STATISTICS
IN
TRANSITION
new series
An International Journal of the Polish Statistical Association
CONTENTS
From the Editor ................................................................................................
Submission information for authors ................................................................
183
187
Sampling methods and estimation
ONYEKA A. C., A class of product-type exponential estimators of the
population mean in simple random sampling scheme ..................................
SRIVASTAVA M., GARG N., The class of estimators of finite population
mean using incomplete multi-auxiliary information .....................................
ÜNALAN T., AYHAN H. Ö., Probability sample selection method in
household surveys when current data on regional population is
unavailable ....................................................................................................
WYWIAŁ J. L., Sampling designs proportionate to sum of two order
statistics of auxiliary variable .......................................................................
189
201
217
231
Research articles
LONGFORD N. T., SALAGEAN I. C., The effect of unemployment
benefits on labour market behaviour in Luxembourg ...................................
LIBERDA B., PĘCZKOWSKI M., Households’ saving mobility in Poland ..
249
273
Other articles
MŁODAK A., Coherence and comparability as criteria of quality
assessment in business statistics ...................................................................
OKRASA W., WITEK B., Statistics as a profession – statistician as an
occupation: observations and comments from a panel of experts .................
287
319
Conferences
The regional statistics – current situation and fundamental challenges
(Borys T.) ......................................................................................................
The 22nd Didactic Conference on Teaching Quality Evaluation Methods
(Kupis-Fijałkowska A.) .................................................................................
Summer School of Baltic-Nordic-Ukrainian Network on Survey Statistics
2013 (Liberts M.) ..........................................................................................
329
337
341
Announcement
The International Year of Statistics/Statistics 2013 (Witkowski J.) ................
Volume 14, Number 2, Summer 2013
343
EDITOR IN CHIEF
Prof. W. Okrasa, University of Cardinal Stefan Wyszyński, Warsaw, and CSO of Poland
[email protected]; Phone number 00 48 22 — 608 30 66
ASSOCIATE EDITORS
Sir Anthony B. University of Oxford,
Atkinson,
UK
M. Belkindas, The World Bank,
Washington D.C., USA
Z. Bochniarz, University of Minnesota, USA
A. Ferligoj,
University of Ljubljana,
Ljubljana, Slovenia
M. Ghosh,
University of Florida, USA
Y. Ivanov,
Statistical Committee of the
Commonwealth of Independent
States, Moscow, Russia
K. Jajuga,
Wrocław University of
Economics,
Wrocław, Poland
G. Kalton,
WESTAT, Inc., USA
M. Kotzeva,
Statistical Institute of Bulgaria
M. Kozak,
University of Information
Technology and Management in
Rzeszów, Poland
D. Krapavickaite, Institute of Mathematics and
Informatics,
Vilnius, Lithuania
M. Krzyśko,
Adam Mickiewicz University,
Poznań, Poland
J. Lapins,
Statistics Department,
Bank of Latvia, Riga, Latvia
FOUNDER/FORMER EDITOR
R. Lehtonen,
A. Lemmi,
University of Helsinki, Finland
Siena University,
Siena, Italy
A. Młodak,
Statistical Office Poznań, Poland
C. A. O'Muircheartaigh,University of Chicago,
Chicago, USA
V. Pacakova,
University of Economics,
Bratislava, Slovak Republic
R. Platek,
(Formerly) Statistics Canada,
Ottawa, Canada
P. Pukli,
Central Statistical Office,
Budapest, Hungary
S.J.M. de Ree,
Central Bureau of Statistics,
Voorburg, Netherlands
I. Traat,
University of Tartu, Estonia
V. Verma,
Siena University,
Siena, Italy
V. Voineagu,
National Commission for Statistics,
Bucharest, Romania
J. Wesołowski,
Central Statistical Office of Poland,
and Warsaw University of
Technology,
Warsaw, Poland
G. Wunsch,
Université Catholiąue de Louvain,
Louvain-la-Neuve, Belgium
J. L. Wywiał,
University of Economics in
Katowice, Poland
Prof. J. Kordos, Formerly Central Statistical Office, Poland
EDITORIAL BOARD
Prof. Janusz Witkowski (Chairman), Central Statistical Office, Poland
Prof. Jan Paradysz (Vice-Chairman), Poznań University of Economics
Prof. Czesław Domański, University of Łódź
Prof. Walenty Ostasiewicz, Wrocław University of Economics
Prof. Tomasz Panek, Warsaw School of Economics
Prof. Mirosław Szreder, University of Gdańsk
Władysław Wiesław Łagodziński, Polish Statistical Association
Editorial Office
Marek Cierpiał-Wolan, Ph.D.: Scientific Secretary
[email protected]
Beata Witek: Secretary
[email protected]. Phone number 00 48 22 — 608 33 66
Rajmund Litkowiec: Technical Assistant
Address for correspondence
GUS, al. Niepodległości 208, 00-925 Warsaw, POLAND, Tel./fax:00 48 22 — 825 03 95
ISSN 1234-7655
STATISTICS IN TRANSITION-new series, Summer 2013
183
STATISTICS IN TRANSITION-new series, Summer 2013
Vol. 14, No. 2, pp. 183–185
FROM THE EDITOR
7KLV LVVXH LV FRPSRVHG RI WKUHH VHFWLRQV IROORZHG E\ WZR W\SHV RI QRWHV RQH
RQ WKH SDVW FRQIHUHQFHV WKH RWKHU RQ D IXWXUH PHHWLQJ RI VSHFLDO LPSRUWDQFH GXH
WR LWV VFDOH DQG FKDUDFWHU DV D SDUW RI WKH RQJRLQJ FHOHEUDWLRQV RI WKH <HDU RI
6WDWLVWLFV 7KLV LV D NLQG RI LQQRYDWLRQ ZRUWKZKLOH PHQWLRQLQJ DW WKH RXWVHW LQ
RUGHU WR OHW WKH SHUVRQV UHVSRQVLEOH IRU RUJDQL]LQJ VXFK D W\SH RI VFLHQWLILF
PHHWLQJV DQG LQWHUHVWHG LQ SRSXODUL]DWLRQ RI LW RQ RXU FROXPQ NQRZ DERXW VXFK
D SRVVLELOLW\ RIIHUHG IURP QRZ RQ $QRWKHU QHZ WKLQJ WR EH LPSOHPHQWHG ZLWK
WKH EHJLQQLQJ RI WKH QH[W \HDU LV WR LQFUHDVH WKH QXPEHU RI LVVXHV WR IRXU SHU \HDU
LQVWHDG RI WKUHH VR IDU 0XFK RI WKH VXFFHVV RI WKLV SODQHG LQQRYDWLRQ ZLOO GHSHQG
RQ RXU NH\ FROODERUDWRUV SRWHQWLDO DXWKRUV DQG SHHUUHYLHZHUV DV WKLV ZRXOG
LPSO\ WKH QHFHVVLW\ WR VKRUWHQ DQ HIIHFWLYH WLPH RI SURGXFWLRQ RI DQ LVVXH
7KLV YROXPH VWDUWV DV XVXDO ZLWK WKH VHFWLRQ GHYRWHG WR VDPSOLQJ PHWKRGV DQG
HVWLPDWLRQ ,W LV RSHQHG E\ A. C. Onyeka's SDSHU A Class of Product-Type
Exponential Estimators of The Population Mean in Simple Random Sampling
Scheme ,W SUHVHQWV D FODVV RI SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV IRU HVWLPDWLQJ
WKH SRSXODWLRQ PHDQ XVLQJ NQRZQ YDOXHV RI VRPH SRSXODWLRQ SDUDPHWHUV RI DQ
DX[LOLDU\ FKDUDFWHU XQGHU WKH VLPSOH UDQGRP VDPSOLQJ ZLWKRXW UHSODFHPHQW
656:25 VFKHPH $ PRGLILHG H[SRQHQWLDO HVWLPDWRU LV SURSRVHG EDVHG RQ ERWK
WKH UDWLRW\SH DQG WKH SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV 3URSHUWLHV RI WKH
SURSRVHG HVWLPDWRUV DUH REWDLQHG XS WR ILUVW RUGHU DSSUR[LPDWLRQ 7KH PRGLILHG
H[SRQHQWLDO HVWLPDWRU XQGHU RSWLPXP FRQGLWLRQV LV VKRZQ WR EH PRUH HIILFLHQW
WKDQ WKH VLPSOH VDPSOH PHDQ DQG WKH UDWLRW\SH DQG SURGXFWW\SH H[SRQHQWLDO
HVWLPDWRUV DV SURYHQ DOVR E\ DQ HPSLULFDO LOOXVWUDWLRQ
7KH DUWLFOH The Class of Estimators of Finite Population Mean Using
Incomplete Multi-Auxiliary Information E\ Meenakshi Srivastava DQG Neha
Garg GLVFXVVHV D FODVV RI HVWLPDWRUV IRU WKH PHDQ RI WKH ILQLWH SRSXODWLRQ XVLQJ
DYDLODEOH LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ 6RPH VSHFLDO FDVHV RI WKLV FODVV
RI HVWLPDWRUV DUH FRQVLGHUHG DQG WKHRUHWLFDO UHVXOWV DUH QXPHULFDOO\ VXSSRUWHG $OO
WKH SURSRVHG HVWLPDWRUV DUH PRUH HIILFLHQW IRU PHDQ HVWLPDWLRQ $XWKRUV FRQFOXGH
WKDW WKH PD[LPXP XVH RI DYDLODEOH LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ FDQ
LQFUHDVH WKH HIILFLHQF\ RI WKH HVWLPDWRUV
Turgay Ünalan DQG H. g]WDú $\KDQ GHYRWH WKHLU SDSHU RQ Probability
Sample Selection Method in Household Surveys when Current Data on
Regional Population is Unavailable WR WKH SUREOHPV ZLWK HVWDEOLVKLQJ WKH
DSSURSULDWH SUREDELOLW\ RI VHOHFWLRQ RI VXUYH\HG KRXVHKROGV ZKHQ WKH TXDOLW\
VDPSOLQJ IUDPH LV QRW DYDLODEOH 6XFK VLWXDWLRQV DUH WDNLQJ SODFH LQ GHYHORSLQJ
FRXQWULHV ZKHUH VXUYH\V SODQQHG IRU IXWXUH SHULRGV ORQJ DIWHU WKH FHQVXV GDWH
184
W. Okrasa: From the ...
FDQQRW EH UHSUHVHQWDWLYH 7KLV FUHDWHV XQGHUFRYHUDJH DQG ELDV IRU HVWLPDWLRQV
7KHUHIRUH SRSXODWLRQ SURMHFWLRQV DQG GDWD DGMXVWPHQW PHWKRGRORJLHV DUH
SURSRVHG WR SURYLGH D UHSUHVHQWDWLYH SUREDELOLW\ VHOHFWLRQ RI WKH XSGDWHG
SRSXODWLRQ 7KH PHWKRG FRQWDLQV WKH FRUUHFWLRQ RQ WKH GLIIHUHQFHV RI WKH VXP RI
VWUDWD DQG DJJUHJDWHG YDOXHV ([DPSOHV DUH DOVR SURYLGHG WR GHPRQVWUDWH WKH
SRWHQWLDOV RI WKH SURSRVHG PHWKRGRORJ\
-DQXV] / :\ZLDá
V SDSHU Sampling Designs Proportionate to Sum of Two
Order Statistics of Auxiliary Variable GLVFXVVHV WKH FDVH RI D FRQGLWLRQDO
VDPSOLQJ GHVLJQ SURSRUWLRQDO WR WKH VXP RI WZR RUGHU VWDWLVWLFV 6HYHUDO VWUDWHJLHV
LQFOXGLQJ WKH +RUYLW]7KRPSVRQ HVWLPDWRU DQG UDWLRW\SH HVWLPDWRUV DUH FKHFNHG
IRU WKHLU DFFXUDF\ DQG FRPSDUHG RQ WKH EDVLV RI FRPSXWHU VLPXODWLRQ ZKLFK
DOORZV RQH WR H[SHFW WKH HVWLPDWLRQ VWUDWHJLHV ZLWK WKH VDPSOLQJ GHVLJQ ,Q
JHQHUDO WKH DFFXUDFLHV RI WKH FRQVLGHUHG UDWLR W\SH VWUDWHJLHV VKRZHG WR EH WKH
EHVW DPRQJ DOO WKH VWUDWHJLHV FRQVLGHUHG LQ WKH DQDO\VLV 6RPH UHVHUYDWLRQ WR WKHVH
FRQFOXVLRQ LV KRZHYHU DGYLVHG JLYHQ WKDW WKH HPSOR\HG FRPSXWHU VLPXODWLRQ ZDV
EDVHG RQ VSHFLDO GDWD VHW DQG WKDW D VLPXODWLRQ DQDO\VHV RQ D ODUJHU VFDOH LV VWLOO
QHHGHG WR HVWDEOLVK VXFK D W\SH RI JHQHUDOLW\
7ZR UHVHDUFK SDSHUV PDNH XS WKH research articles VHFWLRQ Nicholas
T. Longford DQG Ioana C. Salagean LQ WKHLU SDSHU The Effect of Unemployment
Benefits on Labour Market Behaviour in Luxembourg HVWLPDWH WKH HIIHFW RI
DZDUGLQJ XQHPSOR\PHQW EHQHILWV RQ JDLQLQJ ORQJWHUP HPSOR\PHQW DIWHU DQ
XQHPSOR\PHQW VSHOO DQG RQ WKH WLPH LW WDNHV WR DFKLHYH LW 7R WKLV DLP WKH\ DSSO\
WKH SRWHQWLDO RXWFRPHV IUDPHZRUN DQG WKH\ FRQFOXGH WKDW VXFK DZDUGV UHJDUGHG
DV D WUHDWPHQW DUH DVVRFLDWHG ZLWK SRRUHU ODERXU IRUFH RXWFRPHV WKDQ QR DZDUGV
7KH DXWKRUV VKRZ WKDW WKHLU FRQFOXVLRQV DUH XQHTXLYRFDOO\ QHJDWLYH DERXW WKH
EHQHILW 8QHPSOR\PHQW VSHOOV DVVRFLDWHG ZLWK EHQHILWV WHQG WR EH ORQJHU HYHQ
DIWHU PDWFKLQJ RQ EDFNJURXQG
,Q DUWLFOH Households’ Saving Mobility in Poland Barbara Liberda DQG
0DUHN 3ĊF]NRZVNL H[DPLQH WKH PRELOLW\ RI 3ROLVK KRXVHKROGV ZLWK UHJDUG WR
VDYLQJ UDWHV GXULQJ WKH \HDUV DQG FRPSDUH LW ZLWK WKH KRXVHKROGV¶
VDYLQJ PRELOLW\ GXULQJ WKH \HDUV XVLQJ SDQHO GDWD FRQVWUXFWHG IURP WKH
+RXVHKROG %XGJHW 6XUYH\V 7KH 0DUNRY PRELOLW\ PDWUL[ ZDV HPSOR\HG WR
HVWLPDWH WKH ORQJWHUP HUJRGLF GLVWULEXWLRQ RI KRXVHKROGV DFFRUGLQJ WR WKH
VDYLQJ UDWHV 7KH ORQJWHUP KRXVHKROGV¶ GLVWULEXWLRQ UHYHDOV D WHQGHQF\ WRZDUGV
SRODUL]DWLRQ RI KRXVHKROGV LQ WHUPV RI VDYLQJ UDWHV +RZHYHU WKH SRODUL]DWLRQ
VKRZHG WR EH DV\PPHWULFDO WRZDUGV WKH KLJKHVW VDYLQJ UDWH JURXSV ZKDW DOORZV
WKH DXWKRUV WR FRQFOXGH WKDW LW H[SODLQV ZK\ 3ROLVK KRXVHKROGV FRXOG PDLQWDLQ
ULVLQJ VDYLQJV GXULQJ WKH KLJKO\ XQFHUWDLQ SHULRG RI WKH ILQDQFLDO FULVLV LQ 7KH PDLQ SDUW RI WKH other articles VHFWLRQ FRQVWLWXWHV $QGU]HM 0áRGDN
V
SDSHU Coherence and Comparability as Criteria of Quality Assessment in
Business Statistics. 7KH SUREOHPV RI FRKHUHQFH DQG FRPSDUDELOLW\ H[FHHG WKH
FODVVLFDO QRWLRQ RI DQDO\VLV RI VXUYH\ HUURUV GXH WR LQFOXGLQJ WKH TXHVWLRQ RI KRZ
UHVXOWV RI WZR RU PRUH VXUYH\V FDQ EH XVHG WRJHWKHU DQG KRZ WKH UHOHYDQW GDWD FDQ
STATISTICS IN TRANSITION-new series, Summer 2013
185
HIIHFWLYHO\ EH FRPSDUHG WR REWDLQ D EHWWHU SLFWXUH RI VRFLDO DQG HFRQRPLF
SKHQRPHQD RYHU YDULRXV DVSHFWV HJ VSDFH RU WLPH 7KLV SDSHU GLVFXVVHV
FKDUDFWHULVWLFV RI WKH PDLQ FRQFHSWV RI FRKHUHQFH DQG FRPSDUDELOLW\ DV ZHOO DV D
GHVFULSWLRQ RI GLIIHUHQFHV DQG VLPLODULWLHV EHWZHHQ WKHVH WZR QRWLRQV 7\SHV RI
FRKHUHQFH DQG YDULRXV DVSHFWV RI SHUFHSWLRQ RI WKHVH QRWLRQV LQ EXVLQHVV VWDWLVWLFV
DUH DQDO\VHG 0DLQ VRXUFHV RI ODFN RI FRKHUHQFH DQG FRPSDUDELOLW\ IDFWRUV
DIIHFWLQJ WKHP HJ PHWKRGRORJ\ WLPH UHJLRQ HWF DQG PHWKRGV RI WKHLU
PHDVXUHPHQW LQ FRQWH[W RI LQIRUPDWLRQ REWDLQHG IURP EXVLQHVVHV DUH DOVR
SUHVHQWHG
7KH QH[W SDSHU Statistics As a Profession - Statistician As an Occupation:
Observations and Comments From a Panel of Experts E\ Wlodzimierz Okrasa
DQG Beata Witek KDV D ELW GLIIHUHQW FKDUDFWHU DV EHLQJ EDVHG RQ WKH UHVXOWV
REVHUYDWLRQV DQG FRPPHQWV RI D VSHFLDOO\ RUJDQL]HG SDQHO WR GLVFXVV WKH LVVXH RI
WKH VWDWXV DQG WKH UROH RI VWDWLVWLFV DV D GLVFLSOLQH DORQJ ZLWK WKH FKDOOHQJLQJ LVVXH
RI KRZ WR HQVXUH WKDW LWV IROORZHUV VWDWLVWLFLDQV PHHW WKH TXDOLW\ VWDQGDUGV LQ WKH
PRUH DQG PRUH GHPDQGLQJ SURIHVVLRQDO HQYLURQPHQW 0DMRU SDQHO
V FRQWULEXWRUV
ZHUH OHDGLQJ UHSUHVHQWDWLYHV RI DFDGHPLD 3URI 3URI &] 'RPDQVNL
- ']LHFKFLDU] 0 .U]\ĞNR 0 5RFNL DQG - :\ZLDá &RQWULEXWLRQV IURP KLJKO\
FRPSHWHQW DXGLHQFH DUH LQFOXGHG DV ZHOO
7KUHH QRWHV RQ WKH SDVW FRQIHUHQFHV IROORZHG E\ DERYH PHQWLRQHG
DQQRXQFHPHQW RQ WKH XSFRPLQJ FRQIHUHQFH GHYRWHG WR WKH ,QWHUQDWLRQDO <HDU RI
6WDWLVWLFV FRQFOXGH WKLV YROXPH
:áRG]LPLHU] 2NUDVD
(GLWRU
STATISTICS IN TRANSITION-new series, Summer 2013
187
STATISTICS IN TRANSITION-new series, Summer 2013
Vol. 14, No. 2, pp. 187
SUBMISSION INFORMATION FOR AUTHORS
Statistics in Transition – new series (SiT) LV DQ LQWHUQDWLRQDO MRXUQDO
SXEOLVKHG MRLQWO\ E\ WKH 3ROLVK 6WDWLVWLFDO $VVRFLDWLRQ 376 DQG WKH &HQWUDO
6WDWLVWLFDO 2IILFH RI 3RODQG RQ D TXDUWHUO\ EDVLV GXULQJ ± LW ZDV LVVXHG
WZLFH DQG VLQFH WKUHH WLPHV D \HDU $OVR LW KDV H[WHQGHG LWV VFRSH RI LQWHUHVW
EH\RQG LWV RULJLQDOO\ SULPDU\ IRFXV RQ VWDWLVWLFDO LVVXHV SHUWLQHQW WR WUDQVLWLRQ
IURP FHQWUDOO\ SODQQHG WR D PDUNHWRULHQWHG HFRQRP\ WKURXJK HPEUDFLQJ
TXHVWLRQV UHODWHG WR V\VWHPLF WUDQVIRUPDWLRQV RI DQG ZLWKLQ WKH QDWLRQDO VWDWLVWLFDO
V\VWHPV ZRUOGZLGH
7KH 6L7-ns VHHNV FRQWULEXWRUV WKDW DGGUHVV WKH IXOO UDQJH RI SUREOHPV LQYROYHG
LQ GDWD SURGXFWLRQ GDWD GLVVHPLQDWLRQ DQG XWLOL]DWLRQ SURYLGLQJ LQWHUQDWLRQDO
FRPPXQLW\ RI VWDWLVWLFLDQV DQG XVHUV ± LQFOXGLQJ UHVHDUFKHUV WHDFKHUV SROLF\
PDNHUV DQG WKH JHQHUDO SXEOLF ± ZLWK D SODWIRUP IRU H[FKDQJH RI LGHDV DQG IRU
VKDULQJ EHVW SUDFWLFHV LQ DOO DUHDV RI WKH GHYHORSPHQW RI VWDWLVWLFV
$FFRUGLQJO\ DUWLFOHV GHDOLQJ ZLWK DQ\ WRSLFV RI VWDWLVWLFV DQG LWV DGYDQFHPHQW
± DV HLWKHU D VFLHQWLILF GRPDLQ QHZ UHVHDUFK DQG GDWD DQDO\VLV PHWKRGV RU DV D
GRPDLQ RI LQIRUPDWLRQDO LQIUDVWUXFWXUH RI WKH HFRQRP\ VRFLHW\ DQG WKH VWDWH ± DUH
DSSURSULDWH IRU Statistics in Transition new series.
'HPRQVWUDWLRQ RI WKH UROH SOD\HG E\ VWDWLVWLFDO UHVHDUFK DQG GDWD LQ HFRQRPLF
JURZWK DQG VRFLDO SURJUHVV ERWK ORFDOO\ DQG JOREDOO\ LQFOXGLQJ EHWWHULQIRUPHG
GHFLVLRQV DQG JUHDWHU SDUWLFLSDWLRQ RI FLWL]HQV DUH RI SDUWLFXODU LQWHUHVW
(DFK SDSHU VXEPLWWHG E\ SURVSHFWLYH DXWKRUV DUH SHHU UHYLHZHG E\
LQWHUQDWLRQDOO\ UHFRJQL]HG H[SHUWV ZKR DUH JXLGHG LQ WKHLU GHFLVLRQV DERXW WKH
SXEOLFDWLRQ E\ FULWHULD RI RULJLQDOLW\ DQG RYHUDOO TXDOLW\ LQFOXGLQJ LWV FRQWHQW DQG
IRUP DQG RI SRWHQWLDO LQWHUHVW WR UHDGHUV HVS SURIHVVLRQDOV
0DQXVFULSW VKRXOG EH VXEPLWWHG HOHFWURQLFDOO\ WR WKH (GLWRU
VLW#VWDWJRYSO IROORZHG E\ D KDUG FRS\ DGGUHVVHG WR
3URI :ORG]LPLHU] 2NUDVD
*86 &HQWUDO 6WDWLVWLFDO 2IILFH
$O 1LHSRGOHJáRĞFL 5 :DUVDZ 3RODQG
,W LV DVVXPHG WKDW WKH VXEPLWWHG PDQXVFULSW KDV QRW EHHQ SXEOLVKHG SUHYLRXVO\
DQG WKDW LW LV QRW XQGHU UHYLHZ HOVHZKHUH ,W VKRXOG LQFOXGH DQ DEVWUDFW RI QRW
PRUH WKDQ FKDUDFWHUV LQFOXGLQJ VSDFHV ,QTXLULHV FRQFHUQLQJ WKH VXEPLWWHG
PDQXVFULSW LWV FXUUHQW VWDWXV HWF VKRXOG EH GLUHFWHG WR WKH (GLWRU E\ HPDLO
DGGUHVV DERYH RU ZRNUDVD#VWDWJRYSO
)RU RWKHU DVSHFWV RI HGLWRULDO SROLFLHV DQG SURFHGXUHV VHH WKH 6L7 *XLGHOLQHV
RQ LWV :HE VLWH http://www.stat.gov.pl/pts/15_ENG_HTML.htm
STATISTICS IN TRANSITION-new series, Summer 2013
189
STATISTICS IN TRANSITION-new series, Summer 2013
Vol. 14, No. 2, pp. 189–200
A CLASS OF PRODUCT-TYPE EXPONENTIAL
ESTIMATORS OF THE POPULATION MEAN IN
SIMPLE RANDOM SAMPLING SCHEME
A. C. Onyeka ABSTRACT
7KH SUHVHQW VWXG\ SURSRVHV D FODVV RI SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV IRU
HVWLPDWLQJ WKH SRSXODWLRQ PHDQ RI WKH VWXG\ YDULDEOH XVLQJ NQRZQ YDOXHV RI
VRPH SRSXODWLRQ SDUDPHWHUV RI DQ DX[LOLDU\ FKDUDFWHU XQGHU WKH VLPSOH UDQGRP
VDPSOLQJ ZLWKRXW UHSODFHPHQW 656:25 VFKHPH )XUWKHUPRUH WKH VWXG\ DOVR
SURSRVHV D PRGLILHG H[SRQHQWLDO HVWLPDWRU EDVHG RQ ERWK WKH UDWLRW\SH DQG WKH
SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV 3URSHUWLHV RI WKH SURSRVHG HVWLPDWRUV XQGHU
WKH 656:25 VFKHPH DUH REWDLQHG XS WR ILUVW RUGHU DSSUR[LPDWLRQ 7KH PRGLILHG
H[SRQHQWLDO HVWLPDWRU XQGHU RSWLPXP FRQGLWLRQV LV VKRZQ WR EH PRUH HIILFLHQW
WKDQ WKH VLPSOH VDPSOH PHDQ DQG WKH UDWLRW\SH DQG SURGXFWW\SH H[SRQHQWLDO
HVWLPDWRUV 7KH WKHRUHWLFDO UHVXOWV DUH VXSSRUWHG E\ DQ HPSLULFDO LOOXVWUDWLRQ
Key words: UDWLRW\SH DQG SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV DX[LOLDU\
FKDUDFWHU VLPSOH UDQGRP VDPSOLQJ PHDQ VTXDUH HUURU $06 &ODVVLILFDWLRQ
'
1. Introduction
7KH XVH RI LQIRUPDWLRQ RQ DX[LOLDU\ FKDUDFWHU WR LPSURYH HVWLPDWHV RI
SRSXODWLRQ SDUDPHWHUV RI WKH VWXG\ YDULDEOH LV D FRPPRQ SUDFWLFH LQ VDPSOH
VXUYH\V HVSHFLDOO\ ZKHQ WKHUH LV D VWURQJ OLQHDU UHODWLRQVKLS EHWZHHQ WKH VWXG\
DQG DX[LOLDU\ YDULDEOHV 6HYHUDO DXWKRUV KDYH PDGH FRQWULEXWLRQV LQ WKLV UHJDUG
LQFOXGLQJ 6XNKDWPH DQG 6XNKDWPH DQG &RFKUDQ 6LQJK DQG 7DLORU
VXJJHVWHG WKH XVH RI NQRZQ FRUUHODWLRQ FRHIILFLHQW EHWZHHQ DX[LOLDU\
FKDUDFWHUV IRU WKH HVWLPDWLRQ RI ILQLWH SRSXODWLRQ PHDQ .KRVKQHYLVDQ HW DO
VXJJHVWHG D IDPLO\ RI HVWLPDWRUV RI WKH SRSXODWLRQ PHDQ XVLQJ NQRZQ
YDOXHV RI SRSXODWLRQ SDUDPHWHUV LQ VLPSOH UDQGRP VDPSOLQJ 7DLORU DQG 6KDUPD
XVHG NQRZQ FRHIILFLHQW RI YDULDWLRQ DQG FRHIILFLHQW RI NXUWRVLV RI DQ
'HSDUWPHQW RI 6WDWLVWLFV )HGHUDO 8QLYHUVLW\ RI 7HFKQRORJ\ 30% 2ZHUUL 1LJHULD
(PDLO DOR\RQ\HND#\DKRRFRP
190
A. C. Onyeka: A class of product-type …
DX[LOLDU\ FKDUDFWHU LQ HVWLPDWLQJ ILQLWH SRSXODWLRQ PHDQ RI WKH VWXG\ YDULDEOH
6KDUPD DQG 7DLORU VXJJHVWHG D PRGLILHG UDWLRFXPGXDO WR UDWLR HVWLPDWRU
XVLQJ NQRZQ SRSXODWLRQ PHDQ RI DQ DX[LOLDU\ FKDUDFWHU 2Q\HND XVHG
NQRZQ YDOXHV RI SRSXODWLRQ SDUDPHWHUV RI DQ DX[LOLDU\ FKDUDFWHU WR LPSURYH
HVWLPDWHV RI SRSXODWLRQ PHDQ LQ SRVWVWUDWLILHG UDQGRP VDPSOLQJ ,Q XVLQJ
DX[LOLDU\ LQIRUPDWLRQ GLIIHUHQW W\SHV RI HVWLPDWRUV KDYH EHHQ FRQVLGHUHG
LQFOXGLQJ WKH XVXDO UDWLRW\SH SURGXFWW\SH DQG UHJUHVVLRQW\SH HVWLPDWRUV
5HFHQWO\ VRPH DXWKRUV KDYH LQWURGXFHG GXDO DQG H[SRQHQWLDO HVWLPDWRUV /HW \
DQG [ UHVSHFWLYHO\ GHQRWH WKH VWXG\ DQG DX[LOLDU\ FKDUDFWHUV LQ D ILQLWH SRSXODWLRQ
RI 1 XQLWV DQG OHW \ L [ L L « Q GHQRWH VDPSOH YDOXHV RI \ DQG [ LQ D
UDQGRP VDPSOH RI Q XQLWV GUDZQ E\ VLPSOH UDQGRP VDPSOLQJ ZLWKRXW UHSODFHPHQW
656:25 PHWKRG ,Q XVLQJ NQRZQ SRSXODWLRQ PHDQ ; RI DQ DX[LOLDU\
FKDUDFWHU [ WR LPSURYH HVWLPDWHV RI WKH SRSXODWLRQ PHDQ < RI WKH VWXG\ YDULDEOH
\ %DKO DQG 7XWHMD LQWURGXFHG UDWLR DQG SURGXFW W\SH H[SRQHQWLDO
HVWLPDWRUV RI WKH IRUPV
W5
ª ;[ º
\ H[S «
»
¬ ;[ ¼
W3
ª [; º
\ H[S «
»
¬ [; ¼
DQG
ZKHUH \ [ LV WKH VDPSOH PHDQ RI WKH VWXG\ DX[LOLDU\ YDULDEOH
6LQJK DQG 9LVKZDNDPD LQ WKHLU VWXG\ XVHG VRPH PRGLILHG H[SRQHQWLDO
UDWLRW\SH DQG SURGXFWW\SH HVWLPDWRUV LQ HVWLPDWLQJ SRSXODWLRQ PHDQ LQ GRXEOH
VDPSOLQJ VFKHPH 6LQJK HW DO D IROORZLQJ .DGLODU DQG &LQJL DQG
.KRVKQHYLVDQ HW DO SURSRVHG D FODVV RI UDWLRW\SH H[SRQHQWLDO HVWLPDWRUV
RI WKH SRSXODWLRQ PHDQ LQ VLPSOH UDQGRP VDPSOLQJ XVLQJ NQRZQ YDOXHV RI
SRSXODWLRQ SDUDPHWHUV RI DQ DX[LOLDU\ FKDUDFWHU RI WKH IRUP
W
ª D; E D[ E º
\ H[S «
»
¬ D; E D[ E ¼
ª D; [ º
\ H[S «
»
¬ D; [ E ¼
ZKHUH D z E DUH HLWKHU UHDO QXPEHUV RU IXQFWLRQV RI NQRZQ SDUDPHWHUV RI WKH
DX[LOLDU\ YDULDEOH [ VXFK DV FRHIILFLHQW RI YDULDWLRQ & [ FRHIILFLHQW RI VNHZQHVV
E [ FRHIILFLHQW RI NXUWRVLV E [ VWDQGDUG GHYLDWLRQ V DQG FRUUHODWLRQ
FRHIILFLHQW U ,W LV ZRUWK PHQWLRQLQJ WKDW WKH FKRLFH RI WKH YDOXHV RI D DQG E LQ
191
STATISTICS IN TRANSITION-new series, Summer 2013
SUDFWLFH GHSHQGV ODUJHO\ RQ WKH DYDLODELOLW\ RI NQRZQ SRSXODWLRQ SDUDPHWHUV
ZKLFK DGPLWWHGO\ DUH QRW IUHTXHQWO\ NQRZQ 7KH HVWLPDWRU LQ LV RQO\ XVHIXO
ZKHQ VXFK SRSXODWLRQ SDUDPHWHUV DUH NQRZQ RIWHQ IURP SUHYLRXV VXUYH\V ,Q
VDPSOLQJ WKHRU\ SUHIHUHQFH LQ WHUPV RI WKH NQRZQ SDUDPHWHU WR XVH LV XVXDOO\
JLYHQ WR WKRVH SDUDPHWHUV WKDW \LHOG VPDOOHU YDULDQFH RU PHDQ VTXDUHG HUURU ZKHQ
XVHG WR FRQVWUXFW HVWLPDWRUV $JDLQ QRWLFH WKDW VRPH RI WKH SRSXODWLRQ SDUDPHWHUV
OLNH U DQG & [ DUH XQLWOHVV ,I VXFK XQLWOHVV TXDQWLWLHV DUH XVHG IRU WKH TXDQWLW\ E
LQ LW LPSOLHV WKDW WKH\ DUH DVVRFLDWHG ZLWK WKH PHDVXUHPHQW XQLW RI [ DQG LQ
IDFW WKH\ DVVXPH WHPSRUDULO\ WKH VDPH PHDVXUHPHQW XQLW RI [ 2UGLQDULO\ WKLV
DVVXPSWLRQ ZRXOG QRW FDXVH DQ\ VHULRXV GLVWRUWLRQ LQ WKH YDOXH DQG PHDVXUHPHQW
XQLW RI WKH H[SUHVVLRQ D ; [ E LQ LI WKH YDOXH RI E GRHV QRW H[FHHG
XQLW\ 7KH HVWLPDWRU W LV ELDVHG IRU < ZLWK PHDQ VTXDUH HUURU REWDLQHG XS WR
ILUVW RUGHU DSSUR[LPDWLRQ DV
06( W ZKHUH
T
>
§ I · ¨
¸ < & \ T& [ T . © Q ¹
D;
.
