW FRPSHQVDWLRQ RQ XQHPSOR\PHQW GXUDWLRQ LQ *HUPDQ\ Journal of Labor Economics ± /$/,9( 5 =:(,0h//(5 - %HQHILW HQWLWOHPHQW DQG XQHPSOR\PHQW GXUDWLRQ 7KH UROH RI SROLF\ HQGRJHQHLW\ Journal of Public Economics ± /$/,9( 5 9$1 2856 - =:(,0h//(5 - +RZ FKDQJHV LQ ILQDQFLDO LQFHQWLYHV DIIHFW WKH GXUDWLRQ RI XQHPSOR\PHQW Review of Economic Studies ± /(&+1(5 0 6RPH SUDFWLFDO LVVXHV LQ WKH HYDOXDWLRQ RI KHWHURJHQHRXV ODERXU PDUNHW SURJUDPPHV E\ PDWFKLQJ PHWKRGV Journal of the Royal Statistical Society 6HULHV $ ± /21*)25' 1 7 1,&2'(02 & 1Òf(= 0 1Òf(= ( :HOO EHLQJ DQG REHVLW\ RI UKHXPDWRLG DUWKULWLV SDWLHQWV Health Services and Outcomes Research Methodology ± 52(' . =+$1* 7 'RHV XQHPSOR\PHQW FRPSHQVDWLRQ DIIHFW XQHPSOR\PHQW GXUDWLRQ" Economic Journal ± 526(1%$80 3 5 Observational Studies QG HG 6SULQJHU9HUODJ 1HZ <RUN 526(1%$80 3 5 58%,1 ' % 2Q WKH FHQWUDO UROH RI WKH SURSHQVLW\ VFRUH LQ PDWFKLQJ Biometrika ± 58%,1 ' % (VWLPDWLQJ FDXVDO HIIHFWV RI WUHDWPHQWV LQ UDQGRPL]HG DQG QRQUDQGRPL]HG VWXGLHV Journal of Educational Psychology ± 58%,1 ' % Multiple Imputation for Nonresponse in Surveys :LOH\ DQG 6RQV 1HZ <RUN 58%,1 ' % 0DWFKHG 6DPSOLQJ IRU &DXVDO (IIHFWV :LOH\ DQG 6RQV 1HZ <RUN 272 N. T. Longford, I. C. Salagean: The effect of unemployment … 58%,1 ' % 7+20$6 1 0DWFKLQJ XVLQJ HVWLPDWHG SURSHQVLW\ VFRUHV 5HODWLQJ WKHRU\ WR SUDFWLFH Biometrics ± 886,7$/2 5 9(5+2 - 7KH HIIHFW RI XQHPSOR\PHQW EHQHILWV RQ UH HPSOR\PHQW UDWHV (YLGHQFH IURP WKH )LQQLVK XQHPSOR\PHQW LQVXUDQFH UHIRUP Labour Economics ± APPENDIX Definitions of the labour force states 7KH ODERXU IRUFH VWDWXV RI D UHVLGHQW RI /X[HPERXUJ LV HVWDEOLVKHG DW WKH HQG RI HDFK PRQWK E\ WKH IROORZLQJ UXOHV HPSOR\HG ( ± DQ HQWU\ LQ ,*66 EXW QR HQWU\ LQ $'(0 LQ WKH PRQWK XQHPSOR\HG 8 ± DQ HQWU\ LQ $'(0 EXW QR HQWU\ LQ ,*66 LQ WKH PRQWK LQ WUDQVLWLRQ 7 ± HQWULHV LQ ERWK $'(0 DQG ,*66 LQ WKH PRQWK HFRQRPLFDOO\ LQDFWLYH , ± HQWU\ LQ QHLWKHU $'(0 QRU ,*66 LQ WKH PRQWK EXW DQ HQWU\ LQ HLWKHU GDWDEDVH LQ DQ HDUOLHU PRQWK DEVHQW $ ± HQWU\ LQ QHLWKHU $'(0 QRU ,*66 LQ WKH PRQWK DQG QR HQWU\ LQ HLWKHU RI WKHP DW DQ\ WLPH LQ WKH SDVW 7KH VWDWXV $ LV UHOHYDQW RQO\ WR SHUVRQV ZKR DSSHDU LQ D GDWDVHW LQ D ODWHU PRQWK STATISTICS IN TRANSITION-new series, Summer 2013 273 STATISTICS IN TRANSITION-new series, Summer 2013 Vol. 14, No. 2, pp. 273–286 HOUSEHOLDS’ SAVING MOBILITY IN POLAND Barbara Liberda , 0DUHN 3ĊF]NRZVNL ABSTRACT ,Q WKLV SDSHU ZH H[DPLQH WKH PRELOLW\ RI 3ROLVK KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV GXULQJ WKH \HDUV DQG FRPSDUH LW ZLWK WKH KRXVHKROGV¶ VDYLQJ PRELOLW\ GXULQJ WKH \HDUV 7KH DQDO\VLV IRU LV EDVHG RQ WKH KRXVHKROG EXGJHW SDQHO GDWD IURP WKUHH SDQHOV RI 3ROLVK KRXVHKROGV VHOHFWHG E\ DXWKRUV IRU WKH \HDUV DQG IURP WKH +RXVHKROG %XGJHW 6XUYH\V :H XVH WKH 0DUNRY PRELOLW\ PDWUL[ DQG HVWLPDWH WKH ORQJWHUP HUJRGLF GLVWULEXWLRQ RI KRXVHKROGV DFFRUGLQJ WR WKH VDYLQJ UDWHV 2XU UHVXOWV VKRZ WKDW WKH ORQJWHUP KRXVHKROGV¶ GLVWULEXWLRQ UHYHDOV D WHQGHQF\ WRZDUGV SRODUL]DWLRQ RI KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV &RPSDULQJ WKH UHVXOWV IRU ZLWK WKH DXWKRUV¶ SUHYLRXV UHVHDUFK RQ WKH KRXVHKROGV¶ VDYLQJ PRELOLW\ IRU D GHFDGH HDUOLHU GXULQJ ZH SURYH WKDW EHWZHHQ WKH \HDUV DQG WKH ORQJWHUP FKDQJH LQ WKH GLVWULEXWLRQ RI KRXVHKROGV ZDV DV\PPHWULFDO WRZDUG WKH KLJKHVW VDYLQJ UDWH JURXSV 7KLV KHOSV WR H[SODLQ ZK\ 3ROLVK KRXVHKROGV FRXOG PDLQWDLQ SRVLWLYH DQG ULVLQJ VDYLQJV GXULQJ WKH KLJKO\ XQFHUWDLQ SHULRG RI WKH ILQDQFLDO FULVLV LQ Key words KRXVHKROG VDYLQJ GLVWULEXWLRQ PRELOLW\ 0DUNRY PDWUL[ SRODUL]DWLRQ -(/ FODVVLILFDWLRQ ' ' 1. Introduction $FFRUGLQJ WR WKH VWDQGDUG WKHRU\ RI OLIH F\FOH DQG SHUPDQHQW LQFRPH K\SRWKHVLV VDYLQJV DUH GHWHUPLQHG E\ WKH SHUVLVWHQFH DQG JURZWK RI LQFRPH DV ZHOO DV E\ FRQVXPHUV¶ SHUFHSWLRQ RI LQFRPH XQFHUWDLQW\ &DPSEHOO &DUUROO 'HDWRQ 7KH H[SHFWDWLRQ RI DQ LQFRPH ULVH ZLOO ORZHU VDYLQJV EXW WKH IHDU RI D FXW LQ IXWXUH LQFRPH PLJKW LQFUHDVH VDYLQJ UDWHV &RQVXPHUV ZLWK JUHDWHU XQFHUWDLQW\ RI LQFRPH ZRXOG VDYH PRUH ,Q WKH WKHRUHWLFDO DQG HPSLULFDO OLWHUDWXUH FRQFHUQLQJ KRXVHKROG LQFRPH DQG VDYLQJ WKHUH LV HYLGHQFH WKDW VDYLQJV UHDFW PDLQO\ WR WKH H[SHFWHG FKDQJHV RI FXUUHQW LQFRPH 7KH LPSDFW RI %DUEDUD /LEHUGD )DFXOW\ RI (FRQRPLF 6FLHQFHV 8QLYHUVLW\ RI :DUVDZ 'OXJD :DUVDZ 3RODQG (PDLO EDUEDUDOLEHUGD#XZHGXSO 0DUHN 3ĊF]NRZVNL )DFXOW\ RI (FRQRPLF 6FLHQFHV 8QLYHUVLW\ RI :DUVDZ 'OXJD :DUVDZ 3RODQG (PDLO PSHF]NRZVNL#ZQHXZHGXSO 274 B. Liberda, 0 3ĊF]NRZVNL: Households’ saving… XQH[SHFWHG FKDQJHV RI FXUUHQW LQFRPH RQ VDYLQJ LV KLJKO\ XQSUHGLFWDEOH +DOO )ODYLQ %D[WHU -HUPDQQ 3RWHUED 0RG\ et. al., ,Q HDUOLHU VWXGLHV RQ 3ROLVK KRXVHKROGV IRU WKH \HDUV LW ZDV IRXQG WKDW WKH XQFHUWDLQW\ RI SHUPDQHQW DQG WUDQVLWRU\ LQFRPH LQ 3RODQG LV VLPLODU WR WKH LQFRPH XQFHUWDLQW\ LQ PRVW RI (XURSHDQ FRXQWULHV DQG WKH YDULDQFH RI SHUPDQHQW LQFRPH LV JHQHUDOO\ ORZHU WKDQ WKH WUDQVLWRU\ LQFRPH YDULDQFH $V WKH GLIIHUHQFH EHWZHHQ XQFHUWDLQW\ RI SHUPDQHQW DQG WUDQVLWRU\ LQFRPH LQ 3RODQG LV VPDOO WKH VKRFNV WR ERWK SHUPDQHQW DQG WUDQVLWRU\ LQFRPH DIIHFW VDYLQJ SRVLWLYHO\ 7KH GLVWULEXWLRQ RI KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV ZDV YHU\ XQHYHQ LQ 3RODQG GXULQJ WKH ILUVW GHFDGH DIWHU WUDQVLWLRQ LQWR WKH PDUNHW HFRQRP\ /LEHUGD et al. 7KLV DUWLFOH H[WHQGV WKH UHVHDUFK RQ WKH FKDQJLQJ VWUXFWXUH RI KRXVHKROG VDYLQJV LQ 3RODQG WR WKH GHFDGH DIWHU WKH SUHYLRXV UHVHDUFK ZDV FRQGXFWHG :H DQDO\VH WKH PRELOLW\ RI 3ROLVK KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV GXULQJ WKH WLPH RI LQFUHDVHG LQFRPH XQFHUWDLQW\ FDXVHG E\ ILQDQFLDO FULVLV RI 7KH DQDO\VLV LV EDVHG RQ D YHU\ ULFK DQG UHSUHVHQWDWLYH VHW RI KRXVHKROG EXGJHW SDQHO GDWD IURP 3ROLVK KRXVHKROGV VXUYH\HG GXULQJ 7KUHH SDQHOV RI KRXVHKROGV HDFK IRU WKH \HDUV DQG ZHUH VHOHFWHG E\ DXWKRUV IURP WKH VDPSOH RI KRXVHKROGV VXUYH\HG \HDUO\ E\ 3ROLVK &HQWUDO 6WDWLVWLFDO 2IILFH (YHU\ \HDU KDOI RI WKH VXUYH\HG JURXS RI KRXVHKROGV LV H[FKDQJHG DQG HDFK KRXVHKROG LV VXUYH\HG GXULQJ WZR FRQVHFXWLYH \HDUV 'DWD DUH FROOHFWHG ZLWK WKH XVH RI D PRQWKO\ URWDWLQJ PHWKRG HJ HDFK PRQWK RQH WZHOIWK RI WKH ZKROH VDPSOH ZDV VXUYH\HG 7KH VHOHFWHG SDQHOV RI KRXVHKROGV IRU WKH \HDUV DQG PHHW DOO WKH IRUPDO UHTXLUHPHQWV UHJDUGLQJ GDWD FRQVLVWHQF\ 7KH FKRVHQ SDQHO RI KRXVHKROGV LV UHSUHVHQWDWLYH DQG DOORZV IRU D JHQHUDOL]DWLRQ RI UHVXOWV ZLWK UHJDUG WR WKH ZKROH SRSXODWLRQ RI 3ROLVK KRXVHKROGV ZLWKLQ D PDUJLQ RI D UDQGRP HUURU 7KH SDSHU LV RUJDQL]HG LQ WKH IROORZLQJ ZD\ LQ 6HFWLRQ ZH FODVVLI\ KRXVHKROGV LQWR ILYH JURXSV ZLWK UHJDUG WR VDYLQJ UDWHV 6HFWLRQ SUHVHQWV WKH KRXVHKROG LQFRPH JURZWK DQG ILQDQFLDO VDYLQJV RI KRXVHKROGV LQ ,Q 6HFWLRQ ZH LQYHVWLJDWH FKDQJHV LQ WKH KRXVHKROGV¶ GLVWULEXWLRQ ZLWK UHJDUG WR VDYLQJ UDWHV LQ WKUHH SDQHO GDWD VHWV IRU WKH \HDUV DQG E\ DSSO\LQJ WKH 0DUNRY PRELOLW\ PDWUL[ 7KHQ ZH HVWLPDWH WKH ORQJ WHUP GLVWULEXWLRQ RI KRXVHKROGV IRU DQG FRPSDUH LW ZLWK D VLPLODU GLVWULEXWLRQ RQH GHFDGH HDUOLHU GXULQJ ,Q 6HFWLRQ ZH SUHVHQW RXU FRQFOXVLRQV 2XU VWXG\ PHHWV WZR JRDOV )LUVW LW IXOILOOV WKH ODFN RI UHVHDUFK RQ KRXVHKROG VDYLQJV LQ WUDQVLWLRQ HFRQRPLHV RI (XURSH GXULQJ UHFHQW ILQDQFLDO FULVLV 6HFRQG DFFRUGLQJ WR RXU NQRZOHGJH WKLV VWXG\ LV WKH RQO\ RQH WKDW FRPELQHV WKH DQDO\VLV RI KRXVHKROG VDYLQJV GXULQJ ILQDQFLDO FULVLV ZLWK WKH UHVXOWV RI VLPLODU UHVHDUFK IRU 3RODQG RQH GHFDGH HDUOLHU 275 STATISTICS IN TRANSITION-new series, Summer 2013 2. Definitions and classification of saving rate categories :H GHILQH KRXVHKROG LQFRPH DV GLVSRVDEOH LQFRPH UHJLVWHUHG LQ WKH PRQWK RI WKH VXUYH\ 0HWKRGRORJ\ RI +RXVHKROG %XGJHW 6XUYH\V &62 6DYLQJV DUH FDOFXODWHG DV D GLIIHUHQFH EHWZHHQ GLVSRVDEOH LQFRPH DQG KRXVHKROG H[SHQGLWXUHV ZKLFK LV V LQFRPH H[SHQGLWXUHV WKH VDYLQJ UDWH sr EHLQJ D UDWLR RI VDYLQJV DQG GLVSRVDEOH LQFRPH VU VLQFRPH :H H[SUHVV WKH VDYLQJ UDWH DV D SHUFHQWDJH RI WKH KRXVHKROG GLVSRVDEOH LQFRPH Table 1. &ODVVLILFDWLRQ RI WKH VDYLQJ UDWH FODVV %HORZ YHU\ ORZ VDYLQJ UDWH QHJDWLYH )URP WR ORZ VDYLQJ UDWH QHJDWLYH )URP WR VDYLQJ UDWH FORVH WR ]HUR )URP WR KLJK VDYLQJ UDWH SRVLWLYH $ERYH YHU\ KLJK VDYLQJ UDWH SRVLWLYH Source: Own calculations. 7KH VDYLQJ UDWH ZDV GLYLGHG LQWR FDWHJRULHV YHU\ ORZ VDYLQJ UDWH QHJDWLYH ORZ VDYLQJ UDWH QHJDWLYH VDYLQJ UDWH FORVH WR ]HUR QHJDWLYH RU SRVLWLYH KLJK VDYLQJ UDWH SRVLWLYH YHU\ KLJK VDYLQJ UDWH SRVLWLYH 7KH GLVWULEXWLRQ RI KRXVHKROGV EHWZHHQ JURXSV RI GLIIHUHQW VDYLQJ UDWHV LQ WKH \HDUV LV SUHVHQWHG LQ 7DEOH Table 2 1XPEHU RI KRXVHKROGV LQ JURXSV RI GLIIHUHQW VDYLQJ UDWHV LQ WKH \HDUV 6DYLQJ UDWHV WR WR WR 7RWDO Source: Own calculations based on Household Budget Surveys 2007-2010, Central Statistical Office (GUS), Poland, Warsaw. 'XULQJ WKH SHULRG RI WKH QXPEHU RI KRXVHKROGV LQ D JURXS ZLWK WKH QHJDWLYH VDYLQJ UDWHV EHORZ PLQXV RI WKH KRXVHKROG LQFRPH ZDV GHFUHDVLQJ 276 B. Liberda, 0 3ĊF]NRZVNL: Households’ saving… 7KH RSSRVLWH KDSSHQHG LQ WKH JURXS RI KRXVHKROGV ZLWK WKH KLJKHVW SRVLWLYH VDYLQJ UDWH DERYH RI WKH KRXVHKROG LQFRPH 7KH ODWWHU JURXS ZDV LQFUHDVLQJ LQ QXPEHU DQG LQ LWV UHODWLYH VKDUH LQ WKH WRWDO VDPSOH RI KRXVHKROGV 7KH ³PLGGOH´ JURXSV RI KRXVHKROGV ZLWK HLWKHU SRVLWLYH RU QHJDWLYH VDYLQJ UDWHV ZHUH PRUH VWDEOH LQ VL]H GXULQJ 7KH PRVW YLVLEOH FKDQJHV RI WKH KRXVHKROG VWUXFWXUH FRQFHUQ WKXV WKH WZR SRODU HQGV RI WKH KRXVHKROGV VDYLQJ UDWHV FODVVHV ,Q WKH QH[W VHFWLRQV ZH ZLOO H[DPLQH KRZ WKH VDYLQJV UDWHV RI WKH KRXVHKROGV YDULHG ZLWKLQ WKH VWXGLHG \HDUV 7KUHH FRQVWUXFWHG SDQHO GDWD VHWV IRU WKH \HDUV DQG DOORZ IRU D FRPSDULVRQ WKURXJKRXW WKH IRXU REVHUYHG \HDUV 3. Household income and savings in 2007-2010 7KH OHYHO DQG JURZWK RI UHDO GLVSRVDEOH LQFRPH RI 3ROLVK KRXVHKROGV JURXSHG E\ VDYLQJ UDWHV LQ DUH VKRZQ LQ 7DEOH Table 3. /HYHO DQG JURZWK RI UHDO GLVSRVDEOH LQFRPH RI 3ROLVK KRXVHKROGV JURXSHG E\ VDYLQJ UDWHV LQ 6DYLQJ UDWH JURXSV 0RQWKO\ LQFRPH ]ORW\V ,QFRPH JURZWK WR WR 7RWDO WR 7KH H[FKDQJH UDWH RI ]ORW\ WR 86 GROODU DQG WR HXUR LQ ZDV 86 HXUR ]ORW\ 6WDWLVWLFDO <HDUERRN 3RODQG S ]ORW\ DQG Source: Own calculations based on panel data for 2007-2008, 2008-2009 and 2009-2010 from Household Budget Surveys 2007-2010, Central Statistical Office (GUS), Poland, Warsaw. 7KH OHYHO RI KRXVHKROG LQFRPH ZDV SRVLWLYHO\ FRUUHODWHG ZLWK WKH KRXVHKROG VDYLQJ UDWHV 'LVSRVDEOH LQFRPH RI KRXVHKROGV JUHZ IURP \HDU WR \HDU GXULQJ LQ DOO KRXVHKROGV JURXSHG E\ VDYLQJ UDWHV 7KLV JURZWK RI KRXVHKROG GLVSRVDEOH LQFRPH ZDV KLJKHU LQ WKDQ LQ WKH IROORZLQJ \HDUV ZKHQ ILQDQFLDO VKRFNV FRQWLQXHG DIIHFWLQJ WKH 3ROLVK HFRQRP\ 7KH DYHUDJH JURZWK RI UHDO GLVSRVDEOH LQFRPH RI 3ROLVK KRXVHKROGV REVHUYHG RQ D PLFUR VFDOH ZDV DERXW SHU \HDU GXULQJ 277 STATISTICS IN TRANSITION-new series, Summer 2013 7KH LQFUHDVH RI GLVSRVDEOH LQFRPH ZDV GLIIHUHQW LQ HDFK JURXS RI KRXVHKROGV FODVVLILHG E\ VDYLQJ UDWHV ZLWK QR FOHDU WHQGHQF\ GHWHFWHG +RXVHKROGV ZLWK WKH KLJKHVW VDYLQJ UDWHV HQFRXQWHUHG YHU\ ORZ JURZWK RI LQFRPH EHWZHHQ \HDUV VLPLODU WR LQFRPH JURZWK RI KRXVHKROGV ZKLFK VDYH DW ORZ UDWHV ,Q WKH LQFRPH RI KLJK VDYLQJ KRXVHKROGV UHFRYHUHG IDVW ZKLOH WKH ORZ VDYLQJ KRXVHKROGV H[SHULHQFHG VWLOO GHFOLQLQJ JURZWK UDWHV RI \HDUO\ LQFRPH LQ WKH VDPH \HDUV :LWK YDU\LQJ YRODWLOLW\ RI UHDO KRXVHKROG GLVSRVDEOH LQFRPH DQG LQFUHDVLQJ XQFHUWDLQW\ FDXVHG E\ WKH ILQDQFLDO FULVLV 3ROLVK KRXVHKROGV PDLQWDLQHG KLJK DQG ULVLQJ VDYLQJ UDWHV IURP WKHLU FXUUHQW GLVSRVDEOH LQFRPH GXULQJ 7DEOH Table 4. +RXVHKROG VDYLQJ UDWHV LQ 3RODQG LQ 0HGLDQ RI GLVSRVDEOH LQFRPH Source: Own calculations based on Household Budget Surveys 2007-2010, Central Statistical Office (GUS), Poland, Warsaw. 7KH PHGLDQ RI WKH VDYLQJ UDWH IRU DOO KRXVHKROGV LQFUHDVHG LQ IURP D UHODWLYHO\ KLJK OHYHO RI LQ DQG ZDV ULVLQJ GXULQJ WKH VXEVHTXHQW \HDUV WR UHDFK LQ 7KLV LQFUHDVH RI KRXVHKROGV¶ VDYLQJ UDWHV WRRN SODFH DW WKH WLPH RI WKH IDOO RI WKH YDOXH RI KRXVHKROG DVVHWV LQ GLIIHUHQW ILQDQFLDO LQVWUXPHQWV OLNH VKDUHV LQYHVWPHQW IXQGV SHQVLRQ IXQGV HWF 'XULQJ WKH WXUEXOHQW \HDUV RI WKH ILQDQFLDO FULVLV 3ROLVK KRXVHKROGV WRRN RQ WKH ZKROH UDWLRQDO ILQDQFLDO GHFLVLRQV 7KH\ GLG QRW VWRS LQYHVWLQJ LQ UHDO HVWDWHV KRXVHV SDUWO\ EHFDXVH PDQ\ RI WKRVH LQYHVWPHQWV ZHUH XQGHUWDNHQ HDUOLHU DQG UHVXOWHG LQ PRUWJDJH SD\PHQWV LQ WKH IROORZLQJ \HDUV *HQHUDOO\ KRXVHKROGV PDLQWDLQHG UHSD\LQJ PRUWJDJH ORDQV EXW UDLVHG OHVV ORDQV DQG FUHGLWV 7KH\ DOVR GHFUHDVHG WKH VWRFN RI GHSRVLWV DQG VHFXULWLHV DOEHLW RQ D PRGHUDWH VFDOH 7DEOH Table 5. $YHUDJH ILQDQFLDO LQYHVWPHQW DQG FUHGLWV RI 3ROLVK KRXVHKROGV LQ LQ ]ORW\V SHU KRXVHKROG SHU PRQWK <HDU 1HW SXUFKDVH RI UHDO HVWDWHV 1HW LQFUHDVH RI GHSRVLWV DQG VHFXULWLHV /RDQV DQG FUHGLWV UHSDLG /RDQV DQG FUHGLWV UDLVHG Source: Own calculations based on Household Budget Surveys 2007-2010, Central Statistical Office (GUS), Poland, Warsaw. 7KH VWUDWHJLHV RI ILQDQFLDO LQYHVWPHQW RI 3ROLVK KRXVHKROGV ZHUH UDWKHU VWDQGDUG DQG VWHHUHG KRXVHKROGV WR LQFUHDVH VDYLQJ IURP FXUUHQW GLVSRVDEOH LQFRPH LQ RUGHU WR SURWHFW GHFUHDVLQJ YDOXH RI WKHLU WRWDO ILQDQFLDO VWRFNV DQG UHDO ZHDOWK 278 B. Liberda, 0 3ĊF]NRZVNL: Households’ saving… 4. Mobility of households with regard to saving rates during the years 2007-2010 and 1997-2000 ,Q WKLV VHFWLRQ ZH LQYHVWLJDWH WKH FKDQJHV LQ WKH VWUXFWXUH RI KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV IURP \HDU WR \HDU GXULQJ DQG FRPSDUH WKH UHVXOWV ZLWK WKH VLPLODU DQDO\VLV IRU D SDQHO RI KRXVHKROGV RQH GHFDGH HDUOLHU GXULQJ +DYLQJ FODVVLILHG WKH ILYH JURXSV RI KRXVHKROGV ZLWK GLIIHUHQW OHYHOV RI VDYLQJ UDWHV 7DEOH ZH H[DPLQH WKH KRXVHKROGV¶ PRELOLW\ EHWZHHQ WKHVH JURXSV LQ DQ\ RI WZR FRQVHFXWLYH \HDUV DQG 7DEOHV DQG LOOXVWUDWH WKH GLVWULEXWLRQ RI PRELOLW\ IURP D SDUWLFXODU FODVVJURXS LQ WKH LQLWLDO \HDU WR WKH VDPH RU RWKHU JURXSV LQ WKH IROORZLQJ \HDU WUDQVLWLRQ PDWUL[ 7KLV PHWKRG RI UHVHDUFK LV XVHG LQ 0DUNRZ SURFHVVHV 3RGJyUVND HW DO DQG FRQFHUQV PDQ\ ILHOGV OLNH LQFRPH PRELOLW\ UHJLRQDO FRQYHUJHQFH DQG ODERXU PDUNHWV -HQNLQV 4XDK :yMFLN 7\URZLF] :yMFLN 7R FRQFOXGH DERXW D ORQJWHUP GLVWULEXWLRQ RI KRXVHKROGV VXEMHFW WR WKH VDYLQJ UDWHV ZH SUHVXPH D FRQVWDQW KRXVHKROG PRELOLW\ EHWZHHQ WKH KLJK DQG ORZ OHYHOV RI VDYLQJ UDWHV %DVHG RQ WKH FDOFXODWHG WUDQVLWLRQ PDWUL[ IRU \HDUO\ WUDQVLWLRQV LQ DQG VXFK D SURFHGXUH ZRXOG DOORZ IRU D FRQVWUXFWLRQ RI DQ HUJRGLF GLVWULEXWLRQ 7KH GLVWULEXWLRQ ZRXOG LOOXVWUDWH D SRWHQWLDO ORQJWHUP KRXVHKROG VWUXFWXUH ZKLFK UHIOHFWV WKH SUREDELOLW\ RI WKH KRXVHKROG WR IDOO LQWR WKH JURXS RI KRXVHKROGV RI KLJKHU ORZHU RU WKH VDPH OHYHO RI VDYLQJ UDWH XQGHU WKH DVVXPSWLRQ WKDW PRELOLW\ LQ WKH ORQJ UXQ ZLOO EH VLPLODU WR WKH PRELOLW\ REVHUYHG LQ WKH DQDO\VHG SHULRG ,Q RUGHU WR YHULI\ VXFK DQ DVVXPSWLRQ WKH ORQJWHUP KRXVHKROG GLVWULEXWLRQ VXEMHFW WR WKH VDYLQJ UDWHV ZDV FDOFXODWHG LQLWLDWLQJ D 0DUNRY SURFHVV IURP PRELOLW\ PDWUL[ LQ SDUWLFXODU \HDUV DQG Table 6. +RXVHKROGV¶ PRELOLW\ PDWUL[ VXEMHFW WR VDYLQJ UDWHV 6DYLQJ WR WR UDWHV WR 7RWDO 6DYLQJ UDWHV WR WR WR 7RWDO Source: Own calculations based on panel data for 2007-2008 from Household Budget Surveys 2007-2008, Central Statistical Office (GUS), Poland, Warsaw. $PRQJ WKH KRXVHKROGV FKDUDFWHUL]HG E\ YHU\ ORZ QHJDWLYH VDYLQJ UDWHV EHORZ PLQXV RI WKH KRXVHKROG LQFRPH LQ DERXW RQH WKLUG UHPDLQHG LQ WKH VDPH JURXS LQ WKH IROORZLQJ \HDU 7KUHH JURXSV RI FD RI WKH KRXVHKROGV HDFK PRYHG WR WKH µORZ VDYLQJ UDWH¶ FODVV PLQXV WR PLQXV RI WKH KRXVHKROG LQFRPH µFORVH WR ]HUR VDYLQJ UDWHV¶ FODVV PLQXV WR SOXV RI STATISTICS IN TRANSITION-new series, Summer 2013 279 WKH KRXVHKROG LQFRPH DQG WR D µKLJK VDYLQJ UDWHV¶ FODVV WR RI WKH KRXVHKROG LQFRPH 7KH PRVW VSHFWDFXODU PRYH ZDV REVHUYHG E\ DOPRVW RQH IRXUWK RI WKH KRXVHKROGV WKDW VKLIWHG XS WR WKH µYHU\ KLJK VDYLQJ UDWH¶ FODVV DERYH RI WKH KRXVHKROG LQFRPH LQ IURP WKH µYHU\ ORZ QHJDWLYH VDYLQJ UDWHV¶ FODVV EHORZ PLQXV RI WKH KRXVHKROG LQFRPH LQ 0RUHRYHU LQ WKH µYHU\ KLJK VDYLQJ UDWH¶ JURXS WKUHH ILIWKV RI WKH KRXVHKROGV UHPDLQHG LQ WKH VDPH FODVV LQ WKH IROORZLQJ \HDU 7DEOH 7DEOHV DQG UHIOHFW ODUJH IOXFWXDWLRQV EHWZHHQ SDUWLFXODU JURXSV RI KRXVHKROGV LQ HDFK SHULRG RI WZR FRQVHFXWLYH \HDUV DQG $GGLWLRQDOO\ WKH µYHU\ KLJK VDYLQJ UDWHV¶ FODVV LV WKH PRVW VWDEOH RQH EHFDXVH RI KRXVHKROGV IURP WKDW JURXS UHPDLQHG LQ WKH VDPH JURXS WKURXJKRXW 7KH UHWHQWLRQ RI KRXVHKROGV LQ WKH µORZHVW VDYLQJ UDWHV¶ JURXS LV FD RI WKH VL]H RI WKLV JURXS 7KH µORZHVW VDYLQJ UDWHV¶ JURXS FRQVLVWV QRW RQO\ RI KRXVHKROGV ZLWK YHU\ ORZ LQFRPH EXW DOVR RI KRXVHKROGV WKDW WDNH ODUJH PRUWJDJH FUHGLWV WKDW OHDGV WR KLJKHU VDYLQJV IURP FXUUHQW GLVSRVDEOH LQFRPH LQ WKH QH[W PRQWKV \HDUV ZKHQ WKH FUHGLWV DUH LQ UHSD\PHQW 7KH QXPEHU RI KRXVHKROGV LQ HDFK VDYLQJ UDWHV¶ FODVV DQG VKLIWV IURP D SDUWLFXODU FODVV LQ WKH LQLWLDO \HDU WR RWKHU FODVVHV RI KRXVHKROGV LQ WKH IROORZLQJ \HDU DUH SUHVHQWHG LQ WKH FXPXODWHG EDU FKDUWV )LJXUHV DQG Figure 1. +RXVHKROGV¶ PRELOLW\ VXEMHFW WR VDYLQJ UDWHV Source: Own calculations based on panel data for 2007-2008 from Household Budget Surveys 2007-2008, Central Statistical Office (GUS), Warsaw. (DFK EDU LQ )LJXUHV DQG UHSUHVHQWV RQH URZ LQ 7DEOHV DQG UHVSHFWLYHO\ ,W VKRZV KRZ WKH KRXVHKROGV WKDW EHORQJHG LQ WKH LQLWLDO \HDU RI REVHUYDWLRQ HJ WR D SDUWLFXODU FODVV RI VDYLQJV IRU H[DPSOH PLQXV RI 280 B. Liberda, 0 3ĊF]NRZVNL: Households’ saving… WKH KRXVHKROG LQFRPH DUH GLVWULEXWHG EHWZHHQ FODVVHV RI KRXVHKROGV ZLWK GLIIHUHQW VDYLQJ UDWHV LQ WKH VHFRQG \HDU RI REVHUYDWLRQ HJ Table 7. +RXVHKROGV¶ PRELOLW\ PDWUL[ VXEMHFW WR VDYLQJ UDWHV 6DYLQJ UDWHV 6DYLQJ UDWHV WR WR WR 7RWDO WR WR WR 7RWDO Source: Own calculations based on panel data for 2008-2009 from Household Budget Surveys 2008-2009, Central Statistical Office (GUS), Poland, Warsaw. (DFK EDU LQ WKH FKDUW DQG D URZ LQ WKH WDEOH VXPV XS WR RI KRXVHKROGV RI WKLV SDUWLFXODU VDYLQJ UDWH FODVV 7KH KHLJKW RI WKH EDU UHIOHFWV WKH QXPEHU RI KRXVHKROGV WKDW EHORQJ WR RQH FODVV RI VDYLQJ UDWHV LQ WKH LQLWLDO \HDU RI REVHUYDWLRQ DQG WKH GLVWULEXWLRQ RI WKLV FODVV RI KRXVHKROGV EHWZHHQ FODVVHV RI KRXVHKROGV ZLWK GLIIHUHQW VDYLQJ UDWHV LQ WKH IROORZLQJ \HDU Figure 2. +RXVHKROGV¶ PRELOLW\ VXEMHFW WR VDYLQJ UDWHV Source: Own calculations based on panel data for 2008-2009 from Household Budget Surveys 2008-2009, Central Statistical Office (GUS), Poland, Warsaw. 281 STATISTICS IN TRANSITION-new series, Summer 2013 7KH GLIIHUHQFHV LQ KRXVHKROGV¶ PRELOLW\ EHWZHHQ SDUWLFXODU \HDUV DUH VPDOO 7KH JURXSV RI KRXVHKROGV WKDW VWD\HG ULJKW ZKHUH WKH\ ZHUH D \HDU EHIRUH DUH WKRVH WKDW VDYH WKH PRVW DQG WKRVH WKDW VDYH WKH OHDVW Table 8. +RXVHKROGV¶ PRELOLW\ PDWUL[ VXEMHFW WR VDYLQJ UDWHV 6DYLQJ UDWHV WR 6DYLQJ WR UDWHV WR 7RWDO WR WR WR 7RWDO Source: Own calculations based on panel data for 2009-2010 from Household Budget Surveys 2009-2010, Central Statistical Office (GUS), Poland, Warsaw. Figure 3. +RXVHKROGV¶ PRELOLW\ VXEMHFW WR VDYLQJ UDWHV Source: Own calculations based on panel data for 2009-2010 from Household Budget Surveys 2009-2010, Central Statistical Office (GUS), Poland, Warsaw. $VVXPLQJ D FRQVWDQW KRXVHKROG PRELOLW\ ZH FRXOG GUDZ VRPH FRQFOXVLRQV DERXW WKH ORQJWHUP GLVWULEXWLRQ RI KRXVHKROGV ZLWK UHJDUG WR WKH VDYLQJ UDWHV 6XFK SURFHGXUH ZRXOG DOORZ IRU D FRQVWUXFWLRQ RI DQ HUJRGLF GLVWULEXWLRQ 7KLV GLVWULEXWLRQ ZRXOG LOOXVWUDWH D ORQJWHUP KRXVHKROG VWUXFWXUH ZKLFK UHIOHFWV WKH SUREDELOLW\ RI IDOOLQJ LQWR D KLJKHU ORZHU RU WKH VDPH OHYHO RI VDYLQJ UDWH 282 B. Liberda, 0 3ĊF]NRZVNL: Households’ saving… ,Q RUGHU WR YHULI\ VXFK DVVXPSWLRQ WKH ORQJWHUP KRXVHKROG GLVWULEXWLRQ VXEMHFW WR WKH VDYLQJ UDWH ZDV FDOFXODWHG LQLWLDWLQJ D 0DUNRY SURFHVV IURP PRELOLW\ PDWUL[ LQ SDUWLFXODU \HDUV DQG 7DEOH VKRZV WKH ORQJWHUP KRXVHKROG GLVWULEXWLRQ VXEMHFW WR VDYLQJ UDWHV IRU SDUWLFXODU LQLWLDO SHULRGV Table 9. /RQJWHUP GLVWULEXWLRQ RI KRXVHKROGV VXEMHFW WR VDYLQJ UDWHV 6DYLQJ UDWHV OHYHOV WR WR WR /RQJWHUP KRXVHKROGV¶ GLVWULEXWLRQ <HDUV . *6WDUWLQJ GDWHV RI WKH 0DUNRY SURFHVVHV Source: Own calculations based on panel data for 2007-2008, 2008-2009 and 2009-2010 from Household Budget Surveys 2007-2010, Central Statistical Office (GUS), Poland, Warsaw. 