D; E
U& \
&[
I
Q
1
@
DQG & \ & [ DQG U DUH WKH FRHIILFLHQW RI YDULDWLRQ RI \[ DQG WKH FRUUHODWLRQ
FRHIILFLHQW UHVSHFWLYHO\ 6LQJK HW DO E FRQVLGHUHG VRPH UDWLRW\SH
H[SRQHQWLDO HVWLPDWRUV LQ VWUDWLILHG UDQGRP VDPSOLQJ 6KDEELU DQG *XSWD VXJJHVWHG H[SRQHQWLDO HVWLPDWRU IRU ILQLWH SRSXODWLRQ PHDQ LQ WZR SKDVH VDPSOLQJ
VFKHPH ZKHQ DX[LOLDU\ YDULDEOHV DUH DWWULEXWHV *URYHU DQG .DXU LPSURYHG
RQ WKH ZRUN FDUULHG RXW E\ $EG(OIDWWDK HW DO E\ SURSRVLQJ UDWLRW\SH
H[SRQHQWLDO HVWLPDWRUV RI ILQLWH SRSXODWLRQ PHDQ LQ VLPSOH UDQGRP VDPSOLQJ
VFKHPH XVLQJ DQ DX[LOLDU\ DWWULEXWH 6LQJK HW DO VXJJHVWHG H[SRQHQWLDO
UDWLR DQG H[SRQHQWLDO SURGXFW W\SH HVWLPDWRUV IRU HVWLPDWLQJ XQNQRZQ SRSXODWLRQ
YDULDQFH XVLQJ LQIRUPDWLRQ RQ WZR DX[LOLDU\ FKDUDFWHUV
,Q WKH SUHVHQW VWXG\ ZH KDYH H[WHQGHG WKH ZRUN FDUULHG RXW E\ 6LQJK HW DO
D E\ VXJJHVWLQJ D FODVV RI SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV IRU
HVWLPDWLQJ WKH ILQLWH SRSXODWLRQ PHDQ RI WKH VWXG\ YDULDEOH XVLQJ NQRZQ YDOXHV RI
SRSXODWLRQ SDUDPHWHUV RI DQ DX[LOLDU\ YDULDEOH 7KH SUHVHQW VWXG\ DOVR SURSRVHV D
PRGLILHG H[SRQHQWLDO HVWLPDWRU EDVHG RQ ERWK WKH UDWLRW\SH DQG SURGXFWW\SH
H[SRQHQWLDO HVWLPDWRUV DQG FRPSDUHV WKH HIILFLHQF\ RI WKH PRGLILHG H[SRQHQWLDO
HVWLPDWRU ZLWK WKRVH RI WKH VLPSOH VDPSOH PHDQ WKH UDWLRW\SH H[SRQHQWLDO
HVWLPDWRU DQG WKH SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU 3URSHUWLHV RI WKH SURSRVHG
HVWLPDWRUV HVSHFLDOO\ WKH ELDVHV DQG PHDQ VTXDUHG HUURUV RI WKH HVWLPDWRUV DUH
REWDLQHG XS WR ILUVW RUGHU DSSUR[LPDWLRQV XQGHU WKH 656:25 VFKHPH
192
A. C. Onyeka: A class of product-type …
2. The proposed product-type exponential estimator
)ROORZLQJ 6LQJK HW DO D ZH SURSRVH D FODVV RI SURGXFWW\SH
H[SRQHQWLDO HVWLPDWRUV RI WKH SRSXODWLRQ PHDQ < LQ 656:25 VFKHPH DV
W
ª D[ E D; E º
\ H[S «
»
¬ D[ E D; E ¼
H
\<
DQG H
<
ª D[ ; º
\ H[S «
»
¬ D[ ; E ¼
/HW
[;
;
VR WKDW
( H ( H (H 9 \
<
§ I · ¨
¸& \
© Q ¹
(H 9 [ ;
§ I · ¨
¸& [
© Q ¹
(HH &RY \ [ <;
§ I
¨
© Q
· ¸.& [
¹
5HZULWLQJ LQ WHUPV RI H DQG H DQG H[SDQGLQJ XS WR ILUVW RUGHU
DSSUR[LPDWLRQ LQ H[SHFWHG YDOXH JLYHV
W <
< >H TH THH TH @
DQG
W <
< >H TH THH @
7DNLQJ H[SHFWDWLRQ RI DQG DQG XVLQJ ± WR PDNH WKH
QHFHVVDU\ VXEVWLWXWLRQV JLYHV WKH ELDV DQG PHDQ VTXDUH HUURU RI WKH SURSRVHG
SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W UHVSHFWLYHO\ DV
§ I ·§ < ·
% W ¨
¸¨ ¸T. T& [
© Q ¹© ¹
193
STATISTICS IN TRANSITION-new series, Summer 2013
DQG
06( W § I
¨
© Q
>
· ¸ < & \ T& [ T . ¹
@
3. Modified exponential estimators
)ROORZLQJ DXWKRUV OLNH &RFKUDQ DQG 6LQJK HW DO D ZH SURSRVH D
PRGLILHG FODVV RI H[SRQHQWLDO HVWLPDWRUV W DV D OLQHDU IXQFWLRQ RI WKH
H[SRQHQWLDO HVWLPDWRUV W DQG W :H JLYH WKH PRGLILHG H[SRQHQWLDO HVWLPDWRU DV
W
DW D W ZKHUH D DQG D DUH ZHLJKWLQJ IUDFWLRQV VXFK WKDW D D ,Q SUDFWLFH D
DQG D VKRXOG EH FKRVHQ VR DV WR PLQLPL]H WKH PHDQ VTXDUH HUURU RI WKH
HVWLPDWRU W +RZHYHU WKH YDOXH RI D LV H[SHFWHG WR EH JUHDWHU WKDQ
WKDW LV
JUHDWHU WKDQ WKH YDOXH RI D ZKHQ WKHUH LV D VWURQJ SRVLWLYH OLQHDU UHODWLRQVKLS
EHWZHHQ WKH VWXG\ DQG DX[LOLDU\ YDULDWHV VLQFH PRVW UDWLRW\SH HVWLPDWRUV DUH
NQRZQ WR SHUIRUP ZHOO XQGHU VXFK D FRQGLWLRQ &RQYHUVHO\ WKH YDOXH RI D LV
H[SHFWHG WR EH JUHDWHU WKDQ RU JUHDWHU WKDQ WKH YDOXH RI D ZKHQ WKHUH LV D
VWURQJ QHJDWLYH FRUUHODWLRQ EHWZHHQ WKH VWXG\ DQG DX[LOLDU\ YDULDWHV VLQFH PRVW
SURGXFWW\SH HVWLPDWRUV DUH NQRZQ WR SHUIRUP ZHOO XQGHU VXFK D FRQGLWLRQ
)ROORZLQJ &RFKUDQ WKH EHVW RSWLPDO FKRLFHV RI D DQG D DUH
UHVSHFWLYHO\ REWDLQHG DV
D
9 9
9 9 9
D
9 9
9 9 9
DQG
ZLWK WKH UHVXOWDQW RSWLPXP PHDQ VTXDUH HUURU RI W JLYHQ DV
06( RSW W 99 9
9 9 9
194
A. C. Onyeka: A class of product-type …
ZKHUH 9LL LV WKH PHDQ VTXDUH HUURU W L L
DQG 9 LV WKH FRYDULDQFH WHUP
RI WKH HVWLPDWRUV W DQG W 5HZULWLQJ LQ WHUPV RI H DQG H DQG
H[SDQGLQJ XS WR ILUVW RUGHU DSSUR[LPDWLRQ LQ H[SHFWHG YDOXH JLYHV
W < < >H TH THH TH @
VR WKDW XVLQJ DQG ZH REWDLQ XS WR ILUVW RUGHU DSSUR[LPDWLRQ LQ H[SHFWHG
YDOXH
W < W < < >H TH @
7DNLQJ H[SHFWDWLRQ RI JLYHV WKH FRYDULDQFH WHUP RI WKH HVWLPDWRUV W DQG
W DV
§ I
&RY W W ¨
© Q
· ¸< & \ T &[
¹
$FFRUGLQJO\ LW IROORZV IURP DQG WKDW
>
@
· ¸ < & \ T& [ T . ¹
>
@
9
06( W § I · ¨
¸ < & \ T& [ T . © Q ¹
9
06( W § I
¨
© Q
9
§ I · &RY W W ¨
¸< & \ T &[
© Q ¹
8VLQJ ± WR PDNH WKH QHFHVVDU\ VXEVWLWXWLRQV LQ ± JLYHV
WKH EHVW RSWLPDO FKRLFHV RI D DQG D WRJHWKHU ZLWK WKH DVVRFLDWHG PLQLPXP
PHDQ VTXDUH HUURU RI WKH PRGLILHG H[SRQHQWLDO HVWLPDWRU W DV
D
T .
T
D
T .
T
STATISTICS IN TRANSITION-new series, Summer 2013
195
§ I · 06( RSW W ¨
¸ < U & \
© Q ¹
,Q SUDFWLFH WKH ZHLJKWLQJ IUDFWLRQV D DQG D VKRXOG EH FKRVHQ YHU\ FORVH WR
WKH H[SUHVVLRQV JLYHQ LQ DQG UHVSHFWLYHO\ :H QRWH WKDW LV WKH
VDPH DV WKH YDULDQFH RI WKH FXVWRPDU\ UHJUHVVLRQ HVWLPDWRU 7KLV LQGLFDWHV WKDW WKH
HIILFLHQF\ RI WKH SURSRVHG PRGLILHG H[SRQHQWLDO HVWLPDWRUV PD\ QRW EH LPSURYHG
EH\RQG WKDW RI WKH XVXDO UHJUHVVLRQW\SH HVWLPDWRU
4. Efficiency comparison
7KH YDULDQFH RI WKH VLPSOH VDPSOH PHDQ \ LQ 656:25 VFKHPH LV JLYHQ E\
§ I · 9 \ ¨
¸< & \
© Q ¹
&RPSDULQJ DQG LW IROORZV WKDW WKH UDWLRW\SH H[SRQHQWLDO HVWLPDWRU
W SURSRVHG E\ 6LQJK HW DO D ZRXOG SHUIRUP EHWWHU WKDQ WKH VDPSOH PHDQ
LQ WHUPV RI KDYLQJ D VPDOOHU PHDQ VTXDUH HUURU LI
.
T
§ U& \ ·§ D; E · ¨¨
¸¸¨¨
¸¸ !
© & [ ¹© D; ¹ 1RWLFH WKDW WKHUH LV D VOLJKW PDWKHPDWLFDO HUURU LQ WKH HIILFLHQF\ FRQGLWLRQ
JLYHQ E\ 6LQJK HW DO D ZLWK UHVSHFW WR WKH VLJQ RI WKH LQHTXDOLW\ RI RI
6LQJK HW DO D
&RPSDULQJ WKH SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG LQ WKH SUHVHQW
VWXG\ ZLWK WKH VDPSOH PHDQ \ LW IROORZV IURP DQG WKDW WKH SURSRVHG
SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W ZRXOG SHUIRUP EHWWHU WKDQ WKH VDPSOH
PHDQ LQ WHUPV RI KDYLQJ D VPDOOHU PHDQ VTXDUH HUURU LI
.
T
§ U& \ ·§ D; E ·
¸¸¨
¨¨
¸
© & [ ¹© D; ¹
7R FRPSDUH WKH HIILFLHQF\ RI WKH SURSRVHG PRGLILHG H[SRQHQWLDO HVWLPDWRU W ZLWK WKRVH RI WKH HVWLPDWRUV \ W DQG W ZH REVHUYH IURP DQG
WKDW
196
A. C. Onyeka: A class of product-type …
Lemma I: 7KH SURSRVHG PRGLILHG H[SRQHQWLDO HVWLPDWRU W XQGHU RSWLPXP
FRQGLWLRQV DQG LV PRUH HIILFLHQW WKDQ WKH VDPSOH PHDQ \ LQ WHUPV
RI KDYLQJ D VPDOOHU PHDQ VTXDUH HUURU LI
U ! ZKLFK LV DOZD\V WUXH
Lemma II: 7KH SURSRVHG PRGLILHG H[SRQHQWLDO HVWLPDWRU W XQGHU RSWLPXP
FRQGLWLRQV DQG LV PRUH HIILFLHQW WKDQ WKH UDWLRW\SH H[SRQHQWLDO
HVWLPDWRU W SURSRVHG E\ 6LQJK HW DO D LI
U& \ T& [ ! ZKLFK LV DOZD\V WUXH
Lemma III: 7KH SURSRVHG PRGLILHG H[SRQHQWLDO HVWLPDWRU W XQGHU RSWLPXP
FRQGLWLRQV DQG LV PRUH HIILFLHQW WKDQ WKH SURGXFWW\SH H[SRQHQWLDO
HVWLPDWRU W SURSRVHG LQ WKH SUHVHQW VWXG\ LI
U& \ T& [ ! ZKLFK LV DOZD\V WUXH
7KH LPSOLFDWLRQ RI WKH DERYH WKUHH OHPPDV LV WKDW RQFH WKH ZHLJKWLQJ
IUDFWLRQV D DQG D DUH FKRVHQ YHU\ FORVH WR WKHLU RSWLPDO YDOXHV JLYHQ LQ DQG UHVSHFWLYHO\ WKHQ WKH SURSRVHG PRGLILHG H[SRQHQWLDO HVWLPDWRU W ZRXOG EH PRUH HIILFLHQW WKDQ WKH VDPSOH PHDQ \ WKH UDWLRW\SH H[SRQHQWLDO
HVWLPDWRU W SURSRVHG E\ 6LQJK HW DO D DQG WKH SURGXFWW\SH H[SRQHQWLDO
HVWLPDWRU W SURSRVHG LQ WKH SUHVHQW VWXG\
5. Numerical Illustration
)RU WKH SXUSRVH RI HPSLULFDO LOOXVWUDWLRQ RI RXU WKHRUHWLFDO UHVXOWV FRQVLGHU WKH
IROORZLQJ ILYH PHPEHUV W M L M L HDFK RI WKH
HVWLPDWRUV W DQG W (VWL
PDWRU
L
W L
ª ;[ º
\ H[S «
»
¬ ;[ ¼
º
ª
;[
W \ H[S «
»
¬ ; [ & [ ¼
W W L
D
E
W ª [; º
\ H[S «
»
¬ [; ¼
W ª
º
[;
\ H[S «
»
¬ [ ; & [ ¼
&[
197
STATISTICS IN TRANSITION-new series, Summer 2013
(VWL
PDWRU
L
W L
W L
ª ;[ º
\ H[S «
»
¬ ; [ U ¼
ª & [ ; [ º
W \ H[S «
»
¬ & [ ; [ U ¼
W W ª
º
U; [
\ H[S «
»
¬ U; [ & [ ¼
D
E
W ª [; º
\ H[S «
»
¬ [ ; U ¼
U
W ª & [ [ ; º
\ H[S «
»
¬ & [ [ ; U ¼
&[
U
W ª
º
U[ ;
\ H[S «
»
¬ U[ ; & [ ¼
U
&[
7KH PHDQ VTXDUH HUURUV RI WKH HVWLPDWRUV W M L M L DUH HDVLO\ REWDLQHG XVLQJ DQG 7R LOOXVWUDWH WKH HIILFLHQF\ RI WKH
HVWLPDWRUV FRQVLGHU WKH IROORZLQJ WZR VHWV RI GDWD JLYHQ LQ 7DLORU HW DO Data I: -RKQVWRQ SDJH \
3HUFHQWDJH RI KLYHV DIIHFWHG E\ GLVHDVH
[
'DWH RI IORZHULQJ RI D SDUWLFXODU VXPPHU VSHFLHV QXPEHU RI GD\V IURP
-DQXDU\ 1 Q < ; & \
& [
U 8VLQJ 'DWD , WKH FRPSXWHG SHUFHQWDJH UHODWLYH HIILFLHQFLHV RI WKH HVWLPDWRUV
RYHU WKH VLPSOH VDPSOH PHDQ HVWLPDWRU \ DUH GLVSOD\HG LQ 7DEOH Table 1. 3HUFHQWDJH 5HODWLYH (IILFLHQF\ 35( RYHU WKH 6DPSOH 0HDQ \
(VWLPDWRUV
\
W L
W L
L
W
Data II: -RKQVWRQ SDJH \
3HUFHQWDJH RI KLYHV DIIHFWHG E\ GLVHDVH
[
0HDQ -DQXDU\ 7HPSHUDWXUH &
1 Q < ;
& \
& [
U 198
A. C. Onyeka: A class of product-type …
8VLQJ 'DWD ,, WKH FRPSXWHG SHUFHQWDJH UHODWLYH HIILFLHQFLHV RI WKH HVWLPDWRUV
RYHU WKH VLPSOH VDPSOH PHDQ HVWLPDWRU \ DUH GLVSOD\HG LQ 7DEOH Table 2. 3HUFHQWDJH 5HODWLYH (IILFLHQF\ 35( RYHU WKH 6DPSOH 0HDQ \
(VWLPDWRUV
\
W L
W L
L
W
7DEOHV DQG UHYHDO WKDW WKH UDWLRW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG E\
6LQJK HW DO D DQG WKH SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG LQ
WKH SUHVHQW VWXG\ DUH QRW DOZD\V RU XQLIRUPO\ PRUH HIILFLHQW WKDQ WKH VLPSOH
VDPSOH PHDQ \ H[FHSW ZKHQ WKH HIILFLHQF\ FRQGLWLRQV DQG DUH
UHVSHFWLYHO\ VDWLVILHG $JDLQ WKH QXPHULFDO UHVXOWV LQ 7DEOHV DQG FRQILUPHG
DV H[SHFWHG WKDW WKH SURSRVHG SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W LV SUHIHUUHG
RYHU WKH UDWLRW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG E\ 6LQJK HW DO D
ZKHQ WKHUH LV D VWURQJ QHJDWLYH FRUUHODWLRQ EHWZHHQ WKH VWXG\ DQG DX[LOLDU\
FKDUDFWHUV ZKLOH WKH HVWLPDWRU W LV SUHIHUUHG RYHU WKH HVWLPDWRU W ZKHQ WKHUH LV
D VWURQJ SRVLWLYH FRUUHODWLRQ EHWZHHQ WKH VWXG\ DQG DX[LOLDU\ YDULDEOHV 7KH
QXPHULFDO UHVXOWV DOVR FRQILUPHG WKDW XQGHU WKH RSWLPXP FRQGLWLRQV DQG
WKH PRGLILHG H[SRQHQWLDO HVWLPDWRU W ZKLFK LV D OLQHDU IXQFWLRQ RI WKH
HVWLPDWRUV W DQG W LV PRUH HIILFLHQW WKDQ WKH VDPSOH PHDQ \ DQG WKH
H[SRQHQWLDO HVWLPDWRUV W DQG W 6. Conclusion
:H KDYH H[WHQGHG WKH ZRUN FDUULHG RXW E\ 6LQJK HW DO D E\ GHYHORSLQJ
D FODVV RI SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV RI WKH SRSXODWLRQ PHDQ LQ
656:25 VFKHPH XVLQJ NQRZQ SRSXODWLRQ SDUDPHWHUV RI DQ DX[LOLDU\ FKDUDFWHU
7KH SURSRVHG FODVV RI SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV XQGHU FHUWDLQ
HIILFLHQF\ FRQGLWLRQV LV VKRZQ WR EH PRUH HIILFLHQW WKDQ WKH XVXDO VDPSOH PHDQ
HVWLPDWRU \ LQ WHUPV RI KDYLQJ D PHDQ VTXDUH HUURU VPDOOHU WKDQ WKH YDULDQFH RI
\ $OVR QXPHULFDO LOOXVWUDWLRQV FRQILUPHG WKDW ZKHQ WKHUH LV D VWURQJ QHJDWLYH
FRUUHODWLRQ EHWZHHQ WKH VWXG\ DQG DX[LOLDU\ YDULDEOHV WKH SURSRVHG SURGXFWW\SH
H[SRQHQWLDO HVWLPDWRU LV SUHIHUUHG RYHU WKH UDWLRW\SH H[SRQHQWLDO HVWLPDWRU
SURSRVHG E\ 6LQJK HW DO D )XUWKHUPRUH LQ WKH SUHVHQW VWXG\ ZH KDYH
GHYHORSHG D PRGLILHG H[SRQHQWLDO HVWLPDWRU ZKLFK LV D OLQHDU IXQFWLRQ RU
FRPELQDWLRQ RI ERWK WKH UDWLRW\SH DQG SURGXFWW\SH H[SRQHQWLDO HVWLPDWRUV %\
STATISTICS IN TRANSITION-new series, Summer 2013
199
XVLQJ WKH RSWLPDO ZHLJKWLQJ IUDFWLRQV LQ WKH SURSRVHG PRGLILHG H[SRQHQWLDO
HVWLPDWRUV WKH PRGLILHG H[SRQHQWLDO HVWLPDWRU LV IRXQG WR EH PRUH HIILFLHQW WKDQ
WKH XVXDO VDPSOH PHDQ HVWLPDWRU \ WKH UDWLRW\SH H[SRQHQWLDO HVWLPDWRUV W
SURSRVHG E\ 6LQJK HW DO D DQG WKH SURGXFWW\SH H[SRQHQWLDO HVWLPDWRU W SURSRVHG LQ WKH SUHVHQW VWXG\ ,Q SUDFWLFH WKHUHIRUH ZH VXJJHVW WKDW WKH ZHLJKWLQJ
IUDFWLRQV LQ WKH PRGLILHG H[SRQHQWLDO HVWLPDWRU EH FKRVHQ YHU\ FORVH WR WKHLU
RSWLPDO FKRLFHV LQ DQG LQ RUGHU WR UHDOL]H WKH IXOO EHQHILWV RI XVLQJ
WKH SURSRVHG PRGLILHG RU LPSURYHG H[SRQHQWLDO HVWLPDWRUV RI < LQ 656:25
VFKHPH
REFERENCES
$%'(/)$77$+ $ 0 (/6+(53,(1< ( $ 02+$0(' 6 0
$%'28 2 ) ,PSURYHPHQW LQ HVWLPDWLQJ WKH SRSXODWLRQ PHDQ LQ
VLPSOH UDQGRP VDPSOLQJ XVLQJ LQIRUPDWLRQ RQ DX[LOLDU\ DWWULEXWH $SSOLHG
0DWKHPDWLFV DQG &RPSXWDWLRQ 9RO ±
%$+/ 6 787(-$ 5 . 5DWLR DQG 3URGXFW W\SH H[SRQHQWLDO HVWLPDWRU
,QIRUPDWLRQ DQG 2SWLPL]DWLRQ 6FLHQFHV 9RO ;,, , ±
&2&+5$1 :* 6DPSOLQJ WHFKQLTXHV UG HGLWLRQ -RKQ :LOH\ DQG
6RQV 1HZ <RUN
*529(5 / . .$85 3 $Q LPSURYHG H[SRQHQWLDO HVWLPDWRU RI ILQLWH
SRSXODWLRQ PHDQ LQ VLPSOH UDQGRP VDPSOLQJ XVLQJ DQ DX[LOLDU\ DWWULEXWH
$SSOLHG 0DWKHPDWLFV DQG &RPSXWDWLRQ 9RO 1R ±
.$',/$5 & &,1*, + ,PSURYHPHQW LQ HVWLPDWLQJ WKH SRSXODWLRQ
PHDQ LQ VLPSOH UDQGRP VDPSOLQJ $SSOLHG 0DWKHPDWLFV /HWWHUV ±
.+26+1(9,6$1 0 6,1*+ 5 &+$8+$1 3 6$:$1 1
60$5$1'$&+( ) $ JHQHUDO IDPLO\ RI HVWLPDWRUV IRU HVWLPDWLQJ
SRSXODWLRQ PHDQ XVLQJ NQRZQ YDOXH RI VRPH SRSXODWLRQ SDUDPHWHUV )DU
(DVW -RXUQDO RI 7KHRUHWLFDO 6WDWLVWLFV ±
21<(.$ $ & (VWLPDWLRQ RI SRSXODWLRQ PHDQ LQ SRVWVWUDWLILHG
VDPSOLQJ XVLQJ NQRZQ YDOXH RI VRPH SRSXODWLRQ SDUDPHWHUV 6WDWLVWLFV LQ
7UDQVLWLRQQHZ VHULHV ±
6+$%%,5 - *837$ 6 (VWLPDWLRQ RI )LQLWH 3RSXODWLRQ 0HDQ LQ
7ZR 3KDVH 6DPSOLQJ :KHQ $X[LOLDU\ 9DULDEOHV $UH $WWULEXWHV +DFHWWHSH
-RXUQDO RI 0DWKHPDWLFV DQG 6WDWLVWLFV 9RO 1R ±
200
A. C. Onyeka: A class of product-type …
6+$50$ % 7$,/25 5 $ 1HZ 5DWLR&XP'XDO WR 5DWLR (VWLPDWRU
RI )LQLWH 3RSXODWLRQ 0HDQ LQ 6LPSOH 5DQGRP 6DPSOLQJ *OREDO -RXUQDO RI
6FLHQFH )URQWLHU 5HVHDUFK 9RO ,VVXH 9HU ±
6,1*+ 5 &+$8+$1 3 6$:$1 1 60$5$1'$&+( ) D
,PSURYHPHQW LQ HVWLPDWLQJ WKH SRSXODWLRQ PHDQ XVLQJ H[SRQHQWLDO HVWLPDWRU
LQ VLPSOH UDQGRP VDPSOLQJ %XOOHWLQ RI 6WDWLVWLFV (FRQRPLFV 9RO $
±
6,1*+ 5 &+$8+$1 3 6$:$1 1 60$5$1'$&+( ) ,PSURYHG H[SRQHQWLDO HVWLPDWRU IRU SRSXODWLRQ YDULDQFH XVLQJ WZR DX[LOLDU\
YDULDEOHV ,WDOLDQ -RXUQDO RI 3XUH DQG $SSOLHG 0DWKHPDWLFV 1R ±
6,1*+ 5 .80$5 0 &+$8'+$5< 0 . .$',/$5 & E
,PSURYHG H[SRQHQWLDO HVWLPDWRU LQ VWUDWLILHG UDQGRP VDPSOLQJ 3DNLVWDQ
-RXUQDO RI 6WDWLVWLFV DQG 2SHUDWLRQV 5HVHDUFK 9RO 9 1R ±
6,1*+ + 3 7$,/25 5 (VWLPDWLRQ RI ILQLWH SRSXODWLRQ PHDQ XVLQJ
NQRZQ FRUUHODWLRQ FRHIILFLHQW EHWZHHQ DX[LOLDU\ FKDUDFWHUV 6WDWLVWLFD $QQR
/;9 ±
6,1*+ + 3 9,6+:$.$0$ * . 0RGLILHG H[SRQHQWLDO UDWLR DQG
SURGXFW HVWLPDWRUV IRU ILQLWH SRSXODWLRQ PHDQ LQ GRXEOH VDPSOLQJ $XVWULDQ
-RXUQDO RI 6WDWLVWLFV 9RO 1R ±
68.+$70( 3 9 68.+$70( % 9 6DPSOLQJ WKHRU\ RI VXUYH\V
ZLWK DSSOLFDWLRQV ,RZD 6WDWH 8QLYHUVLW\ 3UHVV $PHV 86$
7$,/25 5 6+$50$ % . $ 0RGLILHG 5DWLR&XP3URGXFW
(VWLPDWRU RI )LQLWH 3RSXODWLRQ 0HDQ 8VLQJ .QRZQ &RHIILFLHQW RI 9DULDWLRQ
DQG &RHIILFLHQW RI .XUWRVLV 6WDWLVWLFV LQ 7UDQVLWLRQQHZ VHULHV -XO
9RO 1R ±
7$,/25 5 7$,/25 5 3$50$5 5 .80$5 0 'XDO WR UDWLR
FXPSURGXFW HVWLPDWRU XVLQJ NQRZQ SDUDPHWHUV RI DX[LOLDU\ YDULDEOHV -RXUQDO
RI 5HOLDELOLW\ DQG 6WDWLVWLFDO 6WXGLHV 9RO ,VVXH ±
STATISTICS IN TRANSITION-new series, Summer 2013
201
STATISTICS IN TRANSITION-new series, Summer 2013
Vol. 14, No. 2, pp. 201–216
THE CLASS OF ESTIMATORS OF FINITE
POPULATION MEAN USING INCOMPLETE MULTIAUXILIARY INFORMATION
Meenakshi Srivastava , Neha Garg ABSTRACT
,Q WKLV SDSHU D FODVV RI HVWLPDWRUV LV FRQVLGHUHG IRU HVWLPDWLQJ WKH PHDQ RI WKH
ILQLWH SRSXODWLRQ XWLOL]LQJ DYDLODEOH LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ 6RPH
VSHFLDO FDVHV RI WKLV FODVV RI HVWLPDWRUV DUH FRQVLGHUHG 7KH DSSUR[LPDWH
H[SUHVVLRQV IRU ELDV DQG PHDQ VTXDUH HUURU RI WKH VXJJHVWHG HVWLPDWRUV KDYH DOVR
EHHQ GHULYHG DQG WKHRUHWLFDO UHVXOWV DUH QXPHULFDOO\ VXSSRUWHG
Key words: ELDV PHDQ VTXDUH HUURU PXOWLDX[LOLDU\ LQIRUPDWLRQ
1. Introduction
7KH XVH RI DX[LOLDU\ LQIRUPDWLRQ IRU LPSURYLQJ WKH SUHFLVLRQ RI WKH HVWLPDWRUV
LV ZHOO NQRZQ ZKHQ WKH YDULDEOH XQGHU VWXG\ < DQG WKH DX[LOLDU\ YDULDEOH ; DUH
FRUUHODWHG ,Q ODUJH VFDOH VXUYH\V ZH RIWHQ FROOHFW GDWD RQ PRUH WKDQ RQH DX[LOLDU\
YDULDEOH DQG VRPH RI WKHVH PD\ EH FRUUHODWHG ZLWK < 2ONLQ 5DM 5DR DQG 0XGKRONDU 6ULYDVWDYD 6LQJK $JUDZDO DQG 3DQGD
'DODEHKDUD DQG 6DKRR 6DKRR DQG %DOD $EX'D\\HK
HW DO $KPHG 6LQJK HW DO .DGLODU DQG &LQJL 3HUULO
6LQJK HW DO HWF FRQVLGHUHG VRPH HVWLPDWRUV ZKLFK XWLOL]H
LQIRUPDWLRQ RQ VHYHUDO DX[LOLDU\ YDULDEOHV ZKLFK DUH FRUUHODWHG ZLWK WKH YDULDEOH
XQGHU VWXG\ ,Q PDQ\ VLWXDWLRQV ZH PD\ KDYH LQIRUPDWLRQ RQ VHYHUDO DX[LOLDU\
YDULDEOHV EXW HDFK YDULDEOH PD\ QRW EH NQRZQ IRU HDFK SRSXODWLRQ XQLW 6LQJK
FRQVLGHUHG WKH FRQFHSW RI VWUDWLILFDWLRQ IRU ZHLJKWLQJ WKH JLYHQ LQFRPSOHWH
DX[LOLDU\ LQIRUPDWLRQ 6ULYDVWDYD DQG *DUJ VXJJHVWHG D FODVV RI HVWLPDWRUV
IRU HVWLPDWLQJ WKH ILQLWH SRSXODWLRQ PHDQ XWLOL]LQJ DYDLODEOH LQFRPSOHWH PXOWL
DX[LOLDU\ LQIRUPDWLRQ ZKHQ IUDPH LV XQNQRZQ IRU HDFK VWUDWXP
'HSDUWPHQW RI 6WDWLVWLFV ,QVWLWXWH RI 6RFLDO 6FLHQFHV 'U % 5 $PEHGNDU 8QLYHUVLW\ $JUD 83
,QGLD (PDLO PVULYDVWDYDBLVV#KRWPDLOFRP
6FKRRO RI 6FLHQFHV ,QGLUD *DQGKL 1DWLRQDO 2SHQ 8QLYHUVLW\ 1HZ 'HOKL ,QGLD
(PDLO QHKDJDUJ#JPDLOFRP
202
M. Srivastava, N. Garg: The class of estimators …
7KH DLP RI WKH SUHVHQW SDSHU LV WR GHYHORS D JHQHUDO FODVV RI ZHLJKWHG
HVWLPDWRUV EDVHG RQ LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ DV WR VKRZ WKDW LW LV
DOZD\V EHWWHU WR XVH DGGLWLRQDO DX[LOLDU\ YDULDEOHV ZKLFK DUH FRUUHODWHG ZLWK <
7KH JHQHUDO FODVV RI ZHLJKWHG HVWLPDWRUV KDV EHHQ FRQVWUXFWHG ZKHQ IUDPH LV
NQRZQ IRU HDFK VWUDWXP
*HQHUDOO\ WKH VWUDWLILFDWLRQ LV GRQH RQ WKH EDVLV RI KHWHURJHQHLW\ LQ WKH
SRSXODWLRQ ZLWK UHVSHFW WR WKH VWXG\ YDULDEOH < %XW ZH YLHZ VWUDWLILFDWLRQ LQ WKH
RWKHU ZD\ ,Q RXU FDVH WKH KHWHURJHQHLW\ RI WKH SRSXODWLRQ LV FRQVLGHUHG ZLWK
UHVSHFW WR WKH XQHTXDO QXPEHU RI DX[LOLDU\ YDULDEOHV :H VWUDWLI\ WKH SRSXODWLRQ LQ
WHUPV RI WKH LQIRUPDWLRQ SURYLGHG E\ WKH S DX[LOLDU\ YDULDEOHV 7KXV WKHUH ZLOO EH
D VWUDWXP IRU ZKLFK QR DX[LOLDU\ LQIRUPDWLRQ LV DYDLODEOH S VWUDWD IRU ZKLFK RQO\
RQH DX[LOLDU\ YDULDEOH RXW RI S DX[LOLDU\ YDULDEOHV LV NQRZQ 6LPLODUO\ WKHUH ZLOO
EH p C VWUDWD IRU ZKLFK WKH WZR DX[LOLDU\ YDULDEOHV DUH NQRZQ p C VWUDWD IRU
ZKLFK WKUHH DX[LOLDU\ YDULDEOHV DUH NQRZQ DQG VR RQ 8OWLPDWHO\ ZH ZLOO KDYH D
VWUDWXP IRU ZKLFK DOO WKH S DX[LOLDU\ YDULDEOHV DUH NQRZQ
,W LV VHHQ WKDW WKH JLYHQ PHWKRG FRQVLGHULQJ VWUDWLILFDWLRQ RI SRSXODWLRQ RQ WKH
EDVLV RI XQHTXDO QXPEHU RI DX[LOLDU\ YDULDEOH LV FDSDEOH RI JLYLQJ PRUH SUHFLVH
UHVXOWV WKDQ VLPSOH VDPSOH PHDQ SHU XQLW
2. Notations
/HW XV FRQVLGHU D ILQLWH SRSXODWLRQ 8 8 8 81 RI 1 LGHQWLILDEOH XQLWV
WDNLQJ YDOXHV RQ D VWXG\ YDULDEOH < DQG S DX[LOLDU\ YDULDEOHV ; ; « ;S
ZKLFK DUH FRUUHODWHG ZLWK < $X[LOLDU\ YDULDEOHV ; ; ;S DUH NQRZQ IRU WRWDO
0 0 « 0S XQLWV RI WKH SRSXODWLRQ UHVSHFWLYHO\ )RU WKH PD[LPXP XWLOL]DWLRQ
RI DYDLODEOH LQFRPSOHWH DX[LOLDU\ LQIRUPDWLRQ WKH SRSXODWLRQ LV GLYLGHG LQWR
GLIIHUHQW VWUDWD DFFRUGLQJ WR WKH NQRZQ QXPEHU RI DX[LOLDU\ YDULDEOHV DQG D
UDQGRP VDPSOH RI Q XQLWV LV GUDZQ IURP WKHVH JURXSV ZLWK VLPSOH UDQGRP
VDPSOLQJ ZLWKRXW UHSODFHPHQW
S
& M 1XPEHU RI VWUDWD IRU ZKLFK M DX[LOLDU\ YDULDEOHV DUH NQRZQ
M « S.
3RSXODWLRQ VL]H
6DPSOH VL]H
6L]H RI WKH VWUDWXP IRU ZKLFK QR DX[LOLDU\ YDULDEOH LV NQRZQ
6L]H RI WKH VWUDWXP IRU ZKLFK DX[LOLDU\ YDULDEOH ;L LV NQRZQ;
L « S
1LM 6L]H RI WKH VWUDWXP IRU ZKLFK DX[LOLDU\ YDULDEOH ;L DQG ;M DUH
NQRZQ L M L M « S
1LMN 6L]H RI WKH VWUDWXP IRU ZKLFK DX[LOLDU\ YDULDEOH ;L ;M DQG ;N
DUH NQRZQ L M N L M N « S
1«S 6L]H RI WKH VWUDWD IRU ZKLFK DOO S DX[LOLDU\ YDULDEOH ; ; «
;S LV NQRZQ L M N L M N « S
1
Q
1 1LL 203
STATISTICS IN TRANSITION-new series, Summer 2013
ZKHUH 1LL 1LM 1LMN « 1«L«S 0L
S
S 7RWDO QXPEHU RI VWUDWD LH
1L 3RSXODWLRQ VL]H RI WKH LWK VWUDWXP L
¦ S &L
L VXFK WKDW
S
¦ 1L
S
S
1
L QL WK
6DPSOH VL]H RI WKH L VWUDWXP L
S
« VXFK WKDW
S
¦ QL
Q
L <LN 9DOXH RI WKH NWK REVHUYDWLRQ RQ YDULDEOH XQGHU VWXG\ LQ LWK VWUDWXP
L
« S & M M
« S N 1L
WK
; LMN 9DOXH RI WKH N REVHUYDWLRQ RQ MWK DX[LOLDU\ YDULDEOH LQ LWK VWUDWXP
L
« S & M M
« S N 1L
<L 3RSXODWLRQ PHDQ RI WKH < YDULDEOH LQ LWK VWUDWXP
\ L 6DPSOH PHDQ RI WKH < YDULDEOH LQ LWK VWUDWXP
; LM 3RSXODWLRQ PHDQ RI WKH MWK DX[LOLDU\ YDULDEOH LQ LWK VWUDWXP
[ LM 6DPSOH PHDQ RI WKH MWK DX[LOLDU\ YDULDEOH LQ LWK VWUDWXP
6L 3RSXODWLRQ PHDQ VTXDUH HUURU RI Y YDULDEOH LQ LWK VWUDWXP
6LM 3RSXODWLRQ PHDQ VTXDUH HUURU RI WKH MWK DX[LOLDU\ YDULDEOH LQ LWK
VWUDWXP
& L &RHIILFLHQW RI YDULDWLRQ RI WKH YDULDEOH XQGHU VWXG\ < LQ LWK
VWUDWXP LH & L
& LM <L
&RHIILFLHQW RI YDULDWLRQ RI WKH MWK DX[LOLDU\ YDULDEOH LQ LWK VWUDWXP
LH & LM
ULM 6L
6LM
; LM
&RUUHODWLRQ FRHIILFLHQW EHWZHHQ WKH YDULDEOHV < YDULDEOH XQGHU
VWXG\ DQG ;LM WKH MWK DX[LOLDU\ YDULDEOH LQ WKH LWK VWUDWXP
204
M. Srivastava, N. Garg: The class of estimators …
U LMK &RUUHODWLRQ FRHIILFLHQW EHWZHHQ WKH YDULDEOHV ;M DQG ;K M z K LQ
ELM WKH LWK VWUDWXP
5HJUHVVLRQ FRHIILFLHQW RI WKH YDULDEOHV < YDULDEOH XQGHU VWXG\
DQG ;LM WKH MWK DX[LOLDU\ YDULDEOH LQ WKH LWK VWUDWXP
1L
1
:L 3URSRUWLRQ RI XQLWV LQ WKH LWK VWUDWXP LH :L
Q
1
I
6DPSOLQJ IUDFWLRQ LH I
IL 6DPSOLQJ IUDFWLRQ LQ WKH LWK VWUDWXP LH I L
Dij :HLJKWV DWWDFKHG WR WKH MWK DX[LOLDU\ YDULDEOH LQ WKH LWK VWUDWXP
DGGLQJ XS WR
. LM
U LM
QL
1L
&L
M « S
& LM
7KH IROORZLQJ ILJXUH VKRZV WKH FRQVWUXFWLRQ RI VWUDWD RQ WKH
EDVLV RI DYDLODEOH LQFRPSOHWH WKUHHDX[LOLDU\ LQIRUPDWLRQ ; ; DQG ;
1
1
1
1
1
1 1
1
1
1
1
1
1
1 1
1
<
;
<
<
;
<
<
;
;
;
<
;
;
<
;
;
Q
Q
<
;
;
;
1
Q
Q
Q
Q
Figure 2.1. &RQVWUXFWLRQ RI VWUDWD
Q
Q
Q
205
STATISTICS IN TRANSITION-new series, Summer 2013
3. Suggested general class of estimators
1RZ ZH FDQ VXJJHVW WKH IROORZLQJ JHQHUDO FODVV RI HVWLPDWRUV XVLQJ
LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ
S
¦ :L J L \ L [ L \ SU
L S
¦ D LMJ LM \ L [ LM DQG
ZKHUH J L \ L [ L M J LM \ L [ LM LV
WKH
[ LM
1 L
[ LMN N
IXQFWLRQ
\L
RI
J \ [ \ LN N
\
1 L DQG
7KH ELDV DQG PHDQ VTXDUHG HUURU RI \ S DUH DV IROORZV
S
S
S
L L M ¦ :L (J L \ L [ L ¦ :L ¦ D LM(J LM \ L [ LM ( \ SU
S
¦ :L 06(J L \ L [ L 06( \ SU
L MSE g i y i x i FDQ HDVLO\ EH REWDLQHG IRU GLIIHUHQW YDOXHV RI WKH IXQFWLRQ J
E\ JHQHUDOL]LQJ WKH SURFHGXUH XVHG E\ 2ONLQ 7KXV
06(J L \ L [ L § © QL 1L
ZKHUH ¨¨
§ ¨¨ © QL 1L
·
¸¸ Y LMK
¹
·S S
¸¸¦ ¦ D LMD LK Y LMK
¹M K &RYJ LM J LK ,Q PDWUL[ QRWDWLRQ
§ 06(J L \ L [ L ¨¨ © QL 1L
·
¸¸ D L 9L D L c
¹ a
a
ZKHUH WKH PDWUL[ 9L YLMK DQG D L
WUDQVSRVH RI D L a
a
D L D L D LS D L c EHLQJ WKH
a
206
M. Srivastava, N. Garg: The class of estimators …
3.1. Optimum values of Dij for j = 1, 2, …, p
,W LV IDLUO\ VLPSOH WR HVWDEOLVK WKDW WKH RSWLPXP DLM LV JLYHQ E\
6XP RI WKH HOHPHQWV RI WKH M WK FROXPQ RI 9L
D LM
6XP RI DOO WKH S HOHPHQWV LQ 9L
ZKHUH Vi LV WKH PDWUL[ LQYHUVH WR 9L XVLQJ WKH RSWLPXP ZHLJKWV WKH PHDQ
VTXDUH HUURU LV IRXQG WR EH
§ ·
¸¸ 6XP RI DOO WKH S HOHPHQWV LQ 9L
06( J L \ L [ L ¨¨ Q
1
L¹
© L
4. Some special cases of the suggested class of estimators
Case I. :KHQ HDFK ;M M « S LV SRVLWLYHO\ FRUUHODWHG ZLWK < LQ HDFK
VWUDWXP RXU HVWLPDWRU ZLOO FRQYHUW LQWR ZHLJKWHG UDWLR HVWLPDWRU JLYHQ DV
\ SUUDW
S
S
L M ¦ :L ¦ D LMJ LMUDW \ L [ LM
\L
; LM
[ LM
ZKHUH J LMUDW \ L [ LM %LDV \ SUUDW
(\ SUUDW <
S
S
IL ª
¦ :L Q ««<L ¦ D LM &LM . LM
L ¬ M L 06( \ SUUDW
^ S
>
º
`»
»
¼
S S
IL
:L <L
&L D LMD LK U LMK & LM& LK
QL
L M K U LM& L & LM U LK & L & LK
¦
¦¦
@
Case II. :KHQ HDFK ;M M «« S LV SRVLWLYHO\ FRUUHODWHG ZLWK < LQ HDFK
VWUDWXP ZH FDQ DOVR XVH ZHLJKWHG UHJUHVVLRQ HVWLPDWRU JLYHQ DV
\ SUUHJ
S
S
L M ¦ :L ¦ D LMJ LM UHJ \ L [ LM ZKHUH J LMUHJ \ L [ LM \ L E LM ; LM [ LM
207
STATISTICS IN TRANSITION-new series, Summer 2013
%LDV \ SUUHJ
(\ SUUHJ <
06( \ SUUHJ
S
¦ :L Q I L >6L ¦ ¦ D LMD LK ELMELK ULMK 6LM6LK
L
S
L S
M K E LMULM6L6LM E LK ULK 6L6LK
@
Case III. ,I HDFK ;M M «« S LV QHJDWLYHO\ FRUUHODWHG ZLWK < LQ HDFK
VWUDWXP WKHQ RXU HVWLPDWRU ZLOO FRQYHUW LQWR ZHLJKWHG SURGXFW HVWLPDWRU
JLYHQ DV
S
S
L M ¦ :L ¦ D LMJ LMSURG \ L [ LM \ SUSURG
ZKHUH J LMSURG \ L [ LM %LDV \ SUSURG
\L
[ LM
; LM
S
ª
S
º
L ¬
M ¼
¦ :L Q I L «<L ¦ D LM&LM . LM »
»
L «
06( \ SUSURG
S
>
S S
IL :L <L
&L D LMD LK ULMK & LM& LK
QL
L M K ULM& L & LM ULK & L & LK
¦
¦¦
@
5. Empirical study
7KH DERYH WKHRUHWLFDO GHYHORSPHQWV DUH DSSOLHG RQ WZR DUWLILFLDOO\ FRQVWUXFWHG
SRSXODWLRQV ,Q GDWD VHW RQH WKH SRSXODWLRQ FRQVLVWV RI 1 REVHUYDWLRQV )RU
H[DPSOH WKH \LHOG UDWHV RI WKH FURS FDQ EH WDNHQ DV D VWXG\ YDULDEOH < DQG QR RI
VKRRWV FDQHV DYHUDJH KHLJKW RI VKRRWV FDQH DQG DYHUDJH ZLGWK RI WKH UG OHDI
FDQ EH FRQVLGHUHG DV WKUHH DX[LOLDU\ YDULDEOHV ; ; DQG ; UHVSHFWLYHO\ )RU WKH
SXUSRVH RI FRPSXWDWLRQ D VDPSOH RI VL]H Q KDV EHHQ GUDZQ E\ 656:25
IURP WKH ILUVW SRSXODWLRQ DQG D VDPSOH RI Q
XQLWV KDV EHHQ GUDZQ E\
656:25 IURP WKH VHFRQG GDWD VHW RI VL]H 1 %RWK WKH SRSXODWLRQV DUH JLYHQ
LQ WKH $SSHQGL[
,Q ERWK WKH GDWD VHWV WKH LQIRUPDWLRQ RQ DOO WKH WKUHH DX[LOLDU\ YDULDEOHV ZDV
PLVVLQJ IRU GLIIHUHQW SRSXODWLRQ XQLWV DQG KHQFH WKHUH ZLOO EH VWUDWD 7KH
FRPSXWHG VDPSOH VL]H IRU HDFK VWUDWXP E\ SURSRUWLRQDO DOORFDWLRQ DQG WKH
208
M. Srivastava, N. Garg: The class of estimators …
REVHUYHG VWDWLVWLFV DERXW WKH SRSXODWLRQ LQ FDVH RI LQFRPSOHWH DX[LOLDU\
LQIRUPDWLRQ DUH JLYHQ LQ WKH IROORZLQJ WDEOHV
Data Set I
Table 1. 3RSXODWLRQ SDUDPHWHUV
:LWKRXW
6WUDWLILFDWLRQ
Y S y 6WUDWXP
,
1 Q
Q
Y X . S S U E 1
,,,
S Y 1
,,
Q
Y X . S U E S 1 Q ,9
9
Y X . S S U E 1 Q Y X X S U U S U S . . E X X E 9,
1 Q Y 209
STATISTICS IN TRANSITION-new series, Summer 2013
S U U U S . S . E Y X X S U U U E 1 Q
9,,
S . S . 1 Q Y X X X S U S U E E U U U U S . . . S E E E 9,,,
Data Set II
Table 2. 7KH 3RSXODWLRQ SDUDPHWHUV
Y
S y
:LWKRXW
6WUDWLILFDWLRQ
, 6WUDWXP
1 Q
Y 1
,, 6WUDWXP
Q
Y S
S
S X . U E 210
M. Srivastava, N. Garg: The class of estimators …
1
,,, 6WUDWXP
Q
Y X S U Y X S U S
. E 1 Q ,9 6WUDWXP
S
E 1 Q
Y 9 6WUDWXP
. X X U . S
S
U U S
. E E 1 Q Y 9, 6WUDWXP
X S
U U S
S X U . . E E 1 Q Y 9,, 6WUDWXP
S
S
S
X U U X U . . E E 1 Q
9,,, 6WUDWXP
Y X U
X S
U
X U
S
211
STATISTICS IN TRANSITION-new series, Summer 2013
U
S
U
. . S
E E U
. E 7KH DERYH GDWD VHW LV XVHG WR FRPSXWH WKH ELDVHV DQG PHDQ VTXDUH HUURUV RI
WKH HVWLPDWRUV DV GLVFXVVHG LQ VHFWLRQ DQG DQG WKHVH HVWLPDWRUV DUH FRPSDUHG
L ZLWK HDFK RWKHU LQ DFFRUGDQFH ZLWK WKHLU 06( YDOXHV LL ZLWK UHVSHFW WR PHDQ
SHU XQLW
Table 3. 7KH %LDVHV 0HDQ 6TXDUH (UURUV DQG WKH 5HODWLYH (IILFLHQFLHV RI GDWD
VHW ,
Estimators
y
y pr.rat
y pr.reg
Bias
MSE
Relative
Efficiency
Table 4. 7KH %LDVHV 0HDQ 6TXDUH (UURUV DQG WKH 5HODWLYH (IILFLHQFLHV RI GDWD
VHW ,,
Bias
MSE
Relative
Efficiency
y
y pr.rat
y pr.reg
Estimators
6. Discussion and conclusion
7KH SURSRVHG FODVV RI HVWLPDWRUV XVLQJ LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ
KDV EHHQ FRPSDUHG ZLWK VLPSOH PHDQ SHU XQLW HVWLPDWRU LQ ZKLFK DX[LOLDU\
LQIRUPDWLRQ KDV QRW EHHQ XVHG ,W LV VHHQ WKDW DOO WKH SURSRVHG HVWLPDWRUV DUH PRUH
HIILFLHQW IRU PHDQ HVWLPDWLRQ IRU ERWK WKH GDWD VHW WDNHQ
L
$ FULWLFDO UHYLHZ RI WDEOH DQG UHYHDOV WKDW WKRXJK WKH UDWLR HVWLPDWRU
RI VXJJHVWHG FODVV LV ELDVHG y pr reg LV XQELDVHG EHFDXVH ZH KDYH
FRQVLGHUHG LW IRU SUHDVVLJQHG YDOXH RI ELM WKH DPRXQW RI ELDV LV DOPRVW
QHJOLJLEOH IRU y pr rat 212
LL
M. Srivastava, N. Garg: The class of estimators …
:KHQ ZH FRPSDUH WKH 9 y ZLWK ERWK RI WKH SURSRVHG HVWLPDWRUV ZH
ILQG WKDW 9 y ZKLFK LV FRQVLGHUDEO\ KLJKHU WKDQ WKH 06( y pr rat DQG 06( y pr reg IRU GDWD VHW , DQG 9 y ZKLFK LV DOVR KLJKHU WKDQ WKH 06( y pr rat 06( y pr reg LLL
DQG
IRU GDWD VHW ,,
7KH WUHQG EHFRPHV PRUH FOHDU ZKHQ ZH FRPSDUH WKH
UHODWLYH
HIILFLHQF\ IURP WDEOH DQG LH WKH JDLQ LQ UHODWLYH HIILFLHQF\ RI WKH
HVWLPDWRUV RI VXJJHVWHG FODVV LV VXEVWDQWLDOO\ KLJKHU DV FRPSDUHG WR XVXDO
SHU XQLW HVWLPDWRU
,W LV HYLGHQW IURP WKH DERYH UHVXOWV WKDW WKH SURSRVHG HVWLPDWRUV HVWDEOLVK WKH
VXSUHPDF\ RYHU y LQ WKH HVWLPDWLRQ RI PHDQ XVLQJ VWUDWLILFDWLRQ RQ WKH EDVLV RI
DYDLODEOH LQFRPSOHWH DX[LOLDU\ LQIRUPDWLRQ 7KXV ZH VHH WKDW WKH PD[LPXP XVH RI
DYDLODEOH LQFRPSOHWH PXOWLDX[LOLDU\ LQIRUPDWLRQ FDQ LQFUHDVH WKH HIILFLHQF\ RI WKH
HVWLPDWRUV
STATISTICS IN TRANSITION-new series, Summer 2013
213
REFERENCES
$%8'$<<(+ : $ $+0(' 0 6 $+0(' 5 $ 0877/$. + $
6RPH (VWLPDWRUV RI D )LQLWH 3RSXODWLRQ 0HDQ 8VLQJ $X[LOLDU\
,QIRUPDWLRQ $SSO 0DWK &RPSXW ±
$*5$:$/ 0 & 3$1'$ . % 0XOWLYDULDWH 3URGXFW (VWLPDWRUV
-RXU ,QG 6RF $JUL 6WDW ±
$*5$:$/ 0 & 3$1'$ . % 2Q 0XOWLYDULDWH 5DWLR (VWLPDWLRQ
-RXU ,QG 6WDW $VVRF ±
$+0(' 0 6 6RPH (VWLPDWRUV IRU D )LQLWH 3RSXODWLRQ 0HDQ 8QGHU
7ZR6WDJH 6DPSOLQJ 8VLQJ 0XOWLYDULDWH $X[LOLDU\ ,QIRUPDWLRQ $SSO 0DWK
&RPSXW ±
&2&+5$1 : * 6DPSOLQJ 7HFKQLTXH UG HGLWLRQ :LOH\ DQG 6RQV
1HZ <RUN
'$/$%(+$5$ 0 6$+22 / 1 $ &ODVV RI (VWLPDWRUV LQ 6WUDWLILHG
6DPSOLQJ ZLWK 7ZR $X[LOLDU\ 9DULDEOHV -RXU ,QG 6RF $JUL 6WDW ±
.$',/$5 & &,1*, + $ 1HZ (VWLPDWRU 8VLQJ 7ZR $X[LOLDU\
9DULDEOHV $SSO 0DWK &RPSXW ±
2/.,1 , 0XOWLYDULDWH 5DWLR (VWLPDWLRQ IRU )LQLWH 3RSXODWLRQ
%LRPHWULND ±
3(55,/ 3 ) ,PSURYHG 5DWLR&XP3URGXFW 7\SH (VWLPDWRUV 6WDWLVWLFV
LQ 7UDQVLWLRQ ±
5$- ' 2Q D 0HWKRG RI 8VLQJ 0XOWL$X[LOLDU\ ,QIRUPDWLRQ LQ 6DPSOH
6XUYH\ -RXU $PHU 6WDW $VVRF ±
5$2 3 6 5 6 08'+2/.$5 * 6 *HQHUDOL]HG 0XOWLYDULDWH
(VWLPDWRU IRU WKH 0HDQ RI )LQLWH 3RSXODWLRQ -RXU $PHU 6WDW $VVRF ±
6$+22 - %$/$ 0 . $ 1RWH RQ WKH (VWLPDWLRQ RI WKH 3RSXODWLRQ
0HDQ LQ 6WUDWLILHG 5DQGRP 6DPSOLQJ 8VLQJ 7ZR $X[LOLDU\ 9DULDEOHV %LRP
- ±
68.+$70( 3 9 68.+$70( % 9 6DPSOLQJ 7KHRU\ RI 6XUYH\V
ZLWK $SSOLFDWLRQV ,RZD 6WDWH 8QLYHUVLW\ 3UHVV $PHV ,RZD 86$
6,1*+ + 3 83$'+<$<$ / 1 &+$1'5$ 3 $ *HQHUDO )DPLO\
RI (VWLPDWRUV IRU (VWLPDWLQJ 3RSXODWLRQ 0HDQ 8VLQJ 7ZR $X[LOLDU\ 9DULDEOHV
LQ 7ZR3KDVH 6DPSOLQJ 6WDWLVWLFV LQ 7UDQVLWLRQ 'HF ±
214
M. Srivastava, N. Garg: The class of estimators …
6,1*+ 5 $ 1RWH RQ WKH 8VH RI ,QFRPSOHWH 0XOWL$X[LOLDU\
,QIRUPDWLRQ LQ 6DPSOH 6XUYH\V $XVW - 6WDW ±
6,1*+ 5 &+$8+$1 3 6$:$1 1 2Q WKH %LDV 5HGXFWLRQ LQ
/LQHDU 9DULHW\ RI $OWHUQDWLYH WR 5DWLR&XP3URGXFW (VWLPDWRU 6WDWLVWLFV LQ
7UDQVLWLRQ $XJ ±
6,1*+ 0 $ 1RWH RQ WKH 8VH RI 0XOWLDX[LOLDU\ ,QIRUPDWLRQ &RPPXQ
6WDWLVW 7KHR0HWK ±
65,9$67$9$ 0 *$5* 1 $ &ODVV RI (VWLPDWRUV RI )LQLWH
3RSXODWLRQ 0HDQ 8VLQJ ,QFRPSOHWH 0XOWL$X[LOLDU\ ,QIRUPDWLRQ ZKHQ )UDPH
LV 8QNQRZQ $OLJDUK - 6WDWLVW ±
65,9$67$9$ 6 . $ *HQHUDOL]HG (VWLPDWRU IRU WKH 0HDQ RI D )LQLWH
3RSXODWLRQ 8VLQJ 0XOWL$X[LOLDU\ ,QIRUPDWLRQ -RXU $PHU 6WDW $VVRF
-XQH ±
215
STATISTICS IN TRANSITION-new series, Summer 2013
APPENDIX
Data Set I
6WUDWXP ,
< 6WUDWXP ,,
< ; 6WUDWXP ,,,
< ; 6WUDWXP ,9
< ; 6WUDWXP 9
< ; ; 6WUDWXP 9,
< ; ; 6WUDWXP 9,,
< ; ; 6WUDWXP 9,,,
< ; ; ; 216
M. Srivastava, N. Garg: The class of estimators …
Data Set II
6WUDWXP ,
< 6WUDWXP ,,
< ; 6WUDWXP ,,,
< ; 6WUDWXP ,9
< ; 6WUDWXP 9
< ; ; 6WUDWXP 9,
< ; ; 6WUDWXP 9,,
< ; ; 6WUDWXP 9,,,
< ; ; ; STATISTICS IN TRANSITION-new series, Summer 2013
217
STATISTICS IN TRANSITION-new series, Summer 2013
Vol. 14, No. 2, pp. 217–230
PROBABILITY SAMPLE SELECTION METHOD IN
HOUSEHOLD SURVEYS WHEN CURRENT DATA ON
REGIONAL POPULATION IS UNAVAILABLE
Turgay Ünalan , + g]WDú $\KDQ ABSTRACT
$YDLODELOLW\ RI WKH SHUIHFW VDPSOLQJ IUDPH RQO\ H[LVWV LQ GHYHORSHG FRXQWULHV
ZKLFK FRYHUV D YHU\ VPDOO SURSRUWLRQ RI WKH ZRUOG FRXQWULHV 2Q WKH RWKHU KDQG
LQ GHYHORSLQJ FRXQWULHV OLVWV RI WKH ODWHVW SRSXODWLRQ FHQVXV FRXQWV DUH JHQHUDOO\
XVHG DV WKH VDPSOLQJ IUDPH IRU VDPSOH VXUYH\V 7KHUHIRUH LQ GHYHORSLQJ
FRXQWULHV VXUYH\V ZKLFK DUH SODQQHG IRU IXWXUH SHULRGV ORQJ DIWHU WKH FHQVXV GDWH
FDQQRW EH UHSUHVHQWDWLYH RI WKH UHODWHG WLPH SHULRG LI WKH VDPH FHQVXV FRXQWV DUH
XWLOL]HG ,QVWHDG SRSXODWLRQ SURMHFWLRQV DQG GDWD DGMXVWPHQW PHWKRGRORJLHV PXVW
EH XVHG WR SURYLGH D UHSUHVHQWDWLYH SUREDELOLW\ VHOHFWLRQ RI WKH XSGDWHG
SRSXODWLRQ 7KLV DUWLFOH SURSRVHV D SRSXODWLRQ SURMHFWLRQ DQG DGMXVWPHQW
PHWKRGRORJ\ LQ RUGHU WR HVWDEOLVK WKH LGHDO VHOHFWLRQ SUREDELOLW\ IRU KRXVHKROG
VXUYH\V 7KH PHWKRG FRQWDLQV WKH FRUUHFWLRQ RQ WKH GLIIHUHQFHV RI WKH VXP RI
VWUDWD DQG DJJUHJDWHG YDOXHV &RPSDUDWLYH H[DPSOHV DUH DOVR SURYLGHG WR FODULI\
WKH SURSRVHG PHWKRGRORJ\
Key words: GDWD DGMXVWPHQW KRXVHKROG VXUYH\V SRSXODWLRQ SURMHFWLRQ
SURMHFWLRQ PHWKRGRORJ\ VDPSOH VHOHFWLRQ VHOHFWLRQ SUREDELOLW\
1. Introduction
7KH WHFKQLTXHV XVHG WR PDNH SRSXODWLRQ SURMHFWLRQV FDQ EH FODVVLILHG DV WUHQG
H[WUDSRODWLRQ PRGHOV RU FXUYH ILWWLQJ WHFKQLTXHV DQG FRKRUW FRPSRQHQW SURMHFWLRQ
PRGHOV 7KHVH PRGHOV DUH XVHIXO ZKHQ ZH RQO\ QHHG WR SURMHFW WKH WRWDO DQG
GRPDLQ SRSXODWLRQV 7KHUHIRUH WKH\ XVH WRWDO SRSXODWLRQ ILJXUHV IURP WKH SDVW WR
SURMHFW IXWXUH SRSXODWLRQ OHYHOV $PRQJ WKH SRVVLEOH DOWHUQDWLYH FXUYH ILWWLQJ
PHWKRGV OLNH linear, geometric, exponential DQG logistic WKH PRVW ZLGHO\ XVHG
PRGHO IRU SRSXODWLRQV LV WKH H[SRQHQWLDO PRGHO
6WDWLVWLFV DQG 0RQLWRULQJ 6HFWLRQ 81,&() 1HZ <RUN 86$ (PDLO WXQDODQ#XQLFHIRUJ
'HSDUWPHQW RI 6WDWLVWLFV 0LGGOH (DVW 7HFKQLFDO 8QLYHUVLW\ $QNDUD 7XUNH\
(PDLO RD\KDQ#PHWXHGXWU
218
T. Ünalan, H. Ö. Ayhan: Probability sample …
7KHUH DUH WZR W\SHV RI SRSXODWLRQ HVWLPDWLRQ WHFKQLTXHV QDPHO\ LQWHUFHQVDO
HVWLPDWH between two censuses DQG SRVWFHQVDO HVWLPDWH immediate ,QWHUFHQVDO
HVWLPDWHV DUH NQRZQ DV interpolation DQG SRVWFHQVDO HVWLPDWHV DUH UHIHUUHG WR DV
extrapolation (VWLPDWHV DQG SURMHFWLRQV FDQ EH RQ WKH EDVLV RI HLWKHU de jure
XVXDO UHVLGHQW RU de facto SK\VLFDOO\ SUHVHQW HQXPHUDWLRQ EDVLV IRU SRSXODWLRQV
,Q PRVW FDVHV WKH\ DUH EDVHG RQ de facto SRSXODWLRQ EDVLV
7KH SDSHU FRQFHUQV WKH SUREOHP RI OLPLWHG LPSRUWDQFH LQ GHYHORSHG FRXQWULHV
ZKHUH XSGDWHV RI KRXVHKROG SRSXODWLRQ SURMHFWLRQV DUH UHODWLYHO\ IUHTXHQW
EHWZHHQ FHQVXVHV DQG WKH SURSRVHG PHWKRG FDQ EH XQQHFHVVDU\ +RZHYHU WKH
SUREOHP FDQ EH UHODWLYHO\ IUHTXHQW DQG ZRUWK VWXG\LQJ LQ FRXQWULHV ZLWK SRRU
SRSXODWLRQ VWDWLVWLFV 7KHUHIRUH WKH JRDO RI WKLV SDSHU LV WR SURYLGH D SRSXODWLRQ
SURMHFWLRQ PHWKRG DQG DGMXVWPHQW SURFHGXUHV LQ RUGHU WR GHWHUPLQH UHSUHVHQWDWLYH
SUREDELOLW\ VDPSOH VHOHFWLRQ IRU KRXVHKROG VXUYH\V LQ FRXQWULHV ZKHUH WKH XSGDWHG
VDPSOLQJ IUDPH GRHV QRW H[LVW 2Q WKH RWKHU KDQG LW FDQ DOVR EH D XVHIXO H[DPSOH
RI WKH VROXWLRQ RI WKH SUREOHP RI FRQGXFWLQJ VXUYH\V LQ FDVH RI ODFN RI UHFHQW GDWD
RQ SRSXODWLRQ WKH QXPEHU RI KRXVHKROGV E\ UHJLRQV
7KH SDSHU KDV D UHYLHZ RI WKH FXUUHQWO\ NQRZQ SRSXODWLRQ SURMHFWLRQ
WHFKQLTXHV $Q RYHUYLHZ RI WKH SRSXODWLRQ SURMHFWLRQ WHFKQLTXHV LV LOOXVWUDWHG LQ
WKH IROORZLQJ VHFWLRQ $Q H[SRQHQWLDO PRGHO DQG DGMXVWPHQW SURFHGXUHV IRU WKH
SRSXODWLRQ SURMHFWLRQV DUH DOVR SURSRVHG $ FDVH VWXG\ LOOXVWUDWHG GHWDLOV RI WKH
DGMXVWPHQW PHWKRGRORJLHV ZKLFK DUH VXSSRUWHG E\ QXPHULFDO DSSOLFDWLRQV
2. Overview of population projection techniques
7KH WHFKQLTXHV XVHG WR PDNH SRSXODWLRQ SURMHFWLRQV FDQ EH FODVVLILHG XQGHU
WZR FDWHJRULHV FXUYH ILWWLQJ RU WUHQG PRGHOV DQG FRKRUW FRPSRQHQW SURMHFWLRQ
PRGHOV
Curve Fitting Models DUH XVHIXO ZKHQ ZH RQO\ QHHG WR SURMHFW WKH WRWDO
SRSXODWLRQ 7KHUHIRUH WKH\ XVH WRWDO SRSXODWLRQ ILJXUHV IURP WKH SDVW WR SURMHFW
IXWXUH SRSXODWLRQ OHYHOV
Cohort Component Models DUH PRUH GDWD LQWHQVLYH EHFDXVH WKH\ GLVDJJUHJDWH
WRWDO SRSXODWLRQ ILJXUHV LQWR DJHJHQGHU cohorts )XUWKHU WKH GLIIHUHQW components
RI SRSXODWLRQ FKDQJH ELUWKV GHDWKV DQG PLJUDWLRQ DUH WDNHQ LQWR DFFRXQW DQG
SDVW ILJXUHV IRU WKHVH FRPSRQHQWV DUH DSSOLHG WR WKH FXUUHQW DJHVH[ FRKRUWV 7KH
FRKRUW FRPSRQHQW PHWKRG LV JURXQGHG LQ WKH basic demographic equation
EHFDXVH WKHUH DUH WKUHH ZD\V WKDW D SRSXODWLRQ FDQ FKDQJH LQ VL]H DQG
FRPSRVLWLRQ ELUWKV GHDWKV DQG PLJUDWLRQ %DVLFDOO\ WKH cohort component
method VXUYLYHV HDFK DJHVH[ SRSXODWLRQ VXEJURXS DW D FHUWDLQ WLPH IRUZDUG WR
WLPH DGGV LQ WKH QHZ ELUWKV DQG LQPLJUDQWV DQG VXEWUDFWV RXWPLJUDQWV
&OHDUO\ WR REWDLQ PRUH SUHFLVH DQG PRUH GHWDLOHG LQIRUPDWLRQ DERXW WKH FXUUHQW
DQG IXWXUH SRSXODWLRQ WKH LQFOXVLRQ RI DJH LQ WKH SURMHFWLRQ WHFKQLTXHV LV D
QHFHVVDU\ DGGLWLRQ
STATISTICS IN TRANSITION-new series, Summer 2013
219
,QIRUPDWLRQ RQ WKH FRKRUW FRPSRQHQW PHWKRG KDV EHHQ JLYHQ KHUH EHFDXVH WKH
PHWKRG LV DQ DOWHUQDWLYH WR WKH FXUYH ILWWLQJ RU WUHQG PRGHOV 'XH WR DYDLODEOH GDWD
UHTXLUHPHQWV WKH FRKRUWFRPSRQHQW PHWKRG LV QRW ILQDOO\ XVHG LQ WKLV VWXG\
6HYHUDO SRSXODWLRQ SURMHFWLRQ WHFKQLTXHV DQG FRPSXWHU SURJUDPV DUH DYDLODEOH
IRU JHQHUDO SXUSRVHV LQ WKH OLWHUDWXUH 'DYLV /XW] 9DXSHO DQG $KOEXUJ
6KRUWHU 6HQGHN DQG %D\RXP\ 6WRYHU 8QLWHG 1DWLRQV YDQ ,PKRII DQG .HLOPDQ YDQ ,PKRII *URHQZROG DQG 1DYDQHHWKDP
$PRQJ WKHVH HDUO\ ERRNV RQ SRSXODWLRQ SURMHFWLRQ PHWKRGV DQG PRGHOV DUH
FRYHUHG E\ &R[ +LQGH 1HZHOO 3ROODUG <XVXI DQG 3ROODUG
6KU\RFN 6LHJHO DQG DVVRFLDWHV 5HFHQW ERRNV RQ SRSXODWLRQ
SURMHFWLRQV FRYHUV WKH FODVVLFDO PHWKRGRORJLHV 3UHVWRQ +HXYHOLQH DQG *XLOORW
%RQJDDUWV DQG %XODWDR 0DQ\ UHVHDUFK SURMHFWV KDYH DOVR EHHQ FRPSOHWHG RQ SRSXODWLRQ SURMHFWLRQV
E\ YDULRXV UHVHDUFKHUV *URHQZROG DQG 1DYDQHHWKDP 'DYLV /XW]
9DXSHO DQG $KOEXUJ 6WDWH ,QVWLWXWH RI 6WDWLVWLFV 8QLWHG 1DWLRQV DQG &RPSXWHU SDFNDJH SURJUDPV DUH DOVR GHYHORSHG DQG ZLGHO\ XVHG RQ WKH
SRSXODWLRQ SURMHFWLRQV DQG VRPH VHOHFWHG H[DPSOHV DUH FRYHUHG E\ /HHWH 6KRUWHU 6HQGHN DQG %D\RXP\ 6WRYHU 9DQ ,PKRII 3URMHFWLRQV EDVHG RQ JURZWK UDWHV DVVXPH FRQVWDQW DULWKPHWLF JHRPHWULF RU
H[SRQHQWLDO JURZWK WR HVWLPDWH SRSXODWLRQV EHWZHHQ GDWHV RU WR SURMHFW QXPEHUV
IRU D IHZ \HDUV DKHDG +RZHYHU DV WKH FRQVWDQW JURZWK UDWH LV VHOGRP FDVH LQ UHDO
OLIH SURMHFWLRQV EDVHG RQ JURZWK UDWHV DUH HLWKHU OLPLWHG WR VKRUW WLPH VSDQV RU WKH
JURZWK UDWHV DUH YDULHG IURP RQH LQWHUYDO WR DQRWKHU $OKR DQG 6SHQFHU *URHQHZROG DQG 1DYDQHHWKDP +LQGH 5RZODQG $OO RI WKH
WUHQG H[WUDSRODWLRQ PRGHOV FDQ EH XVHG WR SUHSDUH LQWHUFHQVDO DQG SRVWFHQVDO
HVWLPDWHV
3. Exponential model for population projection
7KHUH DUH PDQ\ GLIIHUHQW WHFKQLTXHV IRU WKH SRSXODWLRQ SURMHFWLRQV $PRQJ
WKHVH ZH ZRXOG OLNH WR LOOXVWUDWH WKH XVH RI WKH H[SRQHQWLDO PRGHO IRU WKH
SRSXODWLRQ SURMHFWLRQV )RU WKLV PHWKRGRORJ\ LW LV HVVHQWLDO WR REWDLQ DQG XVH
DQQXDO SRSXODWLRQ JURZWK UDWHV ,Q SUDFWLFH WKH UHFHQW SDVW SRSXODWLRQ JURZWK
UDWHV DUH GHWHUPLQHG IURP WKH WZR ODWHVW SRSXODWLRQ FHQVXVHV LI DYDLODEOH IRU WKH
UHODWHG GRPDLQV )RU VLPSOLFLW\ ZH FDQ FDOO WKHVH DV data source k and k+1
7KH SUHYLRXV DQQXDO SRSXODWLRQ JURZWK UDWHV IRU WKH FRUUHVSRQGLQJ GRPDLQV FDQ
EH REWDLQHG E\ XVLQJ WKH SRSXODWLRQ FRXQWV RI WKH DYDLODEOH GDWD VRXUFHV 8VLQJ
WKH VDPH GRPDLQ GLPHQVLRQV WKH IXWXUH SURMHFWHG SRSXODWLRQ FDQ EH ODEHOOHG DV
data source k+2 IRU FRQYHQLHQFH *HQHUDOO\ WKH UHODWHG SRSXODWLRQ GRPDLQV RU
VWUDWD ZLOO FRUUHVSRQG WR WKH segregated class boundaries LQ VXUYH\ VDPSOLQJ
PHWKRGRORJ\ )LJXUH LOOXVWUDWHV WKH UHODWLRQVKLS DPRQJ GRPDLQV
220
T. Ünalan, H. Ö. Ayhan: Probability sample …
Data
source
(k):
3UHYLRXV
FHQVXV
rh
Ÿ
r
N k Data source
(k+1):
/DWHVW
FHQVXV
NÖ h k Wh
N h k N k 7RWDO
N k 7RWDO
Adjusted by
Ÿ
a
r NÖ k N k N hk Data source
(k+2):
3ODQQHG
VXUYH\
rÖh
7RWDO
Gh
a
NÖ k N k Figure 1. *UDSKLFDO LOOXVWUDWLRQ RI GDWD VRXUFHV DQG SRSXODWLRQ VWUXFWXUHV
7KH SRSXODWLRQ GRPDLQV DUH HYDOXDWHG DV VWDWLVWLFDO UHJLRQV ZKLFK DUH EDVHG
RQ (85267$7¶V ³Nomenclature of Statistical Territorial Units´ NUTS
FODVVLILFDWLRQ 7KH RYHUDOO SRSXODWLRQ VL]H N LV HTXDO WR WKH VXP RI GRPDLQ
SRSXODWLRQV
H
¦ N h k H
N k DQG
h ¦ N h k N k h 7KH IROORZLQJ IRUP RI WKH H[SRQHQWLDO JURZWK PRGHO LV XVHG IRU SRSXODWLRQ
SURMHFWLRQ RI GRPDLQV )RU VRPH GHVLJQV SRSXODWLRQ GRPDLQV PD\ FRUUHVSRQG WR
SRSXODWLRQ VWUDWD
N h k N h k N h k k k N h k e rh
H[S
>r
k k h
th k k DQG
t h k k @
7KH HVWLPDWHG DQQXDO JURZWK UDWH RI SDVW SRSXODWLRQ FDQ EH REWDLQHG E\
k k h
r
ª N h k º
OQ « k »
¬ Nh ¼
t h k k STATISTICS IN TRANSITION-new series, Summer 2013
221
6HYHUDO DOWHUQDWLYH VFHQDULRV FDQ DOVR EH XVHG IRU GHWHUPLQLQJ WKH IXWXUH
JURZWK UDWH RI WKH SRSXODWLRQ 8QOHVV WKHUH LV QR VSHFLDO UHDVRQ OLNH migration RU
mortality RI SRSXODWLRQ FKDQJH IRU WKH IXWXUH SHULRG WKH SDVW DQQXDO JURZWK UDWH
RI WKH SRSXODWLRQ PD\ DOVR EH XVHG DV D IXWXUH SRSXODWLRQ JURZWK UDWH 7KDW LV
rh k k Ÿ rÖh k k ( k , k )
WKH IXWXUH SRSXODWLRQ
7DNLQJ WKH IXWXUH GRPDLQ JURZWK UDWH DV rˆh
JURZWK RI WKH GRPDLQV FDQ EH SURMHFWHG E\ WKH XVH RI WKH IROORZLQJ PRGHO 7KH
WRWDO SRSXODWLRQ SURMHFWLRQ FDQ EH REWDLQHG DV
NÖ h k N h k H[S > rÖh k k t h k k @
H
DQG ILQDOO\
¦ NÖ
k h
h NÖ k 4. Proposed population adjustment methodology
7RWDO SRSXODWLRQ UHIHUV WR WKH KRXVHKROG SRSXODWLRQ members of household
LQVWLWXWLRQDO SRSXODWLRQ armed forces, dormitory, hospital, prison, etc. DQG
PRELOH SRSXODWLRQ homeless, nomadic tribes, etc )RU D UHSUHVHQWDWLYH KRXVHKROG
EDVHG VDPSOH VXUYH\ WKH WDUJHW SRSXODWLRQ LV FRQVLGHUHG WR EH HTXDO WR WKH
KRXVHKROG SRSXODWLRQ
:KHQ WKH LQIRUPDWLRQ LV DYDLODEOH RQ WKH DPRXQW RI LQVWLWXWLRQDO SRSXODWLRQ >
INS N h @ DQG PRELOH SRSXODWLRQ > N hMOB @ WKHVH DPRXQWV KDV WR EH VXEWUDFWHG
a
IURP WKH DGMXVWHG WRWDO SRSXODWLRQ > N h k @ LQ RUGHU WR REWDLQ WKH KRXVHKROG
SRSXODWLRQ > NÖ h HH @ IRU HDFK GRPDLQ $\KDQ DQG (NQL 7KLV VLPSOH UHODWLRQ
LV JLYHQ EHORZ
Nˆ h( HH )
~
N h( k ) >N h( INS ) N h( MOB ) @
$\KDQ DQG (NQL DOVR SURYLGHG UHDO QXPHULFDO FRXQW GDWD RQ WKH
³LQVWLWXWLRQDO SRSXODWLRQ´ ZKLFK ZDV EDVHG RQ UHJLRQDO HVWLPDWHV RI WKH *HQHUDO 3RSXODWLRQ &HQVXV RI 7XUNH\
,I WKHVH LQIRUPDWLRQ LV DYDLODEOH WKHQ LW KDV WR EH XVHG RWKHUZLVH WKH
FRPSRQHQW FDQ EH QHJOHFWHG DQG WDNHQ DV ]HUR IRU SUDFWLFDO SXUSRVHV 5HFHQW
GHYHORSPHQWV WRZDUGV WKH FROOHFWLRQ UHOHDVH DQG XVH RI VSHFLDO LQIRUPDWLRQ
FUHDWHG VRPH GUDZEDFNV 1RZDGD\V WKHUH PD\ DOVR EH VRPH SROLWLFDO DQGRU
222
T. Ünalan, H. Ö. Ayhan: Probability sample …
VWUDWHJLF UHDVRQV IRU QRW VWDWLQJUHOHDVLQJ VRPH RI WKH LQVWLWXWLRQDO SRSXODWLRQ
LQIRUPDWLRQ FRPSRQHQWV IRU VPDOO GRPDLQV 8QGHU VXFK FLUFXPVWDQFHV WKH de
jure EDVHG KRXVHKROG SRSXODWLRQ HQXPHUDWLRQ PD\ QRW EH SRVVLEOH
)RU WKH LOOXVWUDWLRQ RI WKH SURSRVHG PHWKRGRORJ\ WKH LQIRUPDWLRQ SURYLGHG IRU
WKH data sources k DQG k+1 FRUUHVSRQGV WR WKH WZR SUHYLRXV SRSXODWLRQ FHQVXV
UHVXOWV RI WKH UHODWHG GRPDLQV 7KHUHIRUH GRPDLQ WRWDOV DQG RYHUDOO WRWDO
LQIRUPDWLRQ ZLOO EH LGHQWLFDO 2Q WKH RWKHU KDQG LQIRUPDWLRQ ZKLFK LV EDVHG RQ
SRSXODWLRQ SURMHFWLRQV IRU data source k+2 ZLOO QRW KDYH WKH VDPH GHVLUHG
SURSHUWLHV ,Q RWKHU ZRUGV WKH VXP RI GRPDLQV ZLOO EH HTXDO WR WKH H[LVWLQJ
GRPDLQ WRWDO EXW WKLV ZLOO QRW EH HTXDO WR WKH WRWDO SURMHFWLRQ HVWLPDWH RI WKH
RYHUDOO SRSXODWLRQ
,Q RUGHU WR EDODQFH WKH UHODWLRQVKLS EHWZHHQ WKH GRPDLQ WRWDOV DQG WKH RYHUDOO
WRWDO DQ DGMXVWPHQW LV UHTXLUHG 7KLV FDQ EH FDOOHG DV WKH total population
projection adjustment 7KLV DGMXVWPHQW ZLOO FRUUHFW WKH GLIIHUHQFH EHWZHHQ WKH
sum of the projected domain populations DQG total population projections
7KH VXP RI GRPDLQ SRSXODWLRQV ZLOO EH HTXDO WR WKH H[LVWLQJ GRPDLQ WRWDO RI
H
¦ NÖ
k h
NÖ k %XW WKLV ZLOO QRW EH HTXDO WR WKH WRWDO SURMHFWLRQ HVWLPDWH RI
h WKH RYHUDOO SRSXODWLRQ 7KDW LV
¦ NÖ h k a
NÖ k z N k 1 N H[S>U N N t k k @
DVVXPLQJ WKDW
r k k Ÿ ar k k DV EHIRUH
H
h z
,Q RUGHU WR EDODQFH WKH UHODWLRQVKLS EHWZHHQ WKH GRPDLQ WRWDOV DQG WKH RYHUDOO
WRWDO DQ DGMXVWPHQW LV UHTXLUHG 7KLV FDQ EH FDOOHG DV WKH ³WRWDO SRSXODWLRQ
SURMHFWLRQ DGMXVWPHQW´ 7KLV DGMXVWPHQW ZLOO FRUUHFW WKH GLIIHUHQFH EHWZHHQ WKH
³VXP RI WKH SURMHFWHG GRPDLQ SRSXODWLRQV´ DQG ³WRWDO SRSXODWLRQ SURMHFWLRQV´
7KDW LV
NÖ k Ÿ
a
N k /HW XV VKRZ WKH GLIIHUHQFH EHWZHHQ WKH DERYH WRWDO SURMHFWLRQV DV
'
Gh
~
N ( k ) NÖ k § NÖ h k ·
¸
¨
¨ NÖ k ¸ ' Wh '
¹
©
a
N h k NÖ h k G h
Ö k ZKHUH N
ZKHUH
Wh
H
¦ NÖ
k h
h NÖ h k NÖ k 223
STATISTICS IN TRANSITION-new series, Summer 2013
7KHQ WKH VXP RI WKH DGMXVWHG SURMHFWLRQ WRWDOV IRU GRPDLQV ZLOO EH HTXDO WR
a k N
¦ h
H
h a
N k 5. A case study
7KH ODWHVW 3RSXODWLRQ &HQVXV RI 7XUNH\ 2FWREHU LV XVHG DV D UHIHUHQFH
WLPH ORFDWLRQ RI SRSXODWLRQ SURMHFWLRQV IRU DQ LQWHQGHG VDPSOH VXUYH\ ZKLFK LV
SODQQHG IRU 2FWREHU 7KH VDPSOH GHVLJQ ZKLFK LV EDVHG RQ WKH &ODVVLILFDWLRQ RI 6WDWLVWLFDO 5HJLRQV
1876±/HYHO UHIHUV WR UHJLRQV RI 7XUNH\ DQG LV WDNHQ DV WKH ³UHSRUWLQJ
GRPDLQV´ LQ WKH VXUYH\ OLWHUDWXUH 7KH UHJLRQV DUH QRW SODQQHG WR UHSUHVHQW DQ\
JHRJUDSKLFDO RU VRFLRHFRQRPLFDO EUHDNGRZQ RI WKH FRXQWU\ LQ WKLV FDVH 7KH
SRSXODWLRQ SURMHFWLRQV IRU WKH \HDU DUH DFKLHYHG RQ WKH EDVLV RI WKH
LQIRUPDWLRQ SURYLGHG IURP WZR SUHYLRXV SRSXODWLRQ FHQVXVHV RI 7XUNH\ ZKLFK LV
JLYHQ LQ 7DEOH Table 1. 5HFHQW SRSXODWLRQ FHQVXVHV RI 7XUNH\ DQG SRSXODWLRQ SURMHFWLRQV IRU
GRPDLQV
'RPDLQ
3UHYLRXV
3URMHFWHG ZHLJKWV RI $PRXQW RI
/DWHVW
$QQXDO
$GMXVWHG
SRSXODWLRQ SRSXODWLRQ JURZWK UDWH SRSXODWLRQ SURMHFWHG SRSXODWLRQ SURMHFWLRQ
'RPDLQV FHQVXV
RI SRSXODWLRQ IRU SODQQHG SRSXODWLRQ DGMXVWPHQWV IRU SODQQHG
FHQVXV
IRU
h
2000-2012
October
IRU October
VXUYH\
VXUYH\
GRPDLQV
1990
2000
October
October
k k Wh
k k 2012
2012
h
G
Nh
Nh
rÖ
k NÖ h
h
a k Nh
224
T. Ünalan, H. Ö. Ayhan: Probability sample …
Table 1. 5HFHQW SRSXODWLRQ FHQVXVHV RI 7XUNH\ DQG SRSXODWLRQ SURMHFWLRQV IRU
GRPDLQV FRQW
'RPDLQ
3URMHFWHG ZHLJKWV RI $PRXQW RI
$GMXVWHG
/DWHVW
$QQXDO
3UHYLRXV
SRSXODWLRQ SRSXODWLRQ JURZWK UDWH SRSXODWLRQ SURMHFWHG SRSXODWLRQ SURMHFWLRQ
'RPDLQV FHQVXV
FHQVXV
RI SRSXODWLRQ IRU SODQQHG SRSXODWLRQ DGMXVWPHQWV IRU SODQQHG
h
IRU October
2000-2012
IRU
October
VXUYH\
VXUYH\
2000
GRPDLQV
1990
October
October
k k Wh
2012
2012
h
Gh
N k N k rÖ
a k Nh
k NÖ h
h
h
56473035 67803927
0.0182857
1.010516
- 887959
84440600
85328559
Total
84440600
Source: Partly based on T.S.I. (2003).