7DEOH LQGLFDWHV WKDW LQ WKUHH RI WKH ORQJWHUP KRXVHKROG GLVWULEXWLRQV ZLWK UHJDUG WR VDYLQJ UDWHV WKH SUREDELOLW\ RI IDOOLQJ LQWR D JURXS RI YHU\ KLJK VDYLQJ UDWHV DERYH RI WKH KRXVHKROG GLVSRVDEOH LQFRPH ZDV WKH KLJKHVW FD 7KH SUREDELOLW\ RI EHORQJLQJ WR WKH ORZHVW VDYLQJ UDWH FODVV ZDV FORVH WR *URXSV IDOOLQJ LQWR µPLQXV WR PLQXV ¶ VDYLQJ UDWH JURXS DQG µPLQXV WR SOXV ¶ VDYLQJ UDWH JURXS ZHUH WKH IHZHVW 7KH UHVXOWV RI WKH KRXVHKROGV¶ PRELOLW\ WR GLIIHUHQW JURXSV RI VDYLQJ GXULQJ DUH FRPSDUHG WR WKH DXWKRUV¶ SUHYLRXV UHVHDUFK RQ KRXVHKROGV¶ VDYLQJ PRELOLW\ IRU 3RODQG IRU \HDUV 7DEOH Table 10. /RQJWHUP GLVWULEXWLRQ RI KRXVHKROGV VXEMHFW WR VDYLQJ UDWHV 6DYLQJ UDWHV OHYHOV /RQJWHUP KRXVHKROGV¶ GLVWULEXWLRQ <HDUV 6WDUWLQJ GDWHV RI WKH 0DUNRY SURFHVVHV Source: Liberda, Peczkowski, 2005, p. 40; own calculations based on the 4-year panel data of 3001 households from Household Budget Surveys 1997-2000 for Poland, Central Statistical Office (GUS), Warsaw. STATISTICS IN TRANSITION-new series, Summer 2013 283 ,Q ERWK ORQJWHUP GLVWULEXWLRQV RI KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV IRU \HDUV DQG 7DEOHV DQG WKH SUREDELOLWLHV RI EHORQJLQJ WR WKH WZR WRS JURXSV DQG WR WKH ERWWRP JURXS RI VDYLQJ UDWHV DUH WKH ELJJHVW +RZHYHU WKH VKDUHV RI WKH KRXVHKROGV ZLWK WKH KLJKHVW DQG ZLWK WKH ORZHVW VDYLQJ UDWHV GLIIHU LQ WKH WZR VWXGLHG SHULRGV RI DQG 7KH JURXS RI KRXVHKROGV ZLWK WKH KLJKHVW VDYLQJ UDWHV LV UHODWLYHO\ ELJJHU D GHFDGH ODWHU DQG WKH JURXS ZLWK WKH ORZHVW VDYLQJ UDWHV LV UHODWLYHO\ VPDOOHU 7KH VKDUH RI KRXVHKROGV LQ WKH PLGGOH JURXSV RI WKH VDYLQJV¶ GLVWULEXWLRQ LV GLPLQLVKLQJ IURP RI WKH WRWDO QXPEHU RI KRXVHKROGV LQ WR LQ 7KH FKDQJH LQ WKH GLVWULEXWLRQ RI KRXVHKROGV EHWZHHQ DQG GHPRQVWUDWHV WKH SRODUL]DWLRQ RI KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV 3RODUL]DWLRQ LV XQGHUVWRRG DV D UHODWLYH VKULQNLQJ RI JURXSV LQ WKH PLGGOH RI WKH KRXVHKROGV¶ GLVWULEXWLRQ E\ VDYLQJ UDWHV 7KH PHWKRGLFDO LQGHSWK DQDO\VLV RI GLIIHUHQW PHDVXUHV RI SRODUL]DWLRQ LV GRQH E\ .RW %HWZHHQ DQG WKH SRODUL]DWLRQ RI 3ROLVK KRXVHKROGV ZDV DV\PPHWULFDO WRZDUG WKH KLJKHVW VDYLQJ UDWH JURXSV 5. Conclusions ,Q WKLV SDSHU ZH H[DPLQHG WKH PRELOLW\ RI KRXVHKROGV LQ 3RODQG ZLWK UHJDUG WR VDYLQJ UDWHV LQ WZR SHULRGV DQG 7KH DQDO\VLV ZDV EDVHG RQ WKH KRXVHKROG EXGJHW SDQHO GDWD VHOHFWHG E\ DXWKRUV IURP WKH +RXVHKROG %XGJHW 6XUYH\V IRU \HDUV DQG :H DSSOLHG WKH 0DUNRY PRELOLW\ PDWUL[ DQG HVWLPDWHG WKH ORQJWHUP HUJRGLF GLVWULEXWLRQ RI KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV ,W LOOXVWUDWHV WKH SUREDELOLW\ RI D KRXVHKROG WR IDOO LQWR RQH RI WKH VDYLQJ UDWHV FODVVHV UDQJLQJ IURP QHJDWLYH VDYLQJV RI PLQXV RU OHVV WR RU PRUH RI WKH KRXVHKROG GLVSRVDEOH LQFRPH 2XU UHVXOWV FRQFHUQLQJ WKH \HDUV VKRZ WKDW GXULQJ IRXU FRQVHFXWLYH \HDUV DOPRVW RQH WKLUG RI KRXVHKROGV WKDW KDG QHJDWLYH VDYLQJV RI PLQXV RI WKH KRXVHKROG GLVSRVDEOH LQFRPH LQ WKH ILUVW \HDU RI REVHUYDWLRQ UHPDLQHG LQ WKHLU FODVV DOVR WKH IROORZLQJ \HDU %XW RQH IRXUWK RI WKLV JURXS RI KRXVHKROGV VKLIWHG XS LQ WKH IROORZLQJ \HDU WR WKH JURXS ZLWK SRVLWLYH VDYLQJV RI PRUH WKDQ RI WKH KRXVHKROG GLVSRVDEOH LQFRPH ,Q WKH FODVV RI KRXVHKROGV ZLWK WKH KLJKHVW VDYLQJ UDWHV WKUHH ILIWKV RI KRXVHKROGV NHSW WKHVH KLJK VDYLQJ UDWHV 7KH ORQJWHUP HUJRGLF GLVWULEXWLRQ RI KRXVHKROGV UHYHDOV D YHU\ KLJK SUREDELOLW\ RI D KRXVHKROG WR IDOO LQWR D JURXS ZLWK WKH KLJKHVW VDYLQJ UDWHV DQG D UHODWLYHO\ KLJK SUREDELOLW\ RI EHORQJLQJ WR D JURXS ZLWK WKH ORZHVW VDYLQJ UDWHV 7KH VKDUH RI KRXVHKROGV LQ WKH PLGGOH RI WKH VDYLQJV¶ GLVWULEXWLRQ LV ORZHU WKDQ LV WKH VXP RI WKH VKDUHV RI KRXVHKROGV ZLWK WKH KLJKHVW DQG ZLWK WKH ORZHVW VDYLQJ UDWHV ,W LQGLFDWHV D WHQGHQF\ WRZDUG SRODUL]DWLRQ RI KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV 284 B. Liberda, 0 3ĊF]NRZVNL: Households’ saving… &RPSDULQJ WKH UHVXOWV IRU ZLWK WKH DXWKRUV¶ SUHYLRXV UHVHDUFK RQ WKH KRXVHKROGV¶ VDYLQJ PRELOLW\ IRU \HDUV ZH SURYHG WKDW WKH ORQJ WHUP FKDQJH LQ WKH GLVWULEXWLRQ RI KRXVHKROGV ZDV DV\PPHWULFDO EHWZHHQ DQG WRZDUG WKH KLJKHVW VDYLQJ UDWH JURXSV 7KH JURXS RI KRXVHKROGV ZLWK WKH KLJKHVW VDYLQJ UDWHV LV ELJJHU D GHFDGH ODWHU DQG D JURXS ZLWK WKH ORZHVW VDYLQJ UDWHV LV VPDOOHU 7KH DV\PPHWULFDO SRODUL]DWLRQ RI KRXVHKROGV WRZDUGV WKH KLJKHVW VDYLQJ UDWH JURXSV LV VLJQLILFDQW LQ H[SODLQLQJ ZK\ 3ROLVK KRXVHKROGV FRXOG PDLQWDLQ SRVLWLYH DQG ULVLQJ VDYLQJV GXULQJ WKH KLJKO\ XQFHUWDLQ SHULRG RI WKH ILQDQFLDO FULVLV LQ STATISTICS IN TRANSITION-new series, Summer 2013 285 REFERENCES %$;7(5 0 -(50$11 8 - +RXVHKROG 3URGXFWLRQ DQG WKH ([FHVV 6HQVLWLYLW\ RI &RQVXPSWLRQ WR &XUUHQW ,QFRPH American Economic Review 9RO 1R SS ± &$03%(// - < 'RHV 6DYLQJ $QWLFLSDWH 'HFOLQLQJ /DERXU ,QFRPH" $Q $OWHUQDWLYH 7HVW RI WKH 3HUPDQHQW ,QFRPH +\SRWKHVLV Econometrica, SS ± &$552// & ' +RZ 'RHV )XWXUH ,QFRPH $IIHFW &XUUHQW &RQVXPSWLRQ" Quarterly Journal of Economics, )HEUXDU\ SS ± &$552// & ' 3UHFDXWLRQDU\ 6DYLQJ DQG WKH 0DUJLQDO 3URSHQVLW\ WR &RQVXPH 2XW RI 3HUPDQHQW ,QFRPH Journal of Monetary Economics, 9RO 1R SS ± '($721 $ 8QGHUVWDQGLQJ &RQVXPSWLRQ &ODUHQGRQ 3UHVV 2[IRUG )/$9,1 0 $ 7KH $GMXVWPHQW RI &RQVXPSWLRQ WR &KDQJLQJ ([SHFWDWLRQV DERXW )XWXUH ,QFRPH Journal of Political Economy, 9RO 1R SS ± +$// 5 ( 6WRFKDVWLF ,PSOLFDWLRQV RI WKH /LIH &\FOH3HUPDQHQW ,QFRPH +\SRWKHVLV 7KHRU\ DQG (YLGHQFH Journal of Political Economy 9RO 1R SS ± +RXVHKROG %XGJHW 6XUYH\V LQ DQG 3RODQG, &HQWUDO 6WDWLVWLFDO 2IILFH *86 :DUVDZ -(1.,16 6 3 9$1 .(50 3 7UHQGV LQ LQFRPH LQHTXDOLW\ SURSRRU LQFRPH JURZWK DQG LQFRPH PRELOLW\ Oxford Economic Papers SS ± .27 6 0 3RODU\]DFMD HNRQRPLF]QD 7HRULD L ]DVWRVRZDQLH 3:1 :DUV]DZD /,%(5'$ % *Ï5(&., % 3ĉ&=.2:6., 0 8QFHUWDLQW\ RI +RXVHKROGV¶ ,QFRPH LQ (XURSHDQ &RXQWULHV DQG 3RODQG EMERGO 9RO 1R SS ± /,%(5'$ % *Ï5(&., % 3ĉ&=.2:6., 0 6DYLQJ IURP 3HUPDQHQW DQG 7UDQVLWRU\ ,QFRPH 7KH &DVH RI 3ROLVK +RXVHKROGV Ekonomia, 1R SS ± /,%(5'$ % 3ĉ&=.2:6., 0 0RELOQRĞü RV]F]ĊG]DQLD JRVSRGDUVWZ GRPRZ\FK Z 3ROVFH Ekonomia, 1R SS ± 286 B. Liberda, 0 3ĊF]NRZVNL: Households’ saving… 0HWRGRORJLD EDGDQLD EXGĪHWyZ JRVSRGDUVWZ GRPRZ\FK 0HWKRGRORJ\ RI +RXVHKROG %XGJHW 6XUYH\V *86 &HQWUDO 6WDWLVWLFDO 2IILFH 3RODQG :DUVDZ 02'< $ 2+1625*( ) 6$1'5, ' 3UHFDXWLRQDU\ 6DYLQJV LQ WKH *UHDW 5HFHVVLRQ IMF Economic Review, 9RO 1R SS ± 32'*Ï56.$ 0 ĝ/,:.$ 3 7232/(:6., 0 :5=26(. 0 àDĔFXFK\ 0DUNRZD Z WHRULL L Z ]DVWRVRZDQLDFK 2ILF\QD :\GDZQLF]D 6*+ :DUV]DZD 327(5%$ - 0 HG ,QWHUQDWLRQDO &RPSDULVRQV RI +RXVHKROG 6DYLQJ 8QLYHUVLW\ RI &KLFDJR 3UHVV &KLFDJR 48$+ ' 7 (PSLULFV IRU HFRQRPLF JURZWK DQG FRQYHUJHQFH European Economic Review 9RO 1R SS ± 7<52:,&= - :Ï-&,. 3 $FWLYH /DERXU 0DUNHW 3ROLFLHV DQG 8QHPSOR\PHQW &RQYHUJHQFH LQ (XURSH Review of Economic Analysis 9RO 1R SS ± :Ï-&,. 3 $UH 3ROLVK 5HJLRQV &RQYHUJLQJ" 6LPSOH VSDWLDO DSSURDFK LQ Civilizational competences and regional development in Poland HGV % /LEHUGD $ *URFKRZVND :DUVDZ 8QLYHUVLW\ 3UHVV :DUVDZ SS ± STATISTICS IN TRANSITION-new series, Summer 2013 287 STATISTICS IN TRANSITION-new series, Summer 2013 Vol. 14, No. 2, pp. 287–318 COHERENCE AND COMPARABILITY AS CRITERIA OF QUALITY ASSESSMENT IN BUSINESS STATISTICS $QGU]HM 0áRGDN ABSTRACT 7KH SUREOHPV RI FRKHUHQFH DQG FRPSDUDELOLW\ H[FHHG WKH FODVVLFDO QRWLRQ RI DQDO\VLV RI VXUYH\ HUURUV EHFDXVH WKH\ GR QRW FRQFHUQ VLQJOH VXUYH\V RU YDULDEOHV EXW WKH TXHVWLRQ RI KRZ UHVXOWV RI WZR RU PRUH VXUYH\V FDQ EH XVHG WRJHWKHU DQG KRZ UHOHYDQW GDWD FDQ HIIHFWLYHO\ EH FRPSDUHG WR REWDLQ D EHWWHU SLFWXUH RI VRFLDO DQG HFRQRPLF SKHQRPHQD RYHU YDULRXV DVSHFWV HJ VSDFH RU WLPH 7KLV SDSHU GLVFXVVHV FKDUDFWHULVWLFV RI WKH PDLQ FRQFHSWV RI FRKHUHQFH DQG FRPSDUDELOLW\ DV ZHOO DV D GHVFULSWLRQ RI GLIIHUHQFHV DQG VLPLODULWLHV EHWZHHQ WKHVH WZR QRWLRQV 7\SHV RI FRKHUHQFH DQG YDULRXV DVSHFWV RI SHUFHSWLRQ RI WKHVH QRWLRQV LQ EXVLQHVV VWDWLVWLFV DUH DQDO\VHG 0DLQ VRXUFHV RI ODFN RI FRKHUHQFH DQG FRPSDUDELOLW\ IDFWRUV DIIHFWLQJ WKHP HJ PHWKRGRORJ\ WLPH UHJLRQ HWF DQG PHWKRGV RI WKHLU PHDVXUHPHQW LQ FRQWH[W RI LQIRUPDWLRQ REWDLQHG IURP EXVLQHVVHV ZLOO EH DOVR SUHVHQWHG Key words FRKHUHQFH FRPSDUDELOLW\ PLUURU VWDWLVWLFV EHQFKPDUNLQJ GDWD SUHFLVLRQ FRPSOH[ LQGLFHV 1. Introduction &RKHUHQFH DQG FRPSDUDELOLW\ RI GDWD DUH RQH RI WKH PRVW LPSRUWDQW DVSHFWV RI HDFK VXUYH\ HVSHFLDOO\ LI LW LV UHJXODUO\ UHSHDWHG RYHU WLPH ,W LV REYLRXV WKDW SURSHUO\ FRKHUHQW DQG FRQVLVWHQW PHWKRGRORJ\ JXDUDQWHHV HIILFLHQW ORQJ±WLPH 7KH SDSHU ZDV SUHSDUHG IRU SUHVHQWDWLRQ DW WKH &RQIHUHQFH Statistics–Knowledge–Development RUJDQL]HG WR FHOHEUDWH WKH ,QWHUQDWLRQDO <HDU RI 6WDWLVWLFV LQ àyGĨ 3RODQG WK ± WK 2FWREHU 7KH SDSHU LV EDVHG RQ WKH RXWSXW RI WKH (66QHW SURMHFW 0HWKRGRORJ\ IRU 0RGHUQ %XVLQHVV 6WDWLVWLFV ± 0H0R%X6W 6SHFLILF *UDQW $JUHHPHQWV 1R DQG 7KH DXWKRU H[SUHVVHV KLV JUDWLWXGH WR 0UV -XGLW 9LJK +XQJDULDQ &HQWUDO 6WDWLVWLFDO 2IILFH DV ZHOO DV WR WZR DQRQ\PRXV UHYLHZHUV IRU YDOXDEOH FRPPHQWV DQG VXJJHVWLRQV $GGUHVV 6WDWLVWLFDO 2IILFH LQ 3R]QDĔ 6PDOO $UHD 6WDWLVWLFV &HQWUH %UDQFK LQ .DOLV] SO - .LOLĔVNLHJR ± .DOLV] 3RODQG (PDLO DPORGDN#VWDWJRYSO 288 $ 0áRGDN: Coherence and comparability … DQDO\VLV FRPELQLQJ PDQ\ YDULDEOHV DQG WDNLQJ LQWR DFFRXQW YDULRXV FURVV± VHFWLRQV GLYLVLRQV RU FOXVWHUV RI LQYHVWLJDWHG REMHFWV HFRQRPLF HQWLWLHV VSDWLDO DUHDV EUDQFK JURXSV RI HQWHUSULVHV HWF ,Q PRGHUQ UHDOLW\ ZKHUH PDQ\ JOREDOL]DWLRQ SURFHVVHV EDVHG RQ KLJKO\ GHYHORSHG VWULFW LQWHUUHJLRQDO DQG LQWHUQDWLRQDO HFRQRPLF FRQQHFWLRQV DUH REVHUYHG D FROOHFWLRQ DQG XVH RI PXOWL± DVSHFW FRKHUHQW DQG FRPSDUDEOH VWDWLVWLFDO GDWD LV RQH RI NH\ SULRULWLHV 7KH\ HQDEOH HIILFLHQW PRQLWRULQJ RI RFFXUULQJ FKDQJHV DQG UHDFWLQJ ZKHQ VRPH SUREOHPV RU WKUHDWV DUH UHFRJQL]HG 7KH UROH RI FRKHUHQFH DQG FRPSDUDELOLW\ RI GDWD LQ (XURSHDQ VWDWLVWLFV ZDV DSSUHFLDWHG E\ WKH 6WDWLVWLFDO 2IILFH IRU WKH (XURSHDQ 8QLRQ (XURVWDW ZKLFK LQ LWV &RGH RI 3UDFWLFH IRUPXODWHG WKHVH UHTXLUHPHQWV DV WKH 3ULQFLSOH H[SUHVVHG DV IROORZV (XURVWDW European statistics should be consistent internally, over time and comparable between regions and countries; it should be possible to combine and make joint use of related data from different sources. Indicators x Statistics are internally coherent and consistent (e.g. arithmetic and accounting identities observed). x Statistics are coherent or reconcilable over a reasonable period of time. x Statistics are compiled on the basis of common standards with respect to scope, definitions, units and classifications in the different surveys and sources. x Statistics from the different surveys and sources are compared and reconciled. x Cross–national comparability of the data is ensured through periodical exchanges between the European statistical system and other statistical systems; methodological studies are carried out in close cooperation between WKH 0HPEHU 6WDWHV DQG (XURVWDW 7KLV SDSHU GLVFXVVHV DQG DQDO\VHV WKH EDVLF FKDUDFWHULVWLFV RI WKH PDLQ FRQFHSWV RI FRKHUHQFH DQG FRPSDUDELOLW\ DV ZHOO DV D GHVFULSWLRQ RI GLIIHUHQFHV DQG VLPLODULWLHV EHWZHHQ WKHVH WZR QRWLRQV ,W LV ZRUWK QRWLQJ WKDW ³FRKHUHQFH´ KDV PXFK PRUH ZLGHU VHQVH WKDQ µFRPSDUDELOLW\¶ 3DUWLFXODU W\SHV RI FRKHUHQFH DQG YDULRXV DVSHFWV RI SHUFHSWLRQ RI WKHVH QRWLRQV LQ EXVLQHVV VWDWLVWLFV ZLOO EH DQDO\VHG 0DLQ VRXUFHV RI ODFN RI FRKHUHQFH DQG PHWKRGV RI LWV DVVHVVPHQW LQ WKH FRQWH[W RI LQIRUPDWLRQ REWDLQHG IURP EXVLQHVVHV ZLOO EH DQDO\]HG 6LPLODUO\ SUREOHPV FRQFHUQLQJ FRPSDUDELOLW\ ZLOO EH FKDUDFWHUL]HG LQGLFDWLQJ SRVVLEOH UHDVRQV RI LWV ODFN DQG IDFWRUV DIIHFWLQJ LW VXFK DV WLPH UHJLRQ QDWLRQDO DFFRXQWV DQG HFRQRPLF EHQFKPDUN DV ZHOO DV FRPSOH[ PHWKRGV RI PHDVXUHPHQW RI FRPSDUDELOLW\ OHYHO 7KH SDSHU FRQVLVWV RI WZR PDLQ VHFWLRQV GHYRWHG WR FRKHUHQFH DQG FRPSDUDELOLW\ 7KH ILUVW RI WKHP 6HFWLRQ GLVFXVVHV PHWKRGRORJLFDO IXQGDPHQWV RI FRQFHSWV RI FRKHUHQFH LQ WKH FRQWH[W RI DFFXUDF\ DQG UHFRJQLWLRQ RI LQFRKHUHQFH 7\SHV RI FRKHUHQFH WDNLQJ LQWR DFFRXQW WKH FKDUDFWHU RI VWDWLVWLFV DQG VRXUFHV RI LQFRKHUHQFH DV ZHOO DV PRGHOOLQJ RI DVVHVVPHQW RI FRKHUHQFH XVLQJ STATISTICS IN TRANSITION-new series, Summer 2013 289 YDULRXV IDFWRUV KDYLQJ DQ LPSDFW RQ LW DUH KHUH DOVR SUHVHQWHG 6HFWLRQ FRQFHUQV WKH FRPSDUDELOLW\ DQG VKRZV LWV UHODWLRQ WR WKH FRKHUHQFH PHWKRGRORJLFDO DQG HPSLULFDO VRXUFHV RI LQFRPSDUDELOLW\ EDVLF GLUHFWLRQV RI DSSUDLVDO RI WKH OHYHO RI WKLV SURSHUW\ $W WKH HQG 6HFWLRQ VRPH LQGLFHV ZKLFK FDQ PHDVXUH FRKHUHQFH DQG FRPSDUDELOLW\ LQ D FRPSOH[ ZD\ FKDUDFWHULVWLFV RI DFFXUDF\ DQG UHODWHG SUREOHPV DUH SURSRVHG ,Q 6HFWLRQ VRPH FRQFOXVLRQV DUH IRUPXODWHG 2. Coherence 7R REWDLQ EXVLQHVV VWDWLVWLFV RI VDWLVIDFWRU\ TXDOLW\ LW LV QHFHVVDU\ WR JXDUDQWHH FRKHUHQFH EHWZHHQ UHOHYDQW GDWD Coherence LV D JHQHUDO WHUP UHIHUULQJ WR WKH FRQVLVWHQF\ EHWZHHQ D VHW RI VWDWLVWLFDO YDULDEOHV GHVFULELQJ ILQLWH SRSXODWLRQ SDUDPHWHUV LQ WHUPV RI YDULRXV EXW ± IURP WKH PHWKRGRORJLFDO SRLQW RI YLHZ ± PXWXDOO\ FRQQHFWHG VRFLDO RU HFRQRPLF SKHQRPHQD REVHUYHG LQ EXVLQHVV UHDOLW\ 0RUH SUHFLVHO\ WKH OHYHO RI FRKHUHQFH LQIRUPV XV ZKHWKHU DQG WR ZKDW GHJUHH VRPH VWDWLVWLFV FDQ EH DQDO\VHG MRLQWO\ DQG KRZ WR LQGLFDWH WKHLU µRSWLPXP¶ OHYHOV 7KDW LV LI WZR YDULDEOHV DUH VWULFWO\ PHWKRGRORJLFDOO\ FRQQHFWHG DQG FKDQJHV RI RQH YDULDEOH DIIHFW YDOXHV RI WKH RWKHU DQG YLFH YHUVD WKHQ WKH\ FDQ DQG VKRXOG EH DQDO\VHG MRLQWO\ )RU H[DPSOH VXFK D MRLQW DQDO\VLV PD\ FRQFHUQ SURGXFWLRQ RXWSXW DQG HPSOR\PHQW SURGXFWLRQ RXWSXW DQG IRUHLJQ WUDGH WXUQRYHU VROG SURGXFWLRQ DQG ZDJHV DQG VDODULHV HWF 7KHVH YDULDEOHV PD\ DOVR EH FRPELQHG WR REWDLQ RQH V\QWKHWLF UHVXOW 2.1. Definition of coherence $FFRUGLQJ WR (XURVWDW the coherence of two or more statistical outputs refers to the degree to which the statistical processes by which they were generated relied on the same concepts – classifications, definitions, and target populations – and harmonised methods ,I VWDWLVWLFDO YDULDEOHV DUH FRKHUHQW LW PHDQV WKDW WKH\ KDYH WKH SRWHQWLDO WR EH YDOLGO\ FRPELQHG DQG XVHG MRLQWO\ $V LW ZDV QRWHG HDUOLHU H[DPSOHV RI VXFK MRLQW XVH UHIOHFW WKH VLWXDWLRQ ZKHUH VWDWLVWLFDO RXWSXWV UHIHU WR WKH VDPH OHYHO RI DJJUHJDWLRQ IRUPV SRSXODWLRQ UHIHUHQFH SHULRG WHUULWRULDO OHYHO HWF EXW FRQFHUQ GLIIHUHQW VHWV RI GDWD LWHPV HJ GDWD RQ ZDJHV DQG VDODULHV DQG SURGXFWLRQ &RKHUHQFH FDQ DOVR RFFXU LQ WKH RSSRVLWH VLWXDWLRQ LH ZKHUH WKH LQYHVWLJDWHG YDULDEOHV FRPSULVH WKH VDPH GDWD LWHPV HJ HPSOR\PHQW GDWD EXW DUH FROOHFWHG IRU GLIIHUHQW UHIHUHQFH SHULRGV UHJLRQV RU RWKHU GRPDLQV 9DULRXV GDWD DUH XVXDOO\ FROOHFWHG XVLQJ GLIIHUHQW SURFHVVHV HJ GLIIHUHQW UHSRUWLQJ IRUPV DUH XVHG IRU WKH VXUYH\ RI HPSOR\PHQW DQG SURGXFWLRQ RXWSXW IRU PHGLXP DQG ODUJH HFRQRPLF HQWLWLHV ± LQ DGGLWLRQ WKH IRUPHU LV FRQGXFWHG PRQWKO\ DQG WKH ODWWHU TXDUWHUO\ KHQFH LQ WKLV VLWXDWLRQ RQH FDQ ORRN IRU FRKHUHQFH RQO\ IRU TXDUWHUV $FFRUGLQJ WR (XURVWDW WKH WHUP FRKHUHQFH LV XVXDOO\ XVHG ZKHQ DVVHVVLQJ WKH H[WHQW WR ZKLFK RXWSXWV IURP GLIIHUHQW VWDWLVWLFDO SURFHVVHV KDYH WKH SRWHQWLDO WR EH UHOLDEO\ XVHG LQ FRPELQDWLRQ 0RUH SUHFLVHO\ 290 $ 0áRGDN: Coherence and comparability … FRKHUHQFH FRQFHUQV WKH SRVVLELOLW\ RI FRPELQLQJ WKH WZR DIRUHPHQWLRQHG YDULDEOHV IRU WKH VDPH SRSXODWLRQ DQG WLPH SHULRG &RKHUHQFH GHSHQGV RQ VWDWLVWLFDO SURFHVVHV OHDGLQJ WR D JLYHQ RXWSXW DQG LWV OHYHO LV DVVHVVHG RQ WKH EDVLV RI ILQDO UHVXOWV LQ WHUPV RI TXDOLW\ RI WKHVH SURFHVVHV $QRWKHU DVSHFW RI FRKHUHQFH LV statistical accuracy ,Q RUGHU WR XVH VHYHUDO VHWV RI YDULDEOHV RU RQH ODUJH VHW RI YDULRXV YDULDEOHV LW LV YHU\ LPSRUWDQW WR LQGLFDWH ZKLFK LQJUHGLHQWV RI WKH GHILQLWLRQ RI WKHVH YDULDEOHV DUH FRQVWDQW DQG ZKLFK YDU\ DQG WR ZKDW H[WHQW )RU H[DPSOH LW LV GHVLUDEOH WR NQRZ ZKDW PHWKRGRORJLFDO UXOHV ZHUH XVHG WR FROOHFW VWDWLVWLFV DERXW SURGXFWLRQ RXWSXW WKH QXPEHU RI HPSOR\HHV RU WXUQRYHU LQ YDULRXV VXUYH\V DQG KRZ WKH\ FDQ EH FRPSDUHG DFURVV YDULRXV JHRJUDSKLFDO DUHDV RU W\SHV RI HQWHUSULVHV 7KH SUHFLVLRQ DQG DFFXUDF\ RI FROOHFWHG GDWD FDQ EH D VLJQLILFDQW IDFWRU )RU H[DPSOH LI RQH RI VHYHUDO VXFFHVVLYH VXUYH\V FRQWDLQV PLVVLQJ YDOXHV DERXW WXUQRYHU IRU PDQ\ XQLWV LW FDQ EH GURSSHG IURP WKH VWXG\ SURYLGHG RI FRXUVH WKLV DFWLRQ GRHV QRW DIIHFW WKH UHVXOWLQJ DQDO\VLV ,W LV ZRUWK QRWLQJ WKDW there is a significant difference between coherence and accuracy 1DPHO\ LI UHVXOWV RI WZR GLIIHUHQW SURFHVVHV RU RI WKH VDPH SURFHVV DW GLIIHUHQW DJJUHJDWLRQ OHYHOV DUH FRPSDUHG GLIIHUHQFHV EHWZHHQ WKHP DUH DQ HIIHFW RI LQFRQVLVWHQF\ RI UHOHYDQW HVWLPDWHV GXH WR WKHLU YDULRXV SUHFLVLRQ 7KLV LV DQ H[DPSOH RI LQDFFXUDF\ ZKLFK LV GLIIHUHQW IURP LQFRKHUHQFH VLQFH LW GRHV QRW LQYROYH DQDO\]LQJ WKH SRVVLELOLW\ RI FRPELQLQJ WKHVH SURFHVVHV ,Q JHQHUDO FI (XURVWDW FRKHUHQFHFRPSDUDELOLW\ UHIHUV WR GHVFULSWLYH GHVLJQ PHWDGDWD LH FRQFHSWV DQG PHWKRGV DERXW WKH SURFHVVHV ZKHUHDV DFFXUDF\ LV PHDVXUHG DQG DVVHVVHG LQ WHUPV RI RSHUDWLRQDO PHWDGDWD VDPSOLQJ UDWHV GDWD FDSWXUH HUURU UDWHV HWF DVVRFLDWHG ZLWK WKH DFWXDO RSHUDWLRQV WKDW SURGXFHG WKH GDWD $FFXUDF\ DOVR FRQFHUQV WKH SUREOHP RI GLIIHUHQFHV EHWZHHQ YDULRXV HVWLPDWHV RI WDUJHW YDULDEOHV DQG WKHLU HUURUV HVSHFLDOO\ LI HUURU SURILOHV DUH LQFRPSOHWH RU XQNQRZQ 7KH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW QRWH WKDW ZKHUH HUURU SURILOHV RI WKH VWDWLVWLFDO SURFHVVHV DUH NQRZQ DQG LQFOXGHG ZLWKLQ WKH GHVFULSWLRQ RI DFFXUDF\ WKHUH LV QR QHHG IRU IXUWKHU UHIHUHQFH WR WKHP XQGHU FRKHUHQFH DQG DOVR FRPSDUDELOLW\ 7KH\ JLYH DQ H[DPSOH ZKHUH LW LV VXSSRVHG WKDW VDPSOLQJ HUURU ERXQGV DUH SXEOLVKHG IRU WZR YDOXHV RI WKH VDPH GDWD LWHP IRU DGMDFHQW WLPH SHULRGV LQGLFDWLQJ WKH UDQJH ZLWKLQ ZKLFK D PRYHPHQW IURP RQH SHULRG WR WKH QH[W PD\ EH GXH WR FKDQFH DORQH DQG GRHV QRW UHIOHFW DQ\ DFWXDO FKDQJH LQ WKH SKHQRPHQRQ EHLQJ PHDVXUHG ,I DQG RQO\ LI WKH PHDVXUHG PRYHPHQW LV ODUJHU WKDQ WKHVH ERXQGV RQH FDQ GLVFXVV ZKHWKHU WKH PRYHPHQW LV UHDO RU GXH WR WKH ODFN RI FRKHUHQFH DQG FRPSDUDELOLW\ 2Q WKH RWKHU KDQG WKH DVVHVVPHQW RI FRKHUHQFH VKRXOG LQFOXGH HOHPHQWV QRW DQDO\VHG LQ WHUPV RI DFFXUDF\ HJ RQ QRQUHVSRQVH RU QRQVDPSOLQJ HUURUV LI WKH\ ZHUH QRW WDNHQ LQWR DFFRXQW ZKHQ DVVHVVLQJ DFFXUDF\ .|UQHU DQG 3XFK GLVFXVV (XURVWDW¶V DWWHPSWV WR GHILQH FRKHUHQFH DQG QRWH WKDW WZR VRXUFHV SURYLGLQJ QRQGHYLDWLQJ UHVXOWV DUH WKHUHIRUH QRW QHFHVVDULO\ FRKHUHQW DV YDULRXV HIIHFWV LQ WKH XQGHUO\LQJ SURFHVVHV PLJKW PXWXDOO\ FRPSHQVDWH HDFK RWKHU 7KHUHIRUH LW LV HDVLHU WR UHFRJQL]H LQFRKHUHQFH WKDQ STATISTICS IN TRANSITION-new series, Summer 2013 291 FRKHUHQFH 7KHLU RSHUDWLRQDO GHILQLWLRQ VWDUWV IURP VXFK GHYLDWLRQV RI UHVXOWV RI WZR GLIIHUHQW SURFHVVHV DQG WDNHV WKH H[SHFWDWLRQV RI XVHUV UHJDUGLQJ FRQVLVWHQF\ RI UHVXOWV LQWR DFFRXQW ,W DVVXPHV WKDW VWDWLVWLFDO RXWSXWV UHIHUULQJ WR LGHQWLFDO FRQFHSWV KDYH WR EH QXPHULFDOO\ FRQVLVWHQW 7KDW LV WZR UHODWHG VXUYH\V DUH FRKHUHQW LI WKH YDOXH RI VRPH EDVLF YDULDEOH REVHUYHG LQ ERWK VXUYH\V GRHV QRW GHYLDWH JLYHQ WKDW LGHQWLFDO FRQFHSWV DUH EHLQJ XVHG IURP WKDW H[SHFWHG E\ WKH XVHU )RU LQVWDQFH LW FDQ EH WKH QXPEHU RI HQWHUSULVHV LQ PRQWKO\ HPSOR\PHQW VXUYH\V DQG TXDUWHUO\ UHSRUWV RQ ILQDQFLDO UHVXOWV 7KH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW YLHZ WKH UHODWLRQVKLS EHWZHHQ FRKHUHQFHFRPSDUDELOLW\ DQG DFFXUDF\ E\ QRWLQJ WKDW WKH QXPHULF FRQVLVWHQF\ RI HVWLPDWHV GHSHQGV RQ WZR IDFWRUV x ORJLFDO FRQVLVWHQF\ FDOOHG KHUH FRKHUHQFHFRPSDUDELOLW\ RI WKH SURFHVVHV WKDW JHQHUDWHG WKRVH HVWLPDWHV DQG x HUURUV WKDW DFWXDOO\ RFFXUUHG LQ WKRVH SURFHVVHV LQ JHQHUDWLQJ WKH HVWLPDWHV DQG FRQFOXGH WKDW FRKHUHQFH DQG FRPSDUDELOLW\ LV D SUHUHTXLVLWH IRU QXPHULFDO FRQVLVWHQF\ 7KH GHJUHH RI FRKHUHQFHFRPSDUDELOLW\ GHWHUPLQHV WKH SRWHQWLDO IRU QXPHULFDO FRQVLVWHQF\ EXW GRHV QRW JXDUDQWHH LW VLQFH LW DOVR GHSHQGV RQ HUURUV 2.2. Types of coherence ,Q WHUPV RI EXVLQHVV VWDWLVWLFV WZR W\SHV RI FRKHUHQFH DUH XVXDOO\ GLVWLQJXLVKHG x internal coherence ± FRKHUHQFH ZLWKLQ D XQLIRUP VHW RI DQQXDO DQG VKRUW±WHUP EXVLQHVV VWDWLVWLFV RU EHWZHHQ GDWD GHULYHG IURP GLIIHUHQW VRXUFHV VXUYH\V DGPLQLVWUDWLYH ,175$67$7 HWF x external coherence ± FRQVLVWHQF\ EHWZHHQ EXVLQHVV VWDWLVWLFV DQG PDLQ PDFURHFRQRPLF LQGLFDWRUV HJ ZLWK QDWLRQDO DFFRXQWV VWDWLVWLFV RQ SULFHV DQG ZDJHV H[WHUQDO WUDGH HWF ,Q WKH ILUVW FDVH WKHUH DUH PDQ\ SRVVLEOH FDXVHV RI GLYHUJHQW WUHQGV EHWZHHQ VKRUWWHUP LQGLFHV DQG DQQXDO EXVLQHVV VWDWLVWLFV 'DYLHV DQG %HUJGDKO et al. DQDO\]H VHYHUDO DVSHFWV LQ WHUPV RI ZKLFK FRKHUHQFH VKRXOG EH SHUFHLYHG )LUVW LW LV LPSRUWDQW KRZ D YDULDEOH LV GHILQHG $ W\SLFDO GHILQLWLRQ LQFOXGHV WKH PDLQ IHDWXUHV RI WKH YDULDEOH WR EH FROOHFWHG VXFK DV VWDWLVWLFDO PHDVXUH WRWDO PHDQ PHGLDQ HWF XQLW RI PHDVXUHPHQW HJ GLIIHUHQW XQLWV DUH XVHG WR PHDVXUH SURGXFWLRQ RXWSXW QXPEHU RI KRXUV ZRUNHG QXPEHU RI HPSOR\HHV ZDJHV DQG VDODULHV HWF XQLW RI REVHUYDWLRQ HQWHUSULVH .$8 /.$8 ORFDO XQLWV HWF GRPDLQ GHILQLWLRQ RI VXESRSXODWLRQ ± HJ XVLQJ WKH 1$&( FODVVLILFDWLRQ ± RU FODVVHV HJ E\ QXPEHU RI HPSOR\HHV DQG UHIHUHQFH WLPHV D WLPH SRLQW RU SHULRG ZKLFK XQLWV DQG YDULDEOH YDOXHV UHODWH WR 7KH SUREOHP RI FRKHUHQFH ZLWK UHVSHFW WR WKHVH DVSHFWV LV HTXLYDOHQW WR WKH FRPSDUDELOLW\ RI GDWD RYHU VXFK IDFWRUV 7KDW LV RQH H[SHFWV FRPSDUDELOLW\ RYHU WLPH EHWZHHQ FRXQWULHV EHWZHHQ QRQ±JHRJUDSKLFDO JURXSV RU IXQFWLRQDO DUHDV 292 $ 0áRGDN: Coherence and comparability … DQG EHWZHHQ VWDWLVWLFV IURP VHYHUDO VXUYH\V 7KHVH LVVXHV ZLOO EH GHVFULEHG EURDGO\ LQ 6HFWLRQ 1RZ LW LV HQRXJK WR QRWH WKDW LQ SUDFWLFH UHIHUHQFH WLPHV DUH PDLQO\ WLPH LQWHUYDOV VXFK DV FDOHQGDU \HDU TXDUWHU RU PRQWK VRPHWLPHV WKH\ DUH DOVR SRLQWV LQ WLPH HJ VW -DQXDU\ RI WKH UHIHUHQFH \HDU 7KH UHIHUHQFH WLPH VKRXOG EH WKH VDPH IRU DOO XQLWV DQG YDULDEOHV 8VXDOO\ UHIHUHQFH WLPHV DJUHH IRU DOO YDULDEOHV DQG XQLWV LQ D )33 )RU PRQWKO\ VWDWLVWLFV IRU LQVWDQFH WKLV PHDQV WKDW WKH GHOLQHDWLRQ RI XQLWV VKRXOG UHIHU WR WKH FXUUHQW PRQWK 7KH VHFRQG W\SH RI FRKHUHQFH LQ EXVLQHVV VWDWLVWLFV LH H[WHUQDO FRKHUHQFH FDQ EH SHUFHLYHG LQ WHUPV RI ORJLFDO UHODWLRQVKLSV EHWZHHQ WDUJHW VWDWLVWLFV )RU H[DPSOH ZKHQ ERWK PRQWKO\ DQG DQQXDO VWDWLVWLFV RQ H[SHQGLWXUHV DUH XVHG WKH VXP RI WZHOYH PRQWKO\ YDOXHV VKRXOG VXP XS WR WKH DQQXDO WRWDO 7KH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW DOVR LQGLFDWH VHYHUDO RWKHU W\SHV RI FRKHUHQFH UHODWHG VWULFWO\ WR EXVLQHVV VWDWLVWLFV x coherence between short-term (i.e. sub-annual) and annual statistics D JRRG H[DPSOH DUH PRQWKO\ DQG DQQXDO SURGXFWLRQ GDWD IRU WKH VDPH LQGXVWULHV LQ WKH VDPH UHJLRQ x coherence with the National Accounts ± XQGHUOLQHV WKH NH\ LPSRUWDQFH RI FRKHUHQFH IRU HFRQRPLF VXUYH\V XVLQJ WKH QDWLRQDO DFFRXQWV WKH 1DWLRQDO $FFRXQWV FRPSLODWLRQ SURFHVV ZLOO GHWHFW WKH SRVVLEOH ODFN RI FRKHUHQFH x coherence with other statistics IRU H[DPSOH FRKHUHQFH EHWZHHQ HPSOR\PHQW SURGXFHG E\ D ODERXU IRUFH VXUYH\ RI KRXVHKROG PHPEHUV DQG WKH QXPEHU RI HPSOR\HHV SURGXFHG E\ DQ HFRQRPLF VXUYH\ RI HQWHUSULVHV %HUJGDKO et al. QRWHG WKDW GLIILFXOWLHV HQFRXQWHUHG E\ WKH XVHU RIWHQ GHSHQG VWURQJO\ RQ WKH µGLVWDQFH¶ EHWZHHQ VWDWLVWLFV XVHG MRLQWO\ VLQFH GHILQLWLRQV RI YDULDEOHV XVHG HYHQ LQ WKH VDPH VXUYH\ FDQ YDU\ LQ WHUPV RI UHIHUHQFH WLPHV ± D SHULRG LQ RQH FDVH D SRLQW LQ WLPH LQ DQRWKHU 0RUHRYHU UHIHUHQFH WLPHV PD\ FRUUHVSRQG WR WKDW RI WKH VDPSOH IUDPH RU WKH YDULDEOH DQG GHILQLWLRQV RI HQWHUSULVHV FDQ YDU\ LQ GLIIHUHQW FRXQWULHV DFURVV WKH (8 2.3. Sources of incoherence .|UQHU DQG 3XFK QRWH WKDW GHYLDWLQJ UHVXOWV KDYH WZR PDLQ VRXUFHV x differences due to concepts OLNH WKH WDUJHW SRSXODWLRQ WKH UHIHUHQFH SHULRG RU WKH GHILQLWLRQ RI WKH LWHPV IRU DQDO\VLV DQG x differences due to methods used HJ GDWD FROOHFWLRQ PHWKRGV DQG SURFHGXUHV WKH GDWD SURFHVVLQJ DSSURDFK RU WKH VDPSOLQJ GHVLJQ 7KH\ LQYHVWLJDWH WKH *HUPDQ /DERXU )RUFH 6XUYH\ DQG 1DWLRQDO $FFRXQWV E\ LGHQWLI\LQJ DQG TXDQWLI\LQJ GHILQLWLRQDO GLIIHUHQFHV DQG WKHQ UHFRJQL]LQJ PHWKRGRORJLFDO GLIIHUHQFHV 0HWKRGRORJLFDO GLIIHUHQFHV FDQ FRYHU YDULRXV )33 ± )LQLWH 3RSXODWLRQ 3DUDPHWHUV D JHQHUDO QRWLRQ FRYHULQJ EDVLF GHVFULSWLYH VWDWLVWLFV IRU ILQLWH SRSXODWLRQ ZKLFK GLVWLQJXLVK LW IURP FKDUDFWHULVWLFV RI WKH LQILQLWH SRSXODWLRQ LQ VWDWLVWLFDO PRGHOOLQJ HJ SRSXODWLRQ WRWDO DQG DYHUDJH RI D JLYHQ YDULDEOH WKH UDWLR RI WKH SRSXODWLRQ DYHUDJHV RI WZR YDULDEOHV WKH SRSXODWLRQ YDULDQFH RU WKH SRSXODWLRQ PHGLDQ RI D JLYHQ YDULDEOH HWF FI %HUJGDKO et al. STATISTICS IN TRANSITION-new series, Summer 2013 293 DVSHFWV VXFK DV DOO HOHPHQWV RI VXUYH\ GHVLJQ DQG HUURUV EXW DOVR WKH DFFRXQWLQJ UXOHV DQG HVWLPDWLRQ PHWKRGRORJ\ ,I PHWKRGRORJLFDO GLIIHUHQFHV DUH VLJQLILFDQW WKHQ PHWKRGVUHODWHG GLIIHUHQFHV DUH XVXDOO\ QRW HDVLO\ LGHQWLILHG DQG VRPH DGGLWLRQDO DOJRULWKPV DUH QHFHVVDU\ 6RXUFHV RI LQFRKHUHQFH FDQ DOVR EH FRPELQHG 7KDW LV HUURUV RI RQH W\SH DUH XVXDOO\ WR VRPH H[WHQW LQKHUHQW LQ WKH VHFRQG )RU H[DPSOH .|UQHU DQG 3XFK WKH VDPSOLQJ HUURU LV D FRPELQDWLRQ RI HIIHFWV GXH WR WKH VDPSOLQJ GHVLJQ DQG GHYLDWLRQV IURP LW LQ SUDFWLFDO LPSOHPHQWDWLRQ 6LPLODUO\ WKH VXUYH\ PRGH DOEHLW SDUW RI WKH PHWKRGRORJ\ ZLOO GLUHFWO\ LQIOXHQFH WKH UHVXOWV ZKLFK FDQ EH REWDLQHG 'LIIHUHQFHV EHWZHHQ VKRUW±WHUP DQG DQQXDO VWDWLVWLFV UHVXOW IURP IUDPHV DQG YDULRXV XQLWV XVHG LQ WKH VRXUFHV $OVR D ORW GHSHQGV RQ WKH FKRLFH RI WKH GRPDLQ IRU XQLW DJJUHJDWLRQ HJ LQ VXUYH\LQJ WKH VDPH VWDWLVWLFV YDULDEOHV GLIIHUHQW GDWD FDQ EH REWDLQHG GHSHQGLQJ RQ ZKHWKHU XQLWV DUH JURXSHG E\ WKH W\SH RI DFWLYLW\ RU E\ ORFDWLRQ ,W LV ZRUWK QRWLQJ WKDW LI VKRUW±WHUP FKDQJHV RYHU WLPH ± LH WKH UHDOL]DWLRQ DQG WUHQG RI WLPH VHULHV ± DUH DQDO\VHG FRKHUHQFH FDQ RQO\ UHIHU WR LQWUD±DQQXDO UHVXOWV .