7KH GLIIHUHQFH EHWZHHQ WKH overall total projection DQG WKH sum of the domain
projections VLPSO\ DULVHV IURP WKH IDFW WKDW LQ k+1 WKH IDVW JURZLQJ FRPSRQHQWV
h KDYH EHFRPH ELJJHU WKDQ WKH\ ZHUH LQ k KHQFH DVVXPLQJ rh YDOXHV WR EH
FRQVWDQW IURP k+1 WR k+2 ZLOO DOZD\V JLYH ODUJHU VXP RI WKH GRPDLQ
SURMHFWLRQV FRPSDUHG WR DVVXPLQJ r WR EH FRQVWDQW ZKLFK JLYHV RYHUDOO WRWDO
SURMHFWLRQ 7KLV PDWKHPDWLFDO QHFHVVLW\ KDUGO\ QHHGV QXPHULFDO LOOXVWUDWLRQ RI
WKLV W\SH XQOHVV WKH GLVFUHSDQF\ LV DQDO\VHG HJ DV D IXQFWLRQ RI WKH YDULDWLRQ LQ
rh LI rh FRQVWDQW U WKHQ WKH WZR WRWDO SURMHFWLRQV ZLOO EH LGHQWLFDO
5.1. Comparison of overall selection probabilities for households
2YHUDOO VHOHFWLRQ SUREDELOLWLHV IRU KRXVHKROGV FDQ EH GHWHUPLQHG IURP WKH
KRXVHKROG EDVHG LQIRUPDWLRQ RI WKH SRSXODWLRQ LQIRUPDWLRQ IRU HDFK GRPDLQ 7KLV
LQIRUPDWLRQ FDQ EH REWDLQHG E\ GLYLGLQJ WKH WRWDO SRSXODWLRQ RI HDFK GRPDLQ E\
WKH FRUUHVSRQGLQJ DYHUDJH KRXVHKROG VL]H IRU WKLV GRPDLQ
225
STATISTICS IN TRANSITION-new series, Summer 2013
+HUH
NÖ h k Hh
S
Hh
MÖ h
S ¦ H hi
ZKHUH
h
DYHUDJH
KRXVHKROG
VL]H
LV
ZKHUH S LV WKH QXPEHU RI VXEGRPDLQV 7KH RYHUDOO VHOHFWLRQ
i SUREDELOLW\ RI WKH GRPDLQV ZLOO EH HTXDO WR WKH RYHUDOO VDPSOLQJ IUDFWLRQV 7KDW LV
Pr Fh( DU ) f h( DU )
mh
ˆ
M
h
h
2YHUDOO VDPSOH VHOHFWLRQ SUREDELOLWLHV IRU KRXVHKROGV FDQ EH GHWHUPLQHG E\
REWDLQLQJ KRXVHKROG EDVHG LQIRUPDWLRQ IURP WKH SRSXODWLRQ LQIRUPDWLRQ IRU HDFK
GRPDLQ 7KLV LQIRUPDWLRQ FDQ EH REWDLQHG E\ GLYLGLQJ WKH WRWDO SRSXODWLRQ RI HDFK
GRPDLQ E\ WKH FRUUHVSRQGLQJ DYHUDJH KRXVHKROG VL]H IRU WKLV GRPDLQ ZKLFK LV
JLYHQ LQ 7DEOH 7KH RYHUDOO VHOHFWLRQ SUREDELOLW\ RI WKH GRPDLQV ZLOO EH HTXDO WR
WKH RYHUDOO VDPSOLQJ IUDFWLRQV ,Q WKLV VWXG\ RYHUDOO VHOHFWLRQ SUREDELOLWLHV DUH
FRPSDUHG IRU SURMHFWHG DQG QRQSURMHFWHG SRSXODWLRQV 7KH UHVXOWV KDYH LQGLFDWHG
XQGHUUHSUHVHQWDWLRQ LQ WKH SUREDELOLWLHV RI VHOHFWLRQ IRU QRQSURMHFWHG
SRSXODWLRQV DQG FRQVHTXHQWO\ WKH VHOHFWHG VDPSOH HVWLPDWHV ZLOO DOVR EH ELDVHG
Table 2. &RPSDUDWLYH HVWLPDWHV RI VHYHUDO SRSXODWLRQ VL]HV
'RPDLQV
H
/DWHVW FHQVXV
SRSXODWLRQ +RXVHKROG VXUYH\
SRSXODWLRQ NÖ h k N h k Total
$YHUDJH VL]H
RI
KRXVHKROGV
67803927
Hh
85328559
4.50
1R RI 3RSXODWLRQ
KRXVHKROGV MÖ h
18961902
:KHQ LQIRUPDWLRQ IRU LQVWLWXWLRQDO SRSXODWLRQ DQG PRELOH SRSXODWLRQV DUH QRW
DYDLODEOH WKHQ XQIRUWXQDWHO\ WKH SURMHFWHG WRWDO VXUYH\ SRSXODWLRQ DQG KRXVHKROG
VXUYH\ SRSXODWLRQ KDV WR EH WDNHQ DV HTXDO 7KDW LV
NÖ h k >
a
N h k N h INS N h MOB @
a
N h k NÖ h k 226
T. Ünalan, H. Ö. Ayhan: Probability sample …
&RPSXWHG VDPSOH VL]HV RI GRPDLQV IRU IL[HG VDPSOLQJ IUDFWLRQV DUH JLYHQ LQ
7DEOH Table 3. &RPSXWHG VDPSOH VL]H RI GRPDLQV IRU D IL[HG VDPSOLQJ IUDFWLRQ
RI fh 6DPSOH VL]H EDVHG RQ
ODWHVW FHQVXV RI 'RPDLQV
h
6DPSOH VL]H RI KRXVHKROG
VXUYH\ SRSXODWLRQ IRU nh k nh k Total
67805
6DPSOH VL]H RI
KRXVHKROGV IRU mh
85329
18962
5.2. Alternative sampling fractions
A. For a fixed overall sampling fraction
(1). %DVHG RQ WKH SRSXODWLRQ IURP WKH ODWHVW SRSXODWLRQ FHQVXV UHVXOWV
f
k h
nh k N h k k h
F
DQG
f k (2). %DVHG RQ WKH SRSXODWLRQ IURP WKH DGMXVWHG SRSXODWLRQ SURMHFWLRQ UHVXOWV
f
k h
nh k NÖ k h
f k Fh k DQG VLPLODUO\
227
STATISTICS IN TRANSITION-new series, Summer 2013
:KHQ WKHUH DUH QR YDOXHV IRU LQVWLWXWLRQDO DQG PRELOH SRSXODWLRQ WKH UHVXOWLQJ
YDOXHV ZLOO EH WKH VDPH HVWLPDWHV IRU DOO VWUDWD
(3). %DVHG RQ WKH QXPEHU RI GZHOOLQJ XQLWV RU KRXVHKROGV IURP WKH HVWLPDWHG
KRXVHKROG SRSXODWLRQ UHVXOWV
mh
MÖ
f h DU DQG
DU h
F
h
f DU .
7KH gain DQG relative gain IURP DOWHUQDWLYH VDPSOH VL]HV FDQ EH H[DPLQHG E\
XVLQJ WKH IROORZLQJ IRUPXODWLRQ
7KH JDLQ LQ VDPSOH VL]H
n k n k G n 7KH UHODWLYH JDLQ LQ VDPSOH VL]H
RG n >n
k n k @ n k > @
7KLV UHIOHFWV XQGHUUHSUHVHQWDWLRQ RI VDPSOH VHOHFWLRQ SUREDELOLW\ RYHU
WKH WZHOYH \HDU SHULRG $V DQ DOWHUQDWLYH LW LV SRVVLEOH WR FRPSDUH DOWHUQDWLYH
VHOHFWLRQ SUREDELOLWLHV IRU WKH FDVH RI D IL[HG VDPSOH VL]H
$OO WKLV PHUHO\ VD\V WKDW LI D VDPSOH LV VHOHFWHG RQO\ IURP SDVW OLVWV RI
HOHPHQWDU\ XQLWV D QRPLQDO I ZRXOG JLYH VPDOOHU Q RU WR JHW D JLYHQ Q ZRXOG
QHHG ODUJHU I ± FRPSDUHG WR LI WKH VDPH SURFHGXUH ZHUH DSSOLHG WR XSGDWHG OLVWV
7KH HODERUDWHG DQG RIWHQ UHSHDWHG FRPSXWDWLRQV DGG OLWWOH WR WKLV EDVLF SRLQW
3URMHFWHG SRSXODWLRQ LI DFFXUDWH WHOOV XV E\ KRZ PXFK
n
n
f
f
N ( k )
.
N ( k )
B. For a fixed sample size
(1). )L[HG VDPSOH VL]H LV XVHG IURP WKH ODWHVW SRSXODWLRQ FHQVXV UHVXOWV
nh k f h k N h k DQG n k f k N k k )RU WKLV FDVH WKH VDPH IL[HG VDPSOH VL]H n
LV XVHG LQ IXWXUH
VDPSOH VHOHFWLRQV 7KH gain DQG relative gain IURP IL[HG VDPSOH VL]HV FDQ EH
H[DPLQHG E\ XVLQJ WKH IROORZLQJ UHODWLRQ 7KH JDLQ LQ VDPSOLQJ IUDFWLRQ LV
228
T. Ünalan, H. Ö. Ayhan: Probability sample …
f k f k G f 7KH UHODWLYH JDLQ LQ VDPSOLQJ IUDFWLRQ LV RG f RG f > @
ZKHUH f ( k )
f ( HH )
nh( k )
Nˆ h( k )
>f
( HH )
f ( k ) @ f ( HH )
nh( k )
.
( k )
Nh
.
(2). ([SDQVLRQ IDFWRU FDQ DOVR EH XVHG IRU FRPSDULVRQ
7KH UHODWLYH JDLQ LQ H[SDQVLRQ IDFWRUV
RG F >F
RG F > @
k F k @ F k $JDLQ WKH FRPSDULVRQ UHIOHFWV XQGHUUHSUHVHQWDWLRQ IRU VDPSOH
VHOHFWLRQ SUREDELOLW\ RYHU WKH VSHFLILHG SHULRG
6. Conclusions
7KLV VWXG\ UHIOHFWHG WKH UHVXOWV RI WKH LPSRUWDQFH RI WKH XSGDWHG SRSXODWLRQ
FRXQWV DV WKH EDVLV IRU UHSUHVHQWDWLYH VDPSOH VHOHFWLRQ 7KH HDUOLHU FRPSXWDWLRQV
EDVHG RQ FHQVXV GDWD UHIOHFWV WKH SRSXODWLRQ XQGHUFRYHUDJH HUURU ZKHQ FRPSDUHG
WR UHVXOWV ZKLFK DUH EDVHG RQ ODWHVW DGMXVWHG PHWKRGRORJLHV &RPSDULVRQ RI
UHODWLYH JDLQV FDQ EH LQWHUSUHWHG GLIIHUHQWO\ IRU D IL[HG VDPSOH VL]H DQG IRU D IL[HG
VDPSOLQJ IUDFWLRQ ,Q ERWK FDVHV WKH ODWHVW DQG PRUH UHILQHG LQIRUPDWLRQ SURYLGHV
EHWWHU UHSUHVHQWDWLRQ RI WKH SRSXODWLRQ FRYHUDJH
5DWKHU WKDQ XVLQJ XSGDWHG SRSXODWLRQ SURMHFWLRQV WKH XVH RI WKH ODWHVW
SRSXODWLRQ FRXQWV DUH YHU\ FRPPRQ LQ GHYHORSLQJ FRXQWULHV 7KHVH ILJXUHV DUH
FUHDWLQJ XQGHUFRYHUDJH HUURU DQG VHULRXV ELDV IRU SRSXODWLRQ UHSUHVHQWDWLRQ
6DPSOH DOORFDWLRQ LQWR VXEGRPDLQV FDQ DOVR EH PDGH E\ WDNLQJ WKH
XUEDQUXUDO SURSRUWLRQV RI WKH ODWHVW SRSXODWLRQ FHQVXV DV ZHLJKWV IRU WKH
SURSRUWLRQDO DOORFDWLRQ ZLWKLQ WKH VWDWHG GRPDLQV population size of 20000 was
taken as boundary value for urban/rural domains )RU WKH VDPSOH GHVLJQ WKHUH
PD\ EH RWKHU UHTXHVWV WR KDYH LQGHSHQGHQW XUEDQ DQG UXUDO GRPDLQV IRU LQIHUHQFH
REMHFWLYHV ,Q WKLV FDVH VHSDUDWH SRSXODWLRQ SURMHFWLRQV KDYH WR EDVH RQ XUEDQ DQG
STATISTICS IN TRANSITION-new series, Summer 2013
229
UXUDO EUHDNGRZQV ,Q DGGLWLRQ VDPSOH DOORFDWLRQV LQ VXEGRPDLQV ZLOO DOVR EH
WDNLQJ FDUH RI WKH ³VL]H JURXSV RI VHWWOHPHQWV´
7KH ILQGLQJV IURP FRPSDUDWLYH UHVXOWV RI WKH FDVH VWXG\ LQGLFDWHG WKDW IRU D
IL[HG RYHUDOO VDPSOLQJ IUDFWLRQ WKH JDLQ LQ VDPSOH VL]H ZDV DQG WKH UHODWLYH
JDLQ LQ VDPSOH VL]H UHIOHFWV XQGHUUHSUHVHQWDWLYH VDPSOH VHOHFWLRQ
SUREDELOLW\ RYHU WKH WZHOYH\HDU SHULRG 7KH JDLQ DQG WKH UHODWLYH JDLQ LQ
VDPSOLQJ IUDFWLRQ DUH IRXQG WR EH 2Q WKH RWKHU KDQG WKH JDLQ GXH WR WKH
FRPSDULVRQ RI WKH H[SDQVLRQ IDFWRUV ZDV 7KHVH UHVXOWV FOHDUO\ VKRZ WKDW
WKH XVH RI QHZ SUREDELOLWLHV latest overall sampling fractions ZLOO UHIOHFW EHWWHU
UHSUHVHQWDWLRQ RI WKH SRSXODWLRQ ZKHQ FRPSDUHG WR ROG VHOHFWLRQ SUREDELOLWLHV
Acknowledgements
7KH DXWKRUV DUH JUDWHIXO WR 3URIHVVRU 9LMD\ 9HUPD 'HSDUWPHQW RI
0HWKRGRORJ\ 8QLYHUVLW\ RI 6LHQD ,WDO\ IRU KLV YDOXDEOH FRPPHQWV RQ WKH HDUOLHU
GUDIW RI WKLV SDSHU :H DOVR ZRXOG OLNH WR WKDQN WKH HGLWRU DVVRFLDWH HGLWRU DQG WKH
UHIHUHHV RI WKLV MRXUQDO IRU YHU\ FRQVWUXFWLYH FRPPHQWV ZKLFK LPSURYHG WKH SDSHU
LQ PDQ\ ZD\V
REFERENCES
$/+2 - 0 63(1&(5 % ' 6WDWLVWLFDO 'HPRJUDSK\ DQG )RUHFDVWLQJ
6SULQJHU 1HZ <RUN
$<+$1 + g (.1, 6 &RYHUDJH (UURU LQ 3RSXODWLRQ &HQVXVHV 7KH
&DVH RI 7XUNH\ 6XUYH\ 0HWKRGRORJ\ ±
%21*$$576 - %8/$7$2 5 $ HGLWRUV %H\RQG 6L[ %LOOLRQ
)RUHFDVWLQJ WKH :RUOG¶V 3RSXODWLRQ 3DQHO RQ 3RSXODWLRQ 3URMHFWLRQV 1DWLRQDO
$FDGHP\ 3UHVV :DVKLQJWRQ ' &
&2; 3 'HPRJUDSK\ &DPEULGJH 8QLYHUVLW\ 3UHVV &DPEULGJH
'$9,6 + & 'HPRJUDSKLF 3URMHFWLRQ 7HFKQLTXHV IRU 5HJLRQV DQG
6PDOOHU $UHDV $ 3ULPHU 8%& 3UHVV 9DQFRXYHU
*52(1(:2/' * 1$9$1((7+$0 . 7KH 3URMHFWLRQ RI
3RSXODWLRQV 'DWD $SSUDLVDO %DVLF 0HWKRGV DQG $SSOLFDWLRQV &HQWUH IRU
'HYHORSPHQW 6WXGLHV DQG 81 3RSXODWLRQ )XQG .HUDOD
+,1'( $ 'HPRJUDSKLF 0HWKRGV $UQROG 3XEOLVKHUV /RQGRQ
/((7( 5 3HRSOH 8VHU
V 0DQXDO 2YHUVHDV 'HYHORSPHQW
$GPLQLVWUDWLRQ 8QLWHG .LQJGRP DQG (FRQRPLF 3ODQQLQJ 8QLW .XDOD
/XPSXU PEOPLE Version 2.0
230
T. Ünalan, H. Ö. Ayhan: Probability sample …
/87= : 9$83(/ - : $+/%85* ' $ HGLWRUV )URQWLHUV RI
3RSXODWLRQ )RUHFDVWLQJ $ 6XSSOHPHQW WR 9RO 3RSXODWLRQ DQG
'HYHORSPHQW 5HYLHZ 3RSXODWLRQ &RXQFLO 1HZ <RUN
1(:(// & 0HWKRGV DQG 0RGHOV LQ 'HPRJUDSK\ %HOKDYHQ 3UHVV
/RQGRQ
32//$5' $ + <868) ) 32//$5' * 1 'HPRJUDSKLF
7HFKQLTXHV 3HUJDPRQ 3UHVV 6\GQH\
35(6721 6 + +(89(/,1( 3 *8,//27 0 'HPRJUDSK\
0HDVXULQJ DQG 0RGHOLQJ 3RSXODWLRQ 3URFHVVHV %ODFNZHOO 3XEOLVKHUV 2[IRUG
52:/$1' ' 7 'HPRJUDSKLF 0HWKRGV DQG &RQFHSWV 2[IRUG
8QLYHUVLW\ 3UHVV 2[IRUG
6+257(5 ) 6(1'(. 5 %$<280< < &RPSXWDWLRQDO 0HWKRGV
IRU 3RSXODWLRQ 3URMHFWLRQV :LWK 3DUWLFXODU 5HIHUHQFH WR 'HYHORSPHQW
3ODQQLQJ 6HFRQG (GLWLRQ 7KH 3RSXODWLRQ &RXQFLO 1HZ <RUN FIVFIV
Version 11.0
6+5<2&. + 6 6,(*(/ - 6 DQG DVVRFLDWHV 7KH 0HWKRGV DQG
0DWHULDOV LQ 'HPRJUDSK\ $FDGHPLF 3UHVV ,QF )ORULGD
67$7( ,167,787( 2) 67$7,67,&6 7KH 3RSXODWLRQ RI 7XUNH\ ±
'HPRJUDSKLF 6WUXFWXUH DQG 'HYHORSPHQW :LWK 3URMHFWLRQV WR WKH 0LG
VW &HQWXU\ 6WDWH ,QVWLWXWH RI 6WDWLVWLFV 3XEOLFDWLRQ 1R $QNDUD
7XUNH\
6729(5 - 'HPSURM $ 'HPRJUDSKLF 3URMHFWLRQ 0RGHO IRU 'HYHORSPHQW
3ODQQLQJ 7KH )XWXUHV *URXS *ODVWRQEXU\ DEMPROJ Version 3.0
7 6 , &HQVXV RI 3RSXODWLRQ 6RFLDO DQG (FRQRPLF &KDUDFWHULVWLFV
RI 3RSXODWLRQ 7XUNH\ 7XUNLVK 6WDWLVWLFDO ,QVWLWXWH 3XEOLFDWLRQ 1XPEHU $QNDUD 7XUNH\
81,7(' 1$7,216 3URMHFWLRQ 0HWKRGV IRU ,QWHJUDWLQJ 3RSXODWLRQ
9DULDEOHV LQWR 'HYHORSPHQW 3ODQQLQJ 9ROXPH , 0HWKRGV IRU &RPSUHKHQVLYH
3ODQQLQJ 0RGXOH 2QH &RQFHSWXDO ,VVXHV DQG 0HWKRGV IRU 3UHSDULQJ
'HPRJUDSKLF 0HWKRGV 8QLWHG 1DWLRQV 3XEOLFDWLRQV 67(6$6(55$GG
1HZ <RUN
81,7(' 1$7,216 3URMHFWLRQ 0HWKRGV IRU ,QWHJUDWLQJ 3RSXODWLRQ
9DULDEOHV LQWR 'HYHORSPHQW 3ODQQLQJ 9ROXPH , 0HWKRGV IRU &RPSUHKHQVLYH
3ODQQLQJ 0RGXOH 7ZR 0HWKRGV IRU 3UHSDULQJ 6FKRRO (QUROPHQW /DERXU
)RUFH DQG (PSOR\PHQW 3URMHFWLRQV 8QLWHG 1DWLRQV 3XEOLFDWLRQV
67(6$6(55$GG 1HZ <RUN
9$1 ,0+2)) ( .(,/0$1 1 /,352 $Q $SSOLFDWLRQ RI
D '\QDPLF 'HPRJUDSKLF 3URMHFWLRQ 0RGHO WR +RXVHKROG 6WUXFWXUH LQ WKH
1HWKHUODQGV 1HWKHUODQGV ,QWHUGLVFLSOLQDU\ 'HPRJUDSKLF ,QVWLWXWH 7KH +DJXH
1HWKHUODQGV
9$1 ,0+2)) ( /LSUR 8VHU
V *XLGH 1HWKHUODQGV ,QWHUGLVFLSOLQDU\
'HPRJUDSKLF ,QVWLWXWH 7KH +DJXH LIPRO Version 3.0
STATISTICS IN TRANSITION new series, Summer 2013
231
STATISTICS IN TRANSITION new series, Summer 2013
Vol.14, No. 2, pp. 231-248
SAMPLING DESIGNS PROPORTIONATE
TO SUM OF TWO ORDER STATISTICS
OF AUXILIARY VARIABLE
Janusz L. Wywiał1
ABSTRACT
In this paper the case of a conditional sampling design proportional to the
sum of two order statistics is considered. Several strategies including the
Horvitz-Thompson estimator and ratio-type estimators are discussed. The
accuracy of these estimators is analyzed on the basis of computer simulation
experiments.
Key words: sampling design, order statistic, sample quantile, auxiliary variable, Horvitz-Thompson statistic, inclusion probabilities, sampling scheme,
ratio estimator.
1. Introduction
Sampling designs are usually constructed on the basis of an auxiliary variable observations in order to improve the accuracy of estimation of population parameters. For instance, the sampling design of Lahiri (1951), Midzuno
(1952) and Sen (1953) proportional to the sample mean of the positive valued auxiliary variable leads to unbiasednees of the well known ordinary ratio
estimator. Wywial (2008, 2009) proposed sampling designs dependent on
order statistics of the auxiliary variable. Here that approach is continued because the sampling design proportional to the sum of two auxiliary variable
order statistics is proposed. The conditional version of this sampling design
is considered in order to improve the estimation effects. The review of the
sampling designs or schemes dependent on auxiliary variables and their conditional versions is considered by Till´e (2006).
1
Katowice University of Economics, Poland, [email protected].
232
Janusz L. Wywiał: Sampling designs proportionate to sum ...
2. Sampling design
Let U be a fixed population of the size N . The observation of a variable under study and of an auxiliary variable are denoted by yi and xi , i = 1, . . . , N ,
respectively. Moreover, let 0 < xi ≤ xi+1 , i = 1, . . . , N − 1. Our problem
is the estimation of the population average y¯ = N1 k∈U yk . Let us consider
the sample space S of the samples s of the fixed effective size 1 < n < N .
The sampling design is denoted by P (s), so P (s) ≥ 0 for all s ∈ S and
s∈S P (s) = 1.
Let (X(j) ) be the sequence of the order statistics of observations of auxiliary variable in the sample s. It is well known that the sample quantile of the
order α ∈ (0; 1) is defined as follows: Qs,α = X(r) where r = [nα] + 1, the
function [nα] means the integer part of the value nα, r = 1, 2, ..., n. Let us
note that X(r) = Qs,α for r−1
≤ α < nr . In this paper it will be more conven
nient to consider the order statistic rather than the quantile. Let G(r, u, i, j) =
{s : X(r) = xi , X(u) = xj }, r = 1, .., n − 1; u = 2, ..., n, r < u be the set of
all samples whose r -th and u -th order statistics of the auxiliary variable are
equal to xi and xj , respectively, where r ≤ i < j ≤ N − n + u.
N −n+r N −n+u
G(r, u, i, j) = S.
i=r
(1)
j=i+u−r
The size of the set G(r, u, i, j) is denoted by g(r, u, i, j) = Card(G(r, u, i, j))
and
i−1
j−i−1
N −j
g(r, u, i, j) =
,
(2)
r−1 u−r−1
n−u
N
n
N −n+r N −n+u
= Card(S) = Card
j=i+u−r
N −n+r N −n+u
=
=
G(r, u, i, j)
i=r
N −n+r N −n+u
Card(G(r, u, i, j)) =
i=r
j=i+u−r
g(r, u, i, j),
i=r
P X(r) = xi , X(u) = xj =
j=i+u−r
g(r, u, i, j)
N
n
.
(3)
Let h(xj , xi ) be a non-negative function of values xj , xi of the order statistics X(u) and X(r) , respectively. Moreover let
f (xj , xi , c) =
h(xj , xi ) if h(xj , xi ) ≥ c,
0 f or h(xj , xi ) < c.
(4)
STATISTICS IN TRANSITION new series, Summer 2013
233
and
N −n+r N −n+u
z(r, u, c) =
f (xj , xi , c)g(r, u, i, j).
i=r
(5)
j=i+u−r
The straightfoward generalization of the Wywiał’s (2009) sampling design
is as follows.
Definition 1.1. The conditional sampling design proportional to the nonnegative functions of the order statistics X(u) , X(r) is as follows:
Pr,u (s|c) =
f (xj , xi , c)
z(r, u, c)
for
s ∈ G(r, u, i, j)
(6)
where i < j, r ≤ i ≤ N − n + r and r < u ≤ j ≤ N − n + u,
0 ≤ c ≤ c0 .
As it is well known, the inclusion probability of the first order is determined
by the equations: πk (r, u, c) = Pr,u (s : k ∈ s|c) = {s:k∈s} Pr,u (s|c), k =
1, ..., N.
Now, the upper possible value c0 of the constant c should be stated in such
a way that πk (r, u, c) > 0 for all k = 1, ..., N . It is important because under the just defined condition the well known Horvitz-Thompson estimator
(considered in the sections 3) is unbiased for the a population mean.
The above defined sampling design is treated as conditional (unconditional) when c > 0 (c = 0), see the definition of the conditional sampling
design considered by Till´e (1999, 2006).
Particularly, let h(xj , xi ) = xj + xi . Thus
f (xj , xi , c) =
xj + xi f or xj + xi ≥ c,
0 f or xj + xi < c.
(7)
We have to assume that 0 ≤ c ≤ c0 = x1 + xN . Thus, under this assumption the inclusion probabilities πN (r, u, c) > 0 for all i = 1, ..., N . When
c > c0 , x1 + xi < c for all i = 2, ..., N and π1 (r, u, c) = 0 and πk (r, u, c) ≥ 0
for k = 2, ..., N . In this case, as it is well known, the Horvitz-Thompson’s
statistic is a biased estimator of the population mean.
Let δ(x) be such a function that if x ≤ 0 then δ(x) = 0 otherwise δ(x) = 1.
Moreover, δ(x)δ(x − 1) = δ(x − 1). The following two theorems are the
straightforward generalizations of those ones proved by Wywiał(2009).
234
Janusz L. Wywiał: Sampling designs proportionate to sum ...
Theorem 1. The inclusion probabilities of the first order for the conditional
sampling design Pr,u (s|c) are as follows:
πk (r, u, c) =
1
=
δ(r − 1)
z(r, u, c)
j−i−1
u−r−1
N −n+r
N −n+u
i=rδ(r−k)+(k−1)δ(k+1−r)δ(N −n+r−k) j=i+u−r
i−2
r−2
N −j
f (xj , xi , c) + δ(k − r)δ(N − n + u − k)δ(u − r − 1)
n−u
min(k−1,N −n+r)
N −n+u
i=r
j=max(i+u−r,k+1)
i−1
r−1
j−i−2
u−r−2
N −j
f (xj , xi , c)+
n−u
+ δ(k − u)δ(n − u)δ(N − n + u − k + 1)
k−u+r−1
k−1
i=r
j=i+u−r
i−1
r−1
j−i−1
u−r−1
N −n+r N −n+u
δ(k−N +n−u)
i=r
j=i+u−r
i−1
r−1
N −j−1
f (xj , xi , c) + δ(n − u)
n−u−1
j−i−1
u−r−1
+ δ(k + 1 − r)δ(N − n + r − k + 1)
N −n+u
j=k+u−r
j−k−1
u−r−1
N −j−1
f (xj , xi , c)+
n−u−1
k−1
r−1
N −j
f (xj , xk , c)+δ(k−u+1)δ(N −n+u−k+1)
n−u
N −k
n−u
k−u+r
i=r
i−1
r−1
k−i−1
f (xk , xi , c)
u−r−1
(8)
Theorem 2. The inclusion probabilities of the second order for the conditional sampling design Pr,u (s|c) are as follows:
πk,t (r, u, c) = P (k, t ∈ s1 )+P k ∈ s1 , X(r) = xt +P (k ∈ s1 , t ∈ s2 ) +
+ P k ∈ s1 , X(u) = xt + P (k ∈ s1 , t ∈ s3 ) + P X(r) = xk , t ∈ s2 +
+ P X(r) = xk , X(u) = xt + P X(r) = xk , t ∈ s3 + P (k, t ∈ s2 ) +
+ P k ∈ s2 , X(u) = xt + P (k ∈ s2 , t ∈ s3 ) + P X(u) = xk , t ∈ s3 +
+ P (k, t ∈ s3 ) (9)
235
STATISTICS IN TRANSITION new series, Summer 2013
where
P (k, t ∈ s1 ) =
δ(r − 2)δ(N − n + r − t)
·
z(r, u)
N −n+r
N −n+u
i−3
r−3
·
i=max(r,t+1) j=i+u−r
j−i−1
u−r−1
N −j
f (xj , xi , c).
n−u
P k ∈ s1 , X(r) = xt =
=
δ(r − 1)δ(N − n + r − k)δ(N − n + r + 1 − t)δ(t + 1 − r)
·
z(r, u)
·
t−2
r−2
N −n+u
j−t−1
u−r−1
j=t+u−r
N −j
f (xj , xt , c),
n−u
P (k ∈ s1 , t ∈ s2 ) = δ(N − n + r − k)·
·
δ(t − r)δ(r − 1)δ(u − r − 1)δ(N − n + u − t)δ(t − k − 1)
·
z(r, u)
min(t−1,N −n+r)
N −n+u
i=max(r,k+1)
j=max(t+1,i+u−r)
·
i−2
r−2
j−i−2
u−r−2
N −j
f (xj , xi , c),
n−u
P k ∈ s1 , X(u) = xt = δ(N − n + r − k)·
·
δ(t + 1 − u)δ(N − n + u + 1 − t)δ(t − k − u + r)δ(r − 1)
·
z(r, u)
N −t
·
n−u
t−u+r
i=max(r,k+1)
i−2
r−2
t−i−1
f (xt , xi , c),
u−r−1
P (k ∈ s1 , t ∈ s3 ) =
=
δ(N − n + r − k)δ(t − u)δ(r − 1)δ(n − u)δ(t − k − u + r − 1)
·
z(r, u)
min(t−u+r−1,N −n+r) min(t−1,N −n+u)
·
i=max(r,k+1)
j=i+u−r
i−2
r−2
j−i−1
u−r−1
N −j−1
·
n−u−1
· f (xj , xi , c),
236
Janusz L. Wywiał: Sampling designs proportionate to sum ...
P X(r) = xk , t ∈ s2 =
=
δ(k + 1 − r)δ(N − n + r + 1 − k)δ(t − r)δ(N − n + u − t)δ(u − r − 1)
·
z(r, u)
·
k−1
r−1
N −n+u
j=max(t+1,k+u−r)
j−k−2
u−r−2
N −j
f (xj , xk , c),
n−u
P X(r) = xk , X(u) = xt =
=
δ(k + 1 − r)δ(N − n + r + 1 − k)δ(t + 1 − u)δ(N − n + u − t + 1)
·
z(r, u)
k−1
t−k−1
N −t
· δ(t + 1 − k − u + r)
f (xt , xk , c),
r−1
u−r−1
n−u
P X(r) = xk , t ∈ s3 =
=
δ(k + 1 − n)δ(N − n + r + 1 − k)δ(t − u)δ(n − u)δ(t − k − u + r)
·
z(r, u)
·
k−1
r−1
P (k, t ∈ s2 ) =
min(t−1,N −n+u)
j−k−1
u−r−1
j=k+u−r
N −j−1
f (xj , xk , c),
n−u−1
δ(k − r)δ(N − n + u − t)δ(u − r − 2)
·
z(r, u)
min(k−1,N −n+r)
N −n+u
i=r
j=max(t+1,i+u−r)
·
i−1
r−1
j−i−3
u−r−3
N −j
f (xj , xi , c),
n−u
P k ∈ s2 , X(u) = xt =
=
δ(k − r)δ(N − n + u − k)δ(t + 1 − u)δ(N − n + u + 1 − t)δ(u − r − 1)
·
z(r, u)
N −t
·
n−u
min(k−1,t−u+r)
i=r
i−1
r−1
t−i−2
f (xt , xi , c),
u−r−2
237
STATISTICS IN TRANSITION new series, Summer 2013
P (k ∈ s2 , t ∈ s3 ) =
=
δ(k − r)δ(N − n + u − k)δ(t − u)δ(t − k − 1)δ(u − r − 1)δ(n − u)
·
z(r, u)
min(k−1,t−u+r−1,N −n+r) min(t−1,N −n+u)
i−1
r−1
·
i=r
j=max(i+u−r,k+1)
j−i−2
u−r−2
N −j−1
·
n−u−1
· f (xj , xi , c),
P X(u) = xk , t ∈ s3 =
=
δ(k + 1 − u)δ(N − n + u + 1 − k)δ(t − u)δ(n − u)
·
z(r, u)
N −k−1
·
n−u−1
P (k, t ∈ s3 ) =
k−n+r
i=r
i−1
r−1
k−i−1
f (xk , xi , c),
u−r−1
δ(k − u)δ(n − u − 1)
·
z(r, u)
min(N −n+r,k−1−u+r) min(k−1,N −n+u)
·
i=r
j=i+u−r
i−1
r−1
j−i−1
u−r−1
N −j−2
·
n−u−2
· f (xj , xi , c).
3. Sampling scheme
The sampling scheme implementing the sampling design Pr,u (s|c) is as
follows. Firstly, population elements are ordered according to increasing values of the auxiliary variable. Let s = s1 ∪ {i} ∪ s3 ∪ {j} ∪ s3 where s1 =
{k : k ∈ U, xk < xi } is the simple random sample of the size r − 1 drawn
without replacement from the subpopulation U (1, i − 1) = (1, ..., i − 1),
s2 = {k : k ∈ U, xj > xk > xi } is the simple random sample of the size
u − r − 1 drawn without replacement from U (i + 1, j − 1) = (i + 1, ..., j − 1)
and s3 = {k : k ∈ U, xk > xj } s the simple random sample of the size
n − u drawn without replacement from U (j + 1, N ) = (j + 1, ..., N ). Let us
note that U = U (1, i − 1) ∪ {i} ∪ U (i + 1, j − 1) ∪ {j} ∪ U (j + 1, N ). Let
S (U (1, i − 1); s) be sample space of the sample s1 , let S (U (i + 1, j − 1); s)
be sample space of the sample s2 and let S (U (j + 1, N ); s) be sample space
of the sample s3 . Moreover, S = S (U, s)).
238
Janusz L. Wywiał: Sampling designs proportionate to sum ...
The sampling scheme is given by the following probabilities:
Pr,u (s|c) = P1 (s1 |i)pr,u (i|c)P2 (s2 |i, j)pr,u (j|i, c)P3 (s3 |j)
(10)
where
P1 (s1 |i) =
i−1
r−1
−1
,
P2 (s2 |i, j) =
j−i−1
u−r−1
−1
,
P3 (s3 |j) =
N −j
n−u
pr,u (i, j|c)
,
pr,u (i|c)
f (xj , xi , c)g(r, u, i, j)
,
Pr,u (s) =
z(r, u, c)
pr,u (j|i, c) =
pr,u (i, j|c) =
s∈G(r,u,i,j)
−1
,
(11)
(12)
N −n+u
1
pr,u (i|c) =
f (xj , xi , c)g(r, u, i, j).
z(r, u, c) j=i+u−r
(13)
In order to select the sample s, firstly the i-th element of the population should
be selected according to the probability function pr,u (i|c). Next, the j-the element of the population should be drawn according to the probability function
pr,u (j|i, c). Finally, the samples s1 , s2 and s3 should be selected according to
the sampling designs P1 (s1 ), P2 (s2 ) and P3 (s3 ), respectively.
4. Some sampling strategies
The well known Horvitz-Thompson estimator (1952) is as follows:
y¯HT,s =
1
N
k∈s
yk
.
πk
(14)
The statistic is unbiased estimator of the population mean value if πk > 0 for
k = 1, ..., N . The variance and its estimator are determined by the expressions (20) and (22), respectively.
The particular case of the above estimator is the well known sampling design of the simple random sample drawn without replacement whose sam−1
pling design is: P0 (s) = Nn
. The variance of the mean from the simple
1
random sample y¯s = n k∈s yk drawn without replacement is D2 (¯
ys , P0 (s)) =
N
N −n
1
2
v(y) where v(y) = N −1 k=1 (yk − y¯) .
nN
Let us construct the following ratio sampling strategy for the population
mean y¯ = N1 i∈U yi . We assume that yi = bxi + ei for all i ∈ U, i∈U ei =
239
STATISTICS IN TRANSITION new series, Summer 2013
0 and the residuals of that linear regression function are not correlated with
the auxiliary variable. Thus, it has been assumed that the intercept of the
linear regression function is equal to zero. The linear correlation coefficient
between the variables y and x will be denoted by ρ. Let X(r) , Yr be two
dimensional random variables where X(r) is the r-th order statistic of an auxiliary variable and Yr is the variable under study. Let us define the following
ratio type estimator:
y¯r,u,s = y¯s
E X(r) + X(u) |c
X(r) + X(u)
(15)
where on the basis of the expressions (3) and (5) we have
E X(r) + X(u) |c =
N −n+r N −n+u
=
f (xj , xi , c)P X(r) = xi , X(u) = xj |X(r) + X(u) ≥ c =
i=r
j=i+u−r
N −n+r N −n+u
f (xj , xi , c)
i=r
=
j=i+u−r
N −n+r
i=r
N −n+r
i=r
N −n+u
j=i+u−r
N −n+u
j=i+u−r
P X(r) = xi , X(u) = xj
=
P X(r) + X(u) ≥ c
f (xj , xi , c)g(r, u, i, j)
γ(xj , xi , c)g(r, u, i, j)
N −n+r N −n+u
α(r, u, c) =
γ(xj , xi , c)g(r, u, i, j) =
i=r
j=i+u−r
γ(xi , xj , c) =
1
0
for
for
=
z(r, u, c)
, (16)
α(r, u, c)
N
P X(r) + X(u) ≥ c ,
n
xi + xj ≥ c
xi + xj < c.
Let Sc = {s : x(r) + x(u) ≥ c} and Sc¯ = {s : x(r) + x(u) < c} =
S − Sc where (x(r) , x(u) ) are values of the order statistics (X(r) , X(u) ). More1
1
over, let y¯c = Card(S
¯s , y¯c¯ = Card(S
¯s where Card(Sc ) =
s∈Sc y
s∈Sc¯ y
c)
c
¯)
α(r, u, c). Under the stated assumptions we have:
E (¯
yr,u,s , Pr,u (s|c)) =
y¯s
s∈Sc
=
y¯s
s∈Sc
E X(r) + X(u) |c
Pr,u (s|c) =
x(r) + x(u)
x(r) + x(u)
z(r, u, c)
1
y¯s = y¯c .
=
Card(Sc ) s∈S
α(r, u, c) x(r) + x(u) z(r, u, c)
c
240
Janusz L. Wywiał: Sampling designs proportionate to sum ...
Particularly, if c = 0 then Pr,u (s|0) = Pr,u (s) and
E (¯
yr,u,s , Pr,u (s)) =
y¯s
s∈S
E X(r) + X(u)
1
Pr,u (s) = N
x(r) + x(u)
n
y¯s = y¯.
s∈S
These results and the decomposition:
y¯ =
1
N
n
1
y¯s =
N
n
s∈S
=
1
N
n
y¯s +
s∈Sc
y¯s
=
s∈Sc¯
(α(r, u, c)¯
yc + (1 − α(r, u, c))¯
yc¯) =
= y¯c P X(r) + X(u) ≥ c + y¯c¯P X(r) + X(u) < c
lead to the following expression:
E (¯
yr,u,s , Pr,u (s|c)) =
y¯ for c = 0
y¯ + (¯
yc − y¯c¯) P X(r) + X(u) < c
c > 0.
(17)
the strategy
for
Hence, under the unconditional sampling design Pr,u (s)
(¯
yr,u,s , Pr,u (s|c)) is unbiased.
The next ratio type estimator, see e.g. S¨arndal at. all (1992), is as follows:
y˜s = y¯HT,s
x¯
(18)
x¯HT,s
The parameters of the strategy (˜
ys , Pr,u (s|c)) are approximately as follows:
E (˜
ys , Pr,u (s|c)) ≈ y¯,
ys , Pr,u (s|c)) ≈ D2 (¯
yHT,s , Pr,u (s|c))−2hCov (¯
yHT,s , x¯HT,s , Pr,u (s|c)) +
D2 (˜
xHT,s , Pr,u (s|c)) (19)
+ h2 D2 (¯
where h =
y¯
x
¯
and
Cov (¯
yHT,s , x¯HT,s , Pr,u (s|c)) =
1
N2
Δk,l
k∈U l∈U
yk xl
πk πl
,
(20)
D2 (¯
xHT,s , Pr,u (s|c)) = Cov (¯
xHT,s , x¯HT,s , Pr,u (s|c)) ,
Δk,l = πk,l −πk πl ,
2
D (¯
yHT,s , Pr,u (s|c)) = Cov (¯
yHT,s , y¯HT,s , Pr,u (s|c)) .
241
STATISTICS IN TRANSITION new series, Summer 2013
The variance: D2 (¯
yr,u,s , Pr,u (s|c)) can be estimated by the following approximately unbiased estimator:
ˆ 2 (˜
ˆ 2 (¯
D
ys , Pr,u (s|c)) = D
yHT,s , Pr,u (s|c)) +
ˆ 2 (¯
xHT,s , Pr,u (s|c)) (21)
yHT,s , x¯HT,s , Pr,u (s|c)) + h2r,u,s D
− 2hr,u,s Cov (¯
where
hr,u,s =
Cov (¯
yHT,s , x¯HT,s , Pr,u (s|c)) =
y¯HT,s
,
x¯HT,s
1
N2
Δ∗,k,l
k∈s l∈s
yk xl
πk πl
,
(22)
Δk,l
ˆ 2 (¯
,
D
xHT,s , Pr,u (s|c)) = Cov (¯
xHT,s , x¯HT,s , Pr,u (s|c)) ,
Δ∗k,l = πk,l
2
ˆ (¯
yHT,s , Pr,u (s|c)) = Cov (¯
yHT,s , y¯HT,s , Pr,u (s|c)) .
D
Let us remind the following ordinary ratio estimator.
x¯
yˆs = y¯s .
(23)
x¯s
The approximate value of the variance is as follows:
N (N − n)
D2 (ˆ
ys , P0 (s)) ≈
v(y) + h2 v(x) − 2hv(x, y)
n
¯)(yk − y¯) and particularly v(y) = v(y, y),
where v(x, y) = N 1−1 N
k=1 (xk − x
v(x) = v(x, x).
The approximately unbiased estimator of the variance is as follows:
N (N − n)
ˆ 2 (ˆ
D
vs (y) + h2s vs (x) − 2hs vs (x, y) ,
ys , P0 (s)) =
n
1
where hs = xy¯¯ss , vs (x, y) = n−1
¯s )(yk − y¯s ) and particularly
k∈s (xk − x
ys , P0 (s)) is approximately
vs (y) = vs (y, y), vs (x) = vs (x, x). The strategy (ˆ
unbiased for the population mean y¯.
It is well known that the strategy (ˆ
ys , P1 (s)) is unbiased for y¯ where
x¯s
(24)
P1 (s) = N
n
is the sampling design of Lahiri (1951), Midzumo (1952) and Sen (1953).
5. Simulation analysis of strategies’ accuracy
The population taken into account consists of the municipalities in Sweden
whose number is N = 284. The value xk , k = 1, ..., N , of the auxiliary
variable x is equal to the size (in thousands) of people population in the k-th
242
Janusz L. Wywiał: Sampling designs proportionate to sum ...
municipality in 1975. The value yk , k = 1, .., N , of the variable under study
y is the taxation revenues (in millions of kronor) from the k-th municipality in
1985. Their observations were published by S¨arndal, Swenson and Wretman
(1992), pp. 652-659. number is N = 284.
Figure 1. Scatterplot of y versus x.
There are three outlier observations of the variable as it is shown in Figure
1. Let σ and β3 be the standard deviation and the skewness coefficient, respectively, of the auxiliary variable in the population. In case of data without
outliers (the number of municipalities is 281) x¯ = 24, 263, σ = 24, 153 and
β3 = 0, 043. In case of data with outliers (the number of municipalities is
N=284) x¯ = 28.810, σ = 52, 873 and β3 = 8, 427. Thus, the distribution
of the variable without the outliers is almost symmetric. But the distribution
of the variables with outliers is highly right skewed. The samples according to the preassigned sampling design were drawn from the just presented
population. The samples were replicated 1000 times.
The Figure 1 shows that the dependence between the variable under study
and the auxiliary variable can be approximated by means of a linear regression with its constance equal to zero. In this case, as it is well-known, the
accuracies of regression type estimators of a population mean are similar to
the accuracy of the ratio type estimators. Moreover, the ratio estimators are
simpler than the regression ones. Thus, that is why we consider only the ratio
estimator in the analysis.
243
STATISTICS IN TRANSITION new series, Summer 2013
Let M SE(t, P (s)) be the mean square error of the strategy (t, P (s)) used
to estimate the population mean y¯. The coefficient of the relative efficiency
is defined as follows:
M SE(t, P (s))
100%
D2 (¯
ys , P0 (s))
The results of the simulation analysis are presented by Tables and Figures
2, 3. The tables show the relative efficiency coefficients. The distributions of
the estimators, generated on the basis of samples of the size n = 14 drawn
by means of appropriate sampling schemes are presented by means of the
well-known box-plots on Figures 2 and 3. Table 1 shows the notation of the
strategies.
e(t, P (s)) =
Table 1. The symbols of the strategies.
strategy
y¯s , P0 (s)
yˆs , P0 (s)
yˆs , P1 (s)
y¯HT,s , P1 (s)
y¯HT,s , Pn−1,n (s)
y¯HT,s , Pn−1,n (s|3¯
x)
y˜s , Pn−1,n (s)
y˜s , Pn−1,n (s|3¯
x)
y¯n−1,n,s , Pn−1,n (s)
y¯n−1,n,s , Pn−1,n (s|3¯
x)
symbol
ty0
ty1
ty2
ty3
ty4
ty4d3
ty5
ty5d3
ty6
ty6d3
efficiency
−
e1
e2
e3
e4
e4
e5
e5
e6
e6
Table 2. The relative efficiency coefficients (%) of the strategies.
N:
n
2 (0,7%)
3 (1%)
6 (2%)
9 (3%)
14 (5%)
29 (10%)
e1
2.50
2.88
3.09
3.28
3.42
3.22
281
e2
2.24
2.58
2.86
3.09
3.30
3.14
e3
17.62
28.10
46.62
57.95
73.59
84.51
e1
1.56
1.88
2.73
3.78
5.04
7.22
284
e2
1.15
1.35
1.96
2.66
3.62
5.92
e3
5.60
8.64
14.87
20.49
29.33
47.44
Firstly, let us consider the strategies under the unconditional sampling designs. Table 2 shows the relative efficiency coefficients of the strategies which
244
Janusz L. Wywiał: Sampling designs proportionate to sum ...
do not depend on the sampling design Pr,u (s|c). The ratio estimator under
the sampling design P1 (s) is slightly better than the ratio estimator under the
simple random sample and they are both significantly more accurate than the
Horvtiz-Thompson estimator under the sampling design P1 (s). In general,
Tables 2, 3 and 4 let us infer that the ratio type strategies are significantly better than the Horvitz-Thompson ones. This conclusion is strongly confirmed
by the box-plots shown by Figures 2 and 3. The strategy (ˆ
ys , P1 (s)) is the
best among the six considered strategies except for the case of the population
with outliers when the strategy (˜
ys , Pn−1,n (s)) is the best for n = 14 n = 29.
Wywiał(2007) considered the accuracy of estimation on the basis of the
sampling design proportional to one order statistic denoted by Pr (s). For
some of possible values r of the sampling design Pr (s) the mean squares of
the estimators were determined on the basis of the simulation analysis. The
results of the analysis lead to the conclusion that the considered strategies
dependent on sampling design Pr (s) are the most accurate when r = n − 1
or r = n. That is why Tables 3 and 4 deal only with the case when r = n−1 or
r = n. In general, all the inclusion probabilities of the first order are expected
to be proportional to the appropriate values of a positively valued auxiliary
variable. Thus, in the case considered we can suppose that if r < n − 1 and
r < u ≤ n, the inclusion probabilities πk (r, u, c) are not so proportional to
xk as in the case when r = n − 1 and u = n for all k = 1, ..., N .
Table 3. The relative efficiency coefficients (%) of the conditional strategies for Pn−1,n (s|k¯
x), k = 0, 1, 2, 3. The population with outliers, N = 284.
k¯
x
n
2
3
6
9
14
29
e4
6.5
9.2
18.2
21.4
25.6
34.5
0
e5
1.3
1.5
2.3
2.9
3.4
4.5
e6
2.0
1.9
3.0
5.5
13.9
56.8
e4
1.9
3.5
11.8
17.8
23.2
34.9
x¯
e5
8.6
1.1
2.0
2.8
3.2
4.6
2¯
x
e6
e4
e5
2.2 4.3 0.7
2.0 3.9 0.9
2.9 5.6 1.5
5.4 9.0 2.0
13.5 15.3 2.8
58.2 29.1 4.4
3¯
x
e6
e4
e5
3.2 9.8 5.4
3.0 6.3 0.5
3.0 5.7 0.9
4.4 6.2 1.3
10.0 8.4 1.9
48.7 19.8 3.6
e6
3.2
3.5
3.8
4.8
7.7
35.1
The analysis of Tables 3, 4 and Figures 2, 3 leads to the following conclusion. The relative accuracies of the sampling strategies for sampling designs
Pr,u (s|c) are usually better in case of the population with outliers or extreme
values.
245
STATISTICS IN TRANSITION new series, Summer 2013
The Figures 2 and 3 let us infer that in the case of the population without
outliers values the distributions of the estimators are almost symmetric. In
the case of the population with outliers values the estimators are distributed
with a large number of outliers. In this situation we cannot expect an accurate estimation. But the analysis of the Figures 2 and 3 lets us say that
in the case of the population with outliers the conditional sampling design
(for c > 0) leads to reduction of the number of outliers observations in the
distribution of appropriate estimators. The conditional strategies which depend on the sampling design Pr,u (s|c) are usually more accurate than their
appropriate unconditional versions (for c = 0). The estimators of the conditional strategies are unbiased or negligible biased estimators of the population mean. When the conditioning value c increases (the considered levels: c = 0, c = x¯, c = 2¯
x, and c = 3¯
x) the accuracies of the strategies
(˜
ys , Pr,u (s|c)) and (¯
yHT,s , Pr,u (s|c)) usually increase, too. The accuracy of
the strategy (˜
ys , Pr,u (s|c)) is the best among the conditional ones. The strategy (¯
yr,u,s , Pr,u (s|c)) is not worse than (¯
yHT,s , Pr,u (s|c)) except for the case
of the population with outliers and of the sample size n = 29.
Table 4. The relative efficiency coefficients (%) of the conditional strategies for Pn−1,n (s|k¯
x), k = 0, 1, 2, 3. The population without outliers,N = 281.
k¯
x
n
2
3
6
9
14
29
e4
17.7
24.5
41.8
51.8
63.8
81.7
0
e5
2.3
2.3
2.5
2.8
3.1
3.1
e6
2.7
3.1
12.7
25.3
44.6
84.3
e4
3.8
8.0
30.3
50.6
59.9
75.0
x¯
e5
1.6
1.7
2.2
2.8
3.0
3.1
e6
2.1
3.0
11.8
22.8
39.6
82.9
e4
17.6
15.9
17.1
26.3
39.9
71.8
2¯
x
e5
2.5
2.0
2.2
2.3
2.8
2.9
e6
1.2
2.2
2.3
16.8
28.7
69.1
e4
32.3
14.3
14.8
26.8
36.4
56.9
3¯
x
e5
3.0
2.4
2.3
2.3
2.2
2.9
e6
0.8
1.9
1.8
11.3
22.1
52.4
246
Janusz L. Wywiał: Sampling designs proportionate to sum ...
Figure 2. Boxplot of the estimator distributions in the population without outliers for n=14
Figure 3. Boxplot of the estimator distributions in the population without outliers for n=14
STATISTICS IN TRANSITION new series, Summer 2013
247
6. Conclusions
The inclusion probabilities of the conditional sampling design proportionate to the sum of two order statistics are presented. They let us determine the
variance of the Horvitz-Thompson estimator as well as its estimate.
The simulation analysis lets us expect the estimation strategies with the
sampling design Pn−1,n (s|c) not to be less accurate than the strategies with
sampling design Pr,u (s|c).
In general, the accuracies of the considered ratio type strategies:
(˜
ys , Pn−1,n (s|c)), (ˆ
ys , P1 (s)) or (ˆ
ys , P0 (s)) are the best among the all strategies considered in the analysis. The accuracies of these three strategies are
comparable. Moreover, the conditional strategies for c = k¯
x, k > 0 are
slightly better than the appropriate unconditional ones.
Let us underline that the above conclusions cannot be treated as sufficiently
general because they have been derived on the basis of a partial computer simulation analysis based on special data set taken into account. But it seems that
those results can be an inspiration for larger simulation analyses or studies of
the formal properties of the sampling design.
Acknowledgement
The research was supported by the grant number N N111 434137 from the
Ministry of Science and Higher Education.
248
Janusz / :\ZLDá 6DPSOLQJ GHVLJQV SURSRUWLRQDWH WR VXP …
REFERENCES
+259,7= ' * 7+203621 ' - $ JHQHUDOL]DWLRQ RI WKH VDPSOLQJ
ZLWKRXW UHSODFHPHQW IURP ILQLWH XQLYHUVH Journal of the American Statistical
Association, 9RO ±
/$+,5, * : $ PHWKRG IRU VDPSOH VHOHFWLRQ SURYLGLQJ XQELDVHG UDWLR
HVWLPDWRU Bulletin of the International Statistical Institute, 9RO SS ±
0,'=812 + 2Q WKH VDPSOLQJ V\VWHP ZLWK SUREDELOLW\ SURSRUWLRQDO WR
WKH VXP RI VL]HV Annals of the Institute of Statistical Mathematics, 9RO SS ±
6$Ž51'$/ & ( 6:(16621 % :5(70$1 - Model Assisted
Survey Sampling. 6SULQJHU 9HUODJ 1HZ <RUN%HUOLQ+HLGHOEHUJ/RQGRQ
3DULV7RN\R+RQJ .RQJ%DUFHORQD%XGDSHVW
6(1 $ 5 2Q WKH HVWLPDWH RI YDULDQFH LQ VDPSOLQJ ZLWK YDU\LQJ
SUREDELOLWLHV Journal of the Indian Society of Agicultural Statistics 5 SS ±
7,//( < (VWLPDWLRQ LQ 6XUYH\V 8VLQJ &RQGLWLRQDO ,QFOXVLRQ
3UREDELOLWLHV &RPSOH[ 'HVLJQ Survey Methodology 9RO 1R SS ±
7,//( < Sampling algorithms 6SULQJHU
:<:,$à - / 6LPXODWLRQ DQDO\VLV RI DFFXUDF\ HVWLPDWLRQ RI SRSXODWLRQ
PHDQ RQ WKH EDVLV RI VWUDWHJ\ GHSHQGHQW RQ VDPSOLQJ GHVLJQ SURSRUWLRQDWH WR
WKH RUGHU VWDWLVWLF RI DQ DX[LOLDU\ YDULDEOH Statistics in Transition-new series,
9RO 1R SS ±
:<:,$à - / 6DPSOLQJ GHVLJQ SURSRUWLRQDO WR RUGHU VWDWLVWLF RI
DX[LOLDU\ YDULDEOH Statistical Papers, 9RO 1R SS ±
:<:,$à - / 3HUIRUPLQJ TXDQWLOHV LQ UHJUHVVLRQ VDPSOLQJ VWUDWHJ\
Model Assisted Statistics and Applications, 9RO 1R SS ±
STATISTICS IN TRANSITION-new series, Summer 2013
249
STATISTICS IN TRANSITION-new series, Summer 2013
Vol. 14, No. 2, pp. 249–272
THE EFFECT OF UNEMPLOYMENT BENEFITS ON
LABOUR MARKET BEHAVIOUR IN LUXEMBOURG
Nicholas T. Longford , Ioana C. Salagean ABSTRACT
:H DSSO\ WKH SRWHQWLDO RXWFRPHV IUDPHZRUN WR HVWLPDWH WKH HIIHFW RI DZDUGLQJ
XQHPSOR\PHQW EHQHILWV RQ JDLQLQJ ORQJWHUP HPSOR\PHQW DIWHU DQ XQHPSOR\PHQW
VSHOO DQG RQ WKH WLPH LW WDNHV WR DFKLHYH LW :H FRQFOXGH WKDW VXFK DZDUGV
UHJDUGHG DV D WUHDWPHQW DUH DVVRFLDWHG ZLWK SRRUHU ODERXU IRUFH RXWFRPHV WKDQ QR
DZDUGV
Key words DGPLQLVWUDWLYH UHJLVWHU ODERXU PDUNHW SURSHQVLW\ PDWFKLQJ
XQHPSOR\PHQW VSHOOV
1. Introduction
7KH HIIHFW RI XQHPSOR\PHQW EHQHILWV LV H[WHQVLYHO\ VWXGLHG LQ WKH ODERXU
PDUNHW DQG RWKHU HFRQRPLFV OLWHUDWXUH +XQW 5RHG DQG =KDQJ /DOLYH
DQG =ZHLPOOHU DQG 8XVLWDOR DQG 9HUKR 7KH UHVHDUFK LV VWLPXODWHG
E\ KLJK H[SHQGLWXUH RQ WKHVH EHQHILWV HVSHFLDOO\ DW WLPHV RI KLJKHU
XQHPSOR\PHQW 6XFK H[SHQGLWXUH LV UHJDUGHG E\ VRPH DV DQ LQYHVWPHQW WKH
GHVLUDEOH UHWXUQ RQ LW LV VWDEOH DQG ORQJWHUP HPSOR\PHQW DIWHU D VKRUW VSHOO RI
XQHPSOR\PHQW SRVVLEO\ ZLWK VRPH WUDLQLQJ DQG VKRUWWHUP VXEVLGLVHG
HPSOR\PHQW 7KH NH\ LVVXH LV ZKHWKHU DQG WR ZKDW H[WHQW WKH EHQHILWV KDYH
VXFK DQ HIIHFW DQG KRZ WKH UXOHV IRU DZDUGLQJ EHQHILWV VKRXOG EH DGMXVWHG WR
RSWLPDOO\ FRPELQH WKH UROHV RI ZHOIDUH VXSSRUW ZKLOH HQFRXUDJLQJ WKH
UHVXPSWLRQ RI HPSOR\PHQW DQG EHLQJ IUXJDO ZLWK SXEOLF IXQGV /DOLYH YDQ 2XUV
DQG =ZHLPOOHU -REV WKDW DUH FUHDWHG DV SDUW RI DFWLYH ODERXU PDUNHW