|UQHU DQG 3XFK QRWH WKDW FRKHUHQFH RI WLPH VHULHV ZLOO WKHUHIRUH EH FRYHUHG LQ GHGLFDWHG VHFWLRQV IRFXVLQJ RQ DVSHFWV VSHFLILF WR WKH VKRUWHU HJ PRQWKO\ DQG TXDUWHUO\ WLPH VHULHV %HFDXVH FRKHUHQFH DQG FRPSDUDELOLW\ KDYH XVXDOO\ VLPLODU UHDVRQV WKHLU YDULRXV DVSHFWV ZLOO EH GHVFULEHG LQ GHWDLO LQ WKH SDUW RI WKLV SDSHU GHYRWHG WR FRPSDUDELOLW\ LH 6HFWLRQ 7KLV VXEVHFWLRQ ZDV RQO\ DQ RYHUYLHZ RI WKH JHQHUDO QDWXUH RI WKHVH SUREOHPV 2.4. Measurement of coherence 7KH PHDVXUHPHQW RI FRKHUHQFH DQG PRUH SUHFLVHO\ LQFRKHUHQFH LV VRSKLVWLFDWHG 2I FRXUVH WKH VLPSOHVW ZD\ LQYROYHV FRPSXWLQJ GLIIHUHQFHV EHWZHHQ UHVXOWV RI DQDO\]HG VXUYH\V RU GDWD VRXUFHV 2QH VKRXOG UHPHPEHU KRZHYHU WKDW QRW DOO DVSHFWV RI FRKHUHQFH DUH PHDVXUDEOH DQG QXPHULFDO DVVHVVPHQW PD\ EH WKH UHVXOW RI D QXPEHU RI IDFWRUV VXFK DV SURSHUWLHV RI FRQFHSWV DQG PHWKRGV XVHG &RRN QRWHV WKDW coherence in economic statistics is increasingly dependent on integration of information obtained from individual large enterprises from different sources. Making balancing adjustments at industry or industry group level is of diminishing effectiveness as economic activity is concentrated in fewer enterprises, where coverage rates differ across surveys. In some industries, such as pension funds, the scale of intercompany transfers is so large that it makes it difficult to estimate industry change in an unbiased manner. Coherence is improved by survey design, and most countries have a long way to go, in doing as well as they could. Much improvement is still possible in the way that statistical frames are adopted in individual surveys ,W LV WKHUHIRUH YHU\ LPSRUWDQW WR EH DZDUH RI KRZ WKHVH DVSHFWV DIIHFW LQFRQVLVWHQFLHV $ JRRG H[DPSOH RI VXFK TXDOLW\ DVVHVVPHQW LV WKH VWXG\ 294 $ 0áRGDN: Coherence and comparability … FRQGXFWHG E\ &DVFLDQR et al. ZKR DQDO\VH FRKHUHQFH E\ VWXG\LQJ WKH GLIIHUHQFH LQ WKH ILQDO HVWLPDWH IRU WXUQRYHU DQG YDOXH DGGHG 7KH\ FRPSDUH WKH HVWLPDWLRQ RI WXUQRYHU REWDLQHG VROHO\ RQ WKH EDVLV RI WKH VXUYH\ ZLWK WKDW EDVHG RQ WKH VXUYH\ FRPELQHG ZLWK GDWD IURP DGPLQLVWUDWLYH VRXUFHV 7KH QHZ HVWLPDWH LV YHU\ FORVH WR WKH LQLWLDO RQH ZLWK D SHUFHQWDJH GLIIHUHQFH RI DOWKRXJK WKHUH LV D KLJK YDULDELOLW\ LQ UHVXOWV ZKHQ D EUHDNGRZQ E\ HFRQRPLF DFWLYLWLHV DQG VL]H FODVVHV LV XVHG 2WKHU IDFWRUV WKDW KDYH DQ LPSDFW RQ WKH DVVHVVPHQW DUH ZHLJKWLQJ DQG QRQUHVSRQVH WKH GLIIHUHQFH GXH WR XQLW QRQUHVSRQVH LV KLJKHU LQ FRQVWUXFWLRQ DFWLYLWLHV DQG ORZHU LQ VHUYLFH VHFWRU ZKLFK KDV SURGXFHG D KLJKHU HVWLPDWH RI WXUQRYHU IRU PLFUR DQG VPDOO ILUPV DQG D VWURQJ XQGHUHVWLPDWH IRU PHGLXP HQWHUSULVHV HVSHFLDOO\ LQ VHUYLFH VHFWRUV 7KH PHDVXUH RI RYHUDOO LQDFFXUDF\ VKRXOG FRQFHUQ DOO GDWD VRXUFHV QRW RQO\ WKH VDPSOH 2QH VKRXOG DOVR H[SHFW VLJQLILFDQW LH UHODWHG WR PHWKRGRORJ\ RU QRQUHVSRQVH DQG QRQVLJQLILFDQW JHQHUDWHG E\ HJ HFRQRPHWULFDOO\ PRGHOOHG µZKLWH QRLVH¶ LH UDQGRP GLVWXUEDQFHV LQDFFXUDFLHV 2QH FDQ H[SHFW WKDW UHODWLRQVKLSV DQG FRQQHFWLRQV EHWZHHQ SDUDPHWHUV ZLOO DOVR EH UHIOHFWHG LQ WKHLU HVWLPDWHV )RU H[DPSOH WKH VXP RI PRQWKO\ HVWLPDWHV RI WKH QXPEHU RI HPSOR\HHV VKRXOG EH HTXDO WR WKH UHOHYDQW DQQXDO HVWLPDWH 2I FRXUVH LQ VRPH VLWXDWLRQV HJ LQ WKH FDVH RI LQGLFHV FRQVLVWHQF\ FDQ RQO\ EH DSSUR[LPDWH EXW VXFK DSSUR[LPDWLRQV VKRXOG EH DV SUHFLVH DV SRVVLEOH 6LJQLILFDQW GLIIHUHQFHV LQ HVWLPDWHV IRU WKH VDPH SDUDPHWHU LPSO\ LQFRKHUHQFH 2QH VKRXOG KRZHYHU EHDU LQ PLQG WKDW VXFK SUREOHPV FDQ UHVXOW QRW RQO\ IURP GHILQLWLRQV EXW DOVR IURP V\VWHPDWLF HUURUV 7KHUHIRUH VRXUFHV RI WKHVH SUREOHPV VKRXOG DOZD\V EH FDUHIXOO\ DQDO\]HG DQG UHFRJQL]HG 3 'DYLHV SURYLGHV D FRPSDULVRQ EHWZHHQ VKRUWWHUP VWDWLVWLFV DQQXDO VWDWLVWLFV DQG QDWLRQDO DFFRXQWV LQ 6ZHGHQ ,Q KLV H[DPSOH VKRUWWHUP VWDWLVWLFV PHDVXUHV RZQ SURGXFWLRQ RXWSXW ZKHUHDV WKH RWKHU WZR VHWV RI VWDWLVWLFV HVWLPDWH WKH YDOXH DGGHG +H REVHUYHG WKDW WKH JURZWK UDWH EHWZHHQ GLIIHUHQW \HDUV ZDV XQXVXDOO\ ODUJH EXW KH DOVR QRWLFHG WKDW LI JURZWK UDWHV IRU RXWSXW DQG YDOXH DGGHG ZHUH DVVXPHG WR EH HTXDOVLPLODU VRPH VKRUWWHUP VWDWLVWLFV IRU RXWSXW FRXOG EH UHJDUGHG DV D ILUVW HVWLPDWH RI WKH YDOXH DGGHG 3. Comparability ,Q PDQ\ SURIHVVLRQDO SDSHUV WKH WHUPV ³FRKHUHQFH´ DQG ³FRPSDUDELOLW\´ DUH XVHG LQWHUFKDQJHDEO\ 6XFK XVDJH FDQ EH MXVWLILHG E\ WKH IDFW WKDW FRPSDUDELOLW\ LV D VSHFLDO FDVH RI FRKHUHQFH DQG LQYROYHV VLWXDWLRQV ZKHUH VWDWLVWLFDO RXWSXWV UHIHU WR WKH VDPH GDWD LWHPV DQG WKH DLP RI FRPELQLQJ WKHP LV WR PDNH FRPSDULVRQV RYHU WLPH RU DFURVV GRPDLQV +RZHYHU WKH LGHD RI FRPSDUDELOLW\ KDV LWV VSHFLDO IHDWXUHV DQG WKHUHIRUH GHVHUYHV D EURDGHU GHVFULSWLRQ DQG DQDO\VLV 7KHUHIRUH LWV GHILQLWLRQ ZLOO EH SUHVHQWHG DORQJ ZLWK KLJKOLJKWLQJ KRZ LW GLIIHUV IURP WKH PDLQ FRQFHSWV RI FRKHUHQFH DQG GLVFXVVLQJ VRPH PHWKRGV WKDW HQDEOH XV WR DVVHVV DQG LPSURYH WKH FRPSDUDELOLW\ RI VWDWLVWLFDO RXWSXWV STATISTICS IN TRANSITION-new series, Summer 2013 295 3.1. Definition of comparability and its relation to the problem of coherence 7KH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW QRWH WKDW XQOLNH FRKHUHQFH FRPSDUDELOLW\ LV XVHG ZKHQ DVVHVVLQJ WKH H[WHQW WR ZKLFK RXWSXWV IURP QRPLQDOO\ WKH VDPH VWDWLVWLFDO SURFHVV EXW IRU GLIIHUHQW WLPH SHULRGV DQGRU IRU GLIIHUHQW UHJLRQV KDYH WKH SRWHQWLDO WR EH UHOLDEO\ XVHG LQ FRPELQDWLRQ UHFDOO WKDW FRKHUHQFH FRQFHUQV WKH SRVVLELOLW\ RI FRPELQLQJ GLIIHUHQW YDULDEOHV IRU WKH VDPH UHJLRQ RU WLPH SHULRG 7KHUHIRUH FRKHUHQFH LV D VWURQJHU QRWLRQ 0RUH SUHFLVHO\ LI VHYHUDO GLIIHUHQW WLPH SHULRGV DQG WKH VDPH SRSXODWLRQ DQG UHJLRQ DUH DQDO\VHG WKHQ WKH YDOLGLW\ RI WKH FRPELQHG XVH RI HJ HPSOR\PHQW GDWD IRU WKLV VWUXFWXUH ZLOO EH SHUFHLYHG LQ WKH FRQWH[W RI FRPSDUDELOLW\ ZKHUHDV FRPELQLQJ WKLV YDULDEOH ZLWK HJ GDWD RQ ZDJHV DQG VDODULHV IRU WKH VDPH UHIHUHQFH SRLQWV ZLOO EH FRQVLGHUHG LQ WHUPV RI FRKHUHQFH +HQFH WKH FRPSDUDELOLW\ UHIHUV WR WKH SRVVLELOLW\ RI PDNLQJ HIILFLHQW FRPSDULVRQV EHWZHHQ XQLWV DQG YDULDEOHV DFFRUGLQJ WR YDULRXV DVSHFWV DQG FULWHULD 2QH PRVW IUHTXHQWO\ XVHG EDVLV RI VXFK FRPSDULVRQV LV WLPH 7R PDNH VXFK FRPSDULVRQV SRVVLEOH WKH VWDELOLW\ RI GHILQLWLRQV LQ VXFFHVVLYH VXUYH\ DGPLQLVWUDWLRQV VKRXOG EH HQVXUHG DQG WKH µVWDWH RI WKH DUW¶ LQ DOO WLPH SHULRGV VKRXOG EH ZHOO GHVFULEHG 7R GR VR RQH VKRXOG UHPHPEHU WKDW ZKHQ D FKDQJH LV PDGH VSHFLDO PHDVXUHV DUH UHFRPPHQGHG WR LPSURYH FRPSDUDELOLW\ IRU H[DPSOH SURGXFLQJ VWDWLVWLFV LQ ERWK ZD\V RQ RQH RFFDVLRQ RU HYHQ UH±HVWLPDWLQJ SDUW RI WKH ROG VHULHV LQ WHUPV RI QHZ GHILQLWLRQV DFFRUGLQJ WR %HUJGDKO et al. 3.2. Sources of incomparability 7KH GRFXPHQW E\ (XURVWDW SURYLGHV WKH IROORZLQJ OLVW RI VRXUFHV RI WKH ODFN RI FRPSDUDELOLW\ ZKLFK FDQ EH WKH EDVLV IRU GHVLJQLQJ HDFK TXDOLW\ DQDO\VLV DQG TXDOLW\ UHSRUW &RQFHSWV x 6WDWLVWLFDO FKDUDFWHULVWLFV x 6WDWLVWLFDO PHDVXUH LQGLFDWRU x 6WDWLVWLFDO XQLW x 7DUJHW SRSXODWLRQ x )UDPH SRSXODWLRQ x 5HIHUHQFH SHULRG DQG IUHTXHQF\ x 6WXG\ GRPDLQV x *HRJUDSKLFDO FRYHUDJH IRU FRPSDUDELOLW\ RYHU WLPH x 6WDQGDUGV x 6WUXFWXUH HIIHFWV x &RQFHSWXDO DVSHFWV VSHFLILF IRU D GRPDLQ XQGHU VWXG\ 0HDVXUHPHQW 4XDOLW\ 'LPHQVLRQV x 6DPSOH GHVLJQ x 'DWD FROOHFWLRQ 296 $ 0áRGDN: Coherence and comparability … x 'DWD SURFHVVLQJ x (VWLPDWLRQ 0HDVXUHPHQW DVSHFWV VSHFLILF IRU D GRPDLQ XQGHU VWXG\ WKHVH LQFOXGH FKDUDFWHULVWLFV SHUWLQHQW WR DQ\ VSHFLILF GRPDLQ HJ WKUHVKROGV IRU )RUHLJQ 7UDGH 6WDWLVWLFV $V RQH FDQ VHH WKH SRVVLEOH UHDVRQV DUH QXPHURXV EXW WKH DXWKRUV RI WKH QH[W YHUVLRQ RI WKLV GRFXPHQW (XURVWDW GHVFULEH WKHVH SUREOHPV LQ D PXFK PRUH FRQVROLGDWHG IRUP 7KH\ DUJXH WKDW SRVVLEOH UHDVRQV IRU WKH ODFN RI FRPSDUDELOLW\ EHWZHHQ RXWSXWV RI VWDWLVWLFDO SURFHVVHV PD\ EH VXPPDULVHG XQGHU WZR EURDG KHDGLQJV XVHG DOUHDG\ WR SUHVHQW FDXVHV RI LQFRKHUHQFH LH ± GLIIHUHQFHV LQ FRQFHSWV DQG GLIIHUHQFHV LQ PHWKRGV 7KLV LV WKH VWDUWLQJ SRLQW IRU LQWURGXFLQJ PRUH GHWDLOHG FODVVLILFDWLRQ )LUVW FLUFXPVWDQFHV FRQQHFWHG ZLWK FRQFHSWV ZKLFK DIIHFW FRPSDUDELOLW\ ZLOO EH GHVFULEHG Target population – units and coverage 3UREOHPV ZLWK FRPSDUDELOLW\ PD\ UHVXOW IURP WKH IDFW WKDW WDUJHW SRSXODWLRQV FRXOG GLIIHU IRU WZR VWDWLVWLFDO SURFHVVHV RU IRU WKH VDPH SURFHVV RYHU WLPH LQ D YDULHW\ RI GLIIHUHQW ZD\V 7KHVH GLIIHUHQFHV FDQ DOVR FRQFHUQ WKH VSDWLDO DVSHFW RI GHILQLWLRQV RI D JLYHQ QRWLRQ RU WKH ODFN RI LWV KDUPRQL]DWLRQ )RU H[DPSOH PDQ\ (8 FRXQWULHV XVH D GLIIHUHQW GHILQLWLRQ RI HFRQRPLFDOO\ DFWLYH SRSXODWLRQ LQ /DERXU )RUFH 6XUYH\ /)6 7KLV FDQ UHVXOW IURP YDULRXV OHJLVODWLRQV FRQFHUQLQJ WKH UHWLUHPHQW DJH IRU H[DPSOH LQ 3RODQG LW LV \HDUV IRU ZRPHQ DQG \HDUV IRU PHQ EXW LQ )UDQFH WKH UHWLUHPHQW DJH ZDV HVWDEOLVKHG DW IRU ERWK JHQGHUV ,Q WKH 86$ SHUVRQV ZDLWLQJ WR VWDUW D QHZ MRE DUH FODVVLILHG DV HPSOR\HG EXW LQ (8 /)6 ± DV XQHPSOR\HG 2Q WKH RWKHU KDQG HYHQ LQ RQH FRXQWU\ WKLV GHILQLWLRQ FDQ GLIIHU RYHU WLPH )RU H[DPSOH PDQ\ FRXQWULHV DUH SODQQLQJ WR H[WHQG WKH DJH IRU UHWLUHPHQW ± HJ LQ 3RODQG WR DQG LQ )UDQFH WR IRU ERWK JHQGHUV 7KLV IDFW ZLOO UHVXOW LQ FKDQJHV RI WKH GHILQLWLRQ RI WKH WDUJHW SRSXODWLRQ DQG WKH FRPSDUDELOLW\ RI IXWXUH VWDWLVWLFV RYHU WLPH (XURVWDW DOVR SURYLGHV DQRWKHU H[DPSOH ± PRQWKO\ VWDWLVWLFV RI LQGXVWU\ PLJKW RQO\ LQFOXGH PDQXIDFWXULQJ HQWHUSULVHV ZKHUHDV DQRWKHU VWDWLVWLFDO RXWSXW ZLWK WKH VDPH QDPH PLJKW LQFOXGH PDQXIDFWXULQJ DQG HOHFWULFLW\ JDV DQG ZDWHU SURGXFWLRQ 7ZR UHODWHG EXW GLIIHUHQW VXUYH\V PD\ XVH YDULRXV XQLWV WR EH LQYHVWLJDWHG ± RQH FDQ XVH DQ HQWHUSULVH ZKHUHDV DQRWKHU ± ORFDO XQLW /$8 RU NLQG RI DFWLYLW\ XQLW /.$8 Geographic coverage ± VRPH VSDWLDO DUHDV PD\ EH LQFOXGHG LQ WKH VXUYH\ RI RQH FRXQWU\ DQG H[FOXGHG LQ DGYDQFH IURP DQRWKHU )RU H[DPSOH ZDJHV DQG VDODULHV LQ PDQXIDFWXULQJ FDQ EH LQYHVWLJDWHG RQO\ LQ XUEDQ DUHDV ZKHUH WKLV NLQG RI HFRQRPLF DFWLYLW\ LV PRVWO\ FRQFHQWUDWHG RU DOVR LQ UXUDO DUHDV 0RUHRYHU WKH LQWHUQDO VWUXFWXUH RI VDPSOHG WHUULWRULDO DUHDV LQ RQH FRXQWU\ PD\ EH GLIIHUHQW IURP WKRVH LQ DQRWKHU RQH $V D UHVXOW WKH FRYHUDJH RI IXQFWLRQDO DUHDV ZLOO DOVR EH GLIIHUHQW Reference period ± WLPH SRLQWV RI PHDVXUHPHQW RI D JLYHQ IHDWXUH ZLWKLQ D JLYHQ VXUYH\ PD\ GLIIHU )RU H[DPSOH FI (XURVWDW LQ D VXUYH\ RI HPSOR\HHV DQ HQWHUSULVH PLJKW EH DVNHG IRU WKH QXPEHU RI IXOOWLPH HPSOR\HHV RQ STATISTICS IN TRANSITION-new series, Summer 2013 297 WKH WKLUG 0RQGD\ LQ WKH PRQWK RU RQ WKH ILUVW GD\ RI WKH PRQWK DQ DQQXDO VXUYH\ PD\ UHIHU WR D ILVFDO \HDU EHJLQQLQJ LQ 0DUFK DQRWKHU WR D FDOHQGDU \HDU Data item definitions, classifications ± LW LV D YHU\ LPSRUWDQW FDXVH RI WKH ODFN RI FRPSDUDELOLW\ $ YDULHW\ RI QRQKDUPRQLVHG PHWKRGRORJLFDO GHILQLWLRQV DUH LQ XVH $ JRRG H[DPSOH DUH GLIIHUHQFHV EHWZHHQ FRXQWULHV ZKLFK VHHP WR EH XQDYRLGDEOH HJ LQ WHUPV RI DFFRXQWLQJ V\VWHPV GHILQLWLRQV RI XQLWV DQG YDULDEOHV HWF ,Q WKH FRPPRQ (8 PHWKRGRORJ\ HJ H[SUHVVHG LQ 85%$1 $8',7 SURMHFW WKH FRQFHSWV RI ³HPSOR\HHV´ DQG ³HPSOR\HG SHUVRQV´ DUH QRW UHDOO\ GLVWLQJXLVKHG +RZHYHU LQ 3ROLVK RIILFLDO VWDWLVWLFV HDFK RI WKHVH WHUPV KDV D GLIIHUHQW PHDQLQJ 1DPHO\ HPSOR\HHV DUH GHILQHG DV SHUVRQV SHUIRUPLQJ ZRUN DQG UHFHLYLQJ HDUQLQJV RU LQFRPH LH x HPSOR\HHV KLUHG RQ WKH EDVLV RI HPSOR\PHQW FRQWUDFWV ODERXU FRQWUDFW SRVWLQJV DSSRLQWPHQW RU HOHFWLRQ x HPSOR\HUV DQG RZQ DFFRXQW ZRUNHUV x RXWZRUNHUV x DJHQWV LQFOXGLQJ FRQWULEXWLQJ IDPLO\ ZRUNHUV DQG SHUVRQV HPSOR\HG E\ DJHQWV x PHPEHUV RI DJULFXOWXUDO FR±RSHUDWLYHV DJULFXOWXUDO SURGXFHUV¶ FR RSHUDWLYHV RWKHU FRRSHUDWLYHV HQJDJHG LQ DJULFXOWXUDO SURGXFWLRQ DQG DJULFXOWXUDO IDUPHUV¶ FR±RSHUDWLYHV x FOHUJ\ IXOILOOLQJ WKHLU REOLJDWLRQV 'DWD DERXW HPSOR\HHV DUH SUHVHQWHG ZLWKRXW FRQYHUWLQJ SDUWWLPH HPSOR\HHV LQWR IXOOWLPH HPSOR\HHV DQG DSSO\LQJ WKH SULQFLSOH WKDW HDFK SHUVRQ LV OLVWHG RQFH DFFRUGLQJ WR WKHLU PDLQ MRE ,QVWHDG WKH QXPEHU RI HPSOR\HG SHUVRQV LV GHILQHG DV WKH VXP RI WKH QXPEHU RI IXOOWLPH HPSOR\HHV DQG WKH QXPEHU RI SDUW±WLPH HPSOR\HHV )XOO±WLPH HPSOR\HHV DUH SHUVRQV HPSOR\HG RQ D IXOO±WLPH EDVLV DV GHILQHG E\ D JLYHQ FRPSDQ\ RU IRU D JLYHQ SRVLWLRQ DV ZHOO DV SHUVRQV ZKR LQ DFFRUGDQFH ZLWK UHJXODWLRQV ZRUN D VKRUWHQHG ZRUNWLPH SHULRG HJ GXH WR KD]DUGRXV FRQGLWLRQV RU D ORQJHU ZRUNWLPH SHULRG HJ SURSHUW\ FDUHWDNHUV 3DUW WLPH HPSOR\HHV DUH SHUVRQV ZKR LQ DFFRUGDQFH ZLWK ODERXU FRQWUDFWV UHJXODUO\ ZRUN RQ D SDUWWLPH EDVLV ,Q WKH PHWRGRORJ\ DGRSWHG LQ 85%$1 $8',7 RQ WKH RWKHU KDQG WKH FDWHJRU\ RI µHPSOR\HG SHUVRQV¶ LQFOXGHV RQO\ SHUVRQV SHUIRUPLQJ ZRUN RQ WKH EDVLV RI D UHOHYDQW FRQWUDFW ± WKDW LV LW GRHV QRW LQFOXGH HPSOR\HUV IRU H[DPSOH (XURVWDW DOVR SURYLGHV D GHILQLWLRQ RI XQHPSOR\HG SHUVRQ LQ /)6 ZKLFK LQFOXGHV DQ\ HFRQRPLFDOO\ DFWLYH SHUVRQ ZKR GRHV QRW ZRUN LV DFWLYHO\ ORRNLQJ IRU D MRE DQG LV DYDLODEOH IRU HPSOR\PHQW GXULQJ WKH VXUYH\ RU DQ\ HFRQRPLFDOO\ DFWLYH SHUVRQ ZKR GRHV QRW ZRUN LV DFWLYHO\ ORRNLQJ IRU D MRE DQG LV RU ZLOO EH DYDLODEOH IRU HPSOR\PHQW LQ WKH SHULRG RI XS WR WZR ZHHNV DIWHU WKH VXUYH\¶V UHIHUHQFH ZHHN $ ZHOO±NQRZQ UHDVRQ IRU LQFRPSDUDELOLW\ DUH FKDQJHV LQ FODVVLILFDWLRQ VFKHPHV RU LQ SDUWLFXODU UHYLVLRQV LQ DFFRUGDQFH ZLWK QHZ YHUVLRQV RI LQWHUQDWLRQDO VWDQGDUGV )RU LQVWDQFH WKH FXUUHQW YHUVLRQ RI WKH 1$&( FODVVLILFDWLRQ FDQ KDYH VLJQLILFDQW PRGLILFDWLRQV LQ UHODWLRQ WR LWV ROGHU RZQ 298 $ 0áRGDN: Coherence and comparability … RXWSXWV RU YDULDQWV XVHG LQ SDUWLFXODU FRXQWULHV HJ WKH 3ROLVK &ODVVLILFDWLRQ RI $FWLYLW\ LV EDVHG RQ 1$&( EXW LV PRUH GHWDLOHG DW ORZHVW OHYHOV DQG WDNHV LQWR DFFRXQW W\SHV RI HFRQRPLF DFWLYLW\ VSHFLILF IRU WKLV FRXQWU\ 2Q WKH RWKHU KDQG FI (XURVWDW HYHQ ZLWKRXW D FKDQJH LQ FODVVLILFDWLRQ WKH SURFHGXUHV IRU DVVLJQLQJ FODVVLILFDWLRQ FRGHV PD\ EH GLIIHUHQW RU FKDQJH RYHU WLPH IRU H[DPSOH ZLWK LPSURYHG WUDLQLQJ RI VWDII RU WKH LQWURGXFWLRQ RI DQ DXWRPDWHG RU FRPSXWHU DVVLVWHG VFKHPHV 7KH QH[W SDUW RI RXU FODVVLILFDWLRQ ZLOO FRQFHUQ WKH LPSDFW RI PHWKRGV RI GDWD FROOHFWLRQ SURFHVVLQJ DQG DQDO\VLV RQ FRPSDUDELOLW\ Frame population ± ZLWKLQ WKH VDPH VXUYH\ EDVHG RQ D JHQHUDOO\ HVWDEOLVKHG WDUJHW SRSXODWLRQ WKH DFWXDO FRYHUDJH RI D VXUYH\ PD\ GHSHQG RQ WKH IUDPH XVHG 7KDW LV HJ HPSOR\PHQW DQG ZDJHV DQG VDODULHV LQ HQWHUSULVHV ZLWK IHZHU WKDQ HPSOR\HHV DUH VXUYH\HG RQO\ RQFH D \HDU DQG LW LV RQO\ D VDPSOH VXUYH\ ZKHUHDV IRU ODUJHU HQWLWLHV VXFK D VXUYH\ LV FRQGXFWHG PRQWKO\ DQG LQ JHQHUDO PD\EH ZLWK VRPH VPDOO H[FHSWLRQV LW LV H[KDXVWLYH 3UREOHPV PD\ DOVR RFFXU ZKHQ IUDPHV DUH EDVHG RQ YDULRXV DGPLQLVWUDWLYH VRXUFHV HJ RQH LV FRQVWUXFWHG XVLQJ WKH WD[ UHJLVWHU DQG DQRWKHU RQH ± XVLQJ WKH EXVLQHVV UHJLVWHU $SDUW IURP WKH GLIIHUHQFH UHVXOWLQJ IURP YDULRXV GHILQLWLRQV RI XQLWV WR EH UHJLVWHUHG LQ WKHVH GDWDEDVHV RQH FDQ DOVR FRQVLGHU SRVVLEOH FKDQJHV LQ UHJLVWUDWLRQ ZKLFK PD\ RFFXU LQ UHODWLRQ WR RQH RU ERWK VRXUFHV DQG VXUYH\ GHVLJQV RQH FDQ EH HJ FURVV VHFWLRQDO DQG WKH VHFRQG ± ORQJLWXGLQDO ZKLFK SURGXFHV VLJQLILFDQW GLIIHUHQFH LQ HVWLPDWHV 2QH VKRXOG DOVR DFFRXQW IRU SRVVLEOH FKDQJHV RI SDQHOV RU URWDWLRQ SDWWHUQV RU WUDLQLQJ RU DSSOLFDWLRQ RI QHZ PHWKRGV HJ IRU FUHDWLRQ DPDOJDPDWLRQ FOXVWHULQJ DOORFDWLRQ HWF RFFXUULQJ RYHU WLPH RU EHWZHHQ YDULRXV FRXQWULHV Source(s) of data and sample design ± WKLV SUREOHP FRQFHUQV D VLWXDWLRQ ZKHQ LQ RQH VWDWLVWLFDO VWUXFWXUDO VXUYH\ GDWD DUH REWDLQHG IURP DQ DGPLQLVWUDWLYH GDWD VRXUFH DQG LQ DQRWKHU ± IURP D GLUHFW VXUYH\ RU ZKHQ DFWXDO VDPSOH GHVLJQV DUH GLIIHUHQW $ JRRG H[DPSOH PD\ EH ILQDQFLDO GDWD IRU ODUJH DQG PHGLXP HQWHUSULVHV ZKLFK FDQ EH REWDLQHG HLWKHU IURP WKH WD[ UHJLVWHU RU IURP WKH FXUUHQW UHSRUWLQJ Data collection, capture and editing ± WKH VDPH VXUYH\ FDQ GLIIHU LQ WHUPV RI WKH LQFLGHQFH RI QRQ±UHVSRQVH SUREOHPV DQG SRVVLELOLWLHV RI WKHLU UHGXFWLRQ 7KHVH LVVXHV DUH GHVFULEHG LQ GHWDLOV HJ E\ <DQFKHYD DQG ,VNURYD $W WKLV SRLQW OHW XV MXVW JLYH RQH H[DPSOH LQ RQH FDVH WKH QRQUHVSRQVH UDWH PD\ DPRXQW WR DQG LQ DQRWKHU HJ LQ DQRWKHU URXQG RI WKH VDPH VXUYH\ ± WR 7KLV IDFW PD\ UHVXOW HLWKHU IURP VRPH FKDQJHV LQ WKH IUDPH VDPSOH RU TXHVWLRQQDLUH RU IURP WKH DSSOLFDWLRQ RI PRUH HIILFLHQW PHWKRGV RU UHGXFWLRQ RI EXUGHQV Imputation and estimation ± PHWKRGV RI LPSXWDWLRQ DQG HVWLPDWLRQ PD\ GLIIHU GHSHQGLQJ RQ WKH SODFH RU WLPH ZKHQ D JLYHQ VXUYH\ LV FRQGXFWHG )RU H[DPSOH FI (XURVWDW LQ RQH VXUYH\ ]HURHV PD\ EH LPSXWHG IRU PLVVLQJ ILQDQFLDO LWHPV ZKHUHDV LQ DQRWKHU VXUYH\ QRQ]HUR YDOXHV PD\ EH LPSXWHG EDVHG RQ D µQHDUHVW QHLJKERXULQJ¶ UHFRUG /LNHZLVH LQ GHDOLQJ ZLWK PLVVLQJ UHFRUGV LQ DQ HQWHUSULVH VXUYH\ WKHUH DUH YDULRXV RSWLRQV VXFK DV DVVXPLQJ WKDW WKH STATISTICS IN TRANSITION-new series, Summer 2013 299 FRUUHVSRQGLQJ HQWHUSULVHV DUH QRQRSHUDWLRQDO RU DVVXPLQJ WKDW WKH\ DUH VLPLODU WR HQWHUSULVHV WKDW KDYH UHVSRQGHG +RZHYHU LI WKH QXPEHU RI PLVVLQJ GDWD LV UHODWLYHO\ ODUJH WKH KRW±GHFN VXFK DV QHDUHVW QHLJKERXU IRU H[DPSOH PHWKRGV RI LPSXWDWLRQ DUH UHFRPPHQGHG FI GH :DDO et al. 7R LOOXVWUDWH WKH SUREOHP RI LQFRPSDUDELOLW\ DQ H[DPSOH EDVHG RQ HPSLULFDO H[SHULHQFH RI 3ROLVK EXVLQHVV VWDWLVWLFV LV JLYHQ 'XULQJ SURFHVVLQJ GDWD RQ HFRQRPLF DFWLYLW\ RI HQWLWLHV VRPH LPSRUWDQW GDWD DUH JHQHUDOL]HG RQ WKH OHYHO RI JURXS IRU VRPH 1$&( 5HY VHFWLRQV RWKHUV RQ WKH OHYHO RI GLYLVLRQ 'DWD DUH JHQHUDOL]HG DOVR RQ WKH RZQHUVKLS VHFWRUV IRU 1$&( 5HY VHFWLRQV ,Q 3RODQG WKH REOLJDWLRQ RI WUDQVPLVVLRQ RI UHSRUWV RQ HFRQRPLF DFWLYLW\ SHUWDLQV WR DOO HFRQRPLF HQWLWLHV EHORQJLQJ WR HVWDEOLVKHG 1$&( 5HY VHFWLRQV WKH\ FRYHU PDLQO\ PDQXIDFWXULQJ XQLWV KDYLQJ PRUH WKDQ HPSOR\HHV DQG VDPSOHG HQWLWLHV HPSOR\LQJ XS WR SHUVRQV 7R JHQHUDOL]H FROOHFWHG GDWD WKH QXPEHU RI HPSOR\HHV LV XVHG 7KDW LV IRU HQWLWLHV ZKLFK KDYH WUDQVPLWWHG WKH UHSRUW WKLV QXPEHU LI WDNHQ IURP WKHVH UHSRUWV DQG LV FDOOHG WKH YDULDEOH QXPEHU RI HPSOR\HHV 2Q WKH RWKHU KDQG WKH VDPSOLQJ IUDPH FRQWDLQV GDWD RQ QXPEHU RI HPSOR\HHV FROOHFWHG IURP EXVLQHVV UHJLVWHU RU HDUOLHU UHSRUWV FDOOHG WKH YDULDEOH QXPEHU RI HPSOR\HHV 7KXV WR REWDLQ WKH HVWLPDWHV RI YDULRXV YDOXHV IRU D SRSXODWLRQ WKH IROORZLQJ JHQHUDOL]DWLRQ FRHIILFLHQW LV XVHG uୢ ؝ σ୨אౚ౨ Ԃ୨ + σ୨אౚ\ౚ౨ Ʌ୨ σ୨אౚ౨ Ԃ୨ IRU D OHYHO RI DJJUHJDWLRQ d ZKHUH Nୢ LV WKH VHW RI DOO XQLWV DW WKH OHYHO d DQG Nୢ୰ LV WKH VHW RI XQLWV ZKLFK KDYH WUDQVPLWWHG WKHLU UHSRUWV EHORQJLQJ WR WKH OHYHO d Ԃ୨ LV WKH YDULDEOH QXPEHU RI HPSOR\HHV RI WKH j±WK XQLW DQG Ʌ୨ ± IL[HG QXPHU RI HPSOR\HHV IRU j±WK XQLW 2Q WKH EDVLV RI WKLV FRHIILFLHQW YDULRXV TXDQWLWLHV VXFK DV UHYHQXHV ILUP VDOH RI SURGXFWV DQG VHUYLFHV WXUQRYHU LQ FXUUHQW SURFHVV JURVV ZDJHV DQG VDODULHV UHWDLO VDOH HWF DUH HVWLPDWHG XVLQJ WKH IROORZLQJ JHQHUDO IRUPXOD ZLWK VPDOO YDULDQWV LQ VRPH SDUWLFXODU FDVHV ɔ ෝ (ୢ) ؝uୢ ɔ୧ ୧אౚ౨ IRU HYHU\ OHYHO RI DJJUHJDWLRQ d ZKHUH ɔ୧ LV WKH YDOXH RI LQWHUHVW IRU iWK XQLW 7KXV WZR LPSRUWDQW SUREOHPV FRQFHUQLQJ FRKHUHQFH DQG FRPSDUDELOLW\ RFFXU D WKH QXPEHU RI HPSOR\HHV LQ UHJLVWHU FDQ EH VLJQLILFDQWO\ GLIIHUHQW WKDQ WKH DFWXDO QXPEHU RI HPSOR\HHV RI D JLYHQ HQWLW\ E WKH JHQHUDOL]DWLRQ FRHIILFLHQW DQG LQ FRQVHTXHQFH HVWLPDWH GHSHQG RQ WKH OHYHO RI DJJUHJDWLRQ 7KXV WKH VXPV RI UHOHYDQW HVWLPDWHV IRU HJ 1876 XQLWV EHORQJLQJ WR WKH 1876 XQLW REWDLQHG RQ WKH EDVLV RI JHQHUDOL]DWLRQ IRU 1$&( JURXSV FDQ EH VLJQLILFDQWO\ GLIIHUHQW IURP UHOHYDQW HVWLPDWHV REWDLQHG ZKHQ JHQHUDOL]DWLRQ LV PDGH DW WKH OHYHO RI VHFWRUV RI RZQHUVKLS 300 $ 0áRGDN: Coherence and comparability … 7KH ILUVW RI WKHVH LQFRQYHQLHQFHV FDQ KDYH DQ LPSRUWDQW LPSDFW RQ WKH TXDOLW\ RI HVWLPDWLRQ GXH WR DQ HUURU RFFXUULQJ ZKHQ XQNQRZQ DFWXDO QXPEHU RI HPSOR\HHV IRU WKRVH XQLWV ZKLFK KDYH QRW WUDQVPLWWHG WKH UHSRUW LV UHSODFHG ZLWK WKH QXPEHU RI HPSOR\HHV EDVHG RQ WKH EXVLQHVV UHJLVWHU +RZHYHU VRPH DYHUDJH LPSDFW RI VXFK ELDV FDQ EH HVWLPDWHG DV vୢ ؝ቤ 1 σ୨אౚ౨ Ԃ୨ െ 1 σ୨אౚ౨ Ʌ୨ ቤ σ୨אౚ\ౚ౨ Ʌ୨ uୢ DQG H[SUHVVHG LQ SHUFHQWV 6XPPLQJ RU DYHUDJLQJ WKHVH LQGLFHV RYHU GRPDLQV d ZLWKLQ D JLYHQ ODUJHU GRPDLQ RQH FDQ HVWLPDWH D OHYHO RI LQFRKHUHQFH LQFRPSDUDELOLW\ LQ WKLV FDVH 7R UHGXFH WKH VHFRQG SUREOHP DQ LPSXWDWLRQ DW WKH OHYHO RI XQLWV LV UHFRPPHQGHG 7KH DIRUHPHQWLRQHG LQGH[ FDQ EH XVHIXO WR LGHQWLI\ DUHDV ZKHUH WKH LPSXWDWLRQ LV PRVW QHFHVVDU\ 1RZ LQ 3ROLVK VWDWLVWLFV VRPH ZRUNV RQ WKLV ZHUH XQGHUWDNHQ 3.3. Types of comparability ,W VKRXOG EH QRWHG WKDW WKH +DQGERRN LVVXHG E\ (XURVWDW PHQWLRQV WKH IROORZLQJ W\SHV RI FRKHUHQFHFRPSDUDELOLW\ WKDW DUH WR EH LQFOXGHG LQ D UHOLDEOH TXDOLW\ UHSRUW x comparability over time ± GDWD VKRXOG VKRZ ZKHWKHU FROOHFWHG LQIRUPDWLRQ IRU D JLYHQ UHJLRQ LQ VHYHUDO GLIIHUHQW WLPH SRLQW ZDV JDWKHUHG XQGHU WKH VDPH FLUFXPVWDQFHV LQ WHUPV RI GHILQLWLRQV SRSXODWLRQ HWF x comparability over region ± IRU H[DPSOH GDWD IRU WKH VDPH PRQWK IURP WKH VWUXFWXUDO EXVLQHVV VXUYH\ FRQGXFWHG LQ WZR 0HPEHU 6WDWHV LQGLFDWH ZKLFK UHJLRQV DUH FRYHUHG LQ ERWK VXUYH\V DQG ZKLFK QRW DQG ZK\ x comparability over other domains ± GRPDLQV RYHU ZKLFK FRPSDULVRQV DUH RIWHQ PDGH LQFOXGH HFRQRPLF DFWLYLW\ JURXS RFFXSDWLRQDO JURXS DQG VH[ $Q H[DPSOH ZRXOG EH DQQXDO VWUXFWXUDO GDWD IRU DJULFXOWXUH ZLWK DQQXDO VWUXFWXUDO GDWD IRU PDQXIDFWXULQJ FROOHFWHG E\ D GLIIHUHQW VXUYH\ x internal comparability ± UHIHUULQJ WR GDWD SURGXFHG E\ D VLQJOH VWDWLVWLFDO SURFHVV EXW SRVVLEO\ FRPSULVLQJ VHYHUDO GLIIHUHQW VHJPHQWV IRU D VLQJOH WLPH SHULRG DQG UHJLRQ x comparability between short-term (sub-annual) and annual statistics ± IRU H[DPSOH PRQWKO\ DQG DQQXDO SURGXFWLRQ GDWD IRU WKH VDPH LQGXVWULHV LQ WKH VDPH UHJLRQ x comparability with the National Accounts ± IRU HFRQRPLF VXUYH\V WKDW IHHG LQWR WKH QDWLRQDO DFFRXQWV FRKHUHQFH LV YLWDO DQG LQ VR IDU DV LW LV ODFNLQJ WKH 1DWLRQDO $FFRXQWV FRPSLODWLRQ SURFHVV ZLOO GHWHFW LW x comparability with other statistics ± IRU H[DPSOH FRKHUHQFH EHWZHHQ HPSOR\PHQW SURGXFHG E\ D ODERXU IRUFH VXUYH\ RI PHPEHUV RI KRXVHKROGV DQG QXPEHUV RI HPSOR\HHV SURGXFHG E\ DQ HFRQRPLF VXUYH\ RI HQWHUSULVHV STATISTICS IN TRANSITION-new series, Summer 2013 301 3.4. Assessment of comparability $Q HIILFLHQW DVVHVVPHQW RI FRPSDUDELOLW\ UHTXLUHV WKH NQRZOHGJH RI PRVW XVHIXO PHWKRGV LQFOXGLQJ FKDUDFWHULVWLF IHDWXUHV RI GHILQLWLRQV DQG GHVLJQ 7KHUHIRUH WKH FXUUHQW W\SH RI LQFRPSDUDELOLW\ DFFRUGLQJ WR WKH W\SRORJ\ SUHVHQWHG LQ 6HFWLRQ KDV WR EH UHFRJQL]HG 7KLV SUHVHQWDWLRQ RI PHWKRGV IRU DVVHVVLQJ DQG UHSRUWLQJ FRPSDUDELOLW\ ZLOO VWDUW IURP WKH JHQHUDO DSSURDFK DQG QH[W VRPH SUREOHPV ZLOO EH DGGUHVVHG E\ UHIHUULQJ WR WKH DIRUHPHQWLRQHG W\SRORJ\ LQ WKH FRQWH[W RI FRQVWUXFWLQJ TXDOLW\ UHSRUWV 7KH General Approach LV LQWHQGHG WR H[SODLQ FDXVHV RI WKH ODFN RI FRKHUHQFHFRPSDUDELOLW\ 1DPHO\ LQ TXDOLW\ UHSRUWV HIIHFWV RI WKH PDLQ VRXUFHV RI LQFRPSDUDELOLW\ VKRXOG EH UHFRJQL]HG DQG GHVFULEHG 7KHLU LPSDFW RQ HVWLPDWHV KDV WR EH GHWHUPLQHG $Q DWWHPSW WR UHFRQFLOH WKHVH HVWLPDWHV RQ WKH EDVLV RI VXFK NQRZOHGJH LV DOVR UHTXLUHG 7KH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW HPSKDVL]H WKDW DQ\ JHQHUDO FKDQJHV WKDW KDYH RFFXUUHG ZKLFK PD\ KDYH DQ LPSDFW RQ FRPSDUDELOLW\ VKRXOG EH UHSRUWHG IRU H[DPSOH FKDQJHV LQ OHJLVODWLRQ DIIHFWLQJ GDWD VRXUFHV RU GHILQLWLRQV UHHQJLQHHULQJ RU FRQWLQXDO LPSURYHPHQW RI VWDWLVWLFDO SURFHVVHV FKDQJHV LQ RSHUDWLRQV UHVXOWLQJ IURP UHGXFWLRQV RU LQFUHDVHV LQ SURFHVVLQJ EXGJHW GHYLDWLRQV IURP UHOHYDQW (66 OHJLVODWLRQ DQG RWKHU LQWHUQDWLRQDO VWDQGDUGV HWF $OWKRXJK LQ PDQ\ FDVHV FRPSDUDELOLW\ LV HTXLYDOHQW WR FRKHUHQFH WKHUH DUH VRPH VLWXDWLRQV ZKHQ VXFK HTXLYDOHQFH GRHV QRW KROG 7KDW LV HYHQ LI FRKHUHQW VWDWLVWLFDO GDWD GHVFULEHV WKH VDPH SKHQRPHQRQ WKLV LQIRUPDWLRQ FDQ EH LQFRPSDUDEOH GXH WR WKH RFFXUUHQFH RI VRPH HUURUV $ SURSHU FRPSDUDELOLW\ DQDO\VLV VKRXOG FRQWDLQ D SUHVHQWDWLRQ RI FRQFHSWV DQG PHWKRGV H[SODQDWLRQ RI ZKDW FDXVHV D JLYHQ SUREOHP DQG HDFK SRVVLEOH VRXUFH RI SUREOHPV FRQFHUQLQJ FRPSDUDELOLW\ VKRXOG EH VHSDUDWHO\ GHVFULEHG $FFRUGLQJ WR (XURVWDW WKH ILUVW VWHS LV WR FRQGXFW D V\VWHPDWLF DVVHVVPHQW RI SRVVLEOH UHDVRQV IRU WKH ODFN RI FRPSDUDELOLW\ EDVHG SULPDULO\ RQ WKH H[DPLQDWLRQ RI NH\ PHWDGDWD HOHPHQWV DQG LGHQWLILFDWLRQ DQG DQDO\VLV RI GLIIHUHQFHV 7KLV DFWLRQ FDQ HQDEOH XV WR PDNH D SLFWXUH FRQFHUQLQJ WKH PDJQLWXGH RI DQ\ ODFN RI FRPSDUDELOLW\ 7KH VHFRQG VWHS FRQVLVWV LQ SUHGLFWLQJ WKH OLNHO\ HIIHFW RI VXFK D GLIIHUHQFH RQ VWDWLVWLFDO RXWSXWV 7KH ILQDO VWHS LV WR DJJUHJDWH DQG VXPPDULVH LQ VRPH ZD\ WKH WRWDO SRVVLEOH HIIHFW LQ RWKHU ZRUGV WR IRUP DQ LPSUHVVLRQ RI WKH GHJUHH RI ODFN RI FRPSDUDELOLW\ $ GLIIHUHQW TXHVWLRQ LV KRZ WR GHWHFW SRVVLEOH SUREOHPV LQ PHWKRGRORJ\ RU UHVSRQVH ZKHQ RQO\ µUDZ¶ GDWD ZLWK PDQ\ UHSRUWV DQG SRVVLELOLWLHV WR DJJUHJDWH WKHP LQ JLYHQ FDWHJRULHV HJ WLPH VSDFH E\ XQLW LQFRPHV E\ WKH QXPEHU RI HPSOR\HHV HWF DUH DW GLVSRVDO 7KH quality control of variables VKRXOG SURYLGH WKH ILUVW LQGLFDWLRQ RI VXFK SUREOHPV 2QH FDQ XVH JHQHUDO UXOHV SURSRVHG LQ WKH GRFXPHQW E\ (XURVWDW Multi–variate type of control ± FKHFNLQJ LI FDOFXODWHG VXPV RI GLIIHUHQW YDULDEOHV DQG WKHLU YDOXHV FRLQFLGH ZLWK WKH WRWDO SURYLGHG )RU H[DPSOH RQH VKRXOG YHULI\ ZKHWKHU WKH VXP RI WKH QXPEHU RI HQWLWLHV E\ WKH QXPEHU RI 302 $ 0áRGDN: Coherence and comparability … HPSOR\HH JURXSV FRUUHVSRQGV WR WKH WRWDO QXPEHU RI XQLWV ,I QRW WKH FDXVH RI WKLV IDFW KDV WR EH ORRNHG IRU Hierarchy type of control ± LW FRQVLVWV LQ FRPSDULQJ VXPV RI WKH VDPH YDULDEOH DJDLQVW WKH YDULDEOH YDOXH SURYLGHG DW DQ XSSHU VSDWLDO OHYHO )RU H[DPSOH LW LV FKHFNHG ZKHWKHU LQ DQ\ FDVH WKH VXP RI WKH QXPEHU RI XQLWV LQ 1876 DUHDV LQFOXGHG LQ D JLYHQ 1876 DUHD FRUUHVSRQGV WR WKH QXPEHU SURYLGHG DW WKH UHOHYDQW 1876 OHYHO 7R DOORZ URXQGHG QXPEHUV DQG HVWLPDWHV VRPHWLPHV D WROHUDQFH RU GHYLDWLRQ RI RI WKH FKHFNHG YDOXH IURP WKH FRQWURO YDOXH LV VHW 7KLV W\SH RI FRQWURO UHIHUV WR WKH VDPH YDULDEOH EXW WR GLIIHUHQW VSDWLDO OHYHOV ,Q SUDFWLFH PDQ\ YDULDEOHV KDYH WKH IRUP RI LQGLFHV ,Q RWKHU ZRUGV WKH\ DUH REWDLQHG DV UHOHYDQW UDWLRV RI JLYHQ GDWD H[SUHVVHG LQ DEVROXWH YDOXHV HJ DYHUDJH ZDJH DQG VDODU\ SHU HPSOR\HH LV WKH UDWLR RI WKH WRWDO VXP RI SDLG ZDJHV DQG VDODULHV DQG WKH WRWDO QXPEHU RI HPSOR\HHV 7KH µVXP FRQWURO¶ LV LQDSSURSULDWH LQ WKLV FDVH DQG WKH H[WUHPH YDOXHV KDYH WR EH ORRNHG IRU LQVWHDG 7KH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW SURSRVH WKUHH ZD\V RI detection of outliers ZKLFK DUH XVXDOO\ µVXVSHFWHG¶ WR EH LQFUHGLEOH Classical interval of variation ± LWV FRQVWUXFWLRQ LV EDVHG RQ WKH DYHUDJH DQG WKH VWDQGDUG GHYLDWLRQ RI WKH LQGLFDWRU YDOXHV RYHU D VSHFLILHG SRSXODWLRQ 7KH FRQWURO UDQJH LV GHWHUPLQHG E\ WKH LQWHUYDO xത ± z ή ɐ୶ ZKHUH xത LV WKH DULWKPHWLF PHDQ DQG ɐ୶ ± WKH VWDQGDUG GHYLDWLRQ RI WKH LQGH[ X 7KH FRQWURO FRQVLVWV LQ FKHFNLQJ ZKHWKHU WKH LQGLYLGXDO LQGLFDWRU YDOXH LV RXW RI WKH FRQWURO UDQJH 7KH YDOXH RI z LV VHW E\ WKH XVHU PRUH RIWHQ LW LV VHW DV z = 2 ,Q H[WUHPH FDVHV ZKHQ WKH LQGLFDWRU FDQQRW KDYH D QHJDWLYH YDOXH z LV VHW WR WKH UDWLR RI DYHUDJH DQG VWDQGDUG GHYLDWLRQ Median interval of variation ± D FRQVWUXFWLRQ RI DQ LQWHUYDO RI YDULDWLRQ EDVHG RQ WKH PHGLDQ 7KDW LV WKH FRQWURO UDQJH LV GHWHUPLQHG E\ WKH LQWHUYDO med(X) ± z ή mad(X) ZKHUH med(X) LV WKH PHGLDQ RI X DQG mad(X) = med୧ୀଵ,ଶ,…,୬ |x୧ െ med(X)| x୧ LV WKH iWK YDOXH RI X i = 1,2, … , n n ± QXPEHU RI REVHUYDWLRQV ± LWV PHGLDQ DEVROXWH GHYLDWLRQ 7KH SDUDPHWHU z LV HVWDEOLVKHG DV SUHYLRXVO\ Growth rates ± WKLV PHWKRG PDNHV XVH RI JURZWK UDWHV RI WKH GDWDVHW RYHU YDULRXV SHULRGV ,W LV DQ H[WHQVLRQ RI WKH PHWKRG EDVHG RQ WKH FODVVLFDO LQWHUYDO RI YDULDWLRQ DQG WDNHV LQWR DFFRXQW JDSV EHWZHHQ WKH DQDO\VHG \HDUV 7KH WKUHVKROG OLPLWV DUH XVXDOO\ VSHFLILHG DV WKH PD[LPXP DOORZHG JURZWK UDWHV SHU \HDU ,I WKHUH DUH PLVVLQJ WLPH SRLQWV EHWZHHQ WKH REVHUYHG RQHV WKLV KDV WR EH WDNHQ LQWR DFFRXQW )RU H[DPSOH LI PRQWKO\ GDWD RQ HPSOR\PHQW DUH DQDO\]HG PRQWKV ZKHUH WKH JURZWK UDWH H[FHHGV WKH DUELWUDULO\ DFFHSWHG WROHUDQFH LQWHUYDO HJ DUH LQGLFDWHG )RU PLVVLQJ WLPH SRLQW WKH OLPLWV VKRXOG EH DGMXVWHG UHVSHFWLYHO\ 6RPH DVSHFWV RI FRPSDUDELOLW\ TXDOLW\ ZLOO EH UHFDOOHG QRZ E\ UHIHUULQJ WR LWV W\SRORJ\ LQWURGXFHG LQ VXEVHFWLRQ Comparability over time LV YHU\ LPSRUWDQW LI VWDWLVWLFDO RXWSXWV DUH SXEOLVKHG DW D QXPEHU RI FRQVHFXWLYH WLPH SRLQWV +HQFH FKDQJHV RYHU WLPH RI HFRQRPLF RU VRFLDO SKHQRPHQD FDQ EH REVHUYHG DQG DQDO\VHG DQG HQVXULQJ FRPSDUDELOLW\ RYHU STATISTICS IN TRANSITION-new series, Summer 2013 303 WLPH VHHPV WR EH FUXFLDO IRU VXFK DQ DQDO\VLV WR EH HIILFLHQW 7KH XVHU ZKHQ XVLQJ WLPH VHULHV SURYLGHG E\ WKH UHVSRQGHQW RU WKH VWDWLVWLFDO RIILFH RU FRQVWUXFWHG E\ KLPKHUVHOI RQ WKH EDVLV RI DYDLODEOH µUDZ¶ GDWD VKRXOG REWDLQ LQIRUPDWLRQ DERXW SRVVLEOH OLPLWDWLRQV DQG SUREOHPV LQ GDWD XVH FRQFHUQLQJ FRPSDUDELOLW\ ZLWK UHVSHFW RI WLPH 7KLV LQIRUPDWLRQ DOVR KDV WR EH LQFOXGHG LQ WKH TXDOLW\ UHSRUW $FFRUGLQJ WR (XURVWDW LQ DVVHVVLQJ FRPSDUDELOLW\ RYHU WLPH WKH ILUVW VWHS LV WR GHWHUPLQH IURP WKH PHWDGDWD WKH H[WHQW RI FKDQJHV LQ WKH XQGHUO\LQJ VWDWLVWLFDO SURFHVV WKDW KDYH RFFXUUHG IURP RQH SHULRG WR WKH QH[W 7KHUH DUH WKUHH EURDG SRVVLELOLWLHV 7KHUH KDYH EHHQ QR FKDQJHV LQ ZKLFK FDVH WKLV VKRXOG EH UHSRUWHG 7KHUH KDYH EHHQ VRPH FKDQJHV EXW QRW HQRXJK WR ZDUUDQW WKH GHVLJQDWLRQ RI D EUHDN LQ VHULHV 7KHUH KDYH EHHQ VXIILFLHQW FKDQJHV WR ZDUUDQW WKH GHVLJQDWLRQ RI D EUHDN LQ VHULHV ,I FKDQJHV UHVXOW LQ QHJOLJLEOH HIIHFWV RQ VWDWLVWLFDO RXWSXWV WKHQ LW LV VXIILFLHQW WR PDNH D UHOHYDQW QRWH LQ WKH PHWDGDWD +RZHYHU LI WKH HIIHFW LV VLJQLILFDQW WZR FDVHV VKRXOG EH FRQVLGHUHG ,I DQ HIIHFW LV WRR VPDOO WR ZDUUDQW D VHULHV EUHDN WKHQ FI (XURVWDW WKH 16, PD\ ZHGJH LQ WKH FKDQJHV WR WKH RXWSXWV RYHU D SHULRG RI WLPH VR WKDW EHWZHHQ DQ\ WZR SHULRGV WKH DGMXVWPHQW EHLQJ PDGH WR PRYH IURP ROG WR QHZ YDOXHV LV OHVV WKDQ WKH VDPSOLQJ HUURU DQG WKXV FDQQRW E\ LWVHOI EH GHWHFWHG DQG LQWHUSUHWHG DV D UHDO FKDQJH ,Q WKH VHFRQG FDVH LH LI FKDQJHV DUH VLJQLILFDQW DQG VXIILFLHQWO\ ODUJH WR FDXVH WKH EUHDN WKH XVHU VKRXOG EH SUHFLVHO\ LQIRUPHG DERXW WKLV FLUFXPVWDQFH WKHLU ORFDWLRQ DQG FRQVHTXHQFHV 0RUHRYHU WKH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW UHFRPPHQG WKUHH SRVVLEOH ZD\V WR KDQGOH WKHVH LQFRQYHQLHQFHV x 7KH PRVW FRPSUHKHQVLYH WUHDWPHQW LV to carry forward both series for a period of time and/or to backcast the series LH WR FRQYHUW WKH ROG VHULHV WR ZKDW LW ZRXOG KDYH EHHQ ZLWK WKH QHZ DSSURDFK E\ GXSOLFDWLQJ WKH PHDVXUHPHQW LQ RQH WLPH SHULRG XVLQJ WKH RULJLQDO DQG WKH UHYLVHG GHILQLWLRQVPHWKRGV x $ OHVV H[SHQVLYH WUHDWPHQW LV to provide the users with transition adjustment factors giving them the means of dealing with the break IRU H[DPSOH E\ GRLQJ WKHLU RZQ EDFNFDVWLQJ x 7KH OHDVW H[SHQVLYH WUHDWPHQW LV Wo simply describe the changes that have occurred and provide only qualitative assessments of their probable impact upon the estimates 2EYLRXVO\ WKLV LV WKH OHDVW VDWLVIDFWRU\ IURP WKH XVHU¶V SHUVSHFWLYH &RPSDUDELOLW\ RYHU WLPH LV HVSHFLDOO\ LPSRUWDQW IRU VKRUWWHUP EXVLQHVV VWDWLVWLFV ZKLFK FDQ KDYH GLIIHUHQW SULRULWLHV DQG DUH XVXDOO\ PRUH VHQVLWLYH WR DQ\ FKDQJHV LQ PHWKRGRORJ\ DQG WKH FXUUHQW VLWXDWLRQ WKDQ HJ DQQXDO GDWD *LYHQ FRPSDUDEOH GDWD XVHUV KDYH PRUH SRVVLELOLWLHV RI DGMXVWLQJ UHOHYDQW GDWD WR WKHLU LQGLYLGXDO SUHIHUHQFHV DQG SULRULWLHV )RU H[DPSOH UHYHQXH RU VROG SURGXFWLRQ RI HQWHUSULVHV QHHG WR EH DQDO\VHG ERWK LQ WKH FXUUHQW SHULRG DQG RYHU D ORQJHU WLPH 304 $ 0áRGDN: Coherence and comparability … &RPSDUDELOLW\ LQ WLPH HQDEOHV WKH XVHU WR PDNH D EHWWHU DVVHVVPHQW RI WKH VLWXDWLRQ WKH HIIHFW RI FXUUHQW EXVLQHVV VWUDWHJLHV DQG IXWXUH SURVSHFWV 7KHUHIRUH XVHUV FDQ DOVR EH LQWHUHVWHG LQ PXFK PRUH DGYDQFHG WRROV VXFK DV WUHQG VHSDUDWLRQ UHJXODU VHDVRQDO YDULDWLRQV RU UDQGRP DQG QRQUDQGRP GLVWXUEDQFHV 7KXV WLPH VHULHV PRGHOOLQJ VKRXOG DOVR VWURQJO\ UHO\ RQ FRPSDUDELOLW\ RYHU WLPH Comparability over region LV DQ DVSHFW ZKLFK FRXOG EH DVVHVVHG LQ WZR GLIIHUHQW ZD\V SDLUZLVH FRPSDULVRQV RI PHWDGDWD DFURVV UHJLRQV RU FRPSDULVRQ RI PHWDGDWD IRU WKH UHJLRQ ZLWK D VWDQGDUG VXFK VWDQGDUG FDQ EH SHUFHLYHG LQ WHUPV RI QRUPV YDOLG LQ (66 RU EHVW SUDFWLFHV RI VWDWLVWLFDO LQVWLWXWHV $FFRUGLQJ WR (XURVWDW WZR EURDG FDWHJRULHV RI VLWXDWLRQ FDQ EH LGHQWLILHG x ZKHUH HVVHQWLDOO\ WKH VDPH VWDWLVWLFDO SURFHVVHV DUH XVHG HJ D ODERXU IRUFH VXUYH\ GHVLJQHG LQ DFFRUGDQFH ZLWK (66 VWDQGDUG DQG GLIIHUHQFHV DFURVV UHJLRQV DUH H[SHFWHG WR EH TXLWH VPDOO DQG x ZKHUH D GLIIHUHQW VRUW RI VWDWLVWLFDO SURFHVV LV XVHG IRU H[DPSOH D GLUHFW VXUYH\ LQ RQH FDVH DQG D UHJLVWHU EDVHG VXUYH\ LQ DQRWKHU ,Q VXFK FDVHV GLIIHUHQFHV DUH OLNHO\ WR EH PRUH SURIRXQG $ FRPSOH[ PHDVXUH RI GLIIHUHQFHV FRXOG EH FRQVWUXFWHG DV D VXP RI SDUWLDO DEVROXWH GLIIHUHQFHV TXDQWLILHG E\ D VFRULQJ V\VWHP 2I FRXUVH WKH VLPSOHVW VROXWLRQ LQ WKLV FRQWH[W LV WR UHFRJQL]H WKH NH\ PHWDGDWD HOHPHQWV IRU ZKLFK D GLIIHUHQFH RFFXUV DQG XVH WKH ELQDU\ FRGH QR GLIIHUHQFH RU GLIIHUHQFH ,I WKH DLP LV WR FDWHJRUL]H WKH OHYHOV RI GLVFUHSDQFLHV VHYHUDO FDWHJRULHV HJ IURP WR E\ LH IURP WKH PRVW HVVHQWLDO GLIIHUHQFH WR QR GLIIHUHQFH KDYH WR EH DVVXPHG 7KH LQWHQVLW\ RI VXFK GLIIHUHQFH FRXOG EH TXDQWLILHG XVLQJ DUELWUDULO\ DVVXPHG FODVVLILFDWLRQ EDVHG HJ RQ WKH UDQJH RI YDOXHV RI D JLYHQ YDULDEOH RU H[SHUWV¶ RSLQLRQV $SDUW IURP WKLV RQH VKRXOG DOVR FRQVLGHU WKH SRVVLEOH HIIHFW RI VXFK GLIIHUHQFHV 7KLV GLIIHUV IURP DQDO\]LQJ µSXUH¶ GLIIHUHQFHV EHFDXVH IRU H[DPSOH LQ VRPH FLUFXPVWDQFHV HJ IRU UDWLRV HYHQ VLJQLILFDQW µSXUH¶ GLIIHUHQFHV FRXOG JHQHUDWH QHJOLJLEOH HIIHFWV LQ WHUPV RI FRPSDUDELOLW\ 7KHUHIRUH DVVLJQLQJ D ZHLJKW WR HDFK PHWDGDWD HOHPHQW ZKHUH WKH GLIIHUHQFH RFFXUV DFFRUGLQJ WR LWV SRWHQWLDO HIIHFW RQ FRPSDUDELOLW\ DQG FRPSXWLQJ D ZHLJKWHG VFRUH DFURVV DOO PHWDGDWD HOHPHQWV LV GHVLUDEOH 6XFK DVVHVVPHQW FDQ EH VXPPDULVHG QRW RQO\ ZLWKLQ D JLYHQ FRXQWU\ EXW RYHU DOO FRXQWULHV ZLWKLQ (66 2QH FDQ VD\ WKDW RZLQJ WR WKH LQWHQVLYH LQWHJUDWLRQ RI HFRQRPLHV RI FRXQWULHV DFURVV WKH ZRUOG SUHFLVH LQWHUDFWLRQ DQDO\VHV DUH SDUWLFXODUO\ GHVLUDEOH 7KH\ KHOS WR UHFRJQL]H WKH SRVLWLRQ RI D SDUWLFXODU FRPSDQ\ LQ D JLYHQ FRXQWU\ LQ WKH FRQWH[W RI RWKHU FRXQWULHV HVSHFLDOO\ WKRVH DIILOLDWHG LQ VXFK SUHVWLJLRXV LQWHUQDWLRQDO HFRQRPLF RUJDQL]DWLRQV DV 2(&' (8 (($ ()7$ &()7$ *± 1$)7$ $6($1 23(& HWF 7KH YDULHW\ RI SURGXFHUV RI VWDWLVWLFDO GDWD HFRQRPLF SUDFWLFHV OHJDO UHJXODWLRQV HJ LQ WHUPV RI FRQGXFWLQJ HFRQRPLF DFWLYLW\ RU WD[HV PHWKRGRORJLHV XVHG WR FROOHFW DQG SURFHVV VWDWLVWLFDO GDWD UHVXOW LQ PDQ\ VHULRXV GLIILFXOWLHV LQ REWDLQLQJ LQWHUQDWLRQDOO\ FRPSDUDEOH GDWD ,Q UHFHQW \HDUV PDQ\ SURMHFWV GHVLJQHG WR LPSURYH LQWHUQDWLRQDO GDWD FRPSDUDELOLW\ KDYH EHHQ LQLWLDWHG 2QH VKRXOG PHQWLRQ WKH VRFDOOHG 2SHUDWLRQ ZKLFK KDV UHVXOWHG LQ WKH KDUPRQL]DWLRQ RI PDMRU HFRQRPLF FODVVLILFDWLRQV DQG QRPHQFODWXUHV XVHG LQ STATISTICS IN TRANSITION-new series, Summer 2013 305 WKH (8 ZLWK WKRVH XVHG LQ RWKHU SDUWV RI WKH ZRUOG 6RPH DWWHPSWV DUH DOVR XQGHUWDNHQ WR KDUPRQL]H WKH SURJUDPPH RI VWDWLVWLFDO PRQLWRULQJ RI XUEDQ DUHDV 85%$1 $8',7 HJ LQ WHUPV RI WKH VFRSH RI WKH IXQFWLRQDO LPSDFW RI FLWLHV 0 %HUJGDKO et al. GLVFXVV RWKHU KDUPRQL]DWLRQ DFWLRQV HJ LQ WHUPV RI 1$&( DQG 352'&20 DSSOLHG LQ *HUPDQ\ DQG 8. Comparability over other domains ± DUHDV RU WLPH SHULRGV DUH RI FRXUVH QRW WKH RQO\ GRPDLQV RYHU ZKLFK FRPSDULVRQV FDQ EH SHUIRUPHG 8VXDOO\ RIILFLDO VWDWLVWLFDO DQG YDULRXV VWDWLVWLFDO VWXGLHV SUHVHQW EUHDNGRZQV E\ HJ VL]H JURXSV RI HQWHUSULVHV HFRQRPLF DFWLYLW\ JURXS RFFXSDWLRQDO JURXS VH[ HGXFDWLRQ RI HPSOR\HHV HWF 7KHVH DJJUHJDWHV FDQ EH WUHDWHG VLPLODUO\ WR DUHDV DQG WKXV PHWKRGV IRU DVVHVVLQJ FRPSDUDELOLW\ DUH XVXDOO\ DQDORJRXV WR WKRVH PHQWLRQHG HDUOLHU 2QH VKRXOG KRZHYHU FRQVLGHU WKH SRVVLEOH GLIIHUHQFHV EHWZHHQ YDULRXV VWDWLVWLFDO WRROV Internal coherence/comparability ± XVHUV RI VWDWLVWLFDO GDWD H[SHFW ZKLFK LV REYLRXV DQG ORJLFDO WKDW HDFK VHW RI SXEOLVKHG RXWSXWV VKRXOG EH LQWHUQDOO\ FRKHUHQW LH DOO WKH DSSURSULDWH DULWKPHWLF DQG ORJLFDO GHSHQGHQFLHV VKRXOG EH REVHUYHG +RZHYHU WKLV UHTXLUHPHQW LV VRPHWLPHV GLIILFXOW WR VDWLVI\ )RU H[DPSOH VRPH HIILFLHQW HVWLPDWLRQ PHWKRGV KDYH D GUDZEDFN RU WKH LPSOHPHQWHG SURFHVV FRPSULVHV PRUH WKDQ RQH VHJPHQW ZLWK GDWD IURP GLIIHUHQW VRXUFHV RU IRU GLIIHUHQW XQLWV LQ HDFK VHJPHQW 7KH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW VXJJHVW JLYLQJ D EULHI H[SODQDWLRQ WR XVHUV DQG PHQWLRQLQJ WKHVH SUREOHPV LQ D TXDOLW\ UHSRUW ZLWK WKH UHDVRQV IRU SXEOLVKLQJ QRQFRKHUHQW UHVXOWV H[SODLQHG Coherence/comparability between short-term (sub–annual) and annual statistics ± DQRWKHU QDWXUDO H[SHFWDWLRQ RQ WKH SDUW RI XVHUV LV WKDW VXEDQQXDO DQG DQQXDO VWDWLVWLFDO RXWSXWV DUH FRQVLVWHQW 2Q WKH RQH KDQG LW PHDQV WKDW VLPLODU DULWKPHWLF GHSHQGHQFLHV VKRXOG RFFXU VXP RI JURVV PRQWKO\ UHYHQXH IRU HFRQRPLF HQWLWLHV VKRXOG EH HTXDO WR LWV DQQXDO UHYHQXH RU WKH QXPEHU RI QHZO\ HPSOR\HG SHUVRQV LQ D JLYHQ PRQWK VKRXOG QRW EH JUHDWHU WKDQ LWV WRWDO LQ WKH UHOHYDQW TXDUWHU DQG RQ WKH RWKHU KDQG VWDWLVWLFDO SURFHVVHV SURGXFLQJ WKHVH GDWD DUH RIWHQ TXLWH GLIIHUHQW 7KXV DOO FDXVHV RI WKH ODFN RI FRKHUHQFH QHHG WR EH DVVHVVHG DQG DFFRXQWHG IRU (XURVWDW VXJJHVWV WKDW D FRPSDULVRQ RI VXE DQQXDO DQG DQQXDO HVWLPDWHV VKRXOG EH WKH VWDUWLQJ SRLQW IRU DVVHVVLQJ WKH PDJQLWXGH RI GLIIHUHQFHV GXH WR WKH ODFN RI FRKHUHQFH x LI ERWK DQQXDO DQG VXEDQQXDO VHULHV PHDVXUH WKH VDPH SKHQRPHQRQ LQ DEVROXWH YDOXHV RU LQGLFHV RWKHU WKDQ JURZWK UDWHV DQQXDO DJJUHJDWHV FDQ EH FRQVWUXFWHG IURP VXEDQQXDO HVWLPDWHV DQG FRPSDUHG WR WRWDOV IURP WKH DQQXDO VHULHV x LI RQH RU RWKHU RI WKH VHULHV SURGXFHV RQO\ JURZWK UDWHV WKHQ FRPSDULVRQ FDQ EH PDGH RI \HDU RYHU \HDU JURZWK UDWHV 3RVVLEOH GLVFUHSDQFLHV FDQ RIWHQ EH H[SODLQHG LQ WHUPV RI VDPSOLQJ HUURU RU VRPH RWKHU PHDVXUHV RI DFFXUDF\ 6RPHWLPHV KRZHYHU WKH\ KDYH WKHLU VRXUFH LQ RWKHU SUREOHPV HJ PHWKRGRORJLFDO DQG WKHQ WKHLU H[SODQDWLRQ UHTXLUHV DQ DVVHVVPHQW RI WKH SRVVLEOH FDXVHV E\ PHWDGDWD FRPSDULVRQ DV IRU DOO IRUPV RI FRKHUHQFH DVVHVVPHQW 306 $ 0áRGDN: Coherence and comparability … Coherence/comparability with the National Accounts ± WKH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW QRWH WKDW WKH 1DWLRQDO $FFRXQWV FRPSLODWLRQ SURFHVV LV D PHWKRG IRU GHWHFWLQJ WKH ODFN RI FRKHUHQFH LQ GDWD UHFHLYHG IURP LWV YDULRXV VRXUFH VWDWLVWLFDO SURFHVVHV ZKHWKHU WKH\ EH GLUHFW VXUYH\V UHJLVWHU EDVHG VXUYH\V RU LQGLFHV 7KXV WKH OHYHO RI FRPSDUDELOLW\ FDQ EH HIILFLHQWO\ DVVHVVHG DQG VWXGLHG HJ LQ WHUPV RI FDXVHV RI SRVVLEOH LQFRPSDUDELOLWLHV XVLQJ UHOHYDQW GDWD REWDLQHG IURP WKLV V\VWHP DQG SURSHUWLHV RI WKH DGMXVWPHQWV DLPHG DW REWDLQLQJ WKH UHOLDEOH EDODQFH RI DFFRXQWV )RU PRUH GHWDLOV VHH HJ '(67$7,6 $QRWKHU LQWHUHVWLQJ WRRO HQDEOLQJ DQ HIILFLHQW DVVHVVPHQW RI FRPSDUDELOLW\ DUH mirror statistics 7KHUH DUH VRPH YDULDEOHV IRU D JLYHQ XQLW DUHD WKDW KDYH WKHLU FRXQWHUSDUWV LQ DQRWKHU UHJLRQ RU HYHQ FRXQWU\ )RU H[DPSOH LI HPSOR\PHQW UHODWHG SRSXODWLRQ IORZV FRPPXWLQJ IURP XQLW $ WR XQLW % LV REVHUYHG WKHQ WKH QXPEHU RI HPSOR\HG SHUVRQV FRPLQJ IURP $ WR % VKRXOG EH HTXDO WR WKH QXPEHU RI HPSOR\HHV FRPLQJ WR % IURP $ 6LPLODUO\ LQ FODVVLFDO PLJUDWLRQ VWXGLHV HPLJUDWLRQ IURP 3RODQG WR 8. DQG LPPLJUDWLRQ WR 8. IURP 3RODQG VKRXOG FRLQFLGH 8VLQJ VXFK GDWD D IORZ PDWUL[ FDQ EH FRQVWUXFWHG DQG DQDO\VHG VHH HJ 7 -y]HIRZVNL DQG $ 0áRGDN $QRWKHU H[DPSOH H[SRUWV RI FRXQWU\ $ WR FRXQWU\ % VKRXOG EH HTXDO WR LPSRUWV RI FRXQWU\ % IURP FRXQWU\ $ 7KXV DQ HIIRUW VKRXOG EH PDGH WR HQVXUH WKDW UHOHYDQW WZRZD\ VWDWLVWLFV FRLQFLGH +HQFH GLIIHUHQFHV LQ GHILQLWLRQV KDYH WR EH FDUHIXOO\ VWXGLHG DQG PLQLPL]HG $V RQH FDQ VHH PLUURU VWDWLVWLFV FDQ EH XVHG WR YHULI\ FRKHUHQFH JHRJUDSKLFDO FRPSDUDELOLW\ DQG DFFXUDF\ 7KXV WKH GLIIHUHQFH LQ µPLUURU¶ GDWD FDQ LQGLFDWH WKH ODFN RI DFFXUDF\ LQ HLWKHU RU ERWK RI WKH RXWSXWV DQGRU PD\ UHIOHFW WKH ODFN RI FRPSDUDELOLW\ EHWZHHQ UHJLRQV RU FRXQWULHV IRU WKH VDPH GDWD LWHPV )RU H[DPSOH FI (XURVWDW LI WKH 3ROLVK HVWLPDWH RI HPLJUDWLRQ WR 8. LQ D SDUWLFXODU \HDU H[FHHGV WKDW RI WKH %ULWLVK HVWLPDWH RI LPPLJUDWLRQ IURP 3RODQG IRU WKH VDPH \HDU E\ WKHQ WKLV IDFW PD\ LQGLFDWH WKH ODFN RI DFFXUDF\ GXH WR RYHUHVWLPDWLRQ LQ 3RODQG RU XQGHUHVWLPDWLRQ LQ 8. 2QH VKRXOG WKHQ ORRN IRU FDXVHV HJ LQ PHWKRGRORJLHV VXFK DV WKH GHILQLWLRQ RI HPLJUDQWVLPPLJUDQWV ,Q JHQHUDO WKHUH DUH UHJXODWLRQV FRQFHUQLQJ %XVLQHVV 5HJLVWHUV %5V DQG VWDWLVWLFV OLNH 6WUXFWXUDO %XVLQHVV 6WDWLVWLFV 6%6 DQG 6KRUW±7HUP 6WDWLVWLFV 676 UHJXODWLRQV DERXW VWDWLVWLFDO XQLWV IRU WKH REVHUYDWLRQ DQG DQDO\VLV RI WKH SURGXFWLRQ V\VWHP LQ WKH &RPPXQLW\ ZKHUH XQLW GHOLQHDWLRQ DQG WKH %5 WRJHWKHU IRUP DQ LPSRUWDQW SDUW RI WKH EDVLV RI VWDWLVWLFDO RXWSXW 7R RYHUFRPH WKH PRVW LPSRUWDQW SUREOHPV RQH VKRXOG JXDUDQWHH FRRUGLQDWLRQ EHWZHHQ VWDWLVWLFDO VXUYH\V IRU H[DPSOH LQ TXHVWLRQQDLUHV LQVWUXFWLRQV IRU UHVSRQGHQWV GDWD SURFHVVLQJ HWF 7KLV VKRXOG LGHDOO\ EH GRQH ZLWKLQ UHVSHFWLYH 1DWLRQDO 6WDWLVWLFDO ,QVWLWXWHV ZKHUH LW ZRXOG EH PXFK HDVLHU WKDQ HOVHZKHUH $FFRUGLQJ WR 0 %HUJGDKO et al. XVLQJ WKH VDPH %5 DV D IUDPH FRQVWUXFWLQJ WKH IUDPH DW WKH VDPH WLPH XSGDWLQJ XQLWV LQ WKH VDPH ZD\ DW WKH VDPH WLPH ZLWK UHJDUG WR EXVLQHVV VWUXFWXUH FODVVLILFDWLRQV HWF DGGUHVVLQJ TXHVWLRQQDLUHV WR WKH VDPH XQLW HWF DUH IXUWKHU DFWLRQV LQIOXHQFLQJ FRKHUHQFH DQG DFFXUDF\ STATISTICS IN TRANSITION-new series, Summer 2013 307 7KH QH[W SUREOHP LV coherence/comparability with other statistics and benchmarking ,W PHDQV WKDW WKHUH PD\ EH RWKHU VWDWLVWLFDO VXUYH\V RU GDWD VRXUFHV VXFK WKDW WKHLU VWDWLVWLFDO RXWSXWV FDQ EH XVHG LQ FRPELQDWLRQ ZLWK WKH UHVXOWV RI D JLYHQ VXUYH\ )RU H[DPSOH VRPH GDWD IURP UHSRUWLQJ RQ ILQDQFLDO UHVXOWV RI HQWHUSULVHV FDQ EH FRPELQHG ZLWK UHOHYDQW GDWD IURP WKH WD[ UHJLVWHU $Q\ VXFK FRPELQDWLRQ FDQ VKRZ GLVFUHSDQFLHV ZKLFK VKRXOG EH DOO SRVVLEOH FRQWDLQHG LQ WKH TXDOLW\ UHSRUW 7KLV SUREOHP LV DOVR FRQQHFWHG ZLWK WKH TXHVWLRQ RI EHQFKPDUNLQJ $FFRUGLQJ WR ,XUFRYLFK et al. EHQFKPDUNLQJ LV XQGHUVWRRG DV DQ LPSURYHPHQW SURFHVV LQ ZKLFK D FRPSDQ\ RUJDQLVDWLRQ RU DQ\ RWKHU PXOWLRUJDQLVDWLRQDO V\VWHP FDUULHV RXW WKUHH SURFHVVHV FRPSDUHV LWV SHUIRUPDQFH DJDLQVW EHVWLQFODVV V\VWHPV GHWHUPLQHV KRZ WKHVH V\VWHPV KDYH DFKLHYHG WKHLU VXSHULRU SHUIRUPDQFH DQG XVHV WKH FROOHFWHG LQIRUPDWLRQ WR LPSURYH LWV RZQ SHUIRUPDQFH %DVLFDOO\ DOO SURFHVVHV FDQ EH WKH REMHFW RI EHQFKPDUNLQJ ,Q WKH VWDWLVWLFDO FRQWH[W EHQFKPDUNLQJ FDQ EH WUHDWHG DV D FRQWLQXRXV SURFHVV LQ ZKLFK V\VWHPV FRQWLQXRXVO\ VHHN WR FKDOOHQJH WKHLU SUDFWLFHV 0RUH SUHFLVHO\ EHQFKPDUNLQJ LV DLPHG DW LPSURYLQJ SURFHVVHV EDVHG XSRQ WKH LQVLJKWV RQ ZKDW PDNHV SURFHVVHV HIIHFWLYH DQG HIILFLHQW ,XUFRYLFK et al. REVHUYH WKDW EHQFKPDUNLQJ VWHPV IURP WKH SULYDWH VHFWRU EXVLQHVV DQG KDV EHFRPH LQFUHDVLQJO\ SRSXODU IRU SROLWLFDO V\VWHPV RYHU WKH SDVW \HDUV DV QDWLRQV DQG UHJLRQV IDFH LQFUHDVHG FRPSHWLWLRQ IURP RWKHU FRPSHWLQJ V\VWHPV 6WDWLVWLFV DOVR XVHV EHQFKPDUNLQJ WRROV )RU H[DPSOH %DUFHOODQ SURYLGHV D ZLGH RYHUYLHZ RI VXFK PHWKRGRORJ\ IURP WKH SRLQW RI YLHZ RI WKH QDWLRQDO DFFRXQWV DQG DQDO\VHV VSHFLILF DVSHFWV RI WKH (XURSHDQ DJJUHJDWHV EHQFKPDUNLQJ VXFK DV FRPSRVLWLRQ DQG TXDOLW\ RI WKH LQGLFDWRUV DV ZHOO DV SRVVLEOH HIIHFWV RI EUHDNV JHQHUDWHG E\ IRUHVHHQ PHWKRGRORJLFDO FKDQJHV DQG WKH LPSDFW RI WKH LQWURGXFWLRQ RI WKH QHZ DSSURDFK WR SULFH DQG YROXPH PHDVXUHV FKDLQOLQNLQJ RQ WKH EHQFKPDUNLQJ EDVHG FRPSLODWLRQ RI WKH (XURSHDQ DJJUHJDWHV 7KH JHQHUDO EHQFKPDUNLQJ XVHG LQ DQDO\]LQJ GDWD FRPSDUDELOLW\ WDNHV LQWR DFFRXQW EHQFKPDUNLQJ RI SROLWLFDO V\VWHPV DQG LQIUDVWUXFWXUHV DW QDWLRQDO OHYHO DQG OHVV VR DW UHJLRQDO OHYHO E\ DGRSWLRQ DQG DGDSWDWLRQ RI PRGHUQ WHFKQLTXHV OLNH EHQFKPDUNLQJ IRU LPSURYHPHQW RI GDWD FRPSDUDELOLW\ 6WDWLVWLFDO EHQFKPDUNLQJ FRPSULVHV DOVR WKH FROOHFWLRQ DQDO\VLV DQG GRFXPHQWDWLRQ RI JRRG SUDFWLFHV DQG XVH WKHP WR HODERUDWH QHZ VROXWLRQ DV PXFK KDUPRQL]HG DFURVV FRXQWULHV DQG UHJLRQV DV SRVVLEOH 7R HQDEOH DQ\ FRPSDULVRQ VRPH GHILQLWLRQV XQLWV UHIHUHQFH WLPH YDULDEOHV VDPSOH IUDPH HWF VKRXOG EH HTXLYDOHQW 7KH XVHU VKRXOG REWDLQ SUHFLVH LQIRUPDWLRQ DERXW DOO GLIIHUHQFHV SUREOHPV DQG WKHLU SUDFWLFDO FRQVHTXHQFHV 6XFK LQIRUPDWLRQ LV XVXDOO\ FRQWDLQHG LQ VSHFLDO TXDOLW\ UHSRUWV 7KH SUREOHPV RI DFFXUDF\ VKRXOG DOVR EH PHQWLRQHG LQ WKLV FRQWH[W 308 $ 0áRGDN: Coherence and comparability … 4. Measurement and improving degree of coherence and comparability ,W LV REYLRXV WKDW DQ HIILFLHQW DQG FRPSOHWH TXDOLW\ UHSRUW VKRXOG FRQWDLQ EDVLF PHDVXUHV RI VXUYH\ FRKHUHQFH DQG FRPSDUDELOLW\ 7KHVH PHDVXUHV VKRXOG EH FRQVWUXFWHG RQ WKH EDVLV RI H[SHUW RSLQLRQV RQ FRKHUHQFH DQG FRPSDUDELOLW\ LQ WHUPV RI YDULRXV SDUWLFXODU DVSHFWV GHVFULEHG LQ SUHYLRXV VHFWLRQV RI WKLV SDSHU 6XFK SURFHHGLQJ LV PRWLYDWHG E\ WKH IDFW WKDW WKH GHJUHH RI FRKHUHQFH DQG FRPSDUDELOLW\ LV LQ JHQHUDO QRW PHDVXUDEOH DQG PD\ GHSHQG RQ VXEMHFWLYH DVVHVVPHQW RI LPSRUWDQFH RI SDUWLFXODU IDFWRUV RI WKHP 2XU SURSRVDO LQ WKLV UHVSHFW FRQVLVWV RI WKUHH PDLQ LQGLFHV ZKHUH WKH WKLUG RI WKHP LV FRQVWUXFWHG XVLQJ WZR SUHYLRXV RQHV DQG FDQ EH LQWHUSUHWHG DV WRWDO FRPSOH[ LQGH[ RI FRKHUHQFH DQG FRPSDUDELOLW\ /HW m p q DQG t EH QDWXUDO QXPEHUV DQG Xଵ , X ଶ , … , X ୫ GHQRWH YDULDEOHV FROOHFWHG LQ VXFFHVVLYH t HGLWLRQV RI WKH DQDO\]HG VXUYH\V $VVXPH WKDW DVVHVVPHQW LV PDGH E\ p LQGHSHQGHQW H[SHUWV 2XU ILUVW LQGH[ ZLOO GHVFULEH methodological differences LQ GHILQLWLRQV RI YDULDEOHV XVHG LQ WKH DIRUHPHQWLRQHG HGLWLRQV 7R GHILQH LW LW VKRXOG EH DVVXPHG WKDW WKH VXEMHFWV RI DVVHVVPHQW DUH q DVSHFWV RI GHILQLWLRQ RI DQDO\VHG YDULDEOHV ,W VHHPV WR EH REYLRXV WKDW YDULRXV H[SHUWV FDQ KDYH GLIIHUHQW KLHUDUFK\ RI LPSRUWDQFH RI WKH HYDOXDWLRQ DVSHFWV LH ZKDW LV FUXFLDO IRU RQH H[SHUW FDQ EH RI QR VLJQLILFDQFH IRU DQRWKHU 7KH LQGH[ FDQ EH WKHQ FRPSXWHG DV D VXP RI QRQQHJDWLYH YDOXHV H[SUHVVLQJ HYDOXDWLRQV PDGH E\ WKHVH H[SHUWV ୮ I(୰) ୯ ୲ 1 ؝ w୧୨ d୧୨୩୰ pq (t െ 1) ୧ୀଵ ୨ୀଵ (1) ୩ୀଶ ZKHUH d୧୨୩୰ [ א0,1] GHQRWHV WKH OHYHO RI FRQVLVWHQF\ RI WKH GHILQLWLRQ RI YDULDEOH X ୰ LQ kWK HGLWLRQ RI WKH VXUYH\ LQ FRPSDULVRQ RI LWV k െ 1±WK HGLWLRQ LQ FRQWH[W RI j±WK DVSHFW DFFRUGLQJ WR WKH RSLQLRQ H[SUHVVHG E\ i±WK H[SHUW ZKHUH GHQRWHV WRWDO LQFRQVLVWHQF\ ± IXOO FRQVLVWHQF\ ZKLOH DQ LQFUHDVLQJ HYDOXDWLRQ QRWH GHQRWHV D GHFUHDVLQJ OHYHO RI FRQVLVWHQF\ LQ WHUPV RI D JLYHQ DVSHFW DQG w୧୨ א [0,1] LV WKH ZHLJKW DVVRFLDWHG E\ i±WK H[SHUW ZLWK j±WK DVSHFW H[SUHVVLQJ LWV SRWHQWLDO HIIHFW RQ FRPSDUDELOLW\ GHQRWHV WKDW UHOHYDQW DVSHFW LV GURSSHG WKH ODUJHU LV WKH ZHLJKW WKH PRUH LPSRUWDQW LW LV IRU DQ H[SHUW i = 1,2, … , p j = 1,2, … , q k = 2,3, … , t DQG r = 1,2, … m 0 < q q LV WKH QXPEHU RI DVSHFWV ZKLFK KDYH QRQ±]HUR ZHLJKW DFFRUGLQJ WR DW OHDVW RQH H[SHUW ,W LV DOVR DVVXPHG WKDW DFFRUGLQJ WR FODVVLFDO FRQVWUXFWLRQ RI ZHLJKWV ୯ w୧୨ = 1 ୨ୀଵ IRU HYHU\ i = 1,2, … , p (2) 309 STATISTICS IN TRANSITION-new series, Summer 2013 7KH LQGH[ I WDNHV YDOXHV IURP [0,1] ± ODUJHU YDOXH LQGLFDWHV EHWWHU FRQVLVWHQF\ ,W ZLOO EH QH[W DVVXPHG WKDW WKH YDULDEOH X ୰ IRU ZKLFK I(୰) Ʌ LV UHJDUGHG DV VXIILFLHQWO\ FRQVLVWHQW IURP WKH SRLQW RI YLHZ RI LWV GHILQLWLRQ 7KH SDUDPHWHU Ʌ ( א0,1] LV WKH DUELWUDULO\ DVVXPHG WKUHVKROG RI FRQVLVWHQF\ LW FDQ EH HVWDEOLVKHG HJ DW WKH OHYHO RI /HW S EH WKH VHW RI YDULDEOHV ZKLFK DUH VXIILFLHQWO\ FRQVLVWHQW DFFRUGLQJ WR LH S ؝൛X୰ : r { א1,2, … , m} רI(୰) Ʌൟ 7KH FRQVWUXFWLRQ FDQ EH SHUFHLYHG DV DQ H[WHQVLRQ RI WKH %RUGD JURXS HYDOXDWLRQ PHWKRG 7KDW LV WKH H[SHUW RSLQLRQV DUH KHUH RQO\ RQH RI VHYHUDO IDFWRUV DIIHFWLQJ WKH ILQDO HYDOXDWLRQ 2Q WKH RWKHU KDQG WKH ZHLJKWV w୧୨ FDQ EH REWDLQHG RQ WKH EDVLV RI µKLGGHQ¶ LH VXEMHFWLYH DQG QRW FRPPRQO\ SXEOLVKHG LQGLYLGXDO PDWULFHV RI SUHIHUHQFHV RI H[SHUWV FRQFHUQLQJ WKH LPSRUWDQFH RI WKH LQYHVWLJDWHG DVSHFWV IRU WKH FRPSDUDELOLW\ XVLQJ WKH IX]]\ %RUGD DSSURDFK VHH HJ *DUFtD /DSUHVWD DQG 0DUWtQH] 3DQHUR $Q LQWHUHVWLQJ DOWHUQDWLYH FRXOG EH KHUH WKH XVH RI HVSHFLDOO\ PRGLILHG /LWYDN¶V PHWKRG FI /LWYDN ,Q WKH FODVVLFDO YHUVLRQ RI WKLV PHWKRG VXFK RSWLRQ LV SUHIHUUHG E\ DQ H[SHUW ZKLFK LV UDQNHG ILUVW LQ DQ\ SUHIHUHQFH RUGHU WKDW PLQLPL]HV WKH VXP RI GLVWDQFHV EHWZHHQ YHFWRUV RI SUHIHUHQFHV ,Q WKLV VLWXDWLRQ RQH FDQ SURSRVH WR VHW WKH H[SHUW ZHLJKW RI DQ DVSHFW XVLQJ WKH GLVWDQFH FRPSXWHG DFFRUGLQJ WR WKH DIRUHPHQWLRQHG GHILQLWLRQ ZKLFK LV PLQLPDO IRU DOO SUHIHUHQFH YHFWRUV ZKHUH WKLV DOWHUQDWLYH LV UDQNHG ILUVW 7KH ZHLJKWV ZLOO EH VHW DV WKHVH PLQLPDO GLVWDQFHV DIWHU QRUPDOL]DWLRQ WR VDWLVI\ WKH FRQGLWLRQ ,I WKH LQGH[ I \LHOGV VDWLVIDFWRU\ UHVXOWV LH LI D VXIILFLHQW QXPEHU ± HJ PRUH WKDQ D KDOI RI n ± YDULDEOHV DUH FRQVLVWHQW D VHFRQG LQGH[ EDVHG RQ VLPLODU UXOHV VKRXOG EH FRQVWUXFWHG ,W LV related to comparability over time and over domains of interest LH VSDWLDO XQLWV EUDQFK FOXVWHUV RI HFRQRPLF HQWLWLHV HWF ± UHVWULFWHG WR WKRVH YDULDEOHV ZLWK VLPLODU GHILQLWLRQV ,W VKRXOG WDNH LQWR DFFRXQW WKDW IRU VRPH YDULDEOHV FRPSDUDELOLW\ RYHU WLPH FDQ EH PRUH LPSRUWDQW WKDQ FRPSDUDELOLW\ RYHU GRPDLQV HJ WRWDO UHYHQXHV IRU RWKHUV WKLV H[SHFWDWLRQ FDQ EH RSSRVLWH HJ IRU VRPH QHZO\ LQWURGXFHG YDULDEOH KDYLQJ IRUP RI DQ LQGH[ ZKLFK XVHV UHVXOWV IURP QHZ SKHQRPHQD DQG QHHGV RI XVHUV )RUPDOO\ WKH LQGH[ Iୈ LV FRQVWUXFWHG LQ WKH IROORZLQJ ZD\ Iୈ(୰) ୮ ୲ ୲ ୧ୀଵ ୩ୀଶ ୩ୀଶ 1 ؝ ൭w୧୰() d୧୩୰() + w୧୰() d୧୩୰() ൱ ap(t െ 1) (3) ZKHUH w୧୰() DQG w୧୰() GHQRWH ZHLJKWV DVVRFLDWHG E\ i±WK H[SHUW ZLWK WLPH DQG DQDO\]HG GRPDLQV IRU WKH YDULDEOH X ୰ UHVSHFWLYHO\ w୧୰() , w୧୰() [ א0,1] d୧୩୰() DQG d୧୩୰() DUH DVVHVVPHQWV RI FRPSDUDELOLW\ RYHU WLPH DQG GRPDLQV d୧୩୰() , d୧୩୰() [ א0,1] ZKHUH GHQRWHV WRWDO ODFN RI FRPSDUDELOLW\ ± IXOO FRPSDUDELOLW\ LQ D JLYHQ FRQWH[W i = 1,2, … , p k = 2,3, … , t IRU HYHU\ r א {1,2, … , m} VXFK WKDW X ୰ אS 7KH SDUDPHWHU a WDNHV YDOXHV RU GHSHQGLQJ RQ ZKHWKHU RQO\ RQH RU ERWK RI WKHVH DVSHFWV RI FRPSDUDELOLW\ KDYH QRQ±]HUR ZHLJKW LQ WKH RSLQLRQ RI DW OHDVW RQH H[SHUW 6LPLODUO\ DV LQ WKH FDVH RI DOVR WKH LQGH[ 310 $ 0áRGDN: Coherence and comparability … WDNHV YDOXHV IURP [0,1] ZKHUH LQGLFDWHV WKH LGHDO FRPSDUDELOLW\ DQG ]HUR ± LWV WRWDO ODFN )LQDOO\ IRU HDFK HGLWLRQ RI WKH VXUYH\ D FRPSOH[ index of complex coherence and comparability EDVHG RQ DQG VKRXOG EH FRPSXWHG ,W ZLOO EH GHILQHG DV med I(୰) + b Iେ ؝ ୰ୀଵ,ଶ,…,୫ min ୰{אଵ,ଶ,…,୫}:ଡ଼౨ אୗ 2 Iୈ(୰) . ZKHUH ܾ = 1 LI |S | ቂ ቃ + 1 DQG ܾ = 0 RWKHUZLVH ଶ $V RQH FDQ VHH WKH FRPSDUDELOLW\ RI VHOHFWHG YDULDEOHV KDV KHUH HVSHFLDO LPSRUWDQFH ,W LV PRWLYDWHG E\ WKH IDFW WKDW PHWKRGRORJLFDOO\ FRQVLVWHQW VXUYH\ VKRXOG KDYH UHOHYDQW DQG KLJK OHYHO RI FRPSDUDELOLW\ 2I FRXUVH ܫ [ א0,1] DQG KLJKHU YDOXH LQIRUP DERXW EHWWHU TXDOLW\ RI WKH VXUYH\ LQ WKLV FRQWH[W 7KHVH LQGLFHV FDQ VLJQLILFDQWO\ KHOS WR DVVHVV VXUYH\ TXDOLW\ ,W LV ZRUWK QRWLQJ WKDW WKH H[SHUW ZHLJKWV KDYH D VXEMHFWLYH FKDUDFWHU 7KDW LV HYHU\ WLPH ZKHQ WKH VHW RI H[SHUWV LV FKDQJHG D QHZ YDOXH RI WKH LQGH[ Iେ DQG RI FRXUVH SUHYLRXV LQGLFHV LV REWDLQHG 7KXV LW LV UHFRPPHQGHG WR KDYH VWDEOH DQG FRPSHWHQW WHDP RI H[SHUWV LH VXFK WKDW SRVVLEOH FKDQJH LQ LW ZLOO QRW DIIHFW VLJQLILFDQWO\ WKH VWUXFWXUH RI SUHIHUHQFHV 2Q WKH RWKHU KDQG WKH FKDQJH RI WKH ZHLJKWV PD\ EH DOVR D UHVXOW RI LPSRUWDQFH RI DFWXDO RU IRUHVHHQ FKDQJHV LQ TXDOLW\ RI GDWD FROOHFWLRQ RI D JLYHQ YDULDEOH RI LWV PHWKRGRORJ\ RYHU WLPH ,Q WKLV FRQWH[W VXFK HODVWLFLW\ RI ZHLJKWV LV UDWKHU GHVLUDEOH $ VPDOO H[DPSOH LOOXVWUDWLQJ WKHVH SUREOHPV FDQ EH DV IROORZV $VVXPH WKDW D VXUYH\ GR MRXUQH\V WR ZRUN LV FRQGXFWHG 7KH GDWD IROORZLQJ WKUHH YDULDEOHV DUH FROOHFWHG Xଵ ± DYHUDJH WLPH RI MRXUQH\ WR PDLQ ZRUNSODFH X ଶ ± GLVWDQFH EHWZHHQ SODFH RI UHVLGHQFH RI PDLQ ZRUNSODFH DQG X ଷ ± PHDQV RI WUDQVSRUW IURP WKH SODFH RI UHVLGHQFH WR WKH PDLQ ZRUNSODFH 'DWD RQ YDULDEOHV Xଵ DQG X ଷ DUH FROOHFWHG IURP WKH VDPSOH VXUYH\ RI RI WKH SRSXODWLRQ DQG GDWD RQ X ଶ DUH GHWHUPLQHG RQ WKH EDVLV RI WKH WD[ UHJLVWHU 7KH IROORZLQJ PHWKRGRORJLFDO DVSHFWV DUH FRQVLGHUHG IUDPH SRSXODWLRQ VRXUFHV RI GDWD DQG VDPSOH GHVLJQ GDWD FROOHFWLRQ DQG SURFHVVLQJ DQG LPSXWDWLRQ DQG HVWLPDWLRQ 7KH SUREOHP RI GDWD FRPSDUDELOLW\ RQ WKH OHYHO RI 1876 YRLYRGVKLSV DQG 1876 SRZLDWV 3ROLVK UHJLRQV DQG RYHU WLPH ZLOO EH DOVR FRQVLGHUHG ,Q FDVH RI WKH LQGH[ WKH DVSHFWV DQG ZLOO KDYH JUHDWHU LPSRUWDQFH IRU FRQVLVWHQF\ WKDQ EHFDXVH PRVW GDWD DUH FROOHFWHG LQ VDPSOH VXUYH\V +HQFH w୧୨ > w୧ଶ IRU DQ\ i 7KH YDOXH RI d୧୨୩୰ ¶V ZLOO GHSHQG RQ FKDQJHV LQ PHWKRGRORJ\ RFFXUULQJ LQ FRPSDULVRQ ZLWK SUHYLRXV HGLWLRQ RI WKH VXUYH\ ,I WKH FKDQJHV DUH YHU\ VPDOO WKHQ d୧୨୩୰ ¶V ZLOO EH FORVH WR LQ DQ\ FDVH 2WKHUZLVH HJ LI LQ WKH QH[W HGLWLRQ RI WKH VXUYH\ WKH GDWD RQ X ଶ DUH FROOHFWHG DOVR IURP VDPSOH VXUYH\ WKHQ d୧୨(୩ାଵ)ଶ ZLOO EH VPDOOHU 1 The symbol [ܿ] denotes the integer part of the real number ܿ, i.e. the greatest integer not greater than ܿ. The symbol |ܼ| denotes the number of elements of the set ܼ. STATISTICS IN TRANSITION-new series, Summer 2013 311 HVSHFLDOO\ IRU j = 1,2,4 $V UHJDUGV WKH LQGH[ WKH FRPSDUDELOLW\ RYHU WLPH FDQ EH KHUH OHVV LPSRUWDQW WKDQ RWKHU UHJLRQV DQG KHQFH RQH FDQ H[SHFW WKDW w୧୰() < w୧୰() IRU DQ\ r +RZHYHU WDNLQJ WKH FKDUDFWHU RI GDWD FROOHFWLRQ IRU SDUWLFXODU YDULDEOHV LQWR DFFRXQW RQH FDQ REVHUYH WKDW WKH FRPSDUDELOLW\ IRU 1876 UHJLRQV IRU Xଵ DQG X ଷ ZLOO EH VLJQLILFDQWO\ VPDOOHU WKDQ IRU X ଶ LH d୧୩୰() اd୧୩ଶ() IRU r = 1,3 )RU 1876 UHJLRQV GXH WR KLJKHU TXDOLW\ RI HVWLPDWLRQ WKH FRPSDUDELOLW\ RI Xଵ DQG X ଷ FDQ VLJQLILFDQWO\ LQFUHDVH 2QH PRUH SUREOHP ZKLFK ZDV QRW LQGLFDWHG SUHYLRXVO\ GXH WR LWV SUDFWLFDO FRPSOH[LW\ DQG LPSRUWDQFH LV KRZ WR WUHDW YDULDEOHV ZKLFK DUH H[SUHVVHG XVLQJ YDULRXV PHDVXUHPHQW XQLWV DQG YDU\ IURP WKH SRLQW RI YLHZ RI WKH UDQJH RU VLJQLILFDQFH RI LQIRUPDWLRQ SURYLGHG ,Q PDQ\ FDVHV ± GHVSLWH HIIRUWV PDGH WR KDUPRQL]H PHWKRGRORJLHV ± VXFK GLVFUHSDQFLHV DUH XQDYRLGDEOH RZLQJ WR VSHFLILF QHHGV RI XVHUV RI GDWD SURGXFHG DV D UHVXOW RI SDUWLFXODU VXUYH\V GLYHUVLILFDWLRQ RI WUDGLWLRQV REVHUYHG EHWZHHQ UHJLRQV RU FRXQWULHV HWF 7KHUHIRUH VRPH REVWDFOHV FDQQRW EH RYHUFRPH PHWKRGRORJLFDOO\ +HQFH QXPHULFDO PHWKRGV IRU WKH QRUPDOL]DWLRQ RI YDULDEOHV VKRXOG EH DSSOLHG ,W LV ZRUWKZKLOH WR QRWH WKDW WKH QRUPDOL]DWLRQ VKRXOG GHQRWH DOVR XQLIRUPL]DWLRQ RI FKDUDFWHUV RI SDUWLFXODU YDULDEOHV (DFK YDULDEOH KDV LWV RZQ VWDWXV EHLQJ DUELWUDULO\ HVWDEOLVKHG WDNLQJ LQWR DFFRXQW WKH UHODWLRQVKLS EHWZHHQ WKH YDOXHV DQG WKH UHDOLW\ WKH\ GHVFULEH 7KH IROORZLQJ WKUHH W\SHV RI YDULDEOHV FDQ EH WKHQ GLVWLQJXLVKHG x stimulant ± WKH KLJKHU WKH YDOXH RI WKH IHDWXUH WKH EHWWHU HJ DYHUDJH PRQWKO\ ZDJH DQG VDODU\ RU *'3 SHU FDSLWD x destimulant ± VPDOOHU YDOXHV DUH PXFK PRUH GHVLUDEOH WKDQ KLJKHU RQHV HJ XQHPSOR\PHQW UDWH x nominant ± KDV DQ RSWLPXP OHYHO RI YDOXH FDOOHG DOVR DQ LPEXHPHQW SRLQW 7KXV EHORZ WKLV SRLQW WKH IHDWXUH LV WUHDWHG DV D VWLPXODQW DQG DERYH LW ± DV D GHVWLPXODQW 2U FRQYHUVHO\ ± LQFUHDVLQJ YDOXHV DQG VLPXOWDQHRXVO\ ORZHU WKDQ WKH RSWLPXP DUH ZRUVH ZKHUHDV GHFUHDVLQJ RQHV EXW JUHDWHU WKDQ WKH RSWLPXP DUH UHJDUGHG DV EHWWHU 'HVWLPXODQWV DQG QRPLQDQWV VKRXOG EH FRQYHUWHG LQWR VWLPXODQWV HJ E\ WDNLQJ UHVSHFWLYH EDG YDOXHV ZLWK RSSRVLWH VLJQV 1H[W WKH\ DUH WKHQ QRUPDOL]HG 7KH UHOHYDQW IRUPXOD FDQ OHDG HLWKHU WR XQLILFDWLRQ RI EDVLF VWDWLVWLFDO PHDVXUHV VXFK DV DULWKPHWLF PHDQ PHGLDQ VWDQGDUG GHYLDWLRQ RU PHGLDQ DEVROXWH GHYLDWLRQ RU UDQJHV RI IHDWXUHV $ ULFK FROOHFWLRQ RI WKRVH PHWKRGV FDQ EH IRXQG LQ DUWLFOHV E\ =HOLDĞ RU E\ 0áRGDN D 7KH\ DUH EDVHG RQ WKH IROORZLQJ IRUPXOD z୧୨ െ a୨ z୧୨ = , b୨ ZKHUH x୧୨ LV WKH YDOXH RI j±WK YDULDEOH IRU i±WK XQLW z୧୨ LV LWV QRUPDOL]HG YDOXH a୨ DQG b୨ DUH SDUDPHWHUV IRU j±WK YDULDEOH i = 1,2, … , n j = 1,2, … , m ZKHUH n GHQRWHV WKH QXPEHU RI DQDO\VHG XQLWV VXFK DV PHDQ VWDQGDUG PHGLDQ PHGLDQ 312 $ 0áRGDN: Coherence and comparability … DEVROXWH GHYLDWLRQ j±WK FRRUGLQDWH RI WKH :HEHU PHGLDQ RU DQRWKHU VLQJXODU SRLQWV RI WKH PXOWLGLPHQVLRQDO VSDFH FI $ 0áRGDN E HWF ,Q JHQHUDO LI WKH DULWKPHWLF PHDQ RI HDFK RI QRUPDOL]HG YDULDEOH DPRXQWV WR DQG LWV YDULDQFH LV HTXDO WR WKHQ QRUPDOL]DWLRQ LV FDOOHG VWDQGDUGLVDWLRQ LI WKH UDQJH LV FRQVWDQW DQG HTXDO HJ WR WKHQ VXFK WUDQVIRUPDWLRQ LV FDOOHG unitarisation DQG LI a୨ = 0 DQG b୨ LV DVVXPHG WR EH DULWKPHWLF PHDQ PLQLPXP PD[LPXP PHGLDQ VXP VXP RI VTXDUHV VTXDUH URRW RI WKH VXP RI VTXDUHV RI WKH YDOXH RI WKH j±WK YDULDEOH j = 1,2, … , m WKHQ LW LV FDOOHG quotient transformation $QRWKHU RSWLRQ LQ WKLV FRQWH[W LV WKH XVH RI EHQFKPDUNLQJ 7KDW LV GLVWDQFHV RI D JLYHQ REMHFW UHSUHVHQWHG E\ D YHFWRU RI GDWD RQ Թ୫ DQG WKH EHQFKPDUN DUH FRPSXWHG LH D EHVW±LQ±FODVV REMHFW UHDO RU DUWLILFLDO FUHDWHG LH E\ RSWLPL]DWLRQ RI YDOXHV RI SDUWLFXODU YDULDEOHV ZKLFK DOO LQYHVWLJDWHG REMHFWV DUH FRPSDUHG ZLWK 7R WKLV HQG D VSHFLDO PHDVXUH RI GLVWDQFH EHWZHHQ VWUXFWXUHV FDQ EH DSSOLHG HJ *RZHU¶V GLVWDQFH 0LQNRZVNL¶V PHWULFV DQG LWV SDUWLFXODU FDVHV &DQEHUUD PHWULFV .D]LQLHF¶V *DWHZ¶V RU -HIIUH\¶V DQG 0DWXVLWD¶V IRUPXODV RU 3HDUVRQ¶V FRUUHODWLRQ FRHIILFLHQW ± FI .D]LQLHF *DWHZ 0áRGDN %UX]]RQH et al. +HQFH WKH EHQFKPDUNLQJ QRUPDOL]DWLRQ FDQ EH SHUIRUPHG HJ DV หx୧୨ െ ɔ୨ ห z୧୨ = d୧ ZKHUH ɔ = (ɔଵ , ɔଶ , … , ɔ୫ ) LV WKH EHQFKPDUN d୧ GHQRWHV WKH GLVWDQFH RI i±WK REMHFW IURP WKH EHQFKPDUN i = 1,2, … , n j = 1,2, … , m 'DWD IURP YDULRXV TXHVWLRQQDLUHV FDQ DOVR EH XVHG WR FRQVWUXFW FRPSOH[ LQGLFHV RI GHYHORSPHQW LQ D JLYHQ GRPDLQ ,W LV YHU\ FRPIRUWDEOH IRU WKH XVHU ZKR REWDLQV RQH V\QWKHWLF LQIRUPDWLRQ LQVWHDG RI PDQ\ YDULRXV GDWD WKDW WHQG WR EH GLUHFWO\ LQFRPSDUDEOH 6RPH FRQFHSWV FRQFHUQLQJ WKLV LVVXH DUH FRQWDLQHG LQ WKH KDQGERRN E\ 2(&' EXW WKH\ DUH EDVHG PDLQO\ RQ VLPSOH QRUPDOL]DWLRQV DQG GR QRW H[SORLW DOO LQWHUHVWLQJ SURSHUWLHV RI WKH PRGHOOHG GDWD +HQFH RQH FDQ UHFRPPHQG KHUH DOVR 3ROLVK RXWSXW FRPELQLQJ WKH DIRUHPHQWLRQHG QRUPDOL]DWLRQ DQG EHQFKPDUNLQJ DQG WDNLQJ LQWR DFFRXQW HIILFLHQW FKRLFH RI GLDJQRVWLF YDULDEOHV FI $ 0áRGDN D $OVR VRPH VXJJHVWLRQV FRQFHUQLQJ WKHRUHWLFDO PHWKRGV RI HVWDEOLVKLQJ WKH VKDUH RI HDFK REMHFW LQ WKH RYHUDOO GHYHORSPHQW RI WKHLU ZKROH FROOHFWLRQ KDYH EHHQ IRUPXODWHG FI $ 0áRGDN ,I WKLV DQDO\VLV LV UHVWULFWHG RQO\ WR WKH uniformization RI YDULDEOHV RQH FRXOG SURGXFH GHVLUDEOH characteristics of accuracy $OWKRXJK LW PD\ RIWHQ EH RI QR SULPDU\ LPSRUWDQFH VRPHWLPHV HJ LI UHVXOWV RI RQH RI WZR VXUYH\V WR EH FRPSDUHG H[KLELW ELDV HUURUV LWV FKDUDFWHULVWLFV ZRXOG EH GHVLUDEOH )RU H[DPSOH ZKHQ WKH VDPH VWDWLVWLFV DUH REWDLQHG LQ WZR GLIIHUHQW VXUYH\V PHDVXUHV RI WKHLU DFFXUDF\ PD\ EH FUXFLDO LQ RUGHU WR DVVHVV WKH FRQVLVWHQF\ RI UHVXOWLQJ HVWLPDWRUV 7KH TXDOLW\ UHSRUW VKRXOG DOVR LQFOXGH D GHVFULSWLRQ RI GLIIHUHQFHV EHWZHHQ YDULRXV GDWD SURGXFHUV ZLWK WKH VDPH FRXQWU\ HJ RUJDQL]DWLRQV DJHQFLHV STATISTICS IN TRANSITION-new series, Summer 2013 313 VWDWLVWLFDO RIILFHV HWF ZKLFK FDQ DIIHFW WKH ILQDO TXDOLW\ DQG FRPSDUDELOLW\ RI FROOHFWHG GDWD DV ZHOO DV GLIIHUHQFHV EHWZHHQ TXDOLW\ PHDVXUHV XVHG LQ RWKHU FRXQWULHV $FFXUDF\ FDQ EH TXDQWLILHG E\ PHDVXUHPHQW HUURUV IRU XQLWV VDPSOHG ZLWK SUREDELOLW\ RQH WKDW GR QRW FRQWULEXWH WR VDPSOLQJ HUURUV RU GLIIHUHQFHV EHWZHHQ EDVLF FKDUDFWHULVWLFV RI UHVSRQGHQWV LQ WZR VXUYH\V ,I D XQLW KDV GLIIHUHQW UHVSRQGHQWV LQ GLIIHUHQW VXUYH\V DQG WKHLU LQWHUQDO VWUXFWXUHV DOVR GLIIHU WKH PHDVXUHPHQW HUURU FDQ EH VHULRXV LI LW ZDV XQGHWHFWHG RU QRW UHGXFHG 6RPH VHFRQGDU\ LQGLFDWRUV HJ ZDJH SHU HPSOR\HH RU SURILWDELOLW\ UDWH FDQ EH EXUGHQHG E\ PLVVLQJ GDWD LI WKH QXPEHU RI QRQUHVSRQVH XQLWV LV UHODWLYHO\ ODUJH ,PSXWDWLRQ SUHFLVLRQ FDQ DOVR EH SHUFHLYHG DV D PHDVXUH RI WKH VXUYH\¶V DFFXUDF\ ,Q PDQ\ FDVHV KRZHYHU DFFXUDF\ VKRXOG EH DVVHVVHG XVLQJ VHYHUDO LQGLFDWRUV GHVFULELQJ YDULRXV DVSHFWV RI DFFXUDF\ LH YDULDELOLW\ FDXVHG E\ QRQUHVSRQVH SUHFLVLRQ RI WKH VDPSOLQJ IUDPH UDQGRP HUURUV GXH WR VDPSOLQJ HWF 8VLQJ DOO FRPSRQHQWV RI DFFXUDF\ VWDWLVWLFV LQFOXGLQJ HVWLPDWLRQ HUURU RQH FDQ GHWHUPLQH D V\PPHWULF XQFHUWDLQW\ LQWHUYDO DURXQG D JLYHQ SRLQW HVWLPDWH ZKLFK LQIRUPV XV DERXW WKH H[SHFWHG SUHFLVLRQ RI WKLV HVWLPDWH 7KH VPDOOHU WKLV LQWHUYDO LV WKH PRUH HIILFLHQW WKH UHVXOWLQJ VWDWLVWLFDO LQIHUHQFH DQG GDWD FRPSDULVRQV PDGH RQ WKH EDVLV RI ERWK VXUYH\V 7R DYRLG DQ\ RXWSXW GLVWRUWLRQ LW LV YHU\ LPSRUWDQW WR WDNH DOO HUURU VRXUFHV LQWR DFFRXQW 2Q WKH RWKHU KDQG VRPH QHJDWLYH HIIHFWV FDQ EH PXWXDOO\ UHGXFHG )RU H[DPSOH LI LQGLFHV GHILQHG DV D UDWLR RI WZR TXDQWLW\ VWDWLVWLFV REWDLQHG IURP WKH VDPH VXUYH\ RU GLIIHUHQW VXUYH\V ZLWK VLPLODU VWUXFWXUHV DQG LQWHQVLW\ RI HUURUV DUH FRQVLGHUHG VXFK D UDWLR FDQ UHIOHFW WKHP VXIILFLHQWO\ VLQFH WKH\ DUH LQFOXGHG ZLWK VLPLODU YDOXHV ERWK LQ WKH QXPHUDWRU RU GHQRPLQDWRU RI VXFK DQ LQGH[ $ VLPLODU SUREOHP FDQ EH REVHUYHG LI SURILW WKH GLIIHUHQFH EHWZHHQ UHYHQXHV DQG FRVWV LV LQYHVWLJDWHG +HQFH TXDOLW\ PHDVXUHPHQW VKRXOG DOVR EH GRQH XVLQJ WKH VLPSOHVW GDWD H[SUHVVHG LQ QRQ QHJDWLYH DEVROXWH YDOXHV HJ UHYHQXH LQ (85 QXPEHU RI HPSOR\HHV IL[HG DVVHWV LQ (85 HWF ,Q WKH FDVH RI PRQHWDU\ YDOXHV REVHUYHG RYHU WLPH RQH VKRXOG UHO\ RQ WKH LQIODWLRQ IDFWRU XVLQJ WKH IL[HGEDVH LQGH[ IL[HG SULFHV LI DSSOLFDEOH 7KH\ FDQ DOVR EH QRUPDOL]HG 0 %HUJGDKO et al. DOVR FRQVLGHU WKH PHWKRG RI FR±RUGLQDWLQJ VWDWLVWLFDO RXWSXW FDOOHG DOVR EHQFKPDUNLQJ EXW LW LV G\QDPLF ZKHUHDV WKH SUHYLRXVO\ GHVFULEHG DSSURDFK FDQ EH SHUFHLYHG DV VWDWLF ZKHUH RQH VHW RI HVWLPDWHV LV IRUFHG WR DJUHH ZLWK DQRWKHU 7\SLFDOO\ VKRUWWHUP VWDWLVWLFV FRXOG EH EHQFKPDUNHG DJDLQVW DQQXDO VWDWLVWLFV LI WKH IRUPHU DIWHU DJJUHJDWLRQ WR WKH FDOHQGDU \HDU DUH DQ LQGLFDWRU RI WKH ODWWHU 7KLV SURFHGXUH FDQ KDYH WZR EHQHILWV IRU WKH XVHU LW XQLILHV WKH WZR WLPH VHULHV HQVXULQJ WKDW WKH PRQWKO\ VHULHV KDV WKH VDPH DQQXDO VXP DV WKH DQQXDO VHULHV DQG LW LPSURYHV WKH DFFXUDF\ RI VKRUW±WHUP VWDWLVWLFV )RU WKLV WR EH PHDQLQJIXO WKH WZR VHWV RI VWDWLVWLFV VKRXOG KDYH WKH VDPH WDUJHW SDUDPHWHUV IRU WKH FDOHQGDU \HDU 7KH QHFHVVDU\ FRPSDULVRQ VKRXOG EH FRQGXFWHG ERWK DW WKH PDFUR DQG PLFUR±OHYHOV 314 $ 0áRGDN: Coherence and comparability … 5. Conclusions &RKHUHQFH DQG FRPSDUDELOLW\ RI GDWD DUH RQH RI WKH NH\ DVSHFWV GHFLGLQJ RQ WKH TXDOLW\ RI VWDWLVWLFDO RXWSXW 7KHLU UROH LV XQGHUOLQHG LQ PDQ\ RIILFLDO GRFXPHQWV DQG UHFRPPHQGDWLRQV 7KHUH DUH YDULRXV GLPHQVLRQV RI WKHVH SUREOHPV DV ZHOO DV WKHLU VRXUFHV DQG W\SRORJLHV ,Q EXVLQHVV VWDWLVWLFV FRKHUHQFH DQG FRPSDUDELOLW\ KDYH VSHFLILF IRUPDO EDFNJURXQGV DQG GHSHQG RQ TXDOLW\ RI LQWHJUDWLRQ RI LQIRUPDWLRQ REWDLQHG IURP HQWHUSULVHV XVLQJ GLIIHUHQW GDWD VRXUFHV 7KH PHWKRGRORJLFDO VROXWLRQV GLIIHU EHWZHHQ FRXQWULHV DQG VRPHWLPHV HYHQ UHJLRQV 0RUHRYHU DQRWKHU LQFRQYHQLHQFHV PDNLQJ GLIILFXOWLHV LQ HVWLPDWLRQ RI VXIILFLHQW TXDOLW\ FDQ RFFXU HJ GXH WR WKH VFDOH RI LQWHU±FRPSDQ\ WUDQVIHUV LQ VRPH HFRQRPLF HQWLWLHV DV ZHOO DV D GLVSHUVLRQ RI ORFDO XQLWV RI WKH VDPH HQWHUSULVH RYHU YDULRXV FRXQWULHV ,Q DQ\ FDVH WKH XVHU RI VWDWLVWLFDO GDWD VKRXOG REWDLQ SUHFLVH LQIRUPDWLRQ DERXW DOO VXFK GLIIHUHQFHV SUREOHPV DQG WKHLU SUDFWLFDO FRQVHTXHQFHV +HQFH VRPH LQWHUQDWLRQDO VWDQGDUGV RI TXDOLW\ UHSRUWV ZHUH HODERUDWHG 7KXV WKH FRQVWUXFWLRQ RI VRPH XQLYHUVDO PHWKRGRORJLFDO VROXWLRQV JXDUDQWHHLQJ DW OHDVW URXJKO\ LQWHUQDWLRQDO FRKHUHQFH DQG FRPSDUDELOLW\ LV YHU\ GLIILFXOW 7KH RQO\ ZD\ WR WKH LPSURYHPHQW RI WKHVH DVSHFWV RI GDWD TXDOLW\ OHDGV WKURXJK KDUPRQLVDWLRQ RI VDPSOLQJ IUDPHV VXUYH\ GHVLJQV DQG XVHG WRROV +RZHYHU WR GR WKLV HIILFLHQWO\ D UHOLDEOH DVVHVVPHQW RI WKH OHYHO RI SUREOHPV VKRXOG EH SHUIRUPHG 7KH SUHVHQWHG RULJLQDO FRQFHSWV RI DJJUHJDWHG LQGLFHV RI FRKHUHQFH DQG FRPSDUDELOLW\ FDQ EH D VLJQLILFDQW VXSSRUW LQ UHDOLVDWLRQ RI WKLV WDVN 2I FRXUVH WKH\ DUH EDVHG WR D ODUJH H[WHQW RQ VXEMHFWLYH DSSUDLVDO RI WKH VL]H DQG LPSRUWDQFH RI NH\ DVSHFWV +RZHYHU WKH VWDEOH DQG FRPSHWHQW WHDPV RI H[SHUWV DQG SURIHVVLRQDO XVH RI SUHVHQWHG WRROV VXFK DV HJ EHQFKPDUNLQJ FDQ HQVXUH UHOLDEOH UHVXOWV RI VXFK UHFRJQLWLRQ ZKLFK FRXOG EH D KLQW KRZ WR SHUPDQHQWO\ LPSURYH WKH GDWD TXDOLW\ LQ WKH FRQWH[W RI WKH LQYHVWLJDWHG DVSHFWV STATISTICS IN TRANSITION-new series, Summer 2013 315 REFERENCES %$5&(//$1 5 The use of benchmarking techniques in the compilation of the European quarterly national accounts situation and perspectives :RUNLQJ 3DSHUV DQG 6WXGLHV (XURSHDQ &RPPLVVLRQ (XUR ,QGLFDWRUV 2IILFH IRU 2IILFLDO 3XEOLFDWLRQV RI WKH (XURSHDQ &RPPXQLWLHV /X[HPERXUJ DYDLODEOH DW KWWSZZZXQLPDQQKHLPGHHG]SGIHXURVWDW.6 '7(1SGI %(5*'$+/ 0 %/$&. 2 %2:$7(5 5 &+$0%(56 5 '$9,(6 3 '5$3(5 ' (/9(56 ( )8// 6 +2/0(6 ' /81'49,67 3 /81'675g0 6 125'%(5* / 3(55< - 3217 0 35(67:22' 0 5,&+$5'621 , 6.,11(5 &+ 60,7+ 3 81'(5:22' & :,//,$06 0 Model Quality Report in Business Statistics *HQHUDO (GLWRUV 3 'DYLHV 3 6PLWK KWWSXVHUVVRHXFVFHGXaGUDSHUEHUJGDKOHWDO YSGI %58==21( / 52/, ) 6(53,&2 6 % An extension of the Jeffreys–Matusita distance to multiclass cases for feature selection ,((( 7UDQVDFWLRQV RQ *HRVFLHQFH DQG 5HPRWH 6HQVLQJ YRO SS ± &$6&,$12 0 & '( *,25*, 9 2523$//2 ) 6,(672 * Estimation of Structural Business Statistics for Small Firms by Using Administrative Data 5LYLVWD 'L 6WDWLVWLFD 8IILFLDOH 1R ± ,QVWLWXWR 1D]LRQDOH 'L 6WDWLVWLFD SS ± &22. / International experience in setting up an economic statistics compilation programme 5HJLRQDO :RUNVKRS IRU $IULFDQ FRXQWULHV RQ &RPSLODWLRQ RI %DVLF (FRQRPLF 6WDWLVWLFV MRLQWO\ RUJDQL]HG E\ 8QLWHG 1DWLRQV 6WDWLVWLFV 'LYLVLRQ 816' DQG $IULFDQ &HQWUH IRU 6WDWLVWLFV DW (FRQRPLF &RPPLVVLRQ IRU $IULFD $&6 8QLWHG 1DWLRQV 'HSDUWPHQW RI (FRQRPLF DQG 6RFLDO $IIDLUV 6WDWLVWLFV 'LYLVLRQ WK ± WK 2FWREHU $GGLV$EDED (WKLRSLD 'RF 1R (6$67$7$& GRFXPHQW DYDLODEOH LQ WKH ,QWHUQHW DW WKH ZHEVLWH KWWSXQVWDWVXQRUJXQVGHFRQRPLFBVWDWLQWO FRRS DQG ZRUNVKRSV EHVBILOHV$GGLV2FW816' GRFXPHQWV:6%(6(&$ ,QWOH[SHULHQFH/HQ &RRNSGI '$9,(6 3 Assessing the Quality of Business Statistics 2IILFH IRU 1DWLRQDO 6WDWLVWLFV 3URFHHGLQJV IURP WKH 6HFRQG ,QWHUQDWLRQDO &RQIHUHQFH RQ (VWDEOLVKPHQW 6XUYH\V -XQH WK ± VW %XIIDOR 1HZ <RUN KWWSZZZDPVWDWRUJPHHWLQJVLFHVSURFHHGLQJV6SGI 316 $ 0áRGDN: Coherence and comparability … '(67$7,6 National Accounts Quarterly Calculations of Gross Domestic Product in accordance with ESA 1995 – Methods and Data Sources. 1HZ YHUVLRQ IROORZLQJ UHYLVLRQ )DFKVHULH 6HULHV 6 6WDWLVWLVFKHV %XQGHVDPW )HGHUDO 6WDWLVWLFDO 2IILFH :LHVEDGHQ *HUPDQ\ KWWSVZZZGHVWDWLVGH(13XEOLFDWLRQV6SHFLDOL]HG1DWLRQDODFFRXQWV4XDUWHUO\ &DOFXODWLRQV*URVV'RPHVWLF3URGXFW$FFRUGDQFHSGI"BBEORE SXEOLFDWLRQ)LOH (85267$7 ESS Handbook for Quality Reports 6HULHV 0HWKRGRORJLHV DQG :RUNLQJ SDSHUV 2IILFH IRU 2IILFLDO 3XEOLFDWLRQV RI WKH (XURSHDQ &RPPXQLWLHV /X[HPERXUJ (85267$7 Quality Control of Urban Audit Variables 8QLW ' 2IILFH IRU 2IILFLDO 3XEOLFDWLRQV RI WKH (XURSHDQ &RPPXQLWLHV /X[HPERXUJ $SULO (85267$7 Handbook "How To Make A Quality Report" 6HULHV 0HWKRGRORJLFDO 'RFXPHQWV :RUNLQJ *URXS $VVHVVPHQW RI TXDOLW\ LQ VWDWLVWLFV 6L[WK PHHWLQJ /X[HPERXUJ QG ± UG 2FWREHU 'RFXPHQW 1R 'RF (XURVWDW$4XDOLW\+DQGERRN DYDLODEOH DW WKH ZHEVLWH KWWSDSOLFDWLYRVVHQD\PBGRFXPHQWD\PBELEOLRWHFD'RFXPH QWR GH VRSRUWH0HWKRGRORJLFDO GRFXPHQWV KDQGERRN KRZ WR PDNH D TXDOLW\ UHSRUW 1$&,21(6 81,'$6SGI (85267$7 European Statistics Code of Practice for the National and Community Statistical Authorities 6WDWLVWLFDO 2IILFH RI (XURSHDQ 8QLRQ (XURVWDW /X[HPERXUJ DYDLODEOH DW KWWSXQVWDWVXQRUJXQVGGQVVGRF9LHZHUDVS["GRF,' *$5&Ë$ /$35(67$ - 0$57Ë1(= 3$1(52 0 Borda Count Versus Approval Voting: A Fuzzy Approach 3XEOLF &KRLFH ± SS ± *$7(: . ɋɬɚɬɢɫɬɢɱɟɫɤɨ ɯɚɪɚɤɬɟɪɢɡɚɧɢɟ ɧɚ ɫɬɪɭɤɬɭɪɧɢɢ ɢɡɦɟɧɢɟɧɢɹ, Ɍɪɭɞɨɜɷ ɧɚ ȼɢɫɲɢɹ ɂɤɨɧɨɦɢɱɟɫɤɢɣ ɂɧɫɬɢɬɭɬ Ʉ Ɇɚɪɤɫ ɋɨɮɢɹ YRO SS ± LQ 5XVVLDQ ,85&29,&+ / .201,126 1 5(,' $ +(<'(%5(&. 3 3,(55$.,6 < Mutual Learning Platform. Regional Benchmarking Report. Blueprint for Regional Innovation Benchmarking (XURSHDQ &RPPLVVLRQ &RPPLWWHH RI WKH 5HJLRQV ,5( ,QQRYDWLRQ 1HWZRUN DYDLODEOH DW KWWSZZZUWWQUXBILOHVILOHVOLEUDU\SGI -Ï=()2:6., 7 0à2'$. $ Observation of flows of population in Polish statistics – problems and challenges >LQ@ ( (OVQHU + 0LFKHO HGV ³$VVLVWDQFH IRU WKH <RXQJHU *HQHUDWLRQ 6WDWLVWLFV DQG 3ODQQLQJ LQ %LJ $JJORPHUDWLRQV´ ,QVWLWXW IU $QJHZDQGWH 'HPRJUDSKLH ,)$' %HUOLQ SS ± STATISTICS IN TRANSITION-new series, Summer 2013 317 .$=,1,(& / 6 Ɉ ɦɟɬɨɞɚɯ ɫɜɨɞɧɨɣ ɨɰɟɧɤɢ ɫɬɭɤɬɭɪɧɵɯ ɫɞɜɢɝɨɜ ȼɟɫɬɧɢɤ ɋɬɚɬɧɫɬɢɤɢ 1R LQ 5XVVLDQ .g51(5 7 38&+ . Statistics and Science. Coherence of German Labour Market Statistics 9ROXPH 6WDWLVWLVFKHV %XQGHVDPW )HGHUDO 6WDWLVWLFDO 2IILFH :LHVEDGHQ $YDLODEOH DW KWWSVZZZGHVWDWLVGH'(3XEOLNDWLRQHQ6WDWLVWLN:LVVHQVFKDIW%DQGB&RK HUHQFH/DERXU0DUNHWSGI"BBEORE SXEOLFDWLRQ)LOH /,79$. % Distances and consensus rankings O &\EHUQHWLFV DQG V\VWHPV DQDO\VLV ^ 7UDQVODWHG IURP .LEHUQHWLND 1R SS ± -DQXDU\)HEUXDU\ 0$/,1$ $ =(/,$ĝ $ On Building Taxonometric Measures on Living Conditions 6WDWLVWLFV LQ 7UDQVLWLRQ YRO SS ± 0à2'$. $ D Taxonomic analysis in regional statistics HG E\ ',),1 ± $GYLVRU\ DQG ,QIRUPDWLRQ &HQWUH :DUV]DZD 3RODQG LQ 3ROLVK 0à2'$. $ E Multilateral normalisations of diagnostic features 6WDWLVWLFV LQ 7UDQVLWLRQ YRO SS ± 0à2'$. $ An Approach to the Problem of Spatial Differentiation of Multi-feature Objects Using Methods of Game Theory 6WDWLVWLFV LQ 7UDQVLWLRQ 9RO SS ± 2(&' Handbook on Constructing Composite Leading Indicators: Methodology and User Guide *OREDO ,QYHQWRU\ RI 6WDWLVWLFDO 6WDQGDUGV 2UJDQL]DWLRQ IRU (FRQRPLF &RRSHUDWLRQ DQG 'HYHORSPHQW OLQN KWWSXQVWDWVXQRUJXQVGLLVV+DQGERRNRQ&RQVWUXFWLQJ&RPSRVLWH /HDGLQJ,QGLFDWRUV0HWKRGRORJ\DQG8VHU*XLGHDVK[ 67$7&$1 Metadata to Support the Survey Life Cycle ,QYLWHG 3DSHU -RLQW 81(&((XURVWDW2(&' ZRUN VHVVLRQ RQ VWDWLVWLFDO PHWDGDWD 0(7,6 7RSLF LLL 0HWDGDWD DQG WKH 6WDWLVWLFDO &\FOH 6XEPLWWHG E\ 6WDWLVWLFV &DQDGD IRU WKH &RQIHUHQFH RI (XURSHDQ 6WDWLVWLFLDQV 8QLWHG 1DWLRQV 6WDWLVWLFDO &RPPLVVLRQ DQG (FRQRPLF &RPPLVVLRQ IRU (XURSH (XURSHDQ &RPPLVVLRQ 6WDWLVWLFDO 2IILFH RI WKH (XURSHDQ &RPPXQLWLHV (XURVWDW 2UJDQLVDWLRQ )RU (FRQRPLF &RRSHUDWLRQ DQG 'HYHORSPHQW 2(&' 6WDWLVWLFV 'LUHFWRUDWH *HQHYD UG ± WK $SULO KWWSZZZXQHFHRUJILOHDGPLQ'$0VWDWVGRFXPHQWVHFHFHVJH]L SHSGI 318 $ 0áRGDN: Coherence and comparability … '( :$$/ 7 3$11(.2(. - 6&+2/786 6 Handbook of Statistical Data Editing and Imputation -RKQ :LOH\ 6RQV ,QF +RERNHQ 1HZ -HUVH\ <$1&+(9$ ' ,6.529$ . Reducing the administrative burden for the business in Bulgaria: Single Entry Point for Reporting Fiscal and Statistical Information >LQ@ 3URFHHGLQJV IURP %/8((76 &RQIHUHQFH RQ %XUGHQ DQG 0RWLYDWLRQ LQ 2IILFLDO %XVLQHVV 6XUYH\V 6WDWLVWLFV 1HWKHUODQGV +HHUOHQ 0DUFK SS ± =(/,$ĝ $ Some Notes on the Selection of Normalization of Diagnostic Variables 6WDWLVWLFV LQ 7UDQVLWLRQ YRO SS ± STATISTICS IN TRANSITION-new series, Summer 2013 319 STATISTICS IN TRANSITION-new series, Summer 2013 Vol. 14, No. 2, pp. 319–328 STATISTICS AS A PROFESSION – STATISTICIAN AS AN OCCUPATION: observations and comments from a panel of experts Wlodzimierz Okrasa 1, Beata Witek 2 1. Introduction and background Statisticians rarely devote as much attention to their profession as it does deserve, including such fundamental questions as what actually constitutes statistics today - as a discipline in relation to others, primarily to mathematics and observation-based sciences (theoretically or applied oriented), on one side, and in researching and teaching, on the other. Especially, given its inherent dynamics and externally caused transition to new stages of its permanent development, and what is their – statisticians' – own view of their occupational status, including who actually should unambiguously be considered statistician. And how s/he ought to be prepared through education and training system to play this important role in various domains – in academia and policy making, as well as in private life and business management. Therefore, any occasion to exchange views on such dual aspects (disciplinary and occupational status) among experts during scientific meetings seems to be worth of reporting. One of such meeting took recently place at the conference on Methods of Assessment of Quality of Teaching held in the University of Lodz last June (see note on it in this issue below) during which a discussion panel was organized to address some of the above issues. As the panel’s organizers, we feel deeply indebted to all its participants for sharing their thoughts and opinions: Prof. Prof. Czeslaw Domanski, Jozef Dziechciarz, Miroslaw Krzysko, Marek Rocki, and Janusz Wywial. As a part of our appreciation of their generosity and of the quality of the panel’s output, their voices are summarized here, extended a bit by introductory and concluding remarks, while taking into account the voices of the highly competent audience3, composed of academic teachers and researchers. 1 Central Statistical Office of Poland and the University of Cardinal Stefan Wyszynski in Warsaw. Central Statistical Office of Poland and the University of Cardinal Stefan Wyszynski in Warsaw. 3 Discussants: Prof. Prof. K. Jajuga, S. M. Kot, A. Sokolowski, L. Tomaszewicz, Tadeusz Gerstenkorn. In addition, A. Kupis-Fijalkowska, PhD, was an invited discussant for presenting the Eurostat's European Master in Official Statistics (EMOS) initiative. 2 320 W. Okrasa, B. Witek: Statistics as a profession … While statistics as a profession – meant as a domain of scientific activity, including education – is primarily an object of methodological reflection, statistician as an occupation is basically an example of a labour market category characterized also in sociological terms (status, prestige, ethos, etc.). Although the former was the main focus of the panel discussion, some occupation-related issues are worthwhile to be mentioned here too. In the vein of Neyman's saying "[S]tatistics is the servant to all sciences" (cf. Chiang 1), what implies its presence across all subject matter disciplines, through inter alia necessary involvement of representatives of those disciplines in applying statistical methods – statisticians constitute one of the most heterogeneous categories in occupational statistics. For instance, US Bureau of Labor Statistics counts about 200 specific occupations under this title, defined as follows: "Statisticians. Develop or apply mathematical or statistical theory and methods to collect, organize, interpret, and summarize numerical data to provide usable information. ... Includes mathematical and survey statisticians. Excludes “Survey Researchers” (US BLS 2010, p. 23) 2. This is supplemented by definition: "Survey Researchers. Plan, develop, or conduct surveys. May analyze and interpret the meaning of survey data, determine survey objectives, or suggest or test question wording. Includes social scientists who primarily design questionnaires or supervise survey teams. Excludes "Market Research Analysts and Marketing Specialists" (ibidem, 35). Such a broad interpretation of the occupation accords with perhaps the most widely accepted among statisticians answer to the question 'Who is the statistician?' given by Platek and Särndal about decade ago (2001 3). Starting with considerations of what can realistically be expected from statisticians in terms of quality products generated by national statistical agencies, the authors arrived with the following definition: "[T]he statistician ... is anyone who contributes to the ultimate delivery of statistics and data to users.", and specify the main categories of this occupation: "theoretical statistician – survey methodologist – subject matter specialist – information technologist – and survey manager" (ibidem, p. 3). Keeping in mind such a broad interpretation of both 'statistics' and 'statistician' we began the panel discussion with a concern about the quality of the process of creating new generations of performers in the scene of this profession. 1 “Statisticians in History”, http://www.amstat.org/about/statisticiansinhistory/index.cfm?fuseaction =biosinfo&BioID=11. 2 US BLS 2010 SOC Definitions U.S. Bureau of Labor Statistics On behalf of the Standard Occupational Classification Policy Committee (SOCPC), http://www.bls.gov/soc/soc_2010_definitions.pdf. 3 R Platek and C-E Särndal, 2001. Can a Statistician Deliver? Journal of Official Statistics, Vol. 17, No. 1. pp. 1–20. STATISTICS IN TRANSITION-new series, Summer 2013 321 2. Scoping panel’s perspective All the panelists and discussants agreed that there is a tremendous demand for statisticians and a big need to prepare new cohorts of specialists in the art of using data for sectors of education, government, and industry in a way readying them to meet the challenges from the technologically advanced society. It makes this occupation both an attractive path of carrier for new alumni – along with Tukey’s view: "[T]he best thing about being a statistician is that you get to play in everyone else's backyard." 1 – and a highly respected as a job in view of the general public. For instance, according to a US survey of occupational status, statistician is ranked fifth out of about two hundred (together with mathematician and engineer – Kennett, 2011 2). Much of the panelists' attention revolved around the issue of what? to do and how?, in order to equip the new generations of statisticians in tools and abilities assuring the highest standards of professional quality, given the growing expectation concerning the statisticians' deliverables (in Platek and Särndal's meaning) on the one hand, and the existing drawbacks on the other. Especially, the lack of mathematical background among the majority of students as a consequence of the earlier reform of the high school curriculum, and subsequent lowering requirements from candidates for studying statistics, being often tough in the standard-liberal environment. This concerns the whole process of education, including textbooks and other means and conditions of teaching, which are summarized here as they emerged in the panelists' presentations: (i) the means and conditions of teaching statistics; (ii) the quality of teaching; (iii) the problem of curriculum; (iv) professional and occupational aspects of statistics. 3. The means and conditions of teaching statistics The problem of quality of textbooks for teaching statistics Because of the great importance and influence of the quality of textbooks on teaching and students' knowledge, this issue was one of the key ones discussed during the Panel. The topic was initiated by Prof. M. Krzysko, who referred to the first Polish textbook on statistics entitled “Outline of statistical methods as applied to anthropology” by Jan Czekanowski (1913), as an exemplary model. The speaker also drew attention to the limitations and weaknesses of modern 1 2 American Statistical Association, http://www.amstat.org/careers/whatisstatistics.cfm. R S Kenneth, Statistics As a Profession. 322 W. Okrasa, B. Witek: Statistics as a profession … textbooks on statistics: outdated content, excessive focus on descriptive statistics, presence of elementary errors, unfair reviews allowing authorizing the publication of low-quality books, collections of tasks that relate to outdated data and obsolete problems. Concern can be raised by textbooks on statistics in general secondary schools – it turns out that the textbooks approved by the Ministry of Science and Higher Education are not necessarily a good basis to start education in this area. Agreeing with the above, Prof. K. Jajuga stressed that textbooks should be tailored to different areas of expertise, including consultations with the appropriate persons about the subject matter related to statistics, for example, with economists in the econometric issues. Prof. Cz. Domanski, as the President of the Polish Statistical Association (PTS), considered creating by PTS (in cooperation with other statisticians) a suitable consultative team for evaluating textbooks, or finding such a good author as, for example, Marek Fisz. He recalled that “a statistician seeks the truth” and one should not accept inappropriate behavior at meetings of a council (those related to, for example, lowering the number of hours or unacceptable combination of mathematics with statistics). Supporting these suggestions, Prof. Okrasa stressed that it would be desirable in terms of assurance of quality of teaching statistics to set up a PTS’s council or a team for new textbooks matters. Another valuable idea would be the one of creating (along other countries, for instance, the United States) up-to-date textbooks for practitioners, under the name of Best Statistical Practices, that would keep track of new methods and techniques in the field of applied statistics and lay particular emphasis on the needs of official statistics. This type of instructions for daily work of a statistician would help to raise the prestige of both statisticians and institutions employing them (both public and private ones, such as think-tanks). Initiation into the profession - motivation and preparation Learning statistics should start at earlier stage of education than higher education, according to the panelists. Elements of statistics should be taught already in general secondary schools (especially in economic schools), as argued by Prof. J. Dziechciarz. Referring to the need to elicit emotional motivation to follow this difficult field of study (mentioned by Prof. Domanski) Prof. M. Rocki stressed the need to create such attitudes (emotions) even at the level of primary school (which was also addressed by Prof. J.L. Wywial), pointing at the same time to economic universities, such as Warsaw School of Economics which pioneered with some initiatives to this aim, launching programs such as Children's Economic University and the Academy of Young Economist for students of STATISTICS IN TRANSITION-new series, Summer 2013 323 primary and general secondary schools. And at the subject contests organized to enable the dissemination of issues among young people and to test the knowledge of statistics (e.g. the statistics contest or complement of mathematics or entrepreneurship contests). A good place to stimulate motivation to study statistics could be, according to Prof. Domanski, the Polish Statistical Association, which takes initiatives to “stimulate emotions” and organizes statistical competitions in several Polish cities. Learning-teaching conditions The use of larger amount of current, real-world data stored on CDs and conducting exercises in computer rooms which require not only passive use of statistical software, but making conscious choices based on theoretical knowledge was postulated by Prof. M. Krzysko (seconded by Prof. S.M. Kot). Recalling the limitations associated with the need to join groups because of financial constraints, Prof. L. Tomaszewicz stressed the importance of the learning conditions – which consists also of insufficient length of studies – the worst candidate can be made a gem would s/he be met with adequate teaching environment. Noting that the 6-semester bachelor studies do not provide a complete study program that could educate analysts with good knowledge of statistics, Prof. Rocki stressed that the sequence of the subjects itself – analysis, algebra, probability theory, mathematical statistics and econometrics – requires five semesters, which leaves no room for other subjects enriching the knowledge of the graduate. Possible solutions are (i) the struggle for a uniform courses leading to a master’s degree, and (ii) the formulation of the university qualification framework so as to ensure proper education. In addition, efforts should be taken for participation in determining the title of the professional – the proper nomenclature should reflect the knowledge and skills of graduates (e.g., along University of Minnesota offering a Master of Statistics degree). Bearing in mind the regulation defining the duration of studies of “at least” six semesters, Prof. Domanski shared this view and pointed to the possibility of extending the studies and encouraged taking the initiative and striving for uniform courses leading to a master’s degree. The bottom line: Poor quality of modern textbooks of statistics in Poland results from the use of out-of-date information, referring to obsolete problems, too much focus on descriptive statistics and the lack of a fair selection of textbooks, the consequence of which is the presence of elementary errors in them. In view of this situation it would be reasonable to appoint a consultative team of experts charged with responsibility assess and recommend for distribution only the highest quality textbooks. Providing background and interest in knowledge 324 W. Okrasa, B. Witek: Statistics as a profession … oriented towards statistics should be preferably taken as early as in primary school. One should also take steps to extend the duration of the studies, ideally bringing them to a uniform course (that leads to a master’s degree). 4. The quality of teaching The quality of university teachers As a precondition for producing statisticians as good professionals the availability of quality teachers must be seen, and the Polish educational system has not worked out the mechanism for preparing people to teach statistics properly at each level. It was the main concern of Prof. J. Dziechciarz, who addressed a gap between real-world problems and formal approaches due to the fact that persons teaching statistics are typically graduated in mathematics and educated in the area of advanced statistics. This situation causes two kinds of obstacles: (i) removing from the curriculum the basics of statistics, mainly tools of descriptive statistics, (ii) the lack of teaching suited to the subject matter disciplines, to the specific needs of economics, medicine, social sciences, etc. In teaching statistics there is a necessity to become familiar with the specific objectives of a given field (which was emphasized also by Prof. Kot). A step in overcoming problems related to the lack of subject matter specialists in the profession of a statistician has been made by universities which begun introducing new field of studies such as “Commercial Analyst” or “Business Analyst,” taking into account all the elements essential to practicing statistician. It is worth noting that members of the Polish Accreditation Committee should conduct the assessment of the quality of education in a way comprising verification of the competence of all teachers given courses in statistics (not only of the staff members, being included into so-called the academic minimum). The quality of students – the recruitment policy One of the causes of deterioration of quality of students was seen by the panelists in the student recruitment policy due to the lack of an entry exam that would make it possible to select those who are predestined to study specific subjects from those who simply want to study. According to Prof. Rocki, who addressed this concern, confining the recruitment criteria to the obligatory ‘matura’ examination results in admitting students who are good at graduation subjects but not necessarily prepared to study the specific subject. Apart from the selection of candidates, flexibility and multidisciplinarity is advisable in teaching, whereas a statutory need is to enroll the student on a STATISTICS IN TRANSITION-new series, Summer 2013 325 particular course of study, which may result in wrong choices and waste of public money in the course of studying. Prof. Rocki indicated to results of a survey carried out by the Warsaw School of Economics which showed that in significant proportion the students entering university do not know what choice to make, while among those who have made a choice, one third switches to other fields than the one previously chosen. Therefore, flexibility in studying is necessary, as well as the waver from the requirement to declare the field of study at an early stage – this would give the opportunity for a more informed and consciously made choice of statistics as a main subject of study. In conclusion: The practical problems are the lack of mechanisms to prepare for training statisticians, the teaching process not suited to the different subject matter areas, as well as the lack of mechanisms for selecting candidates for studies and insufficient flexibility to selecting and changing a field of study. Therefore, the necessity to take into account the specificity of particular field of study is stressed, along with including in the curriculum all the key elements and special tools enabling students to practice statistics. The quality of a student should be improved by introducing university entrance examination and removing the need for the selection of the field of study at an early stage of education. 5. The issue of curriculum Apart from the question of who is to teach statistics, it is important to ask what? should be included in the curriculum. Prof. Wywial talked about dubious legitimacy of the profession that requires specialized education in higher education, in case of the absence of a subject (both I and II degree) that teaches basics of statistical inference in a reliable way. Computer science and econometrics were to be such a subject, which was, however, targeted towards experts in the application of quantitative methods in economics and towards computer science (which was also addressed by Prof. Rocki). Another problem arises from sometimes observed attempts to remove from the curriculum quantitative methods, and statistics in particular, due to commercial focus on rapid training of graduates (which was also pointed by Prof. L. Tomaszewicz supported by other panelists). What is important, according to Prof. K. Jajuga, is also teaching statistics in subjects other than computer science and econometrics, and especially in these with the reduced number of hours. Prof. Tomaszewicz stressed that the statistical and econometric core of the fields of study such as computer science and econometrics should be maintained by inter-subject actions, even in defining the occupation of a statistician by means of effects for statistical training, introduced pursuant to the National Qualifications 326 W. Okrasa, B. Witek: Statistics as a profession … Framework. This would refine the graduate profile, defined differently depending on a variety of specialties, which cover the most difficult challenges of modern data analysis. The requirement set out in the description of a graduate profile, such as “knows basic statistical methods...” is not enough to create a statisticsbased program on this basis, as pointed out by Prof. Rocki. 6. Professional and occupational aspects of statistics If we assume that there is no single profession of a statistician, we recognize that there is no single model of education, and that there is a need to adjust teaching to the type of working areas. An example may be the category of official statistician invoked by the panel organizer. The occupation of a statistician working in public statistics institutions has been recognized by Eurostat as important and specific, and an initiative for the program called EMOS “The European Masters in Official Statistics” was undertaken. It was initiated by Eurostat currently conducting a series of meetings with the National Statistical Institutes. As explained by Ms. A. Kupis-Fijalkowska (assistant of Prof. Domanski, an expert for Poland and neighboring countries), EMOS project is to bring to universities, starting from 2014, an additional educational module for the final year of Master's Degree, which would allow for educating a statistician prepared to work in the statistical office, or at Eurostat. A model statistician as seen by mathematical statistics may not be the same as the official statistician. They both are needed but, according to Prof. Okrasa, one cannot expect the same qualifications from both of them. It is worth to quote the conclusions of one of the surveys on what statisticians think about their profession, presenting desirable skills of a statistician: (1) mathematical basics, (2) the ability of critical thinking, (3) the ability of active learning, interacting with representatives of other areas, (4) the ability of active listening (communication and contact with a user). Moreover, statisticians asked in surveys why they want to be statisticians generally appreciate independence (higher than salary), autonomy of their work and high esteem among various types of employers (generally higher than of other staff), as well as prestige in the society. When considering questions about the nature of statistics, Prof. Wywial came to the conclusion that statistics should be considered primarily in terms of profession (referring to the Polish language dictionaries which define profession requiring acquired qualifications in higher education institutions as a concept somewhat different from the term “occupation”). Its subject is the empirical verification of theories produced in other sciences and support in recognition of the characteristics of population, which are the target of studies in other STATISTICS IN TRANSITION-new series, Summer 2013 327 disciplines. A real solution could be the introduction of elite ordered studies and improvement or maintaining the level of studies on existing subjects, such as computer science and econometrics as well as economic analysis. Given the high prestige of the profession of a statistician and the growing concern about bringing the state-of-the-art statistical knowledge and skills to official statistics it was suggested (W. Okrasa) to consider launching in Poland a kind of competition-based scholarship for researchers with proven achievements (modeled on the National Science Foundation’s program of Senior Research Fellowship at the US Bureau of Labour Statistics and at the US Bureau of Census), who would be working on problems being currently of the focus of official statistics. Such problems are, for example, new modes of conducting census or administrative registers vs. statistical data collection system, or whether and how electronic future can provide a threat to statisticians as professionals and to the institutions of official statistics, given that big data, generated by other systems of information, are channeled outside of the area remaining under the control of institutions responsible for public statistics. In spite of being discussed as essentially country-specific, the above issues have been actually internationally recognized for decades, just to mention the presentation by Hartley as the American Statistical Association (ASA) President (1979 – entitled Statistics As a Science and As a Profession), who tried to solve a traditional trade-off between professional equipment of mathematical and applied statisticians. While rejecting claims for 'more mathematics' to assure the quality solution of a real-world problem – or to blame its insufficiency for criticism ("standard of our papers is low", he quotes) – he pointed to cooperation between statistician and subject matter specialist as a way to balance between deductive (formal) and inductive (empirical) components of the statistics as a profession (science) and as an occupation (in terms used here). He was seconded by one of his distant successor, J. Stuart Hunter (the ASA President in 1993) who emphasized in his presidential address that while "a professional in statistics is a person whose everyday work consisted of making sense of data", there are also others – "the builders of statistical theory and makers of statistical tools" – who are "vital to the health of the statistical profession" [italic added] 1. Avoiding temptation to go beyond the scope of the referred panel's discussion, one may indicate the numerous and thematically reach sessions devoted to that issues being vigorously debated at such prominent meetings as the World Statistics Congress held last August in Hong Kong. It does prove that new approaches are continuously sought in most of the nations as some titles inform 1 J. S. Hunter, 1994. Statistics As a Profession. Journal of the American Statistical Association Vol. 89, Issue 425, pages 1–6. 328 W. Okrasa, B. Witek: Statistics as a profession … about that – let us mention only a few out of several dozen presented over there1, for instance: Research on the Modes of Statistical Education and Training in China (Xia Rongpo) – Changing Educational Framework in the Transition to New Educational Standards at Russian Universities of Life Science and their Impact on the Teaching of Statistics (Galina Kamyshova and Lyman McDonald, Russia) – Engaging Students in Statistics Education: situated learning in statistics projects (Pieternel S. Verhoeven, the Netherlands) – Good Practice in Using Statistics in Statistics Education Research (Neville Davies and Gemma Parkinson UK) – New Perspectives: A Statistician and a Statistics Educator Discuss the Lessons Learned from Cross Disciplinary Sojourns (Jennifer J. Kaplan et al., USA) – Radical Statistics: Teachers and Students on the Highwire (Bruno de Sousa et al., Portugal and Spain). A systematic overview of the problems and approaches discussed on the global scale – i.e. at meetings like the 59th WSC – would provide the needed contextualization for those identified as of the key importance during the panel. 1 59th ISI World Statistics Congress in Hong Kong, http://www.isi2013.hk/en/index.php. 329 STATISTICS IN TRANSITION-new series, Summer 2013 STATISTICS IN TRANSITION-new series, Summer 2013 Vol. 14, No. 2, pp. 329±336 REPORT The Regional Statistics – Current Situation and Fundamental Challenges 5HJLRQDO VWDWLVWLFV FRQVWLWXWHV DQ LQWHJUDO DQG YHU\ LPSRUWDQW FRPSRQHQW RI SXEOLF VWDWLVWLFV UHJDUGLQJ LWV RUJDQL]DWLRQDO DQG VXEVWDQWLYH DVSHFWV Basic data aggregation method UHSUHVHQWV WKH PDLQ FULWHULRQ IRU LWV GLVWLQJXLVKLQJ ZKLFK IDFLOLWDWHV WKH SRVLWLRQLQJ RI SKHQRPHQD LQ UHJLRQDO VSDFH DQG WR D OHVVHU H[WHQW WKH DQDO\VLV FRQWHQW 7KH PHWKRG IRU SURYLGLQJ UHJLRQDO VWDWLVWLFV GHILQLWLRQ GHSHQGV RQ WKH DFFHSWHG LQWHUSUHWDWLRQ RI VWDWLVWLFV LWVHOI ± ZKHWKHU VWDWLVWLFV LV LQWHUSUHWHG DV tabular GDWD VHWV DV functional ³UHSRUWLQJ´ LQWHUSUHWDWLRQ RU DV WKH branch of science )ROORZLQJ WDEXODU LQWHUSUHWDWLRQ UHJLRQDO VWDWLVWLFV UHSUHVHQWV GDWD VHWV UHIHUULQJ WR UHJLRQV DQG IDFLOLWDWLQJ VRFLDO HFRQRPLF DQG HQYLURQPHQWDO SKHQRPHQD XQGHUVWDQGLQJ LQ GLIIHUHQW V\VWHPV RI WHUULWRULDO XQLWV ,Q WKLV VHQVH UHJLRQDO VWDWLVWLFV LV XQGHUVWRRG DV GDWD VHWV UHIHUULQJ WR SKHQRPHQD RFFXUULQJ DW GLIIHUHQW VSDWLDO OHYHOV ZKLFK LV LOOXVWUDWHG E\ SLFWXUH Picture 1. 7KH VFRSH RI ³UHJLRQDO VWDWLVWLFV´ FRQFHSW 5(*,21$/ 67$7,67,&6 5HJLRQDO VWDWLVWLFV LQ WKH QDUURZHU VHQVH /RFDO VWDWLVWLFV 6WDWLVWLFV RI PDFURUHJLRQV JURXSV RI UHJLRQV 6WDWLVWLFV RI PH]]RUHJLRQV GLVWULFWV 6WDWLVWLFV RI UHJLRQV SURYLQFHV 6WDWLVWLFV RI PLFURUHJLRQV FRPPXQHV 6WDWLVWLFV RI VXEUHJLRQV 6WDWLVWLFV RI FURVVERUGHU UHJLRQV LQFOXGLQJ (XURUHJLRQV &LW\ VWDWLVWLFV 5XUDO DUHDV VWDWLVWLFV Source: Author’s compilation. 7KH DXWKRU¶V UHIOHFWLRQV EDVHG RQ KLV SDUWLFLSDWLRQ LQ WKUHH WKHPDWLF VHVVLRQV DW WKH &RQJUHVV RI 3ROLVK 6WDWLVWLFV ± 3R]QDĔ 330 The Regional Statistics … 5HJLRQDO VWDWLVWLFV DOVR UHIHUV WR GDWD VHWV FRYHULQJ DOO RU VRPH VSDWLDO FURVV VHFWLRQV RI WKH GHVFULEHG SKHQRPHQD $GGLWLRQDOO\ WKHUH DUH QR VXEVWDQWLDO FRQWUDLQGLFDWLRQV WR LQFOXGH LQWR ORFDO VWDWLVWLFV DV WKH W\SH RI UHJLRQDO VWDWLVWLFV DOVR WKHVH VWDWLVWLFV ZKLFK FRYHU VPDOOHU WKDQ D GLVWULFW RU FRPPXQH WHUULWRULDO XQLWV HJ ORFDWLRQV ,Q UHODWLRQ WR functional interpretation regional statistics UHIHUV WR FROOHFWLQJ DFFXPXODWLQJ DQG XSGDWLQJ VWDWLVWLFDO GDWD WKHLU SURFHVVLQJ SURYLVLRQ DQG GLVVHPLQDWLRQ LQ GLIIHUHQW VSDWLDO V\VWHPV )LQDOO\ ZLWK UHIHUHQFH WR WKH WKLUG LQWHUSUHWDWLRQ regional statistics UHSUHVHQWV WKH VFLHQWLILF EUDQFK RI VWDWLVWLFV ZKLFK GHDOV ZLWK GHWHFWLQJ DQG DQDO\]LQJ FHUWDLQ UHJXODULWLHV RFFXUULQJ LQ PDVV SURFHVVHV DQG DOVR FKDUDFWHULVWLF IRU SKHQRPHQD VWXGLHG LQ GLIIHUHQW WHUULWRULDO V\VWHPV &XUUHQWO\ 5HJLRQDO 6WDWLVWLFV LV IRFXVHG RQ WKH IROORZLQJ WKUHH IXQGDPHQWDO SUREOHPV x FXUUHQW VLWXDWLRQ DVVHVVPHQW DQG WKH LGHQWLILFDWLRQ RI EDVLF FKDOOHQJHV SXW EHIRUH 3ROLVK DQG (XURSHDQ UHJLRQDO VWDWLVWLFV x GDWD EDVHV DV ZHOO DV UHJLRQDO DQG ORFDO GHYHORSPHQW PRQLWRULQJ x FLW\ DQG UXUDO DUHDV VWDWLVWLFV Basic challenges 7KH PDLQ WDVN RI UHJLRQDO VWDWLVWLFV LV WR SURYLGH WKH TXDQWLWDWLYH GHVFULSWLRQ RI DGPLQLVWUDWLYH DQG IXQFWLRQDO LGHQWLWLHV DW WKH OHYHO RI UHJLRQV ,W UHIHUV WR WKH FRXQWU\ZLGH VWDWLVWLFV DV WKH KLHUDUFKLFDO V\VWHP RI JHRJUDSKLFDO DQG LQIUDVWUXFWXUDO HFRQRPLF GHPRJUDSKLF DQG VRFLDO UHODWLRQV 7KH VHFRQG LPSRUWDQW SUREOHP LV WKH DVVHVVPHQW RI LQIRUPDWLRQ FRYHUDJH QHFHVVDU\ IRU WKH VWDWH DQG ORFDO VHOIJRYHUQPHQW IXQFWLRQLQJ LQ PDUNHW HFRQRP\ DIWHU 7KH V\VWHP RI UHJLRQDO VWDWLVWLFV VKRXOG FRQVLGHU SRVVLELOLWLHV IRU LQIRUPDWLRQ V\VWHPV FRQVWUXFWLRQ ZKLFK H[WHQG RXWVLGH DGPLQLVWUDWLYH GLYLVLRQV EDVHG RQ 1876 ,W PDLQO\ UHIHUV WR LQIRUPDWLRQ SURYLVLRQ IRU VSHFLDO DWWHQWLRQ DUHDV VXFK DV HFRQRPLF ]RQHV HWKQLF JURXSV HQYLURQPHQWDO DGYDQWDJHV DUHDV DW ULVN RI IORRGLQJ HWF RU JRDO RULHQWHG DUHDV HJ JHQHUDWLQJ FURVVERUGHU VWDWLVWLFV LQFOXGLQJ (XURUHJLRQDO RQH PHWURSROLWDQ VWDWLVWLFV HWF 7KH GHYHORSPHQW RI VWDWLVWLFDO UHVHDUFK PHWKRGRORJ\ LQ FURVVUHJLRQDO VHFWLRQV DW WKH EHJLQQLQJ RI WKH VW FHQWXU\ FRYHULQJ SUREOHPV ZKLFK RFFXUUHG LQ WKH SURFHVV RI SUHSDUDWLRQ IRU $JULFXOWXUDO &HQVXV DQG 1DWLRQDO &HQVXV UHSUHVHQW WKH WKLUG FKDOOHQJH RI 5HJLRQDO 6WDWLVWLFV ,W PDLQO\ UHIHUV WR FRQFOXVLRQV UHVXOWLQJ IURP WKH DVVHVVPHQW RI VWDWLVWLFDO LQIRUPDWLRQ TXDOLW\ REWDLQHG EDVHG RQ WUDGLWLRQDO FHQVXVHV DQG UHSUHVHQWDWLYH UHVHDUFK ZLWKRXW XVLQJ DOWHUQDWLYH GDWD VRXUFHV FROOHFWHG E\ VWDWH DGPLQLVWUDWLRQ STATISTICS IN TRANSITION-new series, Summer 2013 331 ,QWHJUDWLRQ RI VRXUFHV DQG VSHFLDO VDPSOH VXUYH\V DSSO\LQJ V\QHUJ\ HIIHFW DV ZHOO DV SUREOHPV UHIHUULQJ WR UHJLRQDO GDWD TXDOLW\ DQG WKH FULWHULD RI DVVHVVLQJ WKH VWDWLVWLFDO VXUYH\ UHVXOWV DUH DOVR FRQVLGHUHG YHU\ LPSRUWDQW SUREOHPV &KDOOHQJHV IRU 5HJLRQDO 6WDWLVWLFV DW WKH EDFNJURXQG RI WKH GHEDWH IRFXVHG RQ FRKHVLRQ SROLF\ DUH UHJDUGHG DV WKH QH[W SUREOHP RI WKLV W\SH RI 6WDWLVWLFV 7KH DGRSWLRQ RI WKH /LVERQ 7UHDW\ KDV FKDQJHG WKH VFRSH RI FRKHVLRQ SROLF\ ZKHUH DSDUW IURP VRFLDO DQG HFRQRPLF SUREOHPV D VLJQLILFDQW VSDWLDO GLPHQVLRQ KDV DOVR DSSHDUHG ,Q RUGHU WR VSHFLI\ GXH REMHFWLYHV LQ RUGHU WR SHUIRUP ERWK PRQLWRULQJ DQG HYDOXDWLRQ RI WKLV SROLF\ LW LV QHFHVVDU\ WR SXW PRUH HPSKDVLV RQ WKH UROH RI SXEOLF VWDWLVWLFV DV WKH VRXUFH RI LQGLVSHQVDEOH GDWD 7KH RUJDQL]DWLRQ RI VWDWLVWLFV LQ 3RODQG NHHSV DGMXVWLQJ WR WKH FKDQJLQJ GHPDQG RI GDWD UHFLSLHQWV ,QWHJUDWHG RSHUDWLRQV RI QXPHURXV SXEOLF VWDWLVWLFV SURYLVLRQ XQLWV DUH IXQGDPHQWDO IRU HIIHFWLYH LQIRUPDWLRQ VHUYLFH RI GDWDEDVH XVHUV 7KHVH FKDQJHV UHVXOW LQ WKH HVWDEOLVKPHQW RI 5HJLRQDO 6XUYH\V &HQWUHV ZKLFK IRFXV QRW RQO\ RQ LQLWLDWLQJ UHJLRQDO VXUYH\V EXW PDLQO\ RQ LPPHGLDWH UHVSRQVH WR WKH UHSRUWHG LQIRUPDWLRQ GHPDQG HVSHFLDOO\ SUHVHQWHG E\ WHUULWRULDO VHOIJRYHUQPHQW XQLWV 7KH RQJRLQJ LPSURYHPHQW RI SXEOLFO\ DYDLODEOH GDWDEDVHV VXFK DV HJ /RFDO 'DWD %DQN /'% PXVW DOVR EH UHPHPEHUHG 6LJQLILFDQW PHWKRGRORJLFDO HIIRUWV LQ UHJLRQDO VWDWLVWLFV KDYH EHHQ XQGHUWDNHQ ,Q WKH FRQWH[W RI VWUDWHJLF DVVXPSWLRQV RI LPSOHPHQWDWLRQ PRQLWRULQJ LQ OLQH ZLWK WKH FDUULHG RXW GHYHORSPHQW SROLF\ WKH SUHSDUDWLRQ RI QHZ UXUDO FRPPXQHV W\SRORJ\ FRQVWLWXWHV DQ LPSRUWDQW LQLWLDWLYH WKH UHDOLVDWLRQ RI ZKLFK XQGHUJRHV LWV ILQDO SKDVH 3XEOLVKLQJ DFWLYLWLHV UHSUHVHQW DQ LPSRUWDQW FRPSRQHQW RI LQIRUPDWLRQ DQG VWDWLVWLFDO GDWD GLVVHPLQDWLRQ $PRQJ QXPHURXV UHJLRQDO SXEOLFDWLRQV Rural areas in Poland LV ZRUWK PHQWLRQLQJ $GGLWLRQDOO\ Statistical Vade Mecum of Local Government ZLOO EH LVVXHG IRU WKH VHFRQG WLPH VLQFH LW UHFHLYHG YHU\ JRRG UHYLHZV IURP WKH WDUJHW JURXS &KDOOHQJHV SXW EHIRUH 5HJLRQDO 6WDWLVWLFV DUH GHWHUPLQHG QRW RQO\ E\ VRFLR HFRQRPLF RU SROLWLFDO WUDQVIRUPDWLRQV EXW WKH\ DOVR UHVXOW IURP QHZ WHFKQLFDO FDSDFLWLHV 6XJJHVWLRQV RI VROXWLRQ LQ PDQ\ WKHPDWLF DUHDV PD\ EHFRPH VLJQLILFDQWO\ HQULFKHG E\ WKH FRRSHUDWLRQ EHWZHHQ DFDGHPLF FLUFOHV DQG VWDWLVWLFV SUDFWLWLRQHUV ± LW PDLQO\ UHIHUV WR WKH SUREOHPV RI PHWKRGRORJLFDO QDWXUH EHWWHU VSHFLILFDWLRQ RI LQIRUPDWLRQ QHHGV W\SLFDO IRU SDUWLFXODU JURXSV RI UHFLSLHQWV DQG 7KH SUHVHQWDWLRQ E\ -DQ 3DUDG\V] 3R]QDĔ 8QLYHUVLW\ RI (FRQRPLFV ± 5HJLRQDO 6WDWLVWLFV &HQWUH Regional statistics: state, problems and towards of development, PDWHULDOV RI WKH &RQJUHVV RI 3ROLVK 6WDWLVWLFV 3R]QDĔ 332 The Regional Statistics … DOVR EURDGO\ XQGHUVWRRG DQDO\WLFDO ZRUN ZKLFK SUREDEO\ FRQVWLWXWHV WKH PRVW GLIILFXOW LVVXH Database and indicator systems of regional and local development monitoring 7KH FRQGLWLRQ IRU HVWDEOLVKLQJ DGHTXDWH VHWV RI VXVWDLQDEOH GHYHORSPHQW LQGLFDWRUV UHIHUULQJ WR D JLYHQ FRXQWU\ SURYLQFHV GLVWULFWV DQG FRPPXQHV LV QHFHVVDU\ WR VXEVWDQWLDWH WKLV GHYHORSPHQW FRQFHSW SURYLGLQJ OHJDO DQG VWUDWHJLF VXEVWDQFH E\ GHILQLQJ TXDOLWLHV REMHFWLYHV DQG SULQFLSOHV RI VXVWDLQDEOH GHYHORSPHQW ,QGLFDWRUV UHSUHVHQW EDVLF WRROV IRU VXVWDLQDEOH GHYHORSPHQW PRQLWRULQJ ZKLFK LQ PHDVXUDEOH ZD\ XQYHLOV WKH FRUH FRQFHSW RI VXFK GHYHORSPHQW 7KHUHIRUH WKH HVWDEOLVKPHQW RI LQGLFDWRUEDVHG PRQLWRULQJ V\VWHP IRU VXVWDLQDEOH GHYHORSPHQW LV H[SHFWHG WR SURYLGH SRVVLEO\ WKH PRVW SUHFLVH DQG XQDPELJXRXV DQVZHU WR WKH IROORZLQJ WZR FUXFLDO TXHVWLRQV x ZKDW VXVWDLQDEOH GHYHORSPHQW PHDQV LQ DQ LQGLFDWRURULHQWHG VHQVH x ZKDW VXEVWDQWLDO UHVXOWV LOOXVWUDWH WKLV SURFHVV DQG LWV SURJUHVV LQ ERWK VSDWLDO DQG WHPSRUDO V\VWHP 7KH FRQFHSW RI PRQLWRULQJ WXUQV RXW FUXFLDO DW WKLV SRLQW VLQFH LW FRPELQHV VXVWDLQDEOH GHYHORSPHQW PHDVXUHPHQW ZLWK OLIH TXDOLW\ PHDVXUHPHQW DW WKH ORFDO OHYHO ZLWKLQ WKH IUDPHZRUN RI VSHFLILF DQG FRQVWDQWO\ GHYHORSLQJ ³VWDWLVWLFDO´ LQLWLDWLYH RI WKH ORFDO JRYHUQPHQW VHFWRU XQGHU WKH QDPH RI /RFDO *RYHUQPHQW $QDO\VLV 6\VWHP 6$6 $W WKH WKLUG VWDJH RI WKLV V\VWHP GHYHORSPHQW LH VLQFH DSDUW IURP WKH REMHFWLYH DOUHDG\ EHLQJ FDUULHG RXW SXEOLF VHUYLFHV TXDOLW\ UHVHDUFK D QHZ JRDO VLJQLILFDQWO\ H[WHQGLQJ WKH VFRSH RI 6$6 ZDV GHILQHG ± WKH VWUHQJWKHQLQJ RI LQGLFDWRU PRQLWRULQJ V\VWHPV IRU ORFDO GHYHORSPHQW SROLFLHVVWUDWHJLHV E\ PHDQV RI WZR DGGLWLRQDO LQGLFDWRU PRGXOHV FRQVWUXFWLRQ VXVWDLQDEOH GHYHORSPHQW DQG LQKDELWDQWV¶ OLIH TXDOLW\ 7KH PRGXOH RI VXVWDLQDEOH GHYHORSPHQW LQGLFDWRUV IRU WKH SXUSRVHV RI WKH V\VWHP FDQ EH GLVWLQJXLVKHG DW WKH EDFNJURXQG RI RWKHU LQGLFDWRU V\VWHPV E\ WKH SRVVLELOLW\ RI FDOFXODWLQJ VXVWDLQDEOH GHYHORSPHQW V\QWKHWLF PHDVXUHV IRU GRPDLQV DQG RUGHUV :LWKLQ WKH PRGXOH IRXU DQDO\VLV OHYHOV RI VXVWDLQDEOH GHYHORSPHQW LQGLFDWRUV DUH SRVVLEOH WR FDUU\ RXW DQG DGMXVW WR WKH PRQLWRULQJ QHHGV RI ORFDO VWUDWHJLHV LPSOHPHQWDWLRQ 7KH V\VWHP DOVR RIIHUV OLIH TXDOLW\ VXUYH\ WR ORFDO JRYHUQPHQWV LQFOXGLQJ WKH VXUYH\ PHWKRGRORJ\ DQG WKH UHSRUW VWUXFWXUH 7KLV V\VWHP PRGXOH OLVWV DOWRJHWKHU 7KH SUHVHQWDWLRQ E\ 'RPLQLND 5RJDOLĔVND &HQWUDO 6WDWLVWLFDO 2IILFH Challenges for regional statistics at the background of debate focused on cohesion policy PDWHULDOV RI WKH &RQJUHVV RI 3ROLVK 6WDWLVWLFV 3R]QDĔ STATISTICS IN TRANSITION-new series, Summer 2013 333 RYHU VXVWDLQDEOH GHYHORSPHQW LQGLFDWRUV DQG D UHODWLYHO\ EDODQFHG GLYLVLRQ RI LQGLFDWRU VHW LQWR WKUHH RUGHUV VRFLDO HFRQRPLF DQG HQYLURQPHQWDOVSDWLDO RUGHU ,W LV VXSSRUWHG E\ WKH 5HJLRQDO 'DWD %DQN 5'% RI &HQWUDO 6WDWLVWLFDO 2IILFH &62 &KDQJHV LQ 5'% UHSUHVHQW RQH RI WKH PDMRU PDQLIHVWDWLRQV IHDWXULQJ LPSURYHPHQWV LQ WKH SXEOLFDOO\ DYDLODEOH GDWDEDVH 7KHVH FKDQJHV PDLQO\ UHIHU WR x WKH DYDLODELOLW\ RI VHOHFWHG TXDOLWLHV DOVR IRU WKH OHYHO RI VWDWLVWLFDO ORFDWLRQV x WKH H[WHQVLRQ RI VKRUWWHUP GDWD VFRSH x VLJQLILFDQW LPSURYHPHQWV LQ LQWHUIDFH IXQFWLRQLQJ x UHFRJQLWLRQ RI 5'% UHVRXUFHV DV DQ LPSRUWDQW VRXUFH RI LQIRUPDWLRQ DERXW VXVWDLQDEOH GHYHORSPHQW LPSOHPHQWDWLRQ DW ORFDO DQG UHJLRQDO OHYHO $ XQLYHUVDO PRGXOH ZDV FRQVWUXFWHG ZLWKLQ WKH IUDPHZRUN RI 5'% ZKLFK IDFLOLWDWHV VXVWDLQDEOH GHYHORSPHQW PRQLWRULQJ DW WKH ORZHU OHYHO WKDQ WKH QDWLRQDO RQH 6XVWDLQDEOH GHYHORSPHQW LQGLFDWRUV GHYHORSHG E\ (XURVWDW EHFDPH WKH SRLQW RI UHIHUHQFH IRU WKLV PRGXOH FRQVWUXFWLRQ 7KH PRGXOH SUHSDUHG ZLWKLQ 5'% GRHV QRW SUHVHQW WKH VHW IRU WKH SXUSRVHV RI D VXEVWDQWLYH GHYHORSPHQW VWUDWHJ\ PRQLWRULQJ DW HLWKHU ORFDO RU UHJLRQDO OHYHO EXW LW RIIHUV D EDVLF VHW RI LQGLFDWRUV ZKLFK PD\ EHFRPH WKH EDFNJURXQG IRU VXVWDLQDEOH GHYHORSPHQW DQDO\VHV DW WKH ORZHU WKDQ QDWLRQDO OHYHO 7KH HVWDEOLVKHG PRGXOH LV VXSSRVHG WR FRQVWLWXWH D W\SH RI D ³FRUH´ IDFLOLWDWLQJ WKH DVVHVVPHQW DQG FRPSDULVRQ RI SDUWLFXODU WHUULWRULDO VHOI JRYHUQPHQW XQLWV 6XFK PRGXOH KDV WR EH FRPSRVHG RI LQGLFDWRUV ZKLFK DUH FRYHUHG E\ VWDWLVWLFDO GDWD DQG WKHVH GDWD DUH FRPSDUDEOH IRU DOO WHUULWRULDO VHOIJRYHUQPHQW XQLWV $SDUW IURP WKDW GXH WR WKH VSHFLILF QDWXUH RI SDUWLFXODU XQLWV WKH PRGXOH PD\ EH VXSSOHPHQWHG E\ LQGLFDWRUV FUXFLDO IURP WKH SHUVSHFWLYH RI D JLYHQ WHUULWRULDO XQLW 7KH PRGXOH VKRXOG EH H[WHQGHG E\ WKH VRFDOOHG OHDGLQJ JURXSV LQ D JLYHQ DUHD ± VHOIJRYHUQPHQW VHFWRU HQWUHSUHQHXUV DQG VRFLDO RUJDQL]DWLRQV UHSUHVHQWDWLYHV 7KH SUHSDUHG PRGXOH FRQVLVWV RI WRSLFV ZKLFK DUH HVVHQWLDO IRU VXVWDLQDEOH GHYHORSPHQW PRQLWRULQJ DW UHJLRQDO DQG ORFDO OHYHO (DFK WRSLF LV GLYLGHG LQWR VXEWRSLFV XQGHU ZKLFK VXEVWDQWLYH LQGLFDWRUV ZHUH OLVWHG 7KH SUHVHQWDWLRQ E\ 7DGHXV] %RU\V :URFáDZ 8QLYHUVLW\ RI (FRQRPLFV DQG 7RPDV] 3RGNDĔVNL 7KH $VVRFLDWLRQ RI 3ROLVK &LWLHV Monitoring regional and local development PDWHULDOV RI WKH &RQJUHVV RI 3ROLVK 6WDWLVWLFV 3R]QDĔ 7KH SUHVHQWDWLRQ E\ %DUWRV] %DUWQLF]DN :URFáDZ 8QLYHUVLW\ RI (FRQRPLFV ± 0RGXOH RI VXVWDLQDEOH GHYHORSPHQW LQGLFDWRUV LQ 5HJLRQDO 'DWD %DQN PDWHULDOV RI WKH &RQJUHVV RI 3ROLVK 6WDWLVWLFV 3R]QDĔ 334 The Regional Statistics … The statistics of cities and rural areas 3UDFWLFDO DSSOLFDWLRQ RI Geographic Information System (GIS) LV RI FUXFLDO VLJQLILFDQFH LQ FLW\ DQG UXUDO DUHDV VWDWLVWLFV DV DQ LQIRUPDWLRQ V\VWHP XVHIXO IRU HQWHULQJ FROOHFWLQJ SURFHVVLQJ DQG WKH YLVXDOLVDWLRQ RI JHRJUDSKLFDO GDWD VLQFH RQH RI LWV PDQ\ IXQFWLRQV LV WR SURYLGH VXSSRUW IRU WKH GHFLVLRQPDNLQJ SURFHVVHV *,6 LV WKH UHVXOW RI VHYHUDO GHFDGHV RI RQJRLQJ PHWKRGRORJLFDO FKDQJHV LQ JHRJUDSK\ DQG REYLRXVO\ DOVR WKH UDSLG GHYHORSPHQW RI FRPSXWHU WHFKQRORJ\ LQIOXHQFLQJ GDWDEDVH LQIRUPDWLRQ VHWV PDQDJHPHQW PHWKRGV 7KH HVWDEOLVKPHQW RI *,6 LV WKH HIIHFW RI FRPELQLQJ HIIRUWV FDUULHG RXW LQ GLIIHUHQW ILHOGV JHRJUDSK\ FDUWRJUDSK\ JHRGHV\ FRPSXWHU WHFKQRORJ\ HOHFWURQLFV DQG VWDWLVWLFV *,6 LV DSSOLHG DPRQJ RWKHUV LQ FRQVWUXFWLQJ VSDWLDO LQIRUPDWLRQ VHWV UHFRUGV UHJLVWHUV DQG DOVR LQ WKHLU SURFHVVLQJ DQG DQDO\VLV $QRWKHU DSSOLFDWLRQ JURXS LV UHODWHG WR LQIRUPDWLRQ SURFHVVLQJ DERXW WKH GLVWULEXWLRQ RI DOO W\SHV RI SKHQRPHQD HVSHFLDOO\ WKHVH IHDWXULQJ H[WHQVLYH YDULDELOLW\ LQ WLPH 7KLV JURXS RI DSSOLFDWLRQV DOVR FRYHUV *,6 XVDJH IRU VWDWLVWLFDO GDWD DQDO\VLV DQG SUHVHQWDWLRQ VXFK DV HJ FULPH WKUHDW GLVHDVHV RFFXUUHQFH ODQG XVH VWUXFWXUH *,6 PD\ DOVR SUHVHQW D YHU\ XVHIXO WRRO IRU SURFHVVLQJ GDWD DERXW WHFKQLFDO LQIUDVWUXFWXUH RI D JLYHQ DUHD LH ZDWHU JDV HQHUJ\ VXSSO\ V\VWHP QHWZRUN FRPPXQLFDWLRQ OLQHV 6XFK GDWD UHTXLUH IUHTXHQW PRGLILFDWLRQV $GGLWLRQDOO\ WKHLU JUHDW DFFXUDF\ DQG WLPHOLQHVV LV LQGLVSHQVDEOH *,6 ZDV XVHG IRU WKH SXUSRVHV RI SXEOLF VWDWLVWLFV LQ WKH FRXUVH RI WZR FHQVXVHV $JULFXOWXUDO &HQVXV $& ± IURP 6HSWHPEHU XQWLO 2FWREHU DQG 1DWLRQDO &HQVXV RI 3RSXODWLRQ DQG +RXVLQJ 1&3+ ± IURP $SULO XQWLO -XQH ,Q WKH SURFHVV RI WKHVH FHQVXVHV PRGHUQ DQG FKHDSHU WKDQ EHIRUH VROXWLRQV RI GDWD FROOHFWLQJ IURP GDWD KROGHUV FRPLQJ IURP LQIRUPDWLRQ V\VWHPV LQFOXGLQJ DGPLQLVWUDWLRQ RQHV DQG HOHFWURQLF FRPPXQLFDWLRQ WRROV ZHUH DOVR H[WHQVLYHO\ XVHG ZKLFK FRPSOHWHO\ HOLPLQDWHG SDSHU IRUPV 7KLV DOORZHG IRU VPDOOHU EXUGHQ RQ UHVSRQGHQWV DQG IRU FXWWLQJ FHQVXV PDWHULDOV SULQWLQJ FRVWV 7KH IROORZLQJ GDWD FROOHFWLQJ FKDQQHOV ZHUH DSSOLHG LQ WKH DERYH FHQVXVHV DGPLQLVWUDWLRQ VRXUFHV WKH ,QWHUQHW &$,, ± &RPSXWHU $VVLVWHG ,QWHUQHW ,QWHUYLHZ RQOLQH VHOIHQXPHUDWLRQ WHOHSKRQH LQWHUYLHZ &$7, ± &RPSXWHU $VVLVWHG 7HOHSKRQH ,QWHUYLHZ E\ DQ HQXPHUDWRU &$3, ± &RPSXWHU $VVLVWHG 3HUVRQDO ,QWHUYLHZ HTXLSSHG ZLWK D SRUWDEOH KDQG KHOG WHUPLQDO 7R VXSSRUW WKH FHQVXV D &RPSXWHUEDVHG &HQVXV 6\VWHP &&6 ZDV LQWURGXFHG ZKLFK LQWHJUDWHG GLIIHUHQW WHFKQRORJLHV IURP DSSOLFDWLRQV LQVWDOOHG RQ STATISTICS IN TRANSITION-new series, Summer 2013 335 PRELOH WHUPLQDOV WKURXJK DSSOLFDWLRQV PDQDJLQJ DQG VXSSRUWLQJ SKRQH LQWHUYLHZV WR VSHFLDOL]HG GDWDEDVH GDWD ZDUHKRXVHV DQG DQDO\WLFDOUHSRUWLQJ WRROV $GGLWLRQDOO\ &&6 SURYLGHG VROXWLRQV HQVXULQJ KLJK OHYHO RI GDWD SURFHVVLQJ VHFXULW\ GXH RUJDQL]DWLRQDO SURFHGXUHV ZHUH LPSOHPHQWHG ZKLFK REOLJHG FHQVXV SDUWLFLSDQWV WR PDLQWDLQ VWDWLVWLFDO VHFUHF\ DQG SURWHFW SHUVRQDO GDWD 7KH LQQRYDWLRQ LQWURGXFHG LQ WKH FRXUVH RI ERWK FHQVXVHV ZDV WKH DSSOLFDWLRQ RI *,6 WHFKQRORJ\ DW HYHU\ VWDJH 'LJLWDO PDSV FRQVWLWXWHG HVVHQWLDO WRROV IRU FHQVXV HQXPHUDWRUV UHJDUGLQJ VSDWLDO RULHQWDWLRQ VDPSOLQJ IUDPH YHULILFDWLRQ HWF IRU FRPPXQDO OHDGHUV SURYLQFLDO DQG FHQWUDO GLVSDWFKHUV ZKR FRXOG SHUIRUP UHPRWH YHULILFDWLRQ RI FHQVXV DGYDQFHPHQW DV ZHOO DV WKH URXWH RU WKH FXUUHQW ORFDWLRQ RI WKH FHQVXV HQXPHUDWRU *,6 DSSOLFDWLRQV ZHUH XVLQJ PDWHULDOV REWDLQHG E\ 3=*L. [National Geodetic and Cartographic Resources] RUWRSKRWPDSV ERUGHUV RI SURYLQFHV GLVWULFWV DQG FRPPXQHV QDPHV RI ORFDWLRQV ERUGHUV RI VWDWLVWLFDO UHJLRQV DQG FHQVXV HQXPHUDWLRQ DUHDV DQG DOVR VWDWLVWLFDO DGGUHVV SRLQWV SUHSDUHG E\ WKH RIILFLDO VWDWLVWLFV VHUYLFHV DV ZHOO DV UHJLVWHUHG SDUFHOV OD\HU $5L05 [Agriculture Restructuring and Modernization Agency] URDGV DQG VWUHHWV *,6 UHSUHVHQWV DQ HIIHFWLYH DQG DWWUDFWLYH WRRO IRU VWDWLVWLFDO GDWD SUHVHQWDWLRQ DQG DQDO\VLV $OO VWDWLVWLFDO GDWD UHIHU LQ D VHQVH WR JHRJUDSKLF VSDFH DQG WKHUHIRUH VSDWLDO DVSHFW VKRXOG DOVR EH FRQVLGHUHG LQ WKHLU DQDO\VLV 7\SLFDO LQIRUPDWLRQ SXEOLVKHG LQ WDEXODU IRUP ZLWKRXW SUHVHQWLQJ LW LQ WKH IRUP RI PDSV GRHV QRW DOORZ IRU QRWLFLQJ QXPHURXV LQWHUGHSHQGHQFLHV 7KHUHIRUH VWDWLVWLFV XVHV PRUH DQG PRUH RIWHQ *,6 VRIWZDUH ZKLFK IDFLOLWDWHV VWDWLVWLFDO GDWD YLVXDOL]DWLRQ E\ PHDQV RI PDSV DQG DOVR DGYDQFHG VSDWLDO DQDO\VHV RI WKHVH GDWD 7KH DSSOLFDWLRQ RI GDWD IURP DGPLQLVWUDWLRQ VRXUFHV LQ FLW\ VWDWLVWLFV VXSSRUWHG E\ *,6 WRROV UHSUHVHQWV D YHU\ LPSRUWDQW GLUHFWLRQ LQ WKH GHYHORSPHQW RI 5HJLRQDO 6WDWLVWLFV 7KH JURZLQJ GHPDQG IRU GHWDLOHG DQG DOVR FRPSOH[ LQIRUPDWLRQ DERXW FLWLHV DQG SUREOHPV ZLWK PHHWLQJ WKHP UHVXOW LQ WKH IDFW WKDW SXEOLF VWDWLVWLFV NHHSV ORRNLQJ IRU QHZ VRXUFHV RI WKHLU DFTXLVLWLRQ 7KH VWXG\ RI LQIRUPDWLRQRULHQWHG GHPDQG DOVR LQGLFDWHV WKH QHHG IRU DQDO\]LQJ FLWLHV SHUFHLYHG LQ FHUWDLQ VHSDUDWLRQ IURP DGPLQLVWUDWLYH ERUGHUV IXQFWLRQDO DUHD ZLGHU XUEDQ ]RQH LQWHUQDO XUEDQ ]RQHV 7KH QHHG IRU D GLIIHUHQW SHUVSHFWLYH LQ UHODWLRQ WR D ³FLW\´ DOVR UHVXOWV 7KH SUHVHQWDWLRQ E\ -DQXV] '\JDV]HZLF] 0DJGDOHQD -DF]XU.QDSHN DQG $PHOLD :DUG]LĔVND 6KDULI &HQWUDO 6WDWLVWLFDO 2IILFH 7ZR FHQVXVHV $& DQG 1&3+ DQG *,6 LQ SXEOLF VWDWLVWLFV PDWHULDOV RI WKH &RQJUHVV RI 3ROLVK 6WDWLVWLFV 3R]QDĔ 7KH SUHVHQWDWLRQ E\ 3DZHá &KOHELFNL (65, 3RODQG $UF*,6 DV VWURQJO\ WRRO RI VWDWLVWLFDO GDWD YLVXDOL]DWLRQ DQG VSDWLDO DQDO\VH PDWHULDOV RI WKH &RQJUHVV RI 3ROLVK 6WDWLVWLFV 3R]QDĔ 336 The Regional Statistics … IURP VXFK VWUDWHJLF GRFXPHQWV DV 1DWLRQDO 5HJLRQDO 'HYHORSPHQW 6WUDWHJ\ 1DWLRQDO 6SDWLDO 'HYHORSPHQW &RQFHSW DQG WKH (XURSHDQ &RPPLVVLRQ SURMHFWV IRFXVHG RQ XUEDQ GHYHORSPHQW VXSSRUW 7KHVH UHDVRQV EHFDPH WKH OHDGLQJ LQVSLUDWLRQ WR H[WHQG WKH DSSOLFDWLRQ RI GDWD LQFOXGHG LQ DGPLQLVWUDWLYH VRXUFHV DV VXSSOHPHQWDU\ IRU VWDWLVWLFDO VXUYH\V 3UHSDUHG E\ 7DGHXV] %RU\V :URFáDZ 8QLYHUVLW\ RI (FRQRPLFV STATISTICS IN TRANSITION-new series, Summer 2013 337 STATISTICS IN TRANSITION-new series, Summer 2013 Vol. 14, No. 2, pp. 337–340 REPORT The 22nd Didactic Conference on Teaching Quality Evaluation Methods, 10-11 June 2013, àyGĨ 3RODQG 7KH QG HGLWLRQ RI 3ROLVK QDWLRQZLGH Didactic Conference ZDV WLWOHG Teaching Quality Evaluation Methods 0HWRG\ RFHQ\ MDNRĞFL QDXF]DQLD DQG ZDV KHOG LQ àyGĨ IURP WK WR WK -XQH 7KH &RQIHUHQFH ZDV RUJDQL]HG E\ WKH Institute of Statistics and Demography RI WKH 8QLYHUVLW\ RI àyGĨ ZLWK WKH FRRSHUDWLRQ RI WKH Institute of Econometrics RI WKH 8QLYHUVLW\ RI àyGĨ XQGHU WKH KRQRUDU\ DXVSLFHV RI WKH 3UHVLGHQW RI WKH &LW\ RI àyGĨ 0V +DQQD Zdanowska The City of àyGĨ Office DQG StatSoft Polska Sp. z o.o. ZHUH RIILFLDO SDUWQHUV RI WKH 'LGDFWLF &RQIHUHQFH Prof. &]HVáDZ 'RPDĔVNL KHOG WKH IXQFWLRQ RI WKH &KDLUPDQ RI WKH 6FLHQWLILF DQG 2UJDQL]LQJ &RPPLWWHHV Aleksandra Kupis-)LMDáNRZVND 06F ZDV WKH ILUVW VHFUHWDU\ RI ERWK &RPPLWWHHV DQG $QQD 0DMG]LĔVND 06F ZDV WKH VHFRQG VHFUHWDU\ RI WKH 2UJDQL]LQJ &RPPLWWHH 7KH 'LGDFWLF &RQIHUHQFH 2UJDQL]HUV DLPHG WR SURYLGH DQ RSSRUWXQLW\ IRU DFDGHPLF WHDFKHUV DQG WXWRUV HVSHFLDOO\ LQ ILHOGV VXFK DV PDWKHPDWLFV VWDWLVWLFV HFRQRPHWULFV ILQDQFH HFRQRP\ DQG QDWLRQDO DFFRXQWV GHPRJUDSK\ DQG GHPRPHWU\ WR SUHVHQW WKHLU WHDFKLQJ SUREOHPV DQG UHIOHFWLRQV DV ZHOO DV DQDO\]H DQG GLVFXVV UHFHQW VFLHQWLILF REVHUYDWLRQV LQ WKLV DUHD 7KH HGLWLRQ RI WKH &RQIHUHQFH ZDV IRFXVHG RQ WKH 7HDFKLQJ 4XDOLW\ DQG PHWKRGV RI LWV HYDOXDWLRQ 7KH &RQIHUHQFH ZDV RSHQHG E\ WKH &KDLUPDQ RI WKH 6FLHQWLILF &RPPLWWHH Prof. 'RPDĔVNL 2Q WKH 2SHQLQJ VHVVLRQ WKH QH[W VSHDNHUV ZHUH UHVSHFWLYHO\ Prof. =RILD :\VRNLĔVND 3UR5HFWRU LQ &KDUJH RI ,QWHUQDWLRQDO $IIDLUV ZKR ZDV WKH UHSUHVHQWDWLYH RI WKH 5HFWRU RI WKH 8QLYHUVLW\ RI àyGĨ Prof. :áRG]LPLHU] Nykiel DQG Prof. JDQXV] ĝZLHUNRFNL, 3UR'HDQ IRU ,QWHUQDWLRQDO &RRSHUDWLRQ DQG &RXUVH RI 6WXGLHV RI ,QWHUQDWLRQDO (FRQRPLF 5HODWLRQV (FRQRPLFV ZKR ZDV UHSUHVHQWLQJ WKH 'HDQ RI 7KH )DFXOW\ RI (FRQRPLFV DQG 6RFLRORJ\ RI WKH 8QLYHUVLW\ RI àyGĨ Prof. 3DZHá 6WDURVWD DQG WKH 3UR'HDQ IRU 5HVHDUFK Prof. Agnieszka Rossa %ULHIO\ WKH NH\ VWDWLVWLFV RI WKH 2013 Didactic Conference ORRN DV IROORZV SDUWLFLSDQWV DOWRJHWKHU LQFOXGLQJ WKH 6HQDWRU RI WKH 5HSXEOLF RI 3RODQG DQG WKH 3UHVLGHQW RI 3ROLVK $FFUHGLWDWLRQ &RPPLWWHH Prof. Marek Rocki WKH UHSUHVHQWDWLYH RI WKH &HQWUDO 6WDWLVWLFDO 2IILFH RI 3RODQG Prof. :áRG]LPLHU] Okrasa DFDGHPLF WHDFKHUV VFLHQWLVWV DQG 3K' VWXGHQWV UHSUHVHQWLQJ 3ROLVK 338 The 22nd Didactic Conference … XQLYHUVLWLHV DQG SUDFWLWLRQHUV SOHQDU\ VHVVLRQV ZLWK SUHVHQWHG SDSHUV -XELOHH VHVVLRQ DQG 'LVFXVVLRQ 3DQHO 7KH ILUVW VHVVLRQ ZDV RUJDQL]HG WR FHOHEUDWH 7KH ,QWHUQDWLRQDO <HDU RI 6WDWLVWLFV DQG ZDV OHG E\ Prof. Okrasa &DUGLQDO 6WHIDQ :\V]\ĔVNL 8QLYHUVLW\ LQ :DUVDZ &HQWUDO 6WDWLVWLFDO 2IILFH RI 3RODQG ,W ZDV VWDUWHG E\ Prof. Rocki 6HQDWRU RI WKH 5HSXEOLF RI 3RODQG 3ROLVK $FFUHGLWDWLRQ &RPPLWWHH :DUVDZ 6FKRRO RI (FRQRPLFV ZKR VSRNH DERXW The Condition of Statisticians Education in Reports of the Polish Accreditation Committee 7KH VHFRQG VSHHFK Statistics – Science About Information Ensuring the Quality of Teaching ZDV JLYHQ E\ Prof. 'RPDĔVNL 8QLYHUVLW\ RI àyGĨ 7KHVH WZR PHQWLRQHG DERYH SUHVHQWDWLRQV IRUPHG D VROLG LQWURGXFWLRQ WR WKH QH[W SDUW RI WKH &RQIHUHQFH ZKLFK ZDV D Discussion Panel Statistics as a Profession – Statistician as an Occupation, SUHSDUHG DQG PRGHUDWHG E\ Prof. Okrasa 7KH IROORZLQJ H[SHUWV ZHUH LQYLWHG E\ WKH 2UJDQL]HUV WR WDNH SDUW LQ LW E\ DOSKDEHWLFDO RUGHU Prof. 'RPDĔVNL 8QLYHUVLW\ RI àyGĨ, Prof. Józef Dziechciarz :URFODZ 8QLYHUVLW\ RI (FRQRPLFV Prof. 0LURVáDZ .U]\ĞNR $GDP 0LFNLHZLF] 8QLYHUVLW\ LQ 3R]QDĔ Prof. M. Rocki 6HQDWRU RI WKH 5HSXEOLF RI 3RODQG 3ROLVK $FFUHGLWDWLRQ &RPPLWWHH :DUVDZ 6FKRRO RI (FRQRPLFV Prof. -DQXV] :\ZLDá 8QLYHUVLW\ RI (FRQRPLFV LQ .DWRZLFH 7KLV HYHQW ZDV RSHQ IRU HYHU\RQH WKHUHIRUH DOVR RWKHU SURPLQHQW VWDWLVWLFLDQV DV ZHOO DV OHVV H[SHULHQFHG RQHV DQG PDQ\ UHSUHVHQWDWLYHV RI RWKHU WHDFKLQJ ILHOGV IRU H[DPSOH GHPRJUDSK\ RU HFRQRPHWULFV SDUWLFLSDWHG LQ WKH GLVFXVVLRQ >7KH GHWDLOHG LQIRUPDWLRQ DERXW WKLV SDQHO DV ZHOO DV LPSRUWDQW FRQFOXVLRQV DQG IXUWKHU UHFRPPHQGDWLRQV FDQ EH IRXQG LQ WKLV Statistics in Transition - new series LVVXH E\ the panel organizer@ 7KH VHFRQG SOHQDU\ VHVVLRQ ZDV OHG E\ Prof. Rocki 6HQDWRU RI WKH 5HSXEOLF RI 3RODQG 3ROLVK $FFUHGLWDWLRQ &RPPLWWHH :DUVDZ 6FKRRO RI (FRQRPLFV DQG WKH IROORZLQJ SDSHUV ZHUH SUHVHQWHG Quality measurement in the EU concept of the entrepreneurial university E\ Prof Dziechciarz :URFODZ 8QLYHUVLW\ RI (FRQRPLFV The Interplay Between Entrepreneurship Education and Students’ Entrepreneurial Intentions LQYHVWLJDWHG E\ -DFHN %LDáHN DQG Agnieszka Kurczewska 8QLYHUVLW\ RI àyGĨ DQG Methods for Assessing the Quality of Teaching – Quantitative Methods for Economics and Business E\ Grzegorz .RĔF]DN DQG Jolanta Bernais 8QLYHUVLW\ RI (FRQRPLFV LQ .DWRZLFH 7KH WKLUG VHVVLRQ ZDV FKDLUHG E\ Prof. .U]\ĞNR $GDP 0LFNLHZLF] 8QLYHUVLW\ LQ 3R]QDĔ DQG SDSHUV ZHUH GLVFXVVHG KHUH Analysis of the Results of the Compensatory Courses in Mathematics Realised in the Affiliate Branch of the Warsaw University of Technology in Plock E\ Izabela Józefczyk Romuald 0DáHFNL DQG Roman Rumianowski :DUVDZ 8QLYHUVLW\ RI 7HFKQRORJ\ $IILOLDWH %UDQFK LQ 3ORFN Evaluation of Quality of Teaching at the Example of the Faculty of Economics of the West Pomeranian University of Technology in Szczecin E\ ,ZRQD %ąN DQG Katarzyna Wawrzyniak :HVW 3RPHUDQLDQ 8QLYHUVLW\ RI 7HFKQRORJ\ LQ 6]F]HFLQ DQG Modernization of mathematics courses STATISTICS IN TRANSITION-new series, Summer 2013 339 in departments of economics, by supplementary remarks about elements of complex analysis E\ Janusz Kupczun 8QLYHUVLW\ RI àyGĨ 7KH QH[W VHVVLRQ RI WKH &RQIHUHQFH ZDV D VSHFLDO -XELOHH RQH DQG ZDV OHG E\ Prof. Rossa ,W ZDV RUJDQL]HG E\ WKH Institute of Statistics and Demography RI 8QLYHUVLW\ RI àyGĨ ZLWK FRRSHUDWLRQ RI WKH Polish Statistical Association. 7KLV VHVVLRQ WRRN SODFH WR FHOHEUDWH WKH WK DQQLYHUVDU\ RI Prof. 'RPDĔVNL¶V VFLHQWLILF DQG DFDGHPLF ZRUN Prof. 'RPDĔVNL LV WKH DXWKRU RU FRDXWKRU RI DOPRVW UHVHDUFK SDSHUV DQG ERRNV LQ WKH ILHOG RI PDWKHPDWLFDO VWDWLVWLFV ILQDQFLDO VWDWLVWLFV DQG ULVN WKHRU\ +H DOVR DFWHG DV VXSHUYLVRU RI QXPHURXV 3K' GLVVHUWDWLRQV DQG LV UHFRJQL]HG DV D JUHDW WHDFKHU RI PDQ\ JHQHUDWLRQV RI VWXGHQWV Prof. 'RPDĔVNL ZDV DZDUGHG VHYHUDO SUHVWLJLRXV SUL]HV Prof. Jerzy T. Kowaleski DQG Prof. $OLQD -ĊGU]HMF]DN 8QLYHUVLW\ RI àyGĨ SUHSDUHG Scientific Curriculum Vitae of 3URIHVVRU &]HVáDZ 'RPDĔVNL 7KH $XWKRUV WKRURXJKO\ GHVFULEHG WKH ELRJUDSKLFDO SURILOH LQFOXGLQJ VFLHQWLILF SXEOLFDWLRQV DQG DFDGHPLF DFKLHYHPHQWV RI WKH -XELODULDQ $OVR Prof. -ĊGU]HMF]DN SUHVHQWHG WKH 6HVVLRQ¶V 3DUWLFLSDQWV ZLWK D YLGHR ZLWK WKH LQWHUYLHZ RI Prof. 'RPDĔVNL DQG Prof. Walenty Ostasiewicz DERXW 6WDWLVWLFV JLYHQ WR WKH 5HSRUWHU RI WKH 3ROLVK 7HOHYLVLRQ 0RQLND :áRGDUF]\N 2Q WKH VHFRQG GD\ RI WKH QG 'LGDFWLF &RQIHUHQFH VHVVLRQV KDG SODFH 5HVSHFWLYHO\ WKH IRXUWK SOHQDU\ VHVVLRQ DQG WKH ILUVW RQH RQ WKH WK -XQH ZDV FKDLUHG E\ Prof. $QGU]HM 6RNRáRZVNL &UDFRZ 8QLYHUVLW\ RI (FRQRPLFV 7KH IROORZLQJ SDSHUV ZHUH SUHVHQWHG Didactics and Changes in the Student Community – A Review E\ Lilianna Jarmakowska-Kostrzanowska 8QLYHUVLW\ RI àyGĨ Selected Statistical Analysis Methods in Assessment of the Learning Outcomes in the Example of the Descriptive Statistics Exam Results E\ 0DáJRU]DWD 0LV]WDO 8QLYHUVLW\ RI àyGĨ DQG Implementation of Continuous Quality Improvement Method in Higher Education SUHSDUHG E\ (OĪELHWD Zalewska 8QLYHUVLW\ RI àyGĨ 7KH VL[WK SOHQDU\ VHVVLRQ ZKLFK ZDV OHG E\ Prof. Kowaleski 8QLYHUVLW\ RI àyGĨ ZDV GHYRWHG WR WKH WHDFKLQJ RI GHPRJUDSK\ DQG LWV HYDOXDWLRQ DW WKH KLJKHU HGXFDWLRQ OHYHO 'XULQJ WKLV VHVVLRQ WKH IROORZLQJ SDSHUV ZHUH GLVFXVVHG Methods of Evaluation in Teaching Demography and Related Subjects ± D SUHVHQWDWLRQ GHOLYHUHG E\ $QQD 0DMG]LĔVND RQ EHKDOI RI LWV $XWKRU Milena Lange 8QLYHUVLW\ RI àyGĨ DQG Essence of Teaching Demography in the Context of Trends and Country's Development Strategy SUHSDUHG DQG SUHVHQWHG E\ Anna 0DMG]LĔVND DQG Anna Wierzbicka 8QLYHUVLW\ RI àyGĨ 7KH QG HGLWLRQ RI WKH Didactic Conference Teaching Quality Evaluation Methods ZDV FORVHG E\ WKH 9LFH&KDLUPDQ RI WKH Institute of Statistics and Demography RI WKH 8QLYHUVLW\ RI àyGĨ DQG WKH &KDLUPDQ RI WKH àyGĨ %UDQFK RI WKH 3ROLVK 6WDWLVWLFDO $VVRFLDWLRQ Prof. -ĊGU]HMF]DN 2Q EHKDOI RI WKH 6FLHQWLILF DQG 2UJDQL]LQJ &RPPLWWHHV Prof. -ĊGU]HMF]DN VXPPDUL]HG WKH &RQIHUHQFH DV YHU\ HIIHFWLYH 7KH LPSRUWDQFH RI WKH KLJK TXDOLW\ HGXFDWLRQ DQG WKH SUREOHP RI LWV UHOLDEOH DVVHVVPHQW ZHUH HPSKDVL]HG $OVR LQ WKH FRQWH[W RI WKH 'LVFXVVLRQ 340 The 22nd Didactic Conference … 3DQHO OHG E\ Prof. Okrasa WKH UROH RI 6WDWLVWLFDO /LWHUDF\ LQ WKH PRGHUQ VRFLHWLHV DQG WKH QHHG RI SRSXODUL]LQJ SURIHVVLRQ RI VWDWLVWLFLDQ ZHUH PHQWLRQHG 7KH SXEOLFDWLRQ HQWLWOHG Acta Universitatis Lodziensis, Folia Oeconomica. 0HWRG\ RFHQ\ MDNRĞFL QDXF]DQLD (Methods of Assessment of the Quality of Teaching) LV WKH SXEOLVKLQJ RXWSXW RI WKH 'LGDFWLF &RQIHUHQFH ,W ZDV HGLWHG E\ AOLQD -ĊGU]HMF]DN DQG Aleksandra Kupis-)LMDáNRZVND SULQWHG E\ WKH àyGĨ 8QLYHUVLW\ 3UHVV 7KH QH[W URXQG RI WKH PHHWLQJ VHULHV NQRZQ DV WKH 'LGDFWLF &RQIHUHQFH ZLOO EH GHYRWHG WR Academic teacher and new educational challenges. ,W LV SODQQHG RQ June 9th-10th, 2014 DOVR LQ àyGĨ) - details will be given in a separate announcement 3UHSDUHG E\ $OHNVDQGUD .XSLV)LMDáNRZVND 8QLYHUVLW\ RI àyGĨ STATISTICS IN TRANSITION-new series, Summer 2013 341 STATISTICS IN TRANSITION-new series, Summer 2013 Vol. 14, No. 2, pp. 341–342 REPORT Summer School of Baltic-Nordic-Ukrainian Network on Survey Statistics 2013 7KH 6XPPHU 6FKRRO RI %DOWLF1RUGLF8NUDLQLDQ 1HWZRUN RQ 6XUYH\ 6WDWLVWLFV ZDV RUJDQLVHG LQ 0LQVN %HODUXV RQ -XQH ± ,W ZDV WKH VHYHQWHHQWK DQQXDO HYHQW RUJDQLVHG E\ WKH %DOWLF1RUGLF8NUDLQLDQ 1HWZRUN RQ 6XUYH\ 6WDWLVWLFV KWWSVZLNLKHOVLQNLILGLVSOD\%18 7KH REMHFWLYHV RI WKH VXPPHU VFKRRO ZHUH WR SUHVHQW UHFHQW DFKLHYHPHQWV DQG UHVXOWV OHDUQ IURP WHDFKHUV DQG FROOHDJXHV GLVFXVV WKH IXWXUH VKDUH RSLQLRQV DQG H[SHULHQFH DQG VWUHQJWKHQ FRQWDFWV EHWZHHQ VXUYH\ VWDWLVWLFLDQV 7KHUH ZHUH SDUWLFLSDQWV IURP VHYHQ FRXQWULHV ± %HODUXV (VWRQLD )LQODQG /DWYLD /LWKXDQLD 6ZHGHQ DQG 8NUDLQH 7KH DXGLHQFH RI WKH ZRUNVKRS ZDV GLYHUVH ± FRQVLVWLQJ RI XQGHUJUDGXDWH VWXGHQWV UHVHDUFK VWXGHQWV XQLYHUVLW\ WHDFKHUV DQG SUDFWLVLQJ VWDWLVWLFLDQV 7KHUH ZHUH IRXU PDLQ OHFWXUHUV 6HSSR /DDNVRQHQ 8QLYHUVLW\ RI +HOVLQNL )LQODQG WZR OHFWXUHV HQWLWOHG ³1RQUHVSRQVH DGMXVWPHQW LQ VXUYH\V´ 5LVWR /HKWRQHQ 8QLYHUVLW\ RI +HOVLQNL )LQODQG WZR OHFWXUHV HQWLWOHG ³$QDO\VLV RI FRPSOH[ VXUYH\ GDWD DQ RYHUYLHZ´ $OHNVDQGUDV 3OLNXVDV 9LOQLXV 8QLYHUVLW\ /LWKXDQLD WZR OHFWXUHV HQWLWOHG ³&DOLEUDWLRQ´ ,PEL 7UDDW 8QLYHUVLW\ RI 7DUWX (VWRQLD WZR OHFWXUHV HQWLWOHG ³0DLQ SULQFLSOHV RI VXUYH\ VDPSOLQJ´ 7KHUH ZHUH ILYH VSHFLDO LQYLWHG OHFWXUHUV 1DWDOOLD %RNXQ %HODUXVLDQ 6WDWH (FRQRPLF 8QLYHUVLW\ %HODUXV WKH OHFWXUH ³0XOWLYDULDWH VDPSOH PDLQ SULQFLSOHV GHVLJQ HVWLPDWLRQ´ 2NVDQD +RQFKDU 1DWLRQDO $FDGHP\ 6WDWLVWLFV $FFRXQWLQJ DQG $XGLW 8NUDLQH WKH OHFWXUH ³6DPSOH VXUYH\V LQ 2IILFLDO 6WDWLVWLFV XQGHUVWDQGLQJ TXDOLW\´ 'DQXWH .UDSDYLFNDLWH 9LOQLXV *HGLPLQDV 7HFKQLFDO 8QLYHUVLW\ /LWKXDQLD WKH OHFWXUH ³6RIWZDUH IRU VXUYH\ VDPSOLQJ DQG DQDO\VLV´ *XQQDU .XOOGRUII 8QLYHUVLW\ RI 8PHn 6ZHGHQ WKH OHFWXUH ³7KH 6WDWLVWLFDO 6FLHQFH ,V ,QWHUQDWLRQDO ± $QG 6XUYH\ 6WDWLVWLFV ,V &RRO DQG +RW´ 342 Summer School of Baltic … 0ƗUWLƼã /LEHUWV &HQWUDO 6WDWLVWLFDO %XUHDX RI /DWYLD WKH OHFWXUH ³7KH FKRLFH RI D VDPSOLQJ GHVLJQ UHJDUGLQJ VXUYH\ FRVW HIILFLHQF\´ 7KH ILUVW GD\ RI WKH VXPPHU VFKRRO ZDV GHYRWHG WR OHFWXUHV LQ 5XVVLDQ 7KH OHFWXUHV LQ 5XVVLDQ ZHUH JLYHQ E\ 'DQXWH .UDSDYLFNDLWH $OHNVDQGUDV 3OLNXVDV (OHQD =DSDWULQD DQG 9LFWRU /HYNHYLFK 7KHUH ZHUH DGGLWLRQDOO\ WKLUWHHQ SDUWLFLSDQWV IURP %HODUXV WDNLQJ SDUW GXULQJ WKH ILUVW GD\ RI WKH VXPPHU VFKRRO 1LQHWHHQ SUHVHQWDWLRQV RI FRQWULEXWHG SDSHUV GHYRWHG WR VXUYH\ VWDWLVWLFV ZHUH SUHVHQWHG E\ WKH VXPPHU VFKRRO SDUWLFLSDQWV DQG GLVFXVVHG E\ LQYLWHG GLVFXVVDQWV 7KH PRVW RI WKH PDWHULDOV SUHVHQWHG GXULQJ WKH VXPPHU VFKRRO LV DYDLODEOH DW WKH VXPPHU VFKRRO ZHEVLWH KWWSQLUEVHXE\%DOWLF1RUGLF&RQIHUHQFH0DLQ 3DJHKWPO 7KH VSRQVRUV RI WKH ZRUNVKRS ZHUH WKH 1RUGSOXV 3URJUDPPH RI WKH 1RUGLF &RXQFLO RI 0LQLVWHUV DQG WKH ,QWHUQDWLRQDO $VVRFLDWLRQ RI 6XUYH\ 6WDWLVWLFLDQV 7KH QH[W DQQXDO HYHQW RUJDQLVHG E\ WKH QHWZRUN ZLOO EH WKH ZRUNVKRS LQ 7DOOLQQ (VWRQLD LQ $XJXVW 3UHSDUHG E\ 0ƗUWLƼã /LEHUWV 8QLYHUVLW\ RI /DWYLD STATISTICS IN TRANSITION-new series, Summer 2013 343 STATISTICS IN TRANSITION-new series, Summer 2013 Vol. 14, No. 2, pp. 343–348 THE INTERNATIONAL YEAR OF STATISTICS (IYS) STATISTICS 2013 7KH \HDU LV FHOHEUDWHG DV WKH ,QWHUQDWLRQDO <HDU RI 6WDWLVWLFV $PHULFDQ 6WDWLVWLFDO $VVRFLDWLRQ ,QVWLWXWH RI 0DWKHPDWLFDO 6WDWLVWLFV ,QWHUQDWLRQDO %LRPHWULF 6RFLHW\ WKH ,QWHUQDWLRQDO 6WDWLVWLFDO ,QVWLWXWH WKH %HUQRXOOL 6RFLHW\ DQG WKH 5R\DO 6WDWLVWLFDO 6RFLHW\ DUH WKH IRXQGLQJ 2UJDQL]DWLRQV 1DWLRQDO DQG LQWHUQDWLRQDO RUJDQL]DWLRQV IURP FRXQWULHV IURP DOO RYHU WKH ZRUOG DUH LQYROYHG LQ WKH FHOHEUDWLRQ RI WKH ,<6 $PRQJ WKHP DUH SURIHVVLRQDO VWDWLVWLFDO DVVRFLDWLRQV VFKRROV XQLYHUVLWLHV EXVLQHVV LQVWLWXWLRQV UHVHDUFK LQVWLWXWHV DQG VWDWLVWLFDO RIILFHV 2UJDQL]DWLRQV SDUWLFLSDWLQJ LQ WKH FHOHEUDWLRQ RI WKH ,QWHUQDWLRQDO <HDU RI 6WDWLVWLFV DUH FRQWULEXWLQJ WR WKH SURPRWLRQ RI WKH LPSRUWDQFH RI VWDWLVWLFV E\ RUJDQL]LQJ FRQIHUHQFHV VHPLQDUV DQG RWKHU HGXFDWLRQDO DFWLYLWLHV DLPHG DW ERWK WKH UHSUHVHQWDWLYHV RI WKH VFLHQWLILF EXVLQHVV DQG PHGLD FRPPXQLW\ DV ZHOO DV DW SXEOLF UHSUHVHQWDWLYHV ZKR DUH XVHUV RI VWDWLVWLFV JRYHUQPHQW GDWD XVHUV DQG SROLF\ PDNHUV HPSOR\HUV DQG VWXGHQWV 7KH ,QWHUQDWLRQDO <HDU RI 6WDWLVWLFV LV FHOHEUDWHG E\ D QXPEHU RI 3ROLVK LQVWLWXWLRQV VXFK DV Professional Societies x 7KH 6FLHQWLILF &OXE RI 4XDQWLWDWLYH 0HWKRGV )DFXOW\ RI 0DQDJHPHQW 8QLYHUVLW\ RI *GDQVN x *$866 6FLHQWLILF DVVRFLDWLRQ RI PDWKHPDWLFDO VWDWLVWLFV ,QVWLWXWH RI 0DWKHPDWLFV DQG &RPSXWHU 6FLHQFH :URFODZ 8QLYHUVLW\ RI 7HFKQRORJ\ 7H[W DXWKRUL]HG E\ 3URI -DQXV] :LWNRZVNL 3UHVLGHQW RI WKH &HQWUDO 6WDWLVWLFDO 2IILFH RI 3RODQG DQG &KDLUPDQ RI WKH 2UJDQL]LQJ &RPPLWWHH RI WKH ,<6 &RQIHUHQFH 344 The International Year of… x x x 3ROLVK 0DWKHPDWLFDO 6RFLHW\ :URFODZ %UDQFK 3ROLVK 6WDWLVWLFDO $VVRFLDWLRQ 6WDWLVWLFDO )RUXP 3ROLVK )LUVW 6WDWLVWLFDO )RUXP Colleges and Universities x &ROOHJLXP ,QYLVLEOH :DUVDZ x &URVV1DWLRQDO 6WXGLHV ,QWHUGLVFLSOLQDU\ 5HVHDUFK DQG 7UDLQLQJ 3URJUDP &216,57 x 0DULD &XULH6NáRGRZVND 8QLYHUVLW\ )DFXOW\ RI 0DWKHPDWLFV 3K\VLFV DQG &RPSXWHU 6FLHQFH /XEOLQ x 1LFRODXV &RSHUQLFXV 8QLYHUVLW\ )DFXOW\ RI 0DWKHPDWLFV DQG &RPSXWHU 6FLHQFH 7RUXQ x 8QLYHUVLW\ RI (FRQRPLFV 3R]QDQ 'HSDUWPHQW RI 6WDWLVWLFV ³(VWLPDWRU´ 6WXGHQW 6FLHQWLILF $VVRFLDWLRQ x 8QLYHUVLW\ RI /RG] 'HSDUWPHQW RI 6WDWLVWLFDO 0HWKRGV 6.1 6), x 8QLYHUVLW\ RI /RG] ,QVWLWXWH RI 6WDWLVWLFV DQG 'HPRJUDSK\ 'HSDUWPHQW RI 6WDWLVWLFDO 0HWKRGV x 8QLYHUVLW\ RI 0DQDJHPHQW DQG $GPLQLVWUDWLRQ =DPRVF x :DUVDZ 0DQDJHPHQW $FDGHP\ Business x $%(,36 x 'DWD ,QWHOOLJHQFH 3RODQG Government x &HQWUDO 6WDWLVWLFDO 2IILFH RI 3RODQG :DUVDZ Research Institutes and Journals x ,QVWLWXWH RI &DWKROLF &KXUFK 6WDWLVWLFV :DUVDZ x 6FLHQWLILF )RXQGDWLRQ 6PDUWHU3RODQGSO 7KLV LQLWLDWLYH ZKLFK LV VXSSRUWHG E\ RYHU RUJDQL]DWLRQV DURXQG WKH ZRUOG DQG DERXW LQVWLWXWLRQV LQ 3RODQG LQYROYHV QXPHURXV HYHQWV DLPHG LQ SDUWLFXODU DW x ,QFUHDVLQJ SXEOLF DZDUHQHVV RI WKH LPSDFW RI VWDWLVWLFV RQ DOO DVSHFWV RI VRFLDO OLIH LQFOXGLQJ LQFUHDVLQJ UHFRJQLWLRQ RI WKH FRQWULEXWLRQ RI VWDWLVWLFV WR LPSURYH WKH TXDOLW\ RI OLIH DQG DGYDQFHPHQW RI WKH JOREDO FRPPXQLW\ x 'HYHORSLQJ WKH SURIHVVLRQ RI D VWDWLVWLFLDQ HVSHFLDOO\ DPRQJ \RXQJ SRSOH x 3URPRWLQJ FUHDWLYLW\ DQG GHYHORSPHQW LQ VWDWLVWLFV DQG VFLHQFH RI SUREDELOLW\ STATISTICS IN TRANSITION-new series, Summer 2013 345 2QH RI VXFK HYHQWV LV WKH VFLHQWLILF FRQIHUHQFH ³6WDWLVWLFV ± .QRZOHGJH ± 'HYHORSPHQW´ RUJDQL]HG LQ /RG] RQ 2FWREHU E\ WKH &HQWUDO 6WDWLVWLFDO 2IILFH 6WDWLVWLFDO 2IILFH LQ /RG] WKH 3ROLVK 6WDWLVWLFDO $VVRFLDWLRQ DQG WKH ,QVWLWXWH RI 6WDWLVWLFV DQG 'HPRJUDSK\ RI 8QLYHUVLW\ RI /RG] ,W LV WKH FXOPLQDWLRQ RI \HDUORQJ DFWLYLW\ RI WKH 3ROLVK 3URJUDPPH &RPPLWWHH RI WKH ,QWHUQDWLRQDO <HDU RI 6WDWLVWLFV XQGHU WKH OHDGHUVKLS RI -DQXV] :LWNRZVNL WKH 3UHVLGHQW RI WKH &HQWUDO 6WDWLVWLFDO 2IILFH 7KH 3URJUDPPH &RPPLWWHH ZKLFK EURXJKW WRJHWKHU GLVWLQJXLVKHG UHSUHVHQWDWLYHV RI WKH 3ROLVK VFLHQFH KDV VHW LWVHOI WKH IROORZLQJ WDVNV DPRQJ RWKHU WKLQJV L WR LQLWLDWH DQG SRSXODUL]H UHVHDUFK SURMHFWV XQGHUWDNHQ RQ WKH RFFDVLRQ RI WKH ,<6 LL WR LQLWLDWH DQG UHYLHZ SXEOLFDWLRQV DVVRFLDWHG ZLWK WKH FHOHEUDWLRQ RI WKH ,<6 LLL WR PRQLWRU WKH FHOHEUDWLRQ RI WKH ,<6 DQG WR SRSXODUL]H LWV SXUSRVHV LQ WKH PHGLD LY WR DFWLYHO\ SDUWLFLSDWH LQ WKH SUHSDUDWLRQ RI WKH VFLHQWLILF FRQIHUHQFH ³6WDWLVWLFV ± .QRZOHGJH ± 'HYHORSPHQW´ ZKLFK LV WKH KLJKOLJKW RI WKH FHOHEUDWLRQ RI WKH ,QWHUQDWLRQDO <HDU RI 6WDWLVWLFV LQ 3RODQG $V PHQWLRQHG DERYH WKH 3URJUDPPH &RPPLWWHH RI WKH ,QWHUQDWLRQDO <HDU RI 6WDWLVWLFV LQFOXGHV SURPLQHQW VRFLDO VFLHQWLVWV IURP DOO RYHU 3RODQG WKH &KDLUSHUVRQ -DQXV] :LWNRZVNL WKH 3UHVLGHQW RI WKH &HQWUDO 6WDWLVWLFDO 2IILFH 'HSXW\ &KDLUSHUVRQV DQG 9LFH3UHVLGHQWV RI WKH &HQWUDO 6WDWLVWLFDO 2IILFH +DOLQD 'PRFKRZVND 3K' DQG *UDĪ\QD 0DUFLQLDN 3K' $GYLVRUV WR WKH 3UHVLGHQW RI WKH &62 3URI 7DGHXV] :DOF]DN 3URI :áRG]LPLHU] 2NUDVD DQG %RKGDQ :\ĪQLNLHZLF] 3K' DV ZHOO DV GLUHFWRUV RI 6WDWLVWLFDO 2IILFHV DQG 'HSDUWPHQWV RI WKH &HQWUDO 6WDWLVWLFDO 2IILFH 3URI -HU]\ $XNV]WRO *GDQVN 0DUHN &LHUSLDá :RODQ 3K' 5]HV]RZ 3LRWU 5 &PHOD 3K' àRG] .U]\V]WRI 0DUNRZVNL 3K' /XEOLQ DQG 5HQDWD %LHODN $QDO\VHV DQG &RPSUHKHQVLYH 6WXGLHV 'HSDUWPHQW 0LURVáDZ %áDĪHM 0DFURHFRQRPLF 6WXGLHV DQG )LQDQFH 6WDWLVWLFV 'HSDUWPHQW .DWDU]\QD &LFKRĔVND 'HSXW\ 'LUHFWRU 2IILFH RI WKH 3UHVLGHQW DQG WKH RWKHU HPSOR\HHV RI 6WDWLVWLFDO 2IILFHV 3URI 3URI $QGU]HM 0áRGDN 6WDWLVWLFDO 2IILFH LQ 3R]QDQ -DFHN :HVRáRZVNL 0HWKRGRORJ\ 6WDQGDUGV DQG 5HJLVWHUV 'HSDUWPHQW RI &62 .D]LPLHU] .UXV]ND 3K' 6WDWLVWLFDO 2IILFH LQ 3R]QDQ DQG WKH OHDGLQJ DFDGHPLFV 3URI 3URI &]HVáDZ 'RPDĔVNL 3UHVLGHQW RI WKH 3ROLVK 6WDWLVWLFDO $VVRFLDWLRQ 8QLYHULVW\ RI /RG] (OĪELHWD *RáDWD 8QLYHUVLW\ RI (FRQRPLFV 3R]QDQ $GDP -DNXERZVNL 1LFRODXV &RSHUQLFXV 8QLYHUVLW\ 7RUXQ -DQ .RUGRV :DUVDZ 0DQDJHPHQW $FDGHP\ 0LHF]\VáDZ - .UyO 8QLYHUVLW\ RI 5]HV]RZ )UDQFLV]HN .XELF]HN $/0$0(5 8QLYHUVLW\ 7RPDV] 3DQHN :DUVDZ 6FKRRO RI (FRQRPLFV =RILD 5XVQDN :URFODZ 8QLYHUVLW\ RI (FRQRPLFV $QGU]HM 6RNRáRZVNL &UDFRZ 8QLYHUVLW\ RI (FRQRPLFV 0LURVáDZ 6]UHGHU 8QLYHUVLW\ RI *GDQVN :DOGHPDU 7DUF]\ĔVNL 6]F]HFLQ 8QLYHUVLW\ *UDĪ\QD 7U]SLRW 8QLYHUVLW\ RI (FRQRPLFV LQ .DWRZLFH $JDWD =DJyURZVND 2SROH 8QLYHUVLW\ .U]\V]WRI =DJyUVNL .R]PLQVNL 8QLYHUVLW\ 5RPDQ =P\ĞORQ\ 8QLYHUVLW\ RI =LHORQD *yUD 346 The International Year of… 7KH WZRGD\ PHHWLQJ RI SURPLQHQW UHSUHVHQWDWLYHV RI VRFLDO VFLHQFH IURP DFURVV 3RODQG LQFOXGHV D QXPEHU RI LQWHUHVWLQJ VHVVLRQV OLVWHG EHORZ The Scientific Conference Statistics – Knowledge – Development CONFERENCE PROGRAMME Agenda: 16.10.2013 - GD\ SUHFHGLQJ WKH FRQIHUHQFH $UULYDO RI WKH SDUWLFLSDQWV DW WKH KRWHO LQ WKH DIWHUQRRQ 17.10.2013 - &RQIHUHQFH GD\ &RQIHUHQFH RSHQLQJ 3OHQDU\ VHVVLRQ , Statistics in the face of global challenges 2UJDQL]HU DQG &KDLUSHUVRQ 0LURVáDZ 6]UHGHU 8QLYHUVLW\ RI *GDQVN 3OHQDU\ VHVVLRQ ,, Statistics friendly to all 2UJDQL]HU DQG &KDLUSHUVRQ &]HVáDZ 'RPDĔVNL 8QLYHUVLW\ RI /RG] 3OHQDU\ VHVVLRQ ,,, Quality in statistics 2UJDQL]HU DQG &KDLUSHUVRQ -DQ .RUGRV :DUVDZ 0DQDJHPHQW $FDGHP\ 18.10.2013 - &RQIHUHQFH GD\ 3OHQDU\ VHVVLRQ ,9 Statistics in socio-economic practice 2UJDQL]HU $QGU]HM 6RNRáRZVNL &UDFRZ 8QLYHUVLW\ RI (FRQRPLFV 9 Social statistics; &KDLUSHUVRQ -DQXV] :LWNRZVNL &HQWUDO 6WDWLVWLFDO 2IILFH 9 Economic statistics; &KDLUSHUVRQ $QGU]HM 6RNRáRZVNL &UDFRZ 8QLYHUVLW\ RI (FRQRPLFV 3OHQDU\ VHVVLRQ 9 Methodology of statistical surveys in theory and practice 2UJDQL]HU DQG &KDLUSHUVRQ (OĪELHWD *RáDWD 3R]QDQ 8QLYHUVLW\ RI (FRQRPLFV 9 Poster session; &KDLUSHUVRQ (OĪELHWD *RáDWD 3R]QDQ 8QLYHUVLW\ RI (FRQRPLFV 9 Mathematical aspects of statistical research methodology; &KDLUSHUVRQ (OĪELHWD *RáDWD 3R]QDQ 8QLYHUVLW\ RI (FRQRPLFV STATISTICS IN TRANSITION-new series, Summer 2013 9 347 Representative surveys versus alternative sources of information; &KDLUSHUVRQ (XJHQLXV] *DWQDU 1%3 &ORVLQJ RI WKH FRQIHUHQFH 'XULQJ WKH FRQIHUHQFH DQ H[KLELWLRQ Statistics of the Lodz Region ZLOO EH SUHVHQWHG 6WDWLVWLFDO 2IILFH LQ /RG] 7KH -R]HI 3LOVXGVNL 5HJLRQDO DQG 0XQLFLSDO 3XEOLF /LEUDU\ LQ /RG] $ UHYLHZHG PRQRJUDSK FRQWDLQLQJ WKH FRQIHUHQFH SDSHUV LV DOVR SODQQHG WR EH UHOHDVHG 7KH FRQIHUHQFH LV KHOG XQGHU WKH SDWURQDJH RI 0V +DQQD =GDQRZVND 0D\RU RI WKH &LW\ RI /RG] WKH 0LQLVWU\ RI 6FLHQFH DQG +LJKHU (GXFDWLRQ 3ROLVK $FDGHP\ RI 6FLHQFHV DQG WKH 1DWLRQDO %DQN RI 3RODQG 7KH SDUWQHUV RI WKH SURMHFW DUH WKH &LW\ RI /RG] 2IILFH WKH FRQIHUHQFH UHFHLYHG IXQGLQJ XQGHU WKH SURMHFW ³&RRSHUDWLRQ ZLWK KLJKHU HGXFDWLRQ LQVWLWXWLRQV´ WR SURPRWH WKH FLW\ DV D FHQWUH RI VFLHQFH DQG 7KH -R]HI 3LOVXGVNL 5HJLRQDO DQG 0XQLFLSDO 3XEOLF /LEUDU\ LQ /RG] 793 /RG] DQG 5DGLR /RG] DUH PHGLD SDUWQHUV RI WKH FRQIHUHQFH
© Copyright 2025 ExpyDoc