SROLFLHV LQWHQGHG DV VKRUWWHUP VWRSJDSV RU DUH VXEVLGLVHG E\ RWKHU PHDQV DUH
QRW UHJDUGHG DV VXFFHVVIXO RXWFRPHV LQ WKLV FRQWH[W DOWKRXJK WKH\ PD\ EH
HIIHFWLYH FRQGXLWV IRU VXFK RXWFRPHV
617/ DQG 'HSDUWPHQW G¶(FRQRPLD L (PSUHVD 8QLYHUVLWDW 3RPSHX )DEUD F 5DPRQ 7ULDV )DUJDV
± %DUFHORQD 6SDLQ (PDLO VQWOQLFN#VQWOFRXN
&(36,167($' $YHQXH GH OD )RQWH /± (VFK%HOYDO /X[HPERXUJ
(PDLO LRDQDVDODJHDQ#FHSVOX
250
N. T. Longford, I. C. Salagean: The effect of unemployment …
7KH PHWKRGRORJLFDO FKDOOHQJH UHODWHG WR HVWLPDWLRQ RI WKH HIIHFW RI EHQHILWV LV
WKH LPSRVVLELOLW\ RI GLUHFWO\ REVHUYLQJ WKH ODERXU PDUNHW EHKDYLRXU RI WZR
SHUVRQV LGHQWLFDO LQ DOO UHOHYDQW DVSHFWV LQFOXGLQJ WKHLU EDFNJURXQG ZKR KDYH
MXVW EHFRPH XQHPSOR\HG ± RQH ZKR UHFHLYHV EHQHILWV DQG WKH RWKHU RQH ZKR GRHV
QRW 7KLV LV FRPSRXQGHG E\ WKH UXOHEDVHG QDWXUH RI DZDUGLQJ EHQHILWV ,Q
SULQFLSOH WZR SHUVRQV ZLWK LGHQWLFDO EDFNJURXQG DW WKH SRLQW RI EHFRPLQJ
XQHPSOR\HG ZRXOG EH WUHDWHG LGHQWLFDOO\ DQG HLWKHU ERWK RU QHLWKHU RI WKHP
ZRXOG UHFHLYH EHQHILWV 1HYHUWKHOHVV ZH KDYH D FOHDU FRQFHSWLRQ RI ZKDW LV PHDQW
E\ WKH HIIHFW RI WKH EHQHILWV DV WKH GLIIHUHQFH LQ WKH LQGLYLGXDO¶V IXWXUH SRVLWLRQ LQ
WKH ODERXU PDUNHW HPSOR\PHQW VWDWXV DQG VHFXULW\ LQFRPH DQG WKH OLNH XQGHU
WKH WZR FRQGLWLRQV UHFHLYLQJ EHQHILWV DQG QRW UHFHLYLQJ WKHP
7KH SUREOHP LV DGGUHVVHG E\ PRGHOV WKDW DFFRXQW IRU WKH V\VWHPDWLF
GLIIHUHQFHV EHWZHHQ WKRVH ZKR UHFHLYH EHQHILWV WKH µWUHDWHG¶ D WHUP PRWLYDWHG
E\ WKH PHGLFDO VWDWLVWLFV OLWHUDWXUH DQG WKRVH ZKR GR QRW $Q DOWHUQDWLYH DSSURDFK
LV EDVHG RQ PDWFKLQJ 5RVHQEDXP ± VHOHFWLQJ VXEVHWV RI UHFLSLHQWV DQG
QRQUHFLSLHQWV WKDW IRU DOO SXUSRVHV DSSHDU DV LI WKH\ ZHUH DVVLJQHG WR WKHVH
WZR WUHDWPHQW JURXSV FRPSOHWHO\ DW UDQGRP $GMXVWPHQW E\ UHJUHVVLRQ XVHV DOO WKH
GDWD H[SORLWV D SRZHUIXO PRGHOOLQJ IUDPHZRUN DLGHG E\ PHWKRGV RI PRGHO
VHOHFWLRQ EXW LV DVVRFLDWHG ZLWK QXPHURXV FDYHDWV UHODWHG WR PRGHO DVVXPSWLRQV
2QH RI WKHP LV WKH DVVXPSWLRQ RI FRQVWDQW XQLYHUVDO GLIIHUHQFH LQ WKH RXWFRPHV
IRU WKH WUHDWHG DQG XQWUHDWHG XQLWV DIWHU D VXLWDEOH DGMXVWPHQW IRU FRYDULDWHV DQG
DOORZDQFH IRU PHDVXUHPHQW HUURU ,Q RXU FDVH WKHUH LV QR PHDVXUHPHQW HUURU EXW
WKH DVVXPSWLRQ RI WUHDWPHQW KRPRJHQHLW\ LV QRW UHDOLVWLF
,QIOXHQWLDO REVHUYDWLRQV DUH DQRWKHU FRQFHUQ 7KH\ DUH H[WUHPH RU RXWO\LQJ
REVHUYDWLRQV LQ WKH VSDFH RI WKH FRYDULDWHV DQG WKHLU UHPRYDO PD\ DOWHU WKH PRGHO
ILW PXFK PRUH WKDQ WKH UHPRYDO RI DQ REVHUYDWLRQ FORVHU WR WKH FHQWUH RI JUDYLW\ RI
WKH REVHUYDWLRQV ZRXOG +RZHYHU VXFK REVHUYDWLRQV DUH RIWHQ OHDVW UHOHYDQW WR WKH
FRPSDULVRQ RI WKH WUHDWHG DQG QRW WUHDWHG XQLWV EHFDXVH WKHVH WZR JURXSV XVXDOO\
GLIIHU LQ WKH WDLOV RI WKHLU GLVWULEXWLRQV RI WKH FRYDULDWHV &UXPS et al. ,Q
HVWLPDWLRQ ZLWK ODUJH GDWDVHWV RXU IRFXV VKRXOG EH RQ UHGXFLQJ WKH ELDV RI
HVWLPDWRUV EHFDXVH WKHLU YDULDQFHV DUH VPDOO 0RGHO VHOHFWLRQ SURFHGXUHV EDODQFH
WKH HIIRUW WR UHGXFH WKH ELDV UHWDLQ PRUH FRPSOH[ PRGHOV DQG YDULDQFH UHGXFH
PRGHO FRPSOH[LW\ ,Q FRQWUDVW PHWKRGV EDVHG RQ PDWFKLQJ HPSKDVLVH ELDV
UHGXFWLRQ 5XELQ )RU GLVFXVVLRQ RI UHODWHG LVVXHV VHH /HFKQHU +LUDQR ,PEHQV DQG 5LGGHU DQG $EDGLH DQG ,PEHQV $QRWKHU UHDVRQ IRU SUHIHUULQJ WKH DQDO\VLV E\ PDWFKHG SDLUV LV WKDW VRPH RI WKH
RXWFRPH YDULDEOHV ZH GHILQH DUH QRW RQ VFDOHV WKDW FDQ EH DVVRFLDWHG ZLWK DQ\
FRPPRQ GLVWULEXWLRQV ,Q VRPH FDVHV WKH YDOXHV RI WKH RXWFRPH YDULDEOH SHUPLW
RQO\ SDUWLDO RUGHULQJ 7KDW LV WKH GLIIHUHQFH RI WKH RXWFRPHV FDQQRW EH TXDQWLILHG
IRU VRPH SDLUV RI XQLWV RU ZH GR QRW ZDQW WR FRPPLW RXUVHOYHV WR DQ\ SDUWLFXODU
VFDOH RQ ZKLFK VXFK GLIIHUHQFHV FRXOG EH TXDQWLILHG :H SUHIHU WR IRUP PDWFKHG
SDLUV DQG WDEXODWH WKH FRPSDULVRQV RI WKHLU RXWFRPHV 7KHUH DUH WKUHH SRVVLEOH
HOHPHQWDU\ UHVXOWV IRU D SDLU
‡ WKH WUHDWHG XQLW KDV D VXSHULRU RXWFRPH
STATISTICS IN TRANSITION-new series, Summer 2013
251
‡ WKH WUHDWHG XQLW KDV DQ LQIHULRU RXWFRPH
‡ WKHUH LV D WLH ± WKH XQLWV KDYH RXWFRPHV WKDW ZH UHJDUG DV LGHQWLFDO RU ZH
FDQQRW UHVROYH ZKLFK RXWFRPH LV VXSHULRU
:H VD\ WKDW WKH WUHDWHG XQLW LV D ZLQQHU DQG WKH XQWUHDWHG XQLW LQ WKH SDLU D
ORVHU LQ WKH ILUVW FDVH DQG D ORVHU LQ WKH VHFRQG 7KH balance LQ D VHW RI PDWFKHG
SDLUV LV GHILQHG DV WKH GLIIHUHQFH RI WKH QXPEHU RI ZLQQHUV DQG ORVHUV LQ WKH
WUHDWHG JURXS :H XVH WKH EDODQFH DV DQ HVWLPDWRU RI WKH DYHUDJH HIIHFW RI WKH
WUHDWPHQW :H WKHQ GHFLGH ZKHWKHU WKH UHDOLVHG EDODQFH FRXOG GLIIHU IURP ]HUR
SXUHO\ E\ FKDQFH RU LW UHIOHFWV WKH VLJQ RI WKH DYHUDJH WUHDWPHQW HIIHFW DPRQJ WKH
WUHDWHG XQLWV WKDW UHFHLYH XQHPSOR\PHQW EHQHILW
7KH QXPEHU RI WLHV LQ WKH PDWFKHG SDLUV DOVR KDV D UROH LQ WKH DQDO\VLV ,I WKHUH
DUH PDQ\ WLHV D PRUH UHILQHG GHILQLWLRQ RI WKH RXWFRPH YDULDEOH PD\ UHVROYH VRPH
RU HYHQ PRVW RI WKHVH WLHV UHVXOWLQJ LQ D VXEVWDQWLDOO\ DOWHUHG EDODQFH RI WKH
ZLQQHUV DQG ORVHUV 'HVLUDEOH DUH UHVXOWV LQ ZKLFK WKH QXPEHU RI WLHV LV PXFK
VPDOOHU WKDQ WKH EDODQFH VR WKDW WKH FRQFOXVLRQ ZRXOG QRW EH DOWHUHG LI DOO WKH WLHV
ZHUH UHGHILQHG DV ZLQQHUV RU ORVHUV ,Q WKLV ZD\ WKH WLHV EHFRPH WKH HOHPHQW RI
D VHQVLWLYLW\ DQDO\VLV 2I FRXUVH WKH WLHV FDQQRW EH UHVROYHG LQ VRPH VHWWLQJV
ZKHQ WKH RXWFRPHV DUH JHQXLQHO\ LGHQWLFDO RU QRW FRPSDUDEOH
)RU D ODUJH SRSXODWLRQ ZH PLJKW DVVRFLDWH WKHVH WKUHH FRXQWV ZLWK D WULQRPLDO
GLVWULEXWLRQ +RZ HYHU RXU WDUJHW LV WKH DVVHVVPHQW RI WKH WUHDWPHQW HIIHFW IRU D
SDUWLFXODU VHW RI XQLWV ± WKH XQLWV WKDW KDYH EHHQ WUHDWHG :H VHHN WR HVWDEOLVK ZKDW
ZRXOG KDSSHQ LI WKRVH ZKR UHFHLYHG EHQHILWV ZHUH GHQLHG WKHP 6LPSOLVWLF YLHZV
LQFOXGH WKH VXJJHVWLRQ WKDW UHFHLYLQJ EHQHILWV UHGXFHV WKH XUJHQF\ RI MRE VHDUFK
EXW LQFUHDVHV LWV TXDOLW\ ± WKH UHFLSLHQW LV PRUH VHOHFWLYH GLVFULPLQDWLQJ DPRQJ
WKH RSWLRQV IRU QHZ HPSOR\PHQW DQG PRUH SDWLHQW LQ FRPPLWWLQJ KLP RU KHUVHOI
WR D QHZ MRE :H WHVW WKLV K\SRWKHVLV E\ PDWFKHGSDLUV DQDO\VLV
7KH GDWDVHW LQ RXU DQDO\VLV LV H[WUDFWHG IURP WKH GDWDEDVHV RI WKH /X[HPERXUJ
8QHPSOR\PHQW $JHQF\ ADEM – Agence pour le développement de l’emploi
DQG WKH 5HJLVWHU RI 1DWLRQDO ,QVXUDQFH &RQWULEXWLRQV RI /X[HPERXUJ ,*66 ±
Inspection générale de la sécurité sociale 7KH H[WUDFWV DUH PRQWKO\ OLVWV RI
XQHPSOR\HG UHJLVWHUHG DW $'(0 WRJHWKHU ZLWK VRPH EDFNJURXQG LQIRUPDWLRQ
DQG ODERXU IRUFH VWDWHV DW WKH HQG RI HDFK PRQWK LQIHUUHG IURP WKH ,*66 GDWDEDVH
7KH OLVWV FRYHU WKH SHULRG IURP -DQXDU\ WR -XO\ PRQWKV 7KH
UHFRUGV LQ WKHVH OLVWV DUH OLQNHG E\ WKH XQLTXH QDWLRQDO LQVXUDQFH QXPEHU 7KH
OLVWV DUH UHIRUPDWWHG WR D GDWDVHW LQ ZKLFK D UHFRUG FRQWDLQV WKH VHTXHQFH RI
PRQWKO\ ODERXU IRUFH VWDWHV VXSSOHPHQWHG E\ EDFNJURXQG LQIRUPDWLRQ DERXW WKH
LQGLYLGXDO $ UHFRUG LV DVVRFLDWHG ZLWK DQ XQHPSOR\PHQW VSHOO DQG VR DQ
LQGLYLGXDO PD\ KDYH VHYHUDO UHFRUGV LQ WKH GDWDVHW 6XFK UHFRUGV DUH QRW H[DFW
GXSOLFDWHV EHFDXVH VRPH LQIRUPDWLRQ VXFK DV OHYHO RI HGXFDWLRQ DQG PDULWDO
VWDWXV DUH WHPSRUDO HVSHFLDOO\ IRU \RXQJHU SHRSOH $OVR WKH DJH RI WKH
SHUVRQ DW WKH WLPH RI EHFRPLQJ XQHPSOR\HG LV DQ LPSRUWDQW YDULDEOH
7KH XQLWV RI WKH DQDO\VLV DUH XQHPSOR\PHQW 8 VSHOOV TXDOLILHG E\ WKH SHULRG
RI WKH VWXG\ -DQXDU\ ± 'HFHPEHU PRQWKV DQG WKH DJH RI WKH
252
N. T. Longford, I. C. Salagean: The effect of unemployment …
SHUVRQ DW WKH EHJLQQLQJ RI WKH 8 VSHOO XS WR \HDUV 7KH LQIRUPDWLRQ IURP
LV UHVHUYHG IRU GHILQLQJ FRYDULDWHV DQG WKH LQIRUPDWLRQ IURP SDUW IRU
GHILQLQJ RXWFRPH YDULDEOHV 7KH 8 VSHOO WKDW GHILQHV WKH XQLW LV FDOOHG reference
$SDUW IURP WKH WUHDWPHQW WKH UHIHUHQFH VSHOO LV DOVR DVVRFLDWHG ZLWK D SHUVRQ WKH
PRQWK ZKHQ LW VWDUWV DQG LWV OHQJWK LQ PRQWKV RU WKH PRQWK ZKHQ LW HQGV 7KH
WUHDWPHQW DZDUG RI XQHPSOR\PHQW EHQHILWV LV DSSOLHG WR WKH UHIHUHQFH VSHOO
2WKHU 8 VSHOOV RI WKH VDPH SHUVRQ PD\ EH WUHDWHG GLIIHUHQWO\
7KH QH[W VHFWLRQ LQWURGXFHV D WHUPLQRORJ\ IRU VHTXHQFHV DQG JLYHV PRUH
GHWDLOV RI WKH $'(0 DQG ,*66 GDWDEDVHV 7KH IROORZLQJ VHFWLRQ GLVFXVVHV WKH
PHWKRG RI DQDO\VLV EDVHG RQ WKH SRWHQWLDO RXWFRPHV IUDPHZRUN 5XELQ +ROODQG 6HFWLRQ JLYHV IXUWKHU GHWDLOV VSHFLILF WR WKH PDWFKHGSDLUV
DQDO\VLV 7KH DSSOLFDWLRQ WR WKH UHVROXWLRQV RI XQHPSOR\PHQW VSHOOV RI \RXQJ
PHPEHUV RI WKH ODERXU IRUFH LQ ± LV GLVFXVVHG LQ 6HFWLRQ 2 Discrete sequences
$ UHFRUG LQ WKH RULJLQDO GDWDVHW LV WKH VHTXHQFH RI K ODERXU IRUFH VWDWHV RI
D SHUVRQ $Q HOHPHQW RI WKH VHTXHQFH FRUUHVSRQGV WR D FDOHQGDU PRQWK DQG WKH
VHTXHQFH WR D FRQWLJXRXV VHW RI FDOHQGDU PRQWKV IURP -DQXDU\ XQWLO -XO\
7KH VWDWXV KDV ILYH SRVVLEOH YDOXHV HPSOR\PHQW ( XQHPSOR\PHQW 8
HFRQRPLF LQDFWLYLW\ , WUDQVLWLRQ 7 DQG DEVHQFH $ )RU H[DPSOH D SHUVRQ
ZKR KDV EHHQ FRQWLQXDOO\ HPSOR\HG RYHU D SHULRG RI K PRQWKV KDV WKH VHTXHQFH
(( (( RI OHQJWK K D SHUVRQ ZKR FRPSOHWHG KLVKHU HGXFDWLRQ DQG IRXQG D MRE
WKUHH PRQWKV ODWHU KDV VHTXHQFH $$ $888(( 6WDWXV $ LQ PRQWK m
UHVXOWV IURP KDYLQJ D UHFRUG LQ QHLWKHU $'(0 QRU ,*66 DW DQ\ WLPH SULRU WR DQG
LQFOXGLQJ PRQWK m 7KH FRPSOHWH GHILQLWLRQV RI WKH VWDWHV DUH JLYHQ LQ $SSHQGL[
$ VXEVHTXHQFH LV GHILQHG DV D VHTXHQFH IRU D FRQWLJXRXV VXEVHW RI PRQWKV
$ VHTXHQFH FRPSULVHV spells $ VSHOO LV GHILQHG DV D VXEVHTXHQFH WKDW LV
FRPSRVHG RI WKH VDPH VWDWXV WKURXJKRXW DQG WKH VWDWHV DW WKH LPPHGLDWHO\
SUHFHGLQJ DQG VXFFHHGLQJ WLPH SRLQWV DUH GLIIHUHQW $ VSHOO LV FKDUDFWHULVHG E\ WKH
VWDWXV DQG LWV OHQJWK )RU H[DPSOH WKH VHTXHQFH RI WKH ILUVW SHUVRQ FRQWLQXDOO\
HPSOR\HG FRPSULVHV D VLQJOH VSHOO RI ( 7KLV VSHOO KDV OHQJWK JUHDWHU WKDQ RU
HTXDO WR K EHFDXVH WKH SHUVRQ PD\ KDYH EHHQ HPSOR\HG LQ WKH SHULRG
LPPHGLDWHO\ SUHFHGLQJ WKH EHJLQQLQJ RI RXU UHFRUGV DQG IROORZLQJ WKH HQG RI WKH
UHFRUGV 7KH VHTXHQFH RI WKH VHFRQG SHUVRQ FRPSULVHV WKUHH VSHOOV $ 8 DQG (
7KH VHFRQG VSHOO LV 8 DQG KDV OHQJWK 6XSSRVH WKH RWKHU WZR VSHOOV RI WKH SHUVRQ
KDYH OHQJWKV $ DQG ( 7KHQ WKH VHTXHQFH LV FRPSOHWHO\ GHVFULEHG DV
$ 8 ( $ SHUVRQ PD\ KDYH D PRUH FRPSOH[ GHVFULSWLRQ RI WKH VHTXHQFH
ZLWK PDQ\ VSHOOV DQG VHYHUDO VSHOOV LQ WKH VDPH VWDWH VXFK DV $ 8 7 (
8 ( , 7 ( ( , 7KH RUGHU RI WKH VSHOOV LV HVVHQWLDO DQG ZH GR QRW
VXPPDULVH WKH VHTXHQFH E\ WKH WRWDOV RI WLPH SRLQWV PRQWKV VSHQW LQ D VWDWH
VXFK DV LQ ( LQ 8 DQG VR RQ ,Q IDFW WKH ORQJHVW VSHOO RI ( RU RI 8 LV RI
STATISTICS IN TRANSITION-new series, Summer 2013
253
LQWHUHVW LQ VRPH DQDO\VHV 7KH ILUVW DQG ODVW VSHOOV LQ D VHTXHQFH DUH RIWHQ
censored 7KDW LV WKH ILUVW VSHOO PD\ KDYH VWDUWHG EHIRUH WKH ILUVW WLPH SRLQW
PRQWK RI WKH VHTXHQFH 6LPLODUO\ WKH ODVW VSHOO LV LQFRPSOHWH LI LW FRQWLQXHV LQWR
WKH IXWXUH EH\RQG WKH GDWD KRUL]RQ PRQWK K LQ RXU GDWD ,Q VRPH LQVWDQFHV
WKH ILUVW VSHOO LV FRPSOHWH )RU H[DPSOH LQ WKH QH[W VHFWLRQ ZH VWXG\ VHTXHQFHV
WKDW VWDUW ZLWK WKH ILUVW PRQWK RI D 8 VSHOO
7KH history RI D VSHOO RI D VHTXHQFH LV GHILQHG DV D VXEVHTXHQFH WKDW HQGV
LQ WKH PRQWK LPPHGLDWHO\ EHIRUH WKH EHJLQQLQJ RI WKH VSHOO 7KH KLVWRU\ LV
TXDOLILHG E\ LWV OHQJWK )RU H[DPSOH VXSSRVH D VSHOO RI D VHTXHQFH VWDUWV LQ
-DQXDU\ 7KHQ WKH VXEVHTXHQFH IRU WKH PRQWKV RI LV LWV KLVWRU\ RI
OHQJWK 7KH IXWXUH RI D VSHOO LV GHILQHG VLPLODUO\ DOWKRXJK ZH LQFOXGH WKH
GHILQLQJ VSHOO LQ WKH VXEVHTXHQFH )RU H[DPSOH WKH IXWXUH RI OHQJWK RI D VSHOO
WKDW ODVWHG IURP -DQXDU\ XQWLO )HEUXDU\ LV WKH VXEVHTXHQFH IURP
-DQXDU\ XQWLO -XO\ :H GLVWLQJXLVK EHWZHHQ VHWV RI VHTXHQFHV WKDW KDYH WKH VDPH GHOLPLWLQJ
VWDUWLQJ DQG HQGLQJ SRLQWV PRQWKV VXFK DV -DQXDU\ DQG -XO\ DQG
VHWV LQ ZKLFK WKH VWDUW RU WKH HQG LV WULJJHUHG E\ DQ HYHQW VXFK DV WKH EHJLQQLQJ
RI D 8 VSHOO ,Q WKH ODWWHU FDVH VRPH VHOHFWLRQ PD\ WDNH SODFH DV WKHUH PD\ EH
XQLWV SHUVRQV ZKRVH VXEVHTXHQFHV GR QRW TXDOLI\ WR WKH VHW ,Q IDFW WKH
VHOHFWLRQ WDNHV SODFH HYHQ LQ RXU RULJLQDO GDWDVHW EHFDXVH SHUVRQV ZLWK QR 8 VSHOO
EHIRUH WKHLU VW ELUWKGD\ DUH QRW LQFOXGHG )XUWKHU ZH GUDZ D GLVWLQFWLRQ EHWZHHQ
VHWV RI SHUVRQV LQGLYLGXDOV DQG VHTXHQFHV ,Q WKH IRUPHU HDFK SHUVRQ IURP D
JLYHQ GRPDLQ LV LQFOXGHG DW PRVW RQFH ,Q WKH ODWWHU D SHUVRQ PD\ EH LQFOXGHG
VHYHUDO WLPHV )RU LQVWDQFH ZH FRQVLGHU LQ WKH 6HFWLRQV DQG VHWV RI 8 VSHOOV
$ SHUVRQ ZLWK VHYHUDO TXDOLI\LQJ 8 VSHOOV LV LQFOXGHG RQFH IRU HDFK VSHOO 6XFK
VSHOOV RI D SHUVRQ KDYH GLIIHUHQW VWDUWLQJ PRQWKV EXW GLIIHU DOVR LQ OHQJWK DV ZHOO
DV LQ WKHLU KLVWRULHV DQG IXWXUHV
2.1. ADEM and IGSS databases
7KH VHTXHQFHV RI ODERXU IRUFH VWDWHV RI OHQJWK FRYHULQJ WKH SHULRG IURP
-DQXDU\ XQWLO -XO\ DUH GHILQHG IRU DOO WKH SHUVRQV ZKR KDG D 8 VSHOO LQ
WKLV SHULRG KDG D FDVH ILOH RSHQ LQ $'(0 DQG WKHLU DJH ZDV LQ WKH UDQJH ±
\HDUV DW WKH EHJLQQLQJ RI RQH RI WKHLU 8 VSHOOV LQ WKH SHULRG :H IRFXV RQ WKH
\RXQJ EHFDXVH PDQ\ RI WKHP ZKR KDYH KDG D 8 VSHOO WHQG WR KDYH FRPSOH[
VHTXHQFHV ZKHUHDV DPRQJ ROGHU PHPEHUV RI WKH ODERXU IRUFH 8 VSHOOV WHQG WR EH
ORQJHU DQG DUH RIWHQ IROORZHG E\ ORQJ VSHOOV RI ( RU , $OVR WKH \RXQJ DUH
VXEVWDQWLDOO\ RYHUUHSUHVHQWHG LQ WKH 8 VSHOOV DERXW RI DOO $'(0 UHFRUGV
DUH IRU SHUVRQV DJHG RU EHORZ DW WKH EHJLQQLQJ RI WKH 8 VSHOO
:H FRPELQH WKH LQIRUPDWLRQ H[WUDFWHG IURP $'(0 UHFRUGV FRPSULVLQJ WKH
EHJLQQLQJ DQG HQG RI HDFK 8 VSHOO ZLWK LQIRUPDWLRQ IURP ,*66 IURP ZKLFK ZH
LQIHU WKH VWDWHV LQ WKH RWKHU PRQWKV ( , 7 $ VHH $SSHQGL[ IRU GHWDLOV 7KH
254
N. T. Longford, I. C. Salagean: The effect of unemployment …
VHTXHQFHV DUH VXSSOHPHQWHG E\ EDFNJURXQG LQIRUPDWLRQ OLVWHG LQ 7DEOH 7KH
FKRLFH DQG SXUSRVH RI WKH WUDQVIRUPHG YDULDEOHV DQG LQWHUDFWLRQV OLVWHG DW WKH
ERWWRP SDUW RI WKH WDEOH LV H[SODLQHG LQ 6HFWLRQ 7KHUH DUH UHIHUHQFH
VSHOOV XQLWV RI DQDO\VLV LQYROYLQJ SHUVRQV ZRPHQ DQG PHQ ZLWK DQG VSHOOV UHVSHFWLYHO\ $ SHUVRQ KDV D VHTXHQFH LQ WKH
GDWDVHW IRU HYHU\ 8 VSHOO LQ WKH VWXGLHG SHULRG VXEMHFW WR WKH FRQGLWLRQ RI EHLQJ
DJHG ± \HDUV DW WKH EHJLQQLQJ RI WKH 8 VSHOO
7KH PRQWK VHTXHQFHV FRQWDLQ D WRWDO RI PLOOLRQ WLPH SRLQWV PLOOLRQ RI WKHP DUH LQ VWDWH ( LQ 8 LQ , LQ 7 DQG
LQ $ :KHQ UHGXFHG WR XQLTXH SHUVRQV DIWHU GLVFDUGLQJ GXSOLFDWH
UHFRUGV WKH QXPEHU RI WLPH SRLQWV LV î PLOOLRQ ZLWK
(¶V 8¶V ,¶V 7¶V DQG $¶V
:H GLVFDUG DOO WKH UHFRUGV ZLWK UHIHUHQFH 8 VSHOOV LQ DQG EHFDXVH
WKH IRUPHU GR QRW KDYH D KLVWRU\ RI RQH \HDU ZKLFK ZH ZDQW WR XVH IRU GHILQLQJ
EDFNJURXQG YDULDEOHV DQG WKH UHFRUGHG IXWXUH XS WR -XO\ RI WKH ODWWHU LV WRR
VKRUW 7KXV RXU DQDO\VLV LV UHGXFHG WR UHIHUHQFH VSHOOV RI ZRPHQ
DQG PHQ ZLWK XQLTXH ZRPHQ DQG PHQ 0HQ KDYH KLJKHU
DYHUDJH QXPEHU RI 8 VSHOOV WKDQ ZRPHQ 2I WKH VHOHFWHG UHIHUHQFH
VSHOOV DUH DVVRFLDWHG ZLWK EHQHILWV IRU ZRPHQ DQG IRU PHQ DQG
DUH QRW 7KH WRS SDQHO RI )LJXUH VKRZV WKH GLVWULEXWLRQ RI WKH UHIHUHQFH VSHOOV RYHU
WLPH VWDUWLQJ PRQWKV VHSDUDWHO\ IRU VSHOOV DVVRFLDWHG ZLWK EHQHILWV DQG WKRVH
ZLWKRXW (YHU\ DXWXPQ 6HSWHPEHU DQG 2FWREHU WKHUH LV D SHDN LQ WKH QXPEHU
RI IDLOHG DSSOLFDWLRQV ZLWK QR EHQHILWV DZDUGHG DQG D VPDOOHU SHDN LQ -DQXDU\
7KH QXPEHUV RI VXFFHVVIXO DSSOLFDWLRQV DUH JUHDWHU LQ DXWXPQ DQG HDUO\ ZLQWHU
ZLWK D VKDUS IDOO LQ )HEUXDU\ 7KH IROORZLQJ WKUHH SDQHOV GLVSOD\ WKH GLVWULEXWLRQ
RI DJHV RI WKH DSSOLFDQWV 7KH\ VKRZ WKDW IDLOHG DSSOLFDWLRQV GRPLQDWH DPRQJ WKH
\RXQJ DQG PHQ LQ SDUWLFXODU EXW IURP DERXW \HDUV RI DJH RQ WKH VXFFHVV UDWH LW
LV FORVH WR ,W LQFUHDVHV VORZO\ ZLWK DJH
7KHUH DUH SHUVRQV ZLWK PXOWLSOH UHIHUHQFH VSHOOV WKH KLJKHVW PXOWLSOLFLW\
LV VHYHQ LQ WKUHH LQVWDQFHV IROORZHG E\ VL[ LQ HOHYHQ LQVWDQFHV 7KH PXOWLSOH
UHIHUHQFH VSHOOV DUH HLWKHU WUHDWHG VXFFHVVIXO DSSOLFDWLRQV RQ DOO RFFDVLRQV QRW
WUHDWHG IDLOXUHV RQ DQ\ RFFDVLRQV RU KDYH RQH RU VHYHUDO XQWUHDWHG VSHOOV
IROORZHG E\ RQH RU VHYHUDO WUHDWHG VSHOOV 7KHUH DUH SHUVRQV ZLWK WZR
UHIHUHQFH VSHOOV RI WKHVH SDLUV DUH ERWK XQWUHDWHG DUH ERWK WUHDWHG
KDYH DQ XQWUHDWHG VSHOO IROORZHG E\ D WUHDWHG VSHOO 2I WKH SHUVRQV ZLWK
WKUHH UHIHUHQFH VSHOOV KDYH WKUHH XQWUHDWHG VSHOOV HDFK WKUHH WUHDWHG
VSHOOV HDFK KDYH D WUHDWHG VSHOO RQO\ LQ WKH WKLUG 8 VSHOO DQG ZLWK D VROH
XQWUHDWHG VSHOO LQ WKH ILUVW 8 VSHOO LQ WKH GHVLJQDWHG SHULRG :H QRWH WKDW WKH
SHUVRQV¶ KLVWRULHV PD\ LQFOXGH 8 VSHOOV WKDW KDYH QRW EHHQ UHFRUGHG EHIRUH 255
STATISTICS IN TRANSITION-new series, Summer 2013
Table 1. &RYDULDWHV XVHG LQ WKH DQDO\VLV
9DULDEOH
1RWDWLRQ
9DOXHV
$JH \HDUV
6H[
0DULWDO VWDWXV
1DWLRQDOLW\
age
sex
civstat
natio_cat
± /HYHO RI HGXFDWLRQ
edu
6SHOO 1R
rk
0RQWKV VLQFH
dfinetu
FRPSOHWLQJ HGXFDWLRQ
0RQWKV VLQFH
prem_affil
WKH ILUVW UHFRUG LQ ,*66
8QHPSOR\PHQW RIILFH ccel
5HJLRQ
6XPPDU\
± 0HDQ PHGLDQ VW GHY ZRPHQ PHQ VLQJOH RWKHU /X[HPEXUJRLV 3RUWXJXHVH RWKHU EDVLF VHFRQGDU\ WHUWLDU\ 8 VSHOO VLQFH -DQ ILUVW VHFRQG WKLUG IRXUWK RU ODWHU 0HDQ PHGLDQ VW GHY ± 0HDQ PHGLDQ VW GHY (PSOR\PHQW VHFWRU
cemprec
/X[HPERXUJ &LW\ (VFKVXU$O]HWWH 'LHNLUFK :LOW] DUWV DQG WHFKQLFDO PDQDJHPHQW
VDOHV DJULFXOWXUH DQG IRUHVWU\
FUDIWV DQG PDQXDO IRRG FKHPLFDO
PDFKLQHU\ KRWHOV DQG UHVWDXUDQWV
RWKHU VHUYLFHV QR SURIHVVLRQ
+LVWRU\
)XWXUH
6WDUW
'XUDWLRQ RI WKH 8 VSHOO
pstat
astat
start
dur.UN
( 8 , 7 $
( 8 , 7 $
± ± Transformed variables
6TXDUH RI GILQHWX
6TXDUH RI SUHPBDIILO
6TXDUH RI DJH
%LPRQWKV LQ VWDWXV (
LQ PRQWKV RI KLVWRU\
Sq.dfinetu
Sq.prem_affil
Sq.age
Pstat.SumE
GILQHWX
SUHPBDIILO
DJH
&DWHJRULFDO YDULDEOH ± ± ± ± Age.Pstat1E
Age.Sex
Age.Edu2
Nat.pstat1I
$JH E\ VWDWXV ( LQ PRQWK í
$JH E\ OHYHO RI HGXFDWLRQ Interactions
$JH î SVWDW (
$JH î VH[
$JH î HGXFDWLRQ 1DWLRQDOLW\ î SVWDW
,
5HJLRQ î VH[
(GXFDWLRQ î VH[
Ccel.Sex
Edu.Sex
Note: All the summaries are for the reference spells.
FDWHJRULFDO YDULDEOHV
FDWHJRULFDO YDULDEOHV
0HDQ PHGLDQ VW GHY 0HDQ PHGLDQ VW GHY 1DWLRQDOLW\ E\ VWDWXV , LQ PRQWK í
256
N. T. Longford, I. C. Salagean: The effect of unemployment …
Figure 1. 5HFHLSW RI XQHPSOR\PHQW EHQHILWV IRU UHIHUHQFH VSHOOV E\ DJH DQG VH[
STATISTICS IN TRANSITION-new series, Summer 2013
257
3. Methods
2XU DQDO\VHV FRQFHUQ WKH FRPSOHWH HQXPHUDWLRQ RI $'(0 UHJLVWUDQWV LQ
WKH SHULRG IURP -DQXDU\ WR 'HFHPEHU PRQWKV ZKR ZHUH ±
\HDUV RI DJH DW WKH EHJLQQLQJ RI D 8 VSHOO :H KDYH GDWD IRU DQ DGGLWLRQDO \HDU
EXW WKLV ZH UHVHUYH IRU WKH GHILQLWLRQ RI EDFNJURXQG YDULDEOHV 7KH XQLW RI
DQDO\VLV LV D 8 VSHOO VXSSOHPHQWHG E\ LWV KLVWRU\ DQG IXWXUH 7KXV WKH XQLW
LV LWVHOI D VHTXHQFH EXW D SHUVRQ PD\ EH UHSUHVHQWHG LQ WKH DQDO\VLV E\ VHYHUDO
VHTXHQFHV RQH IRU HDFK 8 VSHOO (DFK UHIHUHQFH VSHOO LV DVVRFLDWHG ZLWK UHFHLSW RU
QRW RI XQHPSOR\PHQW EHQHILWV :H FRQVLGHU WKH IXWXUH RI WKH UHIHUHQFH VSHOO DV WKH
RXWFRPH $ SHUVRQ PD\ KDYH 8 VSHOOV FDVH ILOHV LQ $'(0 DGGLWLRQDO WR WKH
UHIHUHQFH ERWK LQ LWV KLVWRU\ DQG IXWXUH 7ZR VHTXHQFHV RI D SHUVRQ ZLWK PXOWLSOH
8 VSHOOV DUH OLQNHG E\ KLVWRULHV DQG IXWXUHV WKDW DUH VKLIWHG E\ WKH GLVWDQFH LQ WLPH
EHWZHHQ WKH WZR UHIHUHQFH VSHOOV
:H ZDQW WR HVWDEOLVK KRZ GLIIHUHQW WKH IXWXUHV RI WKH WUHDWHG UHIHUHQFH VSHOOV
ZLWK UHFHLSW RI EHQHILWV ZRXOG EH LI WKH\ ZHUH QRW WUHDWHG ZLWK QR EHQHILWV
UHFHLYHG 6XFK UHVHDUFK TXHVWLRQV DUH UHJDUGHG DV counterfactual EHFDXVH WKH
GLIIHUHQFH FRQVLGHUHG FDQQRW EH REVHUYHG IRU DQ\ XQLW :H KDYH QR FRQWURO RYHU
WKH DVVLJQPHQW RI WKH EHQHILW VWDWXV +\SRWKHWLFDOO\ LI WKH DVVLJQPHQW FRXOG KDYH
EHHQ PDGH DW UDQGRP DSSO\LQJ H[SHULPHQWDO GHVLJQ WKH DQDO\VLV ZRXOG EH
UHODWLYHO\ VWUDLJKWIRUZDUG (YHQ LQ WKDW VHWWLQJ ZH FRXOG QRW HVWDEOLVK WKH
GLIIHUHQFH RI WKH IXWXUHV RI D UHIHUHQFH VSHOO XQGHU WKH WZR FRQGLWLRQV ± WUHDWPHQW
E\ WKH EHQHILW DQG QR WUHDWPHQW ± EHFDXVH RQO\ RQH RI WKH FRQGLWLRQV FRXOG EH
UHDOLVHG +RZHYHU WKH UDQGRP DVVLJQPHQW WRJHWKHU ZLWK D VHW RI DVVXPSWLRQV
GLVFXVVHG LQ 6HFWLRQ ZRXOG HQVXUH WKDW WKH DYHUDJH WUHDWPHQW HIIHFW LV
HVWLPDWHG ZLWKRXW ELDV
,Q VXPPDU\ RXU IRFDO SRSXODWLRQ LV WKH VHW RI DOO 8 VSHOOV LQ WKH GHVLJQDWHG
SHULRG WKDW UHVXOW LQ D XQLTXHO\ LGHQWLILHG FDVH ILOH UHFRUG DQG UHJLVWUDWLRQ LQ
$'(0 7KH XQLW RI DQDO\VLV LV GHILQHG E\ LWV UHIHUHQFH VSHOO ,W KDV WR EH
GLVWLQJXLVKHG IURP WKH RWKHU 8 VSHOOV LQ WKH KLVWRU\ DQG IXWXUH RI WKH SHUVRQ¶V
VHTXHQFH )RU WKH KLVWRU\ ZH FRQVLGHU WKH LPPHGLDWHO\ SUHFHGLQJ PRQWKV DQG
IRU WKH IXWXUH XS WR PRQWKV LPPHGLDWHO\ IROORZLQJ WKH VWDUW RI WKH UHIHUHQFH
VSHOO 7KH IXWXUHV DUH FHQVRUHG E\ WKH GDWD KRUL]RQ RI -XO\ IRU DOO UHIHUHQFH
VSHOOV WKDW VWDUWHG DIWHU -XQH :H GLVWLQJXLVK WKUHH FDWHJRULHV RI YDULDEOHV
‡ WUHDWPHQW LQGLFDWRUV
‡ RXWFRPHV
‡ FRYDULDWHV
$ WUHDWPHQW LQGLFDWRU T LV D ELQDU\ YDULDEOH ZLWK YDOXHV ]HUR RU XQLW\ T IRU RQH WUHDWPHQW DQG T IRU WKH RWKHU (YHU\ XQLW LV DVVXPHG WR KDYH EHHQ
DGPLQLVWHUHG RQH RI WKH WZR WUHDWPHQWV 7KH RQO\ SDLU RI WUHDWPHQWV ZH FRQVLGHU
LV WKH UHFHLSW RI EHQHILWV DQG QRW UHFHLYLQJ WKHP :H HOHFW T IRU WKH UHFHLSW
DQG T
IRU WKH FRPSOHPHQW $ SHUVRQ PD\ KDYH VHYHUDO 8 VSHOOV LQ WKH
258
N. T. Longford, I. C. Salagean: The effect of unemployment …
GHVLJQDWHG SHULRG EHWZHHQ -DQXDU\ DQG WKH HDUOLHU RI -XO\ DQG WKH VW
ELUWKGD\ DQG HDFK RI WKHP LV WKH UHIHUHQFH VSHOO RI D VHTXHQFH WKH XQLW RI
DQDO\VLV
:H VSHFLI\ VHYHUDO RXWFRPH YDULDEOHV WKDW VXPPDULVH D SDUWLFXODU DVSHFW RI
WKH IXWXUH RI WKH UHIHUHQFH VSHOO :H UHJDUG WKH UHVROXWLRQ FORVXUH RI DQ $'(0
FDVH ILOH WKDW FRLQFLGHV ZLWK WKH UHIHUHQFH VSHOO DV D VXFFHVV LI WKH IXWXUH FRQWDLQV
DQ ( VSHOO RI OHQJWK DW OHDVW L :H VHW L
UHJDUGLQJ DV D ODQGPDUN
XQLQWHUUXSWHG HPSOR\PHQW RYHU D SHULRG RI RQH \HDU DIWHU D 8 VSHOO ,QVLVWLQJ RQ
D ORQJHU VSHOO VXFK DV L ZRXOG OHDG WR H[FHVVLYH FHQVRULQJ E\ WKH GDWD
KRUL]RQ LQ -XO\ DQG WRR IHZ VXFFHVVHV ZRXOG EH UHFRUGHG $QRWKHU YDULDEOH
LV WKH OHQJWK RI WKH ORQJHVW ( VSHOO LQ WKH VHTXHQFH &RPSDULVRQV RI WKH YDOXHV RI
WKLV YDULDEOH IRU VHTXHQFHV ZLWK GLIIHUHQW VWDUWLQJ SRLQWV DUH SUREOHPDWLF EHFDXVH
RI WKH IL[HG GDWD KRUL]RQ +RZHYHU FRPSDULVRQV IRU WZR VHTXHQFHV ZLWK WKH VDPH
VWDUWLQJ SRLQW KDYH IDFH YDOLGLW\ ,I WZR VHTXHQFHV KDYH WKH VDPH PD[LPXP OHQJWK
RI ( VSHOO WKHQ ZH UHJDUG DV VXSHULRU WKH VHTXHQFH LQ ZKLFK WKH ILUVW ( VSHOO RI
PD[LPXP OHQJWK ZDV DFKLHYHG HDUOLHU 6RPH RWKHU SUREOHPV DPELJXLWLHV ZLWK
WKLV GHILQLWLRQ DUH GLVFXVVHG LQ 6HFWLRQ 3.1. The potential outcomes framework
$Q RXWFRPH YDULDEOH < LV DVVRFLDWHG ZLWK WZR SRWHQWLDO RXWFRPH YDULDEOHV
Y W LV WKH YDULDEOH GHILQHG DV WKH RXWFRPH DVVXPLQJ WKDW WUHDWPHQW t RU t ZDV DSSOLHG 2XU JRDO LV WR FRPSDUH WKH YDOXHV RI Y DQG Y RQ WKH VHW RI XQLWV
WKH IXWXUHV RI WKH UHIHUHQFH VSHOOV WKDW UHFHLYHG WUHDWPHQW t 7KH YDULDEOH Y
FDQ EH H[SUHVVHG DV D FRPSRVLWLRQ
Y T
í T Y TY DQG LWV GLVWULEXWLRQ LV D mixture RI WKH GLVWULEXWLRQV RI Y DQG Y ,QIHUHQFHV
DERXW Y ± Y DUH UHODWLYHO\ HDV\ WR PDNH ZKHQ T LV LQGHSHQGHQW RI Y DQG
Y DV LW ZRXOG EH LI WKH WUHDWPHQW ZHUH UDQGRPLVHG 3RWHQWLDO YHUVLRQV
DVVRFLDWHG ZLWK WKH WZR WUHDWPHQWV FDQ EH GHILQHG IRU DQ\ YDULDEOH 2I FRXUVH WKH
WZR YHUVLRQV PD\ EH LGHQWLFDO %DFNJURXQG YDULDEOHV GHILQHG SULRU WR
DGPLQLVWHULQJ WKH WUHDWPHQW ZKLFK FRXOG QRW KDYH EHHQ LQIRUPHG E\ WKH YDOXH
RI T DUH REYLRXV H[DPSOHV
:H XVH DV FRYDULDWHV DQ H[WHQVLYH VHW RI YDULDEOHV OLVWHG LQ 7DEOH 7KH
TXDOLI\LQJ DWWULEXWH IRU D FRYDULDWH LV WKDW LWV WZR SRWHQWLDO YHUVLRQV DUH LGHQWLFDO í
WKDW LWV YDOXHV ZRXOG QRW EH DOWHUHG LI WKH WUHDWPHQW DVVLJQPHQW WKH YDOXHV RI T
ZHUH FKDQJHG 9DULDEOHV GHILQHG SULRU WR WKH EHJLQQLQJ RI WKH UHIHUHQFH VSHOO DUH
FRYDULDWHV :H GLVFRXQW WKH SRVVLELOLW\ WKDW WKH KLVWRU\ RI WKH UHIHUHQFH VSHOO LV
LQIOXHQFHG LQ DQ\ ZD\ E\ WKH DQWLFLSDWHG YDOXH RI T LQ DQ\ IXWXUH 8 VSHOO 7KH
FRYDULDWHV LQFOXGH YDULDEOHV GHILQHG RQ WKH PRQWKV RI ODERXU PDUNHW KLVWRU\
ODERXU IRUFH VWDWHV 7KLV LV EDVHG RQ D SUDJPDWLF GHFLVLRQ QRW WR ORVH LQ WKH
DQDO\VLV WRR PDQ\ VSHOOV IRU ZKLFK WKLV KLVWRU\ LV QRW FRPSOHWHO\ UHFRUGHG
STATISTICS IN TRANSITION-new series, Summer 2013
259
7KH SRWHQWLDO RXWFRPHV IUDPHZRUN KDV WKH DVVXPSWLRQ RI VWDEOH XQLW
WUHDWPHQW YDULDEOH UHIHUUHG WR E\ WKH DFURQ\P 6879$ ,W FDQ EH VXPPDULVHG DV
IROORZV LQ K\SRWKHWLFDO UHSOLFDWLRQV RI WKH VWXG\ ZLWK WKH VDPH VHW RI XQLWV WKH
VDPH VHWV RI YDOXHV RI DOO YDULDEOHV H[FHSW WKH WUHDWPHQW EXW D UHSOLFDWH UHDOLVDWLRQ
RI WKH WUHDWPHQW DVVLJQPHQW SURFHVV PHFKDQLVP WKH RXWFRPH IRU XQLW i LV
GHWHUPLQHG HQWLUHO\ E\ WKH WUHDWPHQW DVVLJQHG ‫ݕ‬௜ LI ‫ݐ‬௜ DQG ‫ݕ‬௜ LI ‫ݐ‬௜ &ORVH VFUXWLQ\ RI WKLV FRQGLWLRQ UHYHDOV WKDW LW LV IDU IURP WULYLDO DQG LQ VHYHUDO
DVSHFWV FRQWHQWLRXV LQ RXU VHWWLQJ )LUVW LW LPSOLHV WKDW WKH XQLWV GR QRW LQWHUIHUH
ZLWK RQH DQRWKHU 7KDW LV WKH RXWFRPH RI RQH XQLW LV XQDIIHFWHG E\ WKH WUHDWPHQW
DVVLJQHG WR DQRWKHU XQLW ,Q RXU FDVH LW HQWDLOV WKH DVVXPSWLRQ WKDW WKH IXWXUH RI
RQH 8 VSHOO LV XQUHODWHG WR WKH IXWXUH RI D ODWHU 8 VSHOO RI WKH VDPH SHUVRQ 7KLV LV
SDWHQWO\ IDOVH HVSHFLDOO\ IRU WZR VKRUW 8 VSHOOV WKDW DUH VHSDUDWHG E\ D VKRUW WLPH
+RZHYHU WKH GHSHQGHQFH LV GLIILFXOW WR GHVFULEH DQG UHODWHV WR D VPDOO IUDFWLRQ
RI WKH XQLWV 1H[W WKH UXOHV IRU DZDUGLQJ EHQHILWV DUH ZHOO NQRZQ WR DOO SDUWLHV
LQYROYHG DQG VR WKH FRQGXFW RI WKH SHUVRQV WKUHDWHQHG E\ XQHPSOR\PHQW LV
DIIHFWHG E\ WKH DQWLFLSDWHG SRVVLELOLW\ RI ORVV RI MRE 8QHPSOR\PHQW RIWHQ DULVHV
LQ TXDQWD VHYHUDO SHUVRQV ORVLQJ WKHLU MREV DQG LV DQWLFLSDWHG $ ORW RI
XQHPSOR\PHQW DULVHV DIWHU WKH FRQFOXVLRQ RI IL[HGWHUP FRQWUDFWV WKDW FRYHU WKH
VDPH SHULRG RI WLPH DQG DUH DZDUGHG WR D VHW RI ZRUNHUV DW WKH VDPH WLPH (YHU\
SHUVRQ¶V EHKDYLRXU LV DIIHFWHG E\ WKH H[SHULHQFHV RI DFTXDLQWDQFHV DQG IDPLO\
PHPEHUV LQ SDUWLFXODU VR WKH WZR SRWHQWLDO RXWFRPHV GR QRW GHVFULEH WKH HQWLUH
UDQJH RI SRVVLEOH YDOXHV RI WKH RXWFRPH RI D SHUVRQ )XUWKHU VRPH XQHPSOR\HG
DQG WKRVH DERXW WR EHFRPH XQHPSOR\HG DUH DGYLVHG E\ DJHQWV VXFK DV XQLRQ
UHSUHVHQWDWLYHV $V D FRQVHTXHQFH WKH FRQGXFW RI VRPH XQHPSOR\HG PD\ EH
FRRUGLQDWHG $ SULQFLSOHG VROXWLRQ WR WKLV SUREOHP LV WR FRQVLGHU DOO FRQILJXUDWLRQV
RI SODXVLEOH WUHDWPHQW DVVLJQPHQWV DQG GHILQH D SRWHQWLDO RXWFRPH YDULDEOH IRU
HYHU\ RQH RI WKHP +RZHYHU WKH QXPEHU RI VXFK YDULDEOHV ZRXOG SUROLIHUDWH DQG
EHFRPH XQPDQDJHDEOH HYHQ LQ VRPH VLPSOH VFHQDULRV VR SXUVXLQJ WKLV DSSURDFK
LV QRW IHDVLEOH
3.2. The treatment effect
:LWK WZR SRWHQWLDO RXWFRPH YDULDEOHV WKH XQLWOHYHO WUHDWPHQW HIIHFW LV
GHILQHG DV WKH GLIIHUHQFH RI WKH RXWFRPHV XQGHU WKH DOWHUQDWLYH WUHDWPHQWV
¨Y
Y í Y ZLWK YDOXH ¨‫ݕ‬௜ IRU XQLW i :H LPSRVH QR FRQGLWLRQV RQ WKH GLVWULEXWLRQ RI WKLV
YDULDEOH ,Q SDUWLFXODU ZH GR QRW DVVXPH WKDW ¨Y LV FRQVWDQW 7KH DYHUDJH
WUHDWPHQW HIIHFW IRU D VHW RI XQLWV u LV GHILQHG DV WKH PHDQ RI WKH XQLWOHYHO
WUHDWPHQW HIIHFWV
ଵ
σ௜ఢ௨ ο‫ݕ‬௜ ¨ܻത௨
௡ೠ
260
N. T. Longford, I. C. Salagean: The effect of unemployment …
ZKHUH ݊௨ LV WKH QXPEHU RI XQLWV LQ u. 7KH DYHUDJH WUHDWPHQW HIIHFW LV TXDOLILHG E\
WKH VHW u. ,Q RXU DQDO\VLV u LV WKH VHW RI 8 VSHOOV IRU ZKLFK T ZDV DSSOLHG
$QRWKHU IDFWRU UHOHYDQW WR RXU DQDO\VLV LV WKH WUHDWPHQW DVVLJQPHQW SURFHVV
PHFKDQLVP ,W LV GHILQHG E\ WKH MRLQW GLVWULEXWLRQ RI WKH WUHDWPHQWV DVVLJQHG WR
WKH XQLWV LQ u. ,Q D W\SLFDO REVHUYDWLRQDO VWXG\ WKLV GLVWULEXWLRQ LV QRW NQRZQ DQG
LQIHUHQFHV DERXW LW DUH GLIILFXOW WR PDNH EHFDXVH ZH KDYH RQO\ RQH UHDOLVDWLRQ RI
WKLV GLVWULEXWLRQ ± WKH UHDOLVHG DVVLJQPHQW RI WKH WUHDWPHQWV WR u. ,W LV PRUH
SUDFWLFDO WR WKLQN DERXW WUHDWPHQW DVVLJQPHQWV LQ DOWHUQDWLYH UHSOLFDWLRQV RI WKH
VWXG\ :H FDQQRW UXOH RXW WKH SRVVLELOLW\ WKDW FHUWDLQ XQLWV ZRXOG QHYHU UHFHLYH D
SDUWLFXODU WUHDWPHQW )RU WKHP WKH XQLWOHYHO WUHDWPHQW HIIHFW ¨Y LV QRW GHILQHG
,W PLJKW EH FRQVWUXFWLYH WR H[FOXGH VXFK XQLWV IURP u EHFDXVH WKH XQGHUO\LQJ
TXHVWLRQ :KDW LV WKH GLIIHUHQFH" DERXW WKHP LV PHDQLQJOHVV
3.3. The missing-data perspective
,I WKH YDOXHV RI Y DQG Y ZHUH REVHUYHG IRU DOO XQLWV LQ u WKH DQDO\VLV
ZRXOG EH VWUDLJKWIRUZDUG HYDOXDWLQJ WKH PHDQ RI WKH GLIIHUHQFHV LQ ,Q WKH
HVWDEOLVKHG WHUPLQRORJ\ IRU PLVVLQJ GDWD WKH VHW RI ݊௨ î YDOXHV RI WKH SRWHQWLDO
RXWFRPHV Y DQG Y LV UHIHUUHG WR DV WKH complete dataset 7KH REVHUYHG
GDWDVHW FRPSULVLQJ D VXEVHW RI ݊௨ YDOXHV GHWHUPLQHG E\ WKH UHDOLVHG WUHDWPHQW
DVVLJQPHQW LV FDOOHG WKH incomplete dataset 7KH VHWGLIIHUHQFH RI WKH WZR
GDWDVHWV LV WKH VHW RI missing values
$Q DQDO\VW¶V ILUVW LQVWLQFW PLJKW EH WR LPSXWH D YDOXH IRU HDFK PLVVLQJ LWHP
6XFK DQ LPSXWDWLRQ GDWD FRPSOHWLRQ UHVXOWV LQ D completed GDWDVHW 7KH WKHRU\
RI PXOWLSOH LPSXWDWLRQ 5XELQ GRFXPHQWV WKH SUREOHPDWLF QDWXUH RI WKLV
DSSURDFK ,I ZH DQDO\VH D FRPSOHWHG GDWDVHW DV LI LW ZHUH WKH FRPSOHWH GDWDVHW ZH
REWDLQ LQIHUHQFHV WKDW SURMHFW WRR PXFK FRQILGHQFH EHFDXVH LQ WKH DQDO\VLV ZH
SUHWHQG WR KDYH PRUH LQIRUPDWLRQ WKDQ ZDV FROOHFWHG 7KH SUREOHP GRHV QRW DULVH
ZKHQ WKH VWDWLVWLF RI LQWHUHVW VXFK DV DQ HVWLPDWRU LV D OLQHDU IXQFWLRQ RI WKH
PLVVLQJ YDOXHV +RZHYHU ZH DOVR ZDQW WR DVVHVV WKH TXDOLW\ RI WKH HVWLPDWRU E\
HVWLPDWLQJ LWV VDPSOLQJ YDULDQFH RU VWDQGDUG HUURU DQG WKDW LV D GLVWLQFWO\
QRQOLQHDU IXQFWLRQ RI WKH PLVVLQJ YDOXHV 1RWH DOVR WKDW ZH KDYH WR GLVWLQJXLVK
EHWZHHQ WKH VDPSOLQJ YDULDQFH RI WKH HVWLPDWRU WKDW UHODWHV WR FRPSOHWH GDWD DQG
WKH VDPSOLQJ YDULDQFH IRU WKH FRPELQDWLRQ RI WKH SURFHVVHV RI GDWD JHQHUDWLRQ DQG
QRQUHVSRQVH PLVVLQJQHVV 7KH IRUPHU VDPSOLQJ YDULDQFH LV ]HUR EHFDXVH ZH
VWXG\ D IL[HG VHW RI XQLWV DQG DVVXPH WKHLU SRWHQWLDO RXWFRPHV WR EH IL[HG
0XOWLSOH LPSXWDWLRQ LV D IOH[LEOH DOWHUQDWLYH IRU DGGUHVVLQJ WKLV SUREOHP :H
JHQHUDWH VHYHUDO VHWV RI SODXVLEOH YDOXHV IRU WKH PLVVLQJ LWHPV DFFRUGLQJ WR
D PRGHO VSHFLILHG IRU WKHP ,Q WKH LPSXWDWLRQV ZH UHIOHFW WKH XQFHUWDLQW\ DERXW
WKH PRGHO SDUDPHWHUV DV ZHOO DV WKH XQFHUWDLQW\ WKDW ZRXOG EH SUHVHQW LQ D PRGHO
HYHQ LI DOO LWV SDUDPHWHUV ZHUH NQRZQ ,Q RXU VHWWLQJ WKH WUHDWPHQW DVVLJQPHQW LV
WKH VROH VRXUFH RI XQFHUWDLQW\
261
STATISTICS IN TRANSITION-new series, Summer 2013
4. Matched pairs analysis
2XU DQDO\VLV SURFHHGV E\ WKH IROORZLQJ VWHSV )LUVW ZH HVWLPDWH WKH SURSHQVLW\
RI UHFHLYLQJ D WUHDWPHQW DV D IXQFWLRQ RI WKH EDFNJURXQG YDULDEOHV 1H[W ZH IRUP
SDLUV RI XQLWV RQH WUHDWHG DQG RQH QRW WUHDWHG WKDW KDYH VLPLODU SURSHQVLWLHV 7KHQ
ZH HVWLPDWH WKH DYHUDJH WUHDWPHQW HIIHFW E\ DYHUDJLQJ WKH ZLWKLQ SDLU FRQWUDVWV
FRPSDULVRQV ,Q WKH ILQDO VWHS ZH HVWLPDWH WKH VDPSOLQJ YDULDQFH RI WKLV
HVWLPDWRU E\ UHSOLFDWLQJ WKH SURFHVVHV RI PDWFKLQJ DQG HVWLPDWLRQ 7KH IROORZLQJ
VHFWLRQV JLYH GHWDLOV RI WKH VWHSV
4.1. Propensity scoring
,Q WKLV VWHS ZH ILW D ORJLVWLF UHJUHVVLRQ PRGHO LQ ZKLFK WKH RXWFRPH YDULDEOH
LV WKH WUHDWPHQW DSSOLHG DQG WKH FRYDULDWHV DUH DOO WKH YDULDEOHV OLVWHG LQ 7DEOH 7KH SURSHQVLW\ LV GHILQHG DV WKH FRQGLWLRQDO SUREDELOLW\ RI WUHDWPHQW JLYHQ WKH
YDOXHV RI WKH FRYDULDWHV
px
3T
_X
x
7KH SURSHQVLW\ IRU XQLW i ZLWK WKH YHFWRU RI FRYDULDWHV ‫ܠ‬௜ LV GHILQHG DV p(‫ܠ‬௜ 7KH SURSHQVLWLHV DUH XVHG IRU IRUPLQJ SDLUV RI XQLWV UHIHUHQFH VSHOOV RQH ZLWK
T DQG WKH RWKHU ZLWK T E\ PDWFKLQJ RQ WKHLU YDOXHV RI px 7KDW LV
HTXLYDOHQW WR PDWFKLQJ RQ D VWULFWO\ PRQRWRQH WUDQVIRUPDWLRQ RI WKH
SURSHQVLWLHV
,Q D SHUIHFWO\ LPSOHPHQWHG H[SHULPHQW WKH SURSHQVLWLHV DUH NQRZQ )RU
H[DPSOH LI XQLWV DUH DVVLJQHG WR WKH WZR WUHDWPHQW JURXSV FRPSOHWHO\ DW UDQGRP
ZLWK SUREDELOLWLHV HTXDO WR WKHQ px IRU DOO x 3UREOHPV DULVH ZKHQ WKH
SURWRFRO RI WKH H[SHULPHQW LV QRW DGKHUHG WR WKH OHWWHU DV ZKHQ VRPH XQLWV GHSDUW
IURP WKH DVVLJQHG WUHDWPHQW UHJLPHQ RU GURS RXW IURP WKH VWXG\
2XU DSSURDFK FDQ EH GHVFULEHG DV VHOHFWLQJ IURP WKH REVHUYHG XQLWV D VXEVHW
WKDW UHVHPEOHV DV FORVHO\ DV FDQ EH DUUDQJHG LQ DOO IHDWXUHV WKDW FDQ EH FKHFNHG
D GDWDVHW JHQHUDWHG E\ D SHUIHFWO\ H[HFXWHG H[SHULPHQWDO GHVLJQ 7KH PDLQ
FULWHULRQ IRU WKLV LV WKDW WKH WZR JURXSV LQ WKH VHOHFWHG VXEVHW DUH EDODQFHG ± KDYH
QHDULGHQWLFDO SURILOHV RI WKH FRYDULDWHV :KHQ WKHUH DUH VHYHUDO FRYDULDWHV VXFK D
EDODQFH LV YHU\ GLIILFXOW WR DUUDQJH 5RVHQEDXP DQG 5XELQ VKRZHG WKDW
DUUDQJLQJ WKLV EDODQFH FDQ EH UHSODFHG E\ WKH WDVN RI PDWFKLQJ RQ WKH YDOXHV RI
WKH SURSHQVLW\ RU LWV PRQRWRQH WUDQVIRUPDWLRQ 8VLQJ WKH ORJLW ORJRGGV VFDOH IRU
WKH VFRUHV LV DQ REYLRXV FKRLFH 7KH ORJLW LV GHILQHG DV ORJLWp
ORJp í
ORJ í p
7KH SURSHQVLW\ LV D YDULDEOH GHILQHG RQ WKH LQWHUYDO > @ ,W XVXDOO\ DWWDLQV
PDQ\ GLVWLQFW YDOXHV PRVW RI WKHP ZLWK VPDOO IUHTXHQF\ RU HYHQ XQLTXHO\ DQG
WKHUHIRUH PDWFKLQJ RQ LWV YDOXHV H[DFWO\ ZRXOG \LHOG WRR IHZ SDLUV ,Q SUDFWLFH
WKH UDQJH > @ LV VSOLW LQWR D QXPEHU RI LQWHUYDOV DQG PDWFKHV DUH VRXJKW ZLWKLQ
WKHP )XUWKHU WKH SURSHQVLW\ LV QRW HVWDEOLVKHG ZLWK SUHFLVLRQ EXW PHUHO\
262
N. T. Longford, I. C. Salagean: The effect of unemployment …
HVWLPDWHG 5XELQ DQG 7KRPDV VKRZHG WKDW WKH XQFHUWDLQW\ DERXW WKH
SURSHQVLW\ FDQ EH LJQRUHG DQG PDWFKLQJ EDVHG RQ WKH HVWLPDWHG SURSHQVLW\ RU LWV
PRQRWRQH WUDQVIRUPDWLRQ LV VXIILFLHQW
$SDUW IURP WKH SURSHQVLW\ VFRUH ZH PDWFK DOVR RQ WKH GDWH ZKHQ WKH 8 VSHOO
VWDUWV 7KLV LV UHIHUUHG WR DV blocking ± PDWFKLQJ VHSDUDWHO\ ZLWKLQ VXEVHWV RI WKH
XQLWV LQ RXU FDVH WKH VXEVHWV DUH GHILQHG E\ WKH VWDUWLQJ GDWH PRQWK 7KLV LV
HVVHQWLDO IRU VRPH RI WKH RXWFRPH YDULDEOHV ZKLFK DUH DIIHFWHG E\ FHQVRULQJ DQG
IRU ZKLFK D FRPSDULVRQ RI WZR XQLWV ZLWK GLIIHUHQW VWDUWLQJ GDWHV LV SUREOHPDWLF
4.2. Matching and complete-data analysis
:H GLYLGH WKH ILWWHG SURSHQVLWLHV LQWR H LQWHUYDOV VR WKDW HDFK LQWHUYDO
FRQWDLQV DSSUR[LPDWHO\ WKH VDPH QXPEHU RI XQLWV 7KHVH LQWHUYDOV DUH IXUWKHU
VXEGLYLGHG LQWR JURXSV DFFRUGLQJ WR WKH VWDUWLQJ GDWH RI WKH UHIHUHQFH VSHOO 7KHUH
DUH XS WR H î Hƍ PDWFKLQJ JURXSV ZKHUH Hƍ LV WKH QXPEHU RI GLVWLQFW VWDUWLQJ
GDWHV PRQWKV $ FRPELQDWLRQ RI LQWHUYDOV DQG GDWHV PD\ FRQWDLQ QR XQLWV RU RQO\
XQLWV ZLWK RQH YDOXH RI T :LWKLQ HYHU\ RQH RI WKH JURXSV LQ ZKLFK ERWK
WUHDWPHQWV DUH UHSUHVHQWHG ZH IRUP PDWFKHG SDLUV E\ WKH IROORZLQJ SURFHVV
6XSSRVH JURXS h KDV ݊௛௧ XQLWV ZLWK WUHDWPHQW t ,I ݊௛଴ ” ݊௛ଵ WKHQ ZH
PDWFK HDFK XQWUHDWHG XQLW t LQ WKH JURXS ZLWK D WUHDWHG XQLW t VHOHFWHG
DW UDQGRP DQG ZLWKRXW UHSODFHPHQW 7KLV LV LPSOHPHQWHG LQ SUDFWLFH E\ VRUWLQJ
WKH ݊௛଴ XQWUHDWHG XQLWV VHOHFWLQJ ݊௛଴ XQLWV VHTXHQWLDOO\ IURP WKH VHW RI ݊௛ଵ
WUHDWHG XQLWV LQ WKH JURXS DQG IRUPLQJ SDLUV LQ WKH REYLRXV PDQQHU
/HW ‫ݕ‬௛௧௝ EH WKH YDOXH RI WKH RXWFRPH YDULDEOH IRU WKH XQLW ZKLFK UHSUHVHQWV
WUHDWPHQW t LQ SDLU j RI JURXS h )RU HDFK SDLU ZH HYDOXDWH WKH VLJQ RI WKH FRQWUDVW
‫ݕ‬௛ଵ௝ í ‫ݕ‬௛଴௝ RU WKH VLJQ SRVLWLYH QHJDWLYH RU WLH LV HVWDEOLVKHG ZLWKRXW
¨ ‫ݕ‬௛௝
HYDOXDWLQJ ¨ ‫ݕ‬௛௝ ZKHQ WKH GLIIHUHQFH LV QRW ZHOO GHILQHG 7KH UHVXOWV DUH WKHQ
WDOOLHG DFURVV WKH SDLUV WR REWDLQ WKH FRXQWV RI ZLQQHUV ORVHUV DQG WLHV 7KHVH
WDEOHV WULSOHWV GHQRWHG E\ ¨ ‫ݕ‬௛ DUH IXUWKHU WDOOLHG RYHU WKH PDWFKLQJ JURXSV WR
REWDLQ D VLQJOH WULSOHW ¨y RI FRXQWV RI SDLUV LQ ZKLFK WKH UHSUHVHQWDWLYH RI WKH
WUHDWPHQW LV WKH ZLQQHU ORVHU RU WKHUH LV D WLH
$V DQ DOWHUQDWLYH WKH WULSOHWV FDQ EH WDOOLHG ZLWK ZHLJKWV WKDW DFFRXQW IRU WKH
WUHDWHG XQLWV WKDW KDYH QRW EHHQ PDWFKHG ,I JURXS h KDV IHZHU XQWUHDWHG WKDQ
WUHDWHG XQLWV ‫ݎ‬௛ ݊௛ଵ ݊௛଴ ! WKHQ ݊௛ଵ í ݊௛଴ WUHDWHG XQLWV DUH QRW PDWFKHG
:H FRPSHQVDWH IRU WKHLU ORVV E\ LQFUHDVLQJ WKH FRQWULEXWLRQ RI JURXS h IURP ¨ ‫ݕ‬௛
WR ‫ݎ‬௛ ¨ ‫ݕ‬଴௛ ZKHUH ‫ݎ‬௛
݊௛ଵ ݊௛଴ )RU JURXSV LQ ZKLFK ݊௛଴ • ݊௛ଵ WKH
FRQWULEXWLRQ WR ¨y LV QRW FKDQJHG ‫ݎ‬௛ LV VHW WR XQLW\ 7KHUH PD\ EH RQH RU VHYHUDO
JURXSV LQ ZKLFK WKHUH DUH QR XQWUHDWHG XQLWV ݊௛଴ VR QRQH RI WKH WUHDWHG XQLWV
DUH PDWFKHG ,Q HYHU\ PDWFKLQJ H[HUFLVH ZH PRQLWRU WKH QXPEHU RI VXFK XQLWV
,I LW LV H[FHVVLYH WKHQ ZH UHYLVH WKH GHILQLWLRQ RI WKH PDWFKLQJ JURXSV :LWK IHZHU
JURXSV GHILQHG IHZHU VXFK IDLOXUHV WR PDWFK DUH OLNHO\
STATISTICS IN TRANSITION-new series, Summer 2013
263
7KH QXPEHU RI WUHDWHG XQLWV LQYROYHG LQ VXFK IDLOXUHV FDQ EH LQFOXGHG LQ D
VHQVLWLYLW\ DQDO\VLV &RQVLGHU WKH IROORZLQJ WZR H[WUHPHV IRU WKH VHW RI DOO WUHDWHG
XQLWV ZLWKRXW D PDWFK
LI WKH\ ZHUH PDWFKHG WKH\ ZRXOG DOO EH ZLQQHUV
LI WKH\ ZHUH PDWFKHG WKH\ ZRXOG DOO EH ORVHUV
,I LQ ERWK RI WKHVH VFHQDULRV ZH REWDLQ WKH VDPH LQIHUHQFH WKHQ WKH IDLOXUHV DUH
LPPDWHULDO 2I FRXUVH LI WKHUH DUH PDQ\ VXFK IDLOHG PDWFKHV WKHQ ZH DUH
WKUHDWHQHG ZLWK DQ LPSDVVH ZKHQ GLIIHUHQW FRQFOXVLRQV DUH DUULYHG ZLWK WKH WZR
H[WUHPH DVVXPSWLRQV 7KH WLHV EHWZHHQ WKH XQLWV LQ D SDLU FDQ EH GHDOW ZLWK
VLPLODUO\
4.3. Sampling variation
5HJDUGLQJ WKH VHW RI IRFDO XQLWV VSHOOV u IRU ZKLFK ZH ZDQW WR HVWLPDWH WKH
DYHUDJH HIIHFW RI WKH WUHDWPHQW DV IL[HG WKH HQWLUH SURFHVV RI JHQHUDWLQJ WKH
SURSHQVLW\ VFRUHV PDWFKLQJ DQG HYDOXDWLRQ HQWDLOV D VLQJOH VRXUFH RI XQFHUWDLQW\
QDPHO\ WKH IRUPLQJ RI PDWFKHG SDLUV 7KH ORJLVWLF RU DQRWKHU UHJUHVVLRQ XVHG
IRU JHQHUDWLQJ WKH SURSHQVLW\ VFRUHV ZRXOG EH DVVRFLDWHG ZLWK YDULDWLRQ if ZH
FRQVLGHUHG WKH IRFDO VHW RI XQLWV DQG WKHLU DVVLJQPHQW WR WUHDWPHQW DV D UHDOLVDWLRQ
RI D UDQGRP SURFHVV +RZHYHU RXU DQDO\VLV LV FRQGLWLRQHG RQ WKH WUHDWPHQW
DVVLJQPHQW DQG WKH XQLWV LQFOXGHG LQ WKH DQDO\VLV DQG VR HDFK SURSHQVLW\ VFRUH LV
ZLWKRXW DQ\ VDPSOLQJ YDULDWLRQ
:H HVWLPDWH WKH VDPSOLQJ YDULDWLRQ DVVRFLDWHG ZLWK PDWFKLQJ E\ VLPSO\
UHSOLFDWLQJ LW VHYHUDO WLPHV :KHQ ZH GR QRW ZDQW WR UHIHU WR D VFDOH IRU WKH
RXWFRPHV ZH HYDOXDWH WKH YDULDQFHV RI WKH FRXQWV RI SRVLWLYH DQG QHJDWLYH ZLWKLQ
SDLU FRQWUDVWV DQG PDNH LQIHUHQFHV DERXW WKH H[SHFWDWLRQ RI WKH DYHUDJH FRQWUDVWV
(¨y
5. Application
:H LPSOHPHQWHG WKH PDWFKHG SDLUV DQDO\VLV DQG DVVRFLDWHG GLDJQRVWLFV LQ
D FXVWRPLVHG VHW RI 5 IXQFWLRQV ,Q WKH ILUVW VWHS ZH ILW D ORJLVWLF UHJUHVVLRQ RI WKH
WUHDWPHQW LQGLFDWRU RQ DOO WKH FRYDULDWHV 7KH UHJUHVVLRQ SDUDPHWHU HVWLPDWHV RU
WKH TXDOLW\ RI WKH ILW DUH RI QR LQWHUHVW EHFDXVH WKH VROH SXUSRVH RI WKH ILW LV WR IRUP
PDWFKHG SDLUV EDVHG RQ WKH HVWLPDWHG SURSHQVLWLHV :H KDYH D ORW RI REVHUYDWLRQV
VR ZH DUH FRQFHUQHG SULQFLSDOO\ DERXW ELDV UHVXOWLQJ IURP SRRU PDWFKLQJ
7KDW LV ZK\ ZH SUHIHU WR HUU RQ WKH VLGH RI VSHFLI\LQJ D ULFKHU SURSHQVLW\ PRGHO
OLWWOH HIILFLHQF\ LV ORVW E\ LQFOXGLQJ LQ WKH PRGHO D IHZ UHGXQGDQW FRYDULDWHV 7KH
NH\ FULWHULRQ IRU WKH DSSURSULDWHQHVV RI WKH PRGHO LV WKDW WKH SDLUV PDWFKHG RQ
SURSHQVLWLHV DUH DOVR EDODQFHG ZLWK UHVSHFW WR WKHLU GLVWULEXWLRQV RI WKH
EDFNJURXQG YDULDEOHV
264
N. T. Longford, I. C. Salagean: The effect of unemployment …
7KH SURSHQVLW\ PRGHO ZLWK WKH RULJLQDO YDULDEOHV LQYROYLQJ SDUDPHWHUV
RI WKHP UHODWHG WR WKH KLVWRU\ RI WKH UHIHUHQFH VSHOO WXUQHG RXW WR EH
XQVDWLVIDFWRU\ EHFDXVH WKH SDLUV IRUPHG ZHUH SRRUO\ PDWFKHG RQ WKH GLVSHUVLRQV
RI VHYHUDO FRQWLQXRXV YDULDEOHV :H VXSSOHPHQWHG WKH PRGHO ZLWK WKH FRYDULDWHV
OLVWHG DW WKH ERWWRP RI 7DEOH LQYROYLQJ IXUWKHU SDUDPHWHUV 7KH
WUDQVIRUPDWLRQV DQG LQWHUDFWLRQV ZHUH LGHQWLILHG SULQFLSDOO\ E\ WULDO DQG HUURU
1RWH WKDW WKH DGGLWLRQ RI D FRYDULDWH WR WKH PRGHO GRHV QRW DOZD\V UHVXOW LQ DQ
LPSURYHG EDODQFH RI WKH RWKHU YDULDEOHV DQG PD\ HYHQ EH GHWULPHQWDO WR WKH
EDODQFH RI VRPH RI WKHP
7KHUH DUH XQLWV ZLWKRXW EHQHILWV XQWUHDWHG DQG WUHDWHG XQLWV
7KH GLVWULEXWLRQ RI WKH ILWWHG SURSHQVLWLHV ‫݌‬Ƹ ZLWKLQ WKH WUHDWPHQW JURXSV LV
GLVSOD\HG LQ )LJXUH 7KH GLDJUDP VKRZV WKDW D ORW RI XQWUHDWHG XQLWV KDYH YHU\
VPDOO SURSHQVLWLHV 2QO\ D VPDOO IUDFWLRQ RI WKHP ZLOO EH XVHG LQ PDWFKHV ZLWK WKH
IDU IHZHU WUHDWHG XQLWV WKDW KDYH VLPLODU YDOXHV RI WKH ILWWHG SURSHQVLW\ 0RVW
WUHDWHG XQLWV ZLWK ‫݌‬Ƹ LQ WKH UDQJH ± ZLOO EH PDWFKHG EHFDXVH WKHUH DUH
VXIILFLHQWO\ PDQ\ XQWUHDWHG XQLWV ZLWKLQ HYHU\ QDUURZ UDQJH RI SURSHQVLWLHV WKH
ZLGWK RI D EDU LQ WKH KLVWRJUDP )RU WUHDWHG XQLWV
Figure 2. 7KH ILWWHG SURSHQVLWLHV IRU WKH WZR WUHDWPHQW JURXSV 7KH YHUWLFDO GDVKHV PDUN
WKH GHFLOHV RI WKH ZLWKLQJURXS GLVWULEXWLRQV
ZLWK ‫݌‬Ƹ ! D VXEVWDQWLDO SHUFHQWDJH RI WUHDWHG XQLWV ZLOO QRW EH PDWFKHG
EHFDXVH WKH\ DUH LQ D PDMRULW\
:H PDWFK RQ WKH ILWWHG SURSHQVLW\ DQG WKH VWDUW PRQWK RI WKH UHIHUHQFH VSHOO
7KH SURSHQVLWLHV DUH VSOLW E\ WKHLU GHFLOHV LQWR WHQ JURXSV ZLWK DSSUR[LPDWHO\
HTXDO QXPEHUV RI XQLWV LQ HDFK (DFK RI WKHVH JURXSV LV WKHQ VSOLW LQWR VXEJURXSV
STATISTICS IN TRANSITION-new series, Summer 2013
265
DFFRUGLQJ WR WKH VWDUW RI WKH 8 VSHOO 7KHUH DUH GLVWLQFW PRQWKV ± 2I
WKH FRPELQDWLRQV RI SURSHQVLW\ JURXS DQG PRQWK JURXSV FRQWDLQ QR
PDWFK RQH RU ERWK WUHDWPHQW JURXSV DUH QRW UHSUHVHQWHG LQ LW JURXSV KDYH
RQH PDWFKHG SDLU HDFK JURXSV KDYH WZR SDLUV DQG WKH ODUJHVW QXPEHUV RI SDLUV
PDWFKHG LQ D JURXS DUH DQG LQ RQH LQVWDQFH HDFK ,Q WRWDO PDWFKHG
SDLUV KDYH EHHQ IRUPHG WKH\ FRQWDLQ RI WKH WUHDWHG XQLWV
7KH VHW RI PDWFKHG SDLUV LV VDWLVIDFWRU\ LI WKH\ DUH FORVH WR EDODQFH DV WKH\
ZRXOG EH LQ DQ H[SHULPHQW ZLWK UDQGRP WUHDWPHQW DVVLJQPHQW 7KH OHIWKDQG
SDQHO RI )LJXUH GLVSOD\V WKH FRQWUDVWV RI WKH PHDQV RI WKH FRQWLQXRXV YDULDEOHV
IRU WKH WZR WUHDWPHQW JURXSV $ KRUL]RQWDO VHJPHQW LV GUDZQ IRU HDFK YDULDEOH
EHWZHHQ WKH FRQWUDVW IRU WKH XQPDWFKHG RULJLQDO JURXSV DQG LWV QHJDWLYH 7KH
YDOXH RI WKH FRQWUDVW LV PDUNHG E\ D YHUWLFDO WLFN 7KH FRQWUDVW IRU WKH PDWFKHG
SDLUV ZLWK WKH RULJLQDO PRGHO LV PDUNHG E\ D JUD\ GLVF DQG WKH FRQWUDVW IRU WKH
H[WHQGHG PRGHO E\ D VPDOOHU EODFN GLVF 7KH
Figure 3. &KHFN RQ WKH EDODQFH RI WKH FRQWLQXRXV FRYDULDWHV IRU WKH PDWFKHG
SDLUV
JUD\ GLVFV DUH GUDZQ RQO\ IRU WKH ILYH YDULDEOHV LQ WKH RULJLQDO PRGHO 2ZLQJ WR
EORFNLQJ WKH EDODQFH IRU start LV SHUIHFW E\ GHVLJQ 1RWH WKDW ZH EURNH VRPH UXOHV
RI LQYDULDQFH VXFK DV QRW LQFOXGLQJ ERWK YDULDEOHV GHILQHG E\ WKH LQWHUDFWLRQ RI
DJH DQG WKH WKUHH FDWHJRULHV RI HGXFDWLRQ ,I ZH IROORZHG WKH UXOHV D VOLJKWO\
ZRUVH EDODQFH ZRXOG EH REWDLQHG
7KH PDWFKHG SDLUV VKRXOG EH EDODQFHG QRW RQO\ LQ WKH ZLWKLQJURXS PHDQV EXW
LQ WKH ZLWKLQJURXS GLVWULEXWLRQV LQ JHQHUDO 7KH ULJKWKDQG SORW GLVSOD\V WKH
UDWLRV RI WKH VWDQGDUG GHYLDWLRQV RI WKH FRQWLQXRXV FRYDULDWHV IRU WKH XQPDWFKHG
DQG PDWFKHG JURXSV 7KH KRUL]RQWDO VHJPHQWV DUH GUDZQ EHWZHHQ s DQG s ZKHUH
s LV WKH UDWLR IRU WKH XQPDWFKHG JURXSV 7KH UDWLRV IRU WKH PDWFKHG JURXSV DUH
PDUNHG E\ JUD\ DQG EODFN GLVFV IRU WKH RULJLQDO DQG H[WHQGHG SURSHQVLW\ PRGHOV
266
N. T. Longford, I. C. Salagean: The effect of unemployment …
UHVSHFWLYHO\ 7KH KRUL]RQWDO D[LV LV RQ WKH ORJVFDOH 7KH UDWLRV IRU WKH PDWFKHG
JURXSV GHYLDWH IURP WKH LGHDO RI RQO\ VOLJKWO\ DQG WKH H[WHQGHG PRGHO \LHOGV D
EHWWHU EDODQFH IRU DOO IRXU RULJLQDO YDULDEOHV H[FHSW IRU start IRU ZKLFK WKH
EDODQFH LV SHUIHFW E\ GHVLJQ 7KH EDODQFH LV QHDUO\ SHUIHFW IRU WKH VL[ DGGHG
YDULDEOHV
)LJXUH SUHVHQWV WKH FRUUHVSRQGLQJ SORW IRU WKH FRQWUDVWV RI WKH FDWHJRULFDO
YDULDEOHV $ YDULDEOH ZLWK C FDWHJRULHV LV UHSUHVHQWHG E\ C í KRUL]RQWDO
VHJPHQWV FRQQHFWLQJ WKH XQPDWFKHG EDODQFHV ZLWK WKHLU QHJDWLYHV 7KH EODFN DQG
JUD\ GLVFV PDUN WKH PDWFKHG EDODQFHV EDVHG RQ WKH RULJLQDO DQG H[WHQGHG
SURSHQVLW\ PRGHOV 7KH PDWFKHG EDODQFHV DUH XQLIRUPO\ FORVHU WR ]HUR IRU ERWK
WKH RULJLQDO
Figure 4. &KHFN RQ WKH EDODQFH RI WKH FDWHJRULFDO FRYDULDWHV IRU WKH PDWFKHG SDLUV
PRGHO DQG IRU WKH PRGHO ZLWK IRXU DGGLWLRQDO YDULDEOHV DGGLWLRQDO SDUDPHWHUV
GLVSOD\HG DW WKH ERWWRP RI WKH GLDJUDP
+DYLQJ DFFHSWHG WKH PDWFK DV VDWLVIDFWRU\ WKH UHPDLQGHU RI WKH DQDO\VLV
HQWDLOV FRPSDULQJ WKH QXPEHUV RI ZLQQHUV DQG ORVHUV LQ WKH ZLWKLQSDLU FRQWHVWV
:H VFRUH WKH IXWXUH RI HDFK XQLW DV D VXFFHVV ZKHQ LW FRQWDLQV D PRQWK
RU ORQJHU VSHOO RI ( DQG DV D IDLOXUH RWKHUZLVH ,Q D PDWFKHG SDLU WKH WUHDWHG
STATISTICS IN TRANSITION-new series, Summer 2013
267
XQLW LV D ZLQQHU LI LW LV D VXFFHVV DQG WKH XQWUHDWHG XQLW LV D IDLOXUH 7KH WUHDWHG XQLW
LV D ORVHU LI LW LV D IDLOXUH DQG WKH XQWUHDWHG XQLW LV D VXFFHVV 7KH UHVXOW LV D WLH LI
WKH RXWFRPH LV WKH VDPH IRU ERWK XQLWV LQ WKH SDLU VXFFHVVHV RU IDLOXUHV
:LWK WKHVH UXOHV IRU VFRULQJ WKH WUHDWHG XQLW LV D ZLQQHU LQ SDLUV DQG
D ORVHU LQ SDLUV DQG SDLUV DUH WLHG 7KXV WKH HVWLPDWH RI WKH WUHDWPHQW
HIIHFW LV QHJDWLYH ZLWK D EDODQFH RI XQLWV LQ IDYRXU RI WKH XQWUHDWHG JURXS
6RPH RI WKH WLHV FDQ EH UHVROYHG LI ZH FRPSDUH WKH OHQJWKV RI WKH ORQJHVW VSHOO
ZLWKLQ WKH SDLUV WKDW DUH VXFFHVVHV 7KHQ WKH WUHDWHG JURXS KDV ORVHUV ZLQQHUV DQG WKHUH DUH WLHV 7KH EDODQFH LV LQFUHDVHG VXEVWDQWLDOO\ ,I ZH
FRPSDUH WKH OHQJWKV RI WKH ORQJHVW VSHOOV ZLWKRXW WKH TXDOLILFDWLRQ RI L PRQWKV WKH WUHDWHG JURXS KDV ORVHUV ZLQQHUV SRVLWLYH EDODQFH RI XQLWV DQG WKHUH DUH RQO\ WLHV WKH WUHDWHG JURXS ZRXOG KDYH PRUH ORVHUV HYHQ LI DOO WKH WLHV ZHUH FRQFHGHG WR WKH XQWUHDWHG JURXS
:H FDQ FRPSHQVDWH IRU WKH IDLOXUH WR PDWFK VRPH WUHDWHG XQLWV E\ ZHLJKWLQJ
WKH ZLWKLQSDLU FRQWUDVWV ,I LQ PDWFKLQJ JURXS h WKHUH DUH PRUH WUHDWHG XQLWV WKDQ
XQWUHDWHG ݊ଵ௛ ! ݊଴௛ ZH DSSO\ ZHLJKWV ‫ݎ‬௛
݊ଵ௛ ݊଴௛ WR HDFK ZLWKLQSDLU
FRQWUDVW IRUPHG LQ WKLV JURXS 2WKHUZLVH ZKHQ DOO WUHDWHG XQLWV DUH PDWFKHG WKH
ZHLJKW ‫ݎ‬௛ LV VHW WR XQLW\ :KHQ DQ ( VSHOO RI DW OHDVW PRQWKV LQ WKH IXWXUH LV
UHJDUGHG DV D VXFFHVV WKH WUHDWHG JURXS KDV VFRUH DQG WKH XQWUHDWHG JURXS
DQG WKH WLHV DFFRXQW IRU SRLQWV 7KH WRWDO RI WKHVH WKUHH VFRUHV LV
,W FRLQFLGHV ZLWK WKH QXPEHU RI WUHDWHG XQLWV LQ WKH XQPDWFKHG VDPSOH
EHFDXVH WKHUH KDSSHQ WR EH QR PDWFKLQJ JURXSV LQ ZKLFK DOO WKH XQLWV DUH WUHDWHG
)RU VXFK D JURXS ZLWK ݊଴௛ WKH ZHLJKW ‫ݎ‬௛ ZRXOG QRW EH GHILQHG 7KH EDODQFH
í LV PXFK JUHDWHU WKDQ LWV FRXQWHUSDUW ZLWKRXW ZHLJKWV
+RZHYHU WKH VDPSOLQJ YDULDWLRQ RI WKH EDODQFH LV LQFUHDVHG EHFDXVH VRPH
ZLWKLQSDLU FRQWUDVWV KDYH ODUJH ZHLJKWV 7KH ODUJHVW ZHLJKWV DUH IRU IRXU
SDLUV DQG IRU QLQH SDLUV HDFK DQG IXUWKHU SDLUV KDYH ZHLJKWV JUHDWHU WKDQ
,Q WRWDO SDLUV KDYH ZHLJKWV JUHDWHU WKDQ XQLW\ RI WKHP DUH
VPDOOHU WKDQ :HLJKWV JUHDWHU WKDQ XQLW\ DUH IRU SDLUV IURP PDWFKLQJ JURXSV LQ
ZKLFK WUHDWHG XQLWV KDYH D PDMRULW\ )RU WKH RWKHU WZR RXWFRPH YDULDEOHV WKDW
VFRUH WKH IXWXUH RI WKH UHIHUHQFH VSHOO WKH WUHDWHG JURXS KDV IDU IHZHU ZLQQHUV
WKDQ ORVHUV DQG WKH EDODQFH LV PXFK JUHDWHU WKDQ LQ WKH DQDO\VLV ZLWKRXW ZHLJKWV
7KH UHVXOWV DUH VXPPDUL]HG LQ 7DEOH 7KH URZV DUH IRU WKH DQDO\VHV LQ ZKLFK
RQO\ ( VSHOOV RI RQH \HDU RU ORQJHU FRXQW DV VXFFHVVHV DQDO\VLV $ RQO\ VXFK
VSHOOV FRXQW EXW WZR VXFK VSHOOV DUH FRPSDUHG E\ WKHLU OHQJWKV DQDO\VLV % DQG
ZKHQ WKH ORQJHVW ( VSHOO RI WKH IXWXUH FRXQWV HYHQ LI VKRUWHU WKDQ RQH \HDU DQG
WKHVH PD[LPD DUH FRPSDUHG E\ WKHLU OHQJWKV DQG UHFHQF\ DQDO\VLV &
%\ FRPSDULQJ WKH WZR WUHDWPHQW JURXSV ZLWKRXW PDWFKLQJ ZH REWDLQ WKH
IROORZLQJ UHVXOWV ,Q DQDO\VLV $ RI WKH WUHDWHG XQLWV KDYH DQ ( VSHOO RI
OHQJWK RU ORQJHU LQ WKHLU IXWXUHV FRPSDUHG WR RI WKH XQWUHDWHG ,Q
DQDO\VLV % WKH PHDQ VFRUHV RI WKH WUHDWHG DQG XQWUHDWHG JURXSV DUH DQG UHVSHFWLYHO\ ,Q DQDO\VLV & WKH WUHDWHG JURXS KDV PHDQ PRQWKV DQG WKH
XQWUHDWHG
268
N. T. Longford, I. C. Salagean: The effect of unemployment …
Table 2. 0DWFKHGSDLUV DQDO\VLV RI WKH HPSOR\PHQW IXWXUHV
1R ZHLJKWV
:HLJKWV
:LQQHUV
7LHV
/RVHUV
:LQQHUV
7LHV
$ ( VSHOO OHQJWK • PRQWKV
% ( VSHOO OHQJWK • PRQWKV & /RQJHU ( VSHOO HDUOLHU
/RVHUV
Figure 5. 6XPPDU\ RI D VHW RI UHSOLFDWHV RI WKH DQDO\VHV LQ 7DEOH 7KXV WKH PDWFKHGSDLUV DQDO\VLV LV LQ DJUHHPHQW ZLWK WKH µUDZ¶ FRPSDULVRQ
IRU DOO WKUHH RXWFRPH YDULDEOHV
7KH VDPSOLQJ YDULDQFH RI WKH EDODQFHV LV HVWLPDWHG E\ UHSOLFDWLQJ WKH
PDWFKLQJ SURFHVV $ VHW RI UHSOLFDWLRQV LV VXPPDULVHG LQ )LJXUH 7KH SDQHOV
$ ± & FRUUHVSRQG WR WKH URZV RI 7DEOH 7KH UHSOLFDWH FRXQWV RI ZLQQHUV DQG
ORVHUV DUH PDUNHG E\ WKLQ KRUL]RQWDO VHJPHQWV EODFN IRU XQZHLJKWHG DQG JUD\ IRU
ZHLJKWHG DQDO\VLV 7KHLU PHDQV DUH PDUNHG E\ KRUL]RQWDO GDVKHV DQG WKH EDODQFHV
DUH LQGLFDWHG E\ YHUWLFDO VHJPHQWV ZLWK WKHLU YDOXHV SULQWHG WR WKH OHIW DQG
VWDQGDUG HUURUV WR WKH ULJKW LQ SDUHQWKHVHV
,I WKH HVWLPDWHV RI WKH EDODQFH DQG WKHLU VWDQGDUG HUURUV DUH WDNHQ DW IDFH
YDOXH WKHUH LV YHU\ VWURQJ HYLGHQFH RI QHJDWLYH EDODQFH IRU DOO WKUHH RXWFRPH
YDULDEOHV ± EHQHILWV DUH DVVRFLDWHG ZLWK OHVV GHVLUDEOH RXWFRPHV RI UHIHUHQFH VSHOOV
STATISTICS IN TRANSITION-new series, Summer 2013
269
( VSHOOV LI DQ\ WKDW DUH VKRUWHU DQG DFKLHYHG ODWHU 7KH FKHFNV RQ WKH EDODQFH
RI WKH FRYDULDWHV LQ )LJXUHV DQG DUH QRW D FRPSOHWH GLDJQRVWLF EHFDXVH WKH\
FDQQRW LQGLFDWH WKDW VRPH LPSRUWDQW FRYDULDWHV KDYH EHHQ RPLWWHG QRW UHFRUGHG
:H FDQ RQO\ DUJXH WKDW WKH OLVW LQ 7DEOH LV TXLWH H[KDXVWLYH
$V DQRWKHU OLPLWDWLRQ ZH KLJKOLJKW D SUREOHP LQ WKH GHILQLWLRQ RI WKH
RXWFRPHV LQ DQDO\VLV & DQG SDUWO\ DOVR LQ % 6XSSRVH ERWK XQLWV LQ D SDLU KDYH
RXWFRPH L EXW RQH XQLW LV WKH ZLQQHU EHFDXVH KLV RU KHU ( VSHOO RI OHQJWK L ZDV
UHDOLVHG HDUOLHU 6XSSRVH IXUWKHU WKDW WKH TXDOLI\LQJ ( VSHOO RI WKH ORVLQJ XQLW
HQGHG DW WKH HQG RI WKH UHFRUGHG IXWXUH ,W LV WKHUHIRUH OLNHO\ WKDW WKH ORVLQJ XQLW
ZRXOG KDYH KDG D VXSHULRU RXWFRPH ORQJHU ( VSHOO RI PD[LPXP OHQJWK KDG ZH
KDG ORQJHU UHFRUGHG IXWXUH ,I WKH ORVLQJ XQLW KDG VKRUWHU PD[LPXP ( VSHOO WKDQ
WKH ZLQQHU EXW WKLV VSHOO ZHUH DW WKH HQG RI WKH UHFRUGHG IXWXUH WKHUH LV VWLOO
D OLNHOLKRRG DOEHLW VPDOOHU WKDW WKH ORVLQJ XQLW ZRXOG KDYH KDG D VXSHULRU
RXWFRPH LI WKH UHFRUGV RI WKH IXWXUH ZHUH ORQJHU
:H UHIHU WR VXFK FDVHV DV DPELJXLWLHV )RUPDOO\ D PDWFKHG SDLU LV VDLG WR
KDYH DQ DPELJXLW\ RI RUGHU M LI WKH GLIIHUHQFH RI WKHLU RXWFRPHV LV M
DQG WKH ORVHU¶V TXDOLI\LQJ ( VSHOO LV DW WKH HQG RI WKH UHFRUGHG IXWXUH ,Q WKH UHSOLFDWLRQV WKH QXPEHUV RI VXFK DPELJXLWLHV DUH LQ WKH UDQJH ± ZLWK
PHDQ 7KH QXPEHUV RI DPELJXLWLHV RI RUGHU UDQJH IURP WR RI RUGHU
IURP WR DQG WKH\ GHFOLQH UDSLGO\ ZLWK WKH RUGHU )RU H[DPSOH WKH\ UDQJH
IURP WR IRU RUGHU $OVR WKH OLNHOLKRRG WKDW WKH ORVHU ZRXOG KDYH D VXSHULRU
RXWFRPH LI ZH KDG H[WHQGHG UHFRUGV IXWXUHV GLPLQLVKHV ZLWK WKH RUGHU 7KH
QXPEHUV RI DPELJXLWLHV DUH GLVWULEXWHG HYHQO\ EHWZHHQ WUHDWHG DQG XQWUHDWHG
XQLWV
:H FDQ LQFRUSRUDWH WKH DPELJXLWLHV LQ D VHQVLWLYLW\ DQDO\VLV E\ UHFODVVLI\LQJ
HYHU\ WUHDWHG ORVHU LQ D SDLU ZLWK DPELJXLW\ DV WKH ZLQQHU DQG WKH XQWUHDWHG
ZLQQHU DV WKH ORVHU 6XFK DQ DQDO\VLV FDQ EH UHILQHG E\ DOORZLQJ D UHDOLVWLF
SHUFHQWDJH RI ORVHUV WR UHPDLQ ORVHUV EXW WKLV LV QRW QHFHVVDU\ LQ RXU FDVH (YHQ LI
HYHU\ DPELJXLW\ LQ WKH WUHDWHG JURXS LV UHFODVVLILHG WKH EDODQFH LV UHGXFHG E\
DSSUR[LPDWHO\ WKH QXPEHU RI DPELJXLWLHV LQ WKH XQZHLJKWHG DQDO\VLV & 7KLV
ZRXOG QRW DOWHU WKH FRQFOXVLRQ WKDW WKH WUHDWHG XQLWV KDYH IHZHU ZLQQHUV )RU WKH
ZHLJKWHG DQDO\VLV WKH DPELJXLWLHV VKRXOG EH FRXQWHG ZLWK ZHLJKWV WKH VDPH
FRQFOXVLRQ LV DUULYHG DW
2WKHU DQDO\VHV DUH LQ DFFRUG ZLWK WKH UHVXOWV UHODWHG WR WKH ORQJHVW ( VSHOO )RU
H[DPSOH WKH PHDQ OHQJWKV RI WKH UHIHUHQFH VSHOOV DUH PRQWKV LQ WKH WUHDWHG
JURXS DQG LQ WKH XQWUHDWHG ,Q WKH PDWFKHGSDLUV DQDO\VLV WKLV GLIIHUHQFH LV
UHGXFHG RQO\ VOLJKWO\ WKH UHVSHFWLYH PHDQV DUH DQG PRQWKV 7KH FRXQWV
RI ZLQQHUV DQG ORVHUV DUH LQ DFFRUG ZLWK WKLV UHVXOW WKH WUHDWHG JURXS KDV ZLQQHUV DQG ORVHUV ZLWK WLHV 6RPH FDXWLRQ LV FDOOHG IRU LQ LQWHUSUHWLQJ
WKLV DQDO\VLV EHFDXVH DGPLQLVWUDWLYH SURFHGXUHV PD\ EH GHOD\HG DQG LQ FDVH RI
VKRUW UHIHUHQFH VSHOOV LQ SDUWLFXODU WKH DZDUG RI DQ XQHPSOR\PHQW EHQHILW PD\ EH
OLQNHG ZLWK DQ LQFRUUHFW 8 VSHOO +RZHYHU ZH FDQQRW FRQGLWLRQ WKH DQDO\VLV RQ
WKH OHQJWK RI WKH UHIHUHQFH VSHOO EHFDXVH LW LV DQ RXWFRPH RI WKH WUHDWPHQW
270
N. T. Longford, I. C. Salagean: The effect of unemployment …
6. Conclusion
:H DSSOLHG WKH SRWHQWLDO RXWFRPHV IUDPHZRUN WR HVWLPDWH WKH HIIHFW RI
DZDUGLQJ XQHPSOR\PHQW EHQHILWV RQ WKH UHVROXWLRQ RI WKH XQHPSOR\PHQW VSHOO
2XU FRQFOXVLRQV DUH XQHTXLYRFDOO\ QHJDWLYH DERXW WKH EHQHILW (YHQ DIWHU GHWDLOHG
PDWFKLQJ RQ DQ H[KDXVWLYH OLVW RI EDFNJURXQG YDULDEOHV WKH RXWFRPHV DUH IDU
VXSHULRU RQ DYHUDJH IRU WKRVH QRW DZDUGHG EHQHILWV ERWK LQ WHUPV RI WKH OHQJWK RI
WKH ORQJHVW ( VSHOO LQ WKH UHFRUGHG IXWXUH DQG WKH VSHHG RI DFKLHYLQJ LW
8QHPSOR\PHQW VSHOOV DVVRFLDWHG ZLWK EHQHILWV WHQG WR EH ORQJHU HYHQ DIWHU
PDWFKLQJ RQ EDFNJURXQG
7KH SULQFLSDO PRGHOOLQJ HIIRUW LV LQ WKH SURSHQVLW\ DQDO\VLV ZKLFK GRHV QRW
LQYROYH WKH RXWFRPH YDULDEOH 7KHUHIRUH PRGHO VHOHFWLRQ GRHV QRW LQWURGXFH DQ\
ELDV &RQFHUQV WKDW RQH PLJKW KDYH DERXW WKH GLVWULEXWLRQ RI WKH RXWFRPH GR QRW
DULVH LQ RXU DSSURDFK WKH RXWFRPH LV GHILQHG RQ D VFDOH WKDW EHVW UHIOHFWV RXU
SXUSRVH ZLWK QR UHJDUG IRU WKH GLVWULEXWLRQ RI WKH YDOXHV :H DYRLGHG GHILQLQJ D
VFDOH DOWRJHWKHU DQG EDVHG WKH DQDO\VLV RQ WKH ZLWKLQSDLU FRPSDULVRQV 2QH
PLJKW DUJXH WKDW VRPH HIILFLHQF\ LV ORVW LQ WKH SURFHVV +RZHYHU WKH VDPSOH VL]H
LQ WKH DQDO\VLV LV VR ODUJH WKDW YDULDQFH UHGXFWLRQ LV RI VHFRQGDU\ LPSRUWDQFH WR
FRPEDWWLQJ DOO SRVVLEOH VRXUFHV RI ELDV DPRQJ ZKLFK VHOHFWLRQ ELDV QRQ
LJQRUDEOH DVVLJQPHQW WR WKH WUHDWPHQW JURXSV SUHVHQWV WKH JUHDWHVW WKUHDW 7KLV
FDQ EH LQWHUSUHWHG DV LQVLVWLQJ RQ D KLJKHU VWDQGDUG IRU FRPSDULQJ OLNH ZLWK OLNH
7KH DJUHHPHQW RI WKH UHVXOWV RI UDZ FRPSDULVRQV ZLWK PDWFKHGSDLUV DQDO\VLV
LV QR OLFHQFH WR DSSO\ WKH VLPSOH PHWKRG 7KH µUDZ¶ FRPSDULVRQV KDYH QR
FUHGLELOLW\ IRU DQ\ FDXVDO DQDO\VLV DQG WKH DJUHHPHQW RI WKHLU UHVXOWV LQ RXU
DQDO\VHV LV QR LQGLFDWLRQ WKDW VXFK DQ DJUHHPHQW PD\ DULVH LQ D VLPLODU FRQWH[W
:H VWXGLHG WKH HIIHFW RI XQHPSOR\PHQW EHQHILWV $ PRUH GHWDLOHG DQG
DUJXDEO\ PRUH UHOHYDQW LVVXH LV WKH HIIHFW RI D FKDQJH LQ WKH UXOHV IRU DZDUGLQJ
EHQHILWV 6XFK D VWXG\ LV IHDVLEOH RQO\ LI WKH SODQQHG RU FRQWHPSODWHG FKDQJHV DUH
LPSOHPHQWHG HLWKHU E\ DQ H[SHULPHQW RU DGPLQLVWUDWLYHO\ VHH &DUG DQG /HYLQH
&DUOLQJ +ROPOXQG DQG 9HMVLX DQG /DOLYH YDQ 2XUV DQG
=ZHLPXŽOOHU IRU H[DPSOHV
REFERENCES
$%$',( $ ,0%(16 * /DUJH VDPSOH SURSHUWLHV RI PDWFKLQJ
HVWLPDWRUV IRU DYHUDJH WUHDWPHQW HIIHFWV Econometrica ±
&$5' ' /(9,1( 3 % ([WHQGHG EHQHILWV DQG WKH GXUDWLRQ RI 8,
VSHOOV HYLGHQFH IURP WKH 1HZ -HUVH\ H[WHQGHG EHQHILW SURJUDP Journal of
Public Economics ±
STATISTICS IN TRANSITION-new series, Summer 2013
271
&$5/,1* . +2/0/81' % 9(-6,8 $ 'R EHQHILW FXWV ERRVW MRE
ILQGLQJ" 6ZHGLVK HYLGHQFH IURP WKH V Economic Journal ±
&5803 5. +27= 9 - ,0%(16 * : 0,71,. 2 $ 'HDOLQJ
ZLWK OLPLWHG RYHUODS LQ HVWLPDWLRQ RI DYHUDJH WUHDWPHQW HIIHFWV Biometrika ±
+,5$12 . ,0%(16 * 5,''(5 * (IILFLHQW HVWLPDWLRQ RI DYHUDJH
WUHDWPHQW HIIHFWV XVLQJ WKH HVWLPDWHG SURSHQVLW\ VFRUH Econometrica ±
+2//$1' 3 : 6WDWLVWLFV DQG FDXVDO LQIHUHQFH Journal of the
American Statistical Association ±
+817 - 7KH HIIHFW RI XQHPSOR\PHQW FRPSHQVDWLRQ RQ XQHPSOR\PHQW
GXUDWLRQ LQ *HUPDQ\ Journal of Labor Economics ±
/$/,9( 5 =:(,0h//(5 - %HQHILW HQWLWOHPHQW DQG XQHPSOR\PHQW
GXUDWLRQ 7KH UROH RI SROLF\ HQGRJHQHLW\ Journal of Public Economics ±
/$/,9( 5 9$1 2856 - =:(,0h//(5 - +RZ FKDQJHV LQ
ILQDQFLDO LQFHQWLYHV DIIHFW WKH GXUDWLRQ RI XQHPSOR\PHQW Review of Economic
Studies ±
/(&+1(5 0 6RPH SUDFWLFDO LVVXHV LQ WKH HYDOXDWLRQ RI KHWHURJHQHRXV
ODERXU PDUNHW SURJUDPPHV E\ PDWFKLQJ PHWKRGV Journal of the Royal
Statistical Society 6HULHV $ ±
/21*)25' 1 7 1,&2'(02 & 1Òf(= 0 1Òf(= ( :HOO
EHLQJ DQG REHVLW\ RI UKHXPDWRLG DUWKULWLV SDWLHQWV Health Services and
Outcomes Research Methodology ±
52(' . =+$1* 7 'RHV XQHPSOR\PHQW FRPSHQVDWLRQ DIIHFW
XQHPSOR\PHQW GXUDWLRQ" Economic Journal ±
526(1%$80 3 5 Observational Studies QG HG 6SULQJHU9HUODJ
1HZ <RUN
526(1%$80 3 5 58%,1 ' % 2Q WKH FHQWUDO UROH RI WKH
SURSHQVLW\ VFRUH LQ PDWFKLQJ Biometrika ±
58%,1 ' % (VWLPDWLQJ FDXVDO HIIHFWV RI WUHDWPHQWV LQ UDQGRPL]HG DQG
QRQUDQGRPL]HG VWXGLHV Journal of Educational Psychology ±
58%,1 ' % Multiple Imputation for Nonresponse in Surveys :LOH\
DQG 6RQV 1HZ <RUN
58%,1 ' % 0DWFKHG 6DPSOLQJ IRU &DXVDO (IIHFWV :LOH\ DQG 6RQV
1HZ <RUN
272
N. T. Longford, I. C. Salagean: The effect of unemployment …
58%,1 ' % 7+20$6 1 0DWFKLQJ XVLQJ HVWLPDWHG SURSHQVLW\
VFRUHV 5HODWLQJ WKHRU\ WR SUDFWLFH Biometrics ±
886,7$/2 5 9(5+2 - 7KH HIIHFW RI XQHPSOR\PHQW EHQHILWV RQ UH
HPSOR\PHQW UDWHV (YLGHQFH IURP WKH )LQQLVK XQHPSOR\PHQW LQVXUDQFH
UHIRUP Labour Economics ±
APPENDIX
Definitions of the labour force states
7KH ODERXU IRUFH VWDWXV RI D UHVLGHQW RI /X[HPERXUJ LV HVWDEOLVKHG DW WKH HQG
RI HDFK PRQWK E\ WKH IROORZLQJ UXOHV
‡ HPSOR\HG ( ± DQ HQWU\ LQ ,*66 EXW QR HQWU\ LQ $'(0 LQ WKH PRQWK
‡ XQHPSOR\HG 8 ± DQ HQWU\ LQ $'(0 EXW QR HQWU\ LQ ,*66 LQ WKH PRQWK
‡ LQ WUDQVLWLRQ 7 ± HQWULHV LQ ERWK $'(0 DQG ,*66 LQ WKH PRQWK
‡ HFRQRPLFDOO\ LQDFWLYH , ± HQWU\ LQ QHLWKHU $'(0 QRU ,*66 LQ WKH
PRQWK EXW DQ HQWU\ LQ HLWKHU GDWDEDVH LQ DQ HDUOLHU PRQWK
‡ DEVHQW $ ± HQWU\ LQ QHLWKHU $'(0 QRU ,*66 LQ WKH PRQWK DQG QR
HQWU\ LQ HLWKHU RI WKHP DW DQ\ WLPH LQ WKH SDVW
7KH VWDWXV $ LV UHOHYDQW RQO\ WR SHUVRQV ZKR DSSHDU LQ D GDWDVHW LQ D ODWHU
PRQWK
STATISTICS IN TRANSITION-new series, Summer 2013
273
STATISTICS IN TRANSITION-new series, Summer 2013
Vol. 14, No. 2, pp. 273–286
HOUSEHOLDS’ SAVING MOBILITY IN POLAND
Barbara Liberda , 0DUHN 3ĊF]NRZVNL ABSTRACT
,Q WKLV SDSHU ZH H[DPLQH WKH PRELOLW\ RI 3ROLVK KRXVHKROGV ZLWK UHJDUG WR VDYLQJ
UDWHV GXULQJ WKH \HDUV DQG FRPSDUH LW ZLWK WKH KRXVHKROGV¶ VDYLQJ
PRELOLW\ GXULQJ WKH \HDUV 7KH DQDO\VLV IRU LV EDVHG RQ WKH
KRXVHKROG EXGJHW SDQHO GDWD IURP WKUHH SDQHOV RI 3ROLVK KRXVHKROGV
VHOHFWHG E\ DXWKRUV IRU WKH \HDUV DQG IURP WKH
+RXVHKROG %XGJHW 6XUYH\V :H XVH WKH 0DUNRY PRELOLW\ PDWUL[ DQG HVWLPDWH WKH
ORQJWHUP HUJRGLF GLVWULEXWLRQ RI KRXVHKROGV DFFRUGLQJ WR WKH VDYLQJ UDWHV 2XU
UHVXOWV VKRZ WKDW WKH ORQJWHUP KRXVHKROGV¶ GLVWULEXWLRQ UHYHDOV D WHQGHQF\
WRZDUGV SRODUL]DWLRQ RI KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV &RPSDULQJ WKH
UHVXOWV IRU ZLWK WKH DXWKRUV¶ SUHYLRXV UHVHDUFK RQ WKH KRXVHKROGV¶
VDYLQJ PRELOLW\ IRU D GHFDGH HDUOLHU GXULQJ ZH SURYH WKDW EHWZHHQ WKH
\HDUV DQG WKH ORQJWHUP FKDQJH LQ WKH GLVWULEXWLRQ RI
KRXVHKROGV ZDV DV\PPHWULFDO WRZDUG WKH KLJKHVW VDYLQJ UDWH JURXSV 7KLV KHOSV WR
H[SODLQ ZK\ 3ROLVK KRXVHKROGV FRXOG PDLQWDLQ SRVLWLYH DQG ULVLQJ VDYLQJV GXULQJ
WKH KLJKO\ XQFHUWDLQ SHULRG RI WKH ILQDQFLDO FULVLV LQ Key words KRXVHKROG VDYLQJ GLVWULEXWLRQ PRELOLW\ 0DUNRY PDWUL[
SRODUL]DWLRQ -(/ FODVVLILFDWLRQ ' '
1. Introduction
$FFRUGLQJ WR WKH VWDQGDUG WKHRU\ RI OLIH F\FOH DQG SHUPDQHQW LQFRPH
K\SRWKHVLV VDYLQJV DUH GHWHUPLQHG E\ WKH SHUVLVWHQFH DQG JURZWK RI LQFRPH DV
ZHOO DV E\ FRQVXPHUV¶ SHUFHSWLRQ RI LQFRPH XQFHUWDLQW\ &DPSEHOO &DUUROO
'HDWRQ 7KH H[SHFWDWLRQ RI DQ LQFRPH ULVH ZLOO ORZHU VDYLQJV
EXW WKH IHDU RI D FXW LQ IXWXUH LQFRPH PLJKW LQFUHDVH VDYLQJ UDWHV &RQVXPHUV ZLWK
JUHDWHU XQFHUWDLQW\ RI LQFRPH ZRXOG VDYH PRUH ,Q WKH WKHRUHWLFDO DQG HPSLULFDO
OLWHUDWXUH FRQFHUQLQJ KRXVHKROG LQFRPH DQG VDYLQJ WKHUH LV HYLGHQFH WKDW VDYLQJV
UHDFW PDLQO\ WR WKH H[SHFWHG FKDQJHV RI FXUUHQW LQFRPH 7KH LPSDFW RI
%DUEDUD /LEHUGD )DFXOW\ RI (FRQRPLF 6FLHQFHV 8QLYHUVLW\ RI :DUVDZ 'OXJD :DUVDZ 3RODQG (PDLO EDUEDUDOLEHUGD#XZHGXSO
0DUHN 3ĊF]NRZVNL )DFXOW\ RI (FRQRPLF 6FLHQFHV 8QLYHUVLW\ RI :DUVDZ 'OXJD :DUVDZ 3RODQG (PDLO PSHF]NRZVNL#ZQHXZHGXSO
274
B. Liberda, 0 3ĊF]NRZVNL: Households’ saving…
XQH[SHFWHG FKDQJHV RI FXUUHQW LQFRPH RQ VDYLQJ LV KLJKO\ XQSUHGLFWDEOH +DOO
)ODYLQ %D[WHU -HUPDQQ 3RWHUED 0RG\ et. al., ,Q HDUOLHU VWXGLHV RQ 3ROLVK KRXVHKROGV IRU WKH \HDUV LW ZDV IRXQG
WKDW WKH XQFHUWDLQW\ RI SHUPDQHQW DQG WUDQVLWRU\ LQFRPH LQ 3RODQG LV VLPLODU WR WKH
LQFRPH XQFHUWDLQW\ LQ PRVW RI (XURSHDQ FRXQWULHV DQG WKH YDULDQFH RI SHUPDQHQW
LQFRPH LV JHQHUDOO\ ORZHU WKDQ WKH WUDQVLWRU\ LQFRPH YDULDQFH $V WKH GLIIHUHQFH
EHWZHHQ XQFHUWDLQW\ RI SHUPDQHQW DQG WUDQVLWRU\ LQFRPH LQ 3RODQG LV VPDOO WKH
VKRFNV WR ERWK SHUPDQHQW DQG WUDQVLWRU\ LQFRPH DIIHFW VDYLQJ SRVLWLYHO\ 7KH
GLVWULEXWLRQ RI KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV ZDV YHU\ XQHYHQ LQ 3RODQG
GXULQJ WKH ILUVW GHFDGH DIWHU WUDQVLWLRQ LQWR WKH PDUNHW HFRQRP\ /LEHUGD et al.
7KLV DUWLFOH H[WHQGV WKH UHVHDUFK RQ WKH FKDQJLQJ VWUXFWXUH RI KRXVHKROG
VDYLQJV LQ 3RODQG WR WKH GHFDGH DIWHU WKH SUHYLRXV UHVHDUFK ZDV FRQGXFWHG :H
DQDO\VH WKH PRELOLW\ RI 3ROLVK KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV GXULQJ WKH
WLPH RI LQFUHDVHG LQFRPH XQFHUWDLQW\ FDXVHG E\ ILQDQFLDO FULVLV RI 7KH DQDO\VLV LV EDVHG RQ D YHU\ ULFK DQG UHSUHVHQWDWLYH VHW RI KRXVHKROG
EXGJHW SDQHO GDWD IURP 3ROLVK KRXVHKROGV VXUYH\HG GXULQJ 7KUHH
SDQHOV RI KRXVHKROGV HDFK IRU WKH \HDUV DQG ZHUH VHOHFWHG E\ DXWKRUV IURP WKH VDPSOH RI KRXVHKROGV VXUYH\HG
\HDUO\ E\ 3ROLVK &HQWUDO 6WDWLVWLFDO 2IILFH (YHU\ \HDU KDOI RI WKH VXUYH\HG JURXS
RI KRXVHKROGV LV H[FKDQJHG DQG HDFK KRXVHKROG LV VXUYH\HG GXULQJ WZR
FRQVHFXWLYH \HDUV 'DWD DUH FROOHFWHG ZLWK WKH XVH RI D PRQWKO\ URWDWLQJ PHWKRG
HJ HDFK PRQWK RQH WZHOIWK RI WKH ZKROH VDPSOH ZDV VXUYH\HG 7KH VHOHFWHG
SDQHOV RI KRXVHKROGV IRU WKH \HDUV DQG PHHW DOO WKH IRUPDO UHTXLUHPHQWV UHJDUGLQJ GDWD FRQVLVWHQF\ 7KH FKRVHQ SDQHO RI
KRXVHKROGV LV UHSUHVHQWDWLYH DQG DOORZV IRU D JHQHUDOL]DWLRQ RI UHVXOWV ZLWK UHJDUG
WR WKH ZKROH SRSXODWLRQ RI 3ROLVK KRXVHKROGV ZLWKLQ D PDUJLQ RI D UDQGRP HUURU
7KH SDSHU LV RUJDQL]HG LQ WKH IROORZLQJ ZD\ LQ 6HFWLRQ ZH FODVVLI\
KRXVHKROGV LQWR ILYH JURXSV ZLWK UHJDUG WR VDYLQJ UDWHV 6HFWLRQ SUHVHQWV WKH
KRXVHKROG LQFRPH JURZWK DQG ILQDQFLDO VDYLQJV RI KRXVHKROGV LQ ,Q
6HFWLRQ ZH LQYHVWLJDWH FKDQJHV LQ WKH KRXVHKROGV¶ GLVWULEXWLRQ ZLWK UHJDUG WR
VDYLQJ UDWHV LQ WKUHH SDQHO GDWD VHWV IRU WKH \HDUV DQG
E\ DSSO\LQJ WKH 0DUNRY PRELOLW\ PDWUL[ 7KHQ ZH HVWLPDWH WKH ORQJ
WHUP GLVWULEXWLRQ RI KRXVHKROGV IRU DQG FRPSDUH LW ZLWK D VLPLODU
GLVWULEXWLRQ RQH GHFDGH HDUOLHU GXULQJ ,Q 6HFWLRQ ZH SUHVHQW RXU
FRQFOXVLRQV
2XU VWXG\ PHHWV WZR JRDOV )LUVW LW IXOILOOV WKH ODFN RI UHVHDUFK RQ KRXVHKROG
VDYLQJV LQ WUDQVLWLRQ HFRQRPLHV RI (XURSH GXULQJ UHFHQW ILQDQFLDO FULVLV 6HFRQG
DFFRUGLQJ WR RXU NQRZOHGJH WKLV VWXG\ LV WKH RQO\ RQH WKDW FRPELQHV WKH DQDO\VLV
RI KRXVHKROG VDYLQJV GXULQJ ILQDQFLDO FULVLV ZLWK WKH UHVXOWV RI
VLPLODU UHVHDUFK IRU 3RODQG RQH GHFDGH HDUOLHU 275
STATISTICS IN TRANSITION-new series, Summer 2013
2. Definitions and classification of saving rate categories
:H GHILQH KRXVHKROG LQFRPH DV GLVSRVDEOH LQFRPH UHJLVWHUHG LQ WKH PRQWK RI
WKH VXUYH\ 0HWKRGRORJ\ RI +RXVHKROG %XGJHW 6XUYH\V &62 6DYLQJV DUH
FDOFXODWHG DV D GLIIHUHQFH EHWZHHQ GLVSRVDEOH LQFRPH DQG KRXVHKROG
H[SHQGLWXUHV ZKLFK LV
V LQFRPH H[SHQGLWXUHV
WKH VDYLQJ UDWH sr EHLQJ D UDWLR RI VDYLQJV DQG GLVSRVDEOH LQFRPH
VU VLQFRPH
:H H[SUHVV WKH VDYLQJ UDWH DV D SHUFHQWDJH RI WKH KRXVHKROG GLVSRVDEOH
LQFRPH
Table 1. &ODVVLILFDWLRQ RI WKH VDYLQJ UDWH FODVV
%HORZ YHU\ ORZ VDYLQJ UDWH QHJDWLYH
)URP WR ORZ VDYLQJ UDWH QHJDWLYH
)URP WR VDYLQJ UDWH FORVH WR ]HUR
)URP WR KLJK VDYLQJ UDWH SRVLWLYH
$ERYH YHU\ KLJK VDYLQJ UDWH SRVLWLYH
Source: Own calculations.
7KH VDYLQJ UDWH ZDV GLYLGHG LQWR FDWHJRULHV YHU\ ORZ VDYLQJ UDWH QHJDWLYH
ORZ VDYLQJ UDWH QHJDWLYH VDYLQJ UDWH FORVH WR ]HUR QHJDWLYH RU SRVLWLYH KLJK
VDYLQJ UDWH SRVLWLYH YHU\ KLJK VDYLQJ UDWH SRVLWLYH
7KH GLVWULEXWLRQ RI KRXVHKROGV EHWZHHQ JURXSV RI GLIIHUHQW VDYLQJ UDWHV LQ WKH
\HDUV LV SUHVHQWHG LQ 7DEOH Table 2 1XPEHU RI KRXVHKROGV LQ JURXSV RI GLIIHUHQW VDYLQJ UDWHV LQ WKH \HDUV 6DYLQJ UDWHV
WR WR WR 7RWDO
Source: Own calculations based on Household Budget Surveys 2007-2010, Central
Statistical Office (GUS), Poland, Warsaw.
'XULQJ WKH SHULRG RI WKH QXPEHU RI KRXVHKROGV LQ D JURXS ZLWK WKH
QHJDWLYH VDYLQJ UDWHV EHORZ PLQXV RI WKH KRXVHKROG LQFRPH ZDV GHFUHDVLQJ
276
B. Liberda, 0 3ĊF]NRZVNL: Households’ saving…
7KH RSSRVLWH KDSSHQHG LQ WKH JURXS RI KRXVHKROGV ZLWK WKH KLJKHVW SRVLWLYH
VDYLQJ UDWH DERYH RI WKH KRXVHKROG LQFRPH 7KH ODWWHU JURXS ZDV LQFUHDVLQJ
LQ QXPEHU DQG LQ LWV UHODWLYH VKDUH LQ WKH WRWDO VDPSOH RI KRXVHKROGV 7KH
³PLGGOH´ JURXSV RI KRXVHKROGV ZLWK HLWKHU SRVLWLYH RU QHJDWLYH VDYLQJ UDWHV ZHUH
PRUH VWDEOH LQ VL]H GXULQJ 7KH PRVW YLVLEOH FKDQJHV RI WKH KRXVHKROG
VWUXFWXUH FRQFHUQ WKXV WKH WZR SRODU HQGV RI WKH KRXVHKROGV VDYLQJ UDWHV FODVVHV
,Q WKH QH[W VHFWLRQV ZH ZLOO H[DPLQH KRZ WKH VDYLQJV UDWHV RI WKH KRXVHKROGV
YDULHG ZLWKLQ WKH VWXGLHG \HDUV 7KUHH FRQVWUXFWHG SDQHO GDWD VHWV IRU WKH \HDUV
DQG DOORZ IRU D FRPSDULVRQ WKURXJKRXW WKH IRXU
REVHUYHG \HDUV
3. Household income and savings in 2007-2010
7KH OHYHO DQG JURZWK RI UHDO GLVSRVDEOH LQFRPH RI 3ROLVK KRXVHKROGV JURXSHG
E\ VDYLQJ UDWHV LQ DUH VKRZQ LQ 7DEOH Table 3. /HYHO DQG JURZWK RI UHDO GLVSRVDEOH LQFRPH RI 3ROLVK KRXVHKROGV
JURXSHG E\ VDYLQJ UDWHV LQ 6DYLQJ UDWH JURXSV
0RQWKO\
LQFRPH
]ORW\V
,QFRPH JURZWK
WR WR 7RWDO
WR 7KH H[FKDQJH UDWH RI ]ORW\ WR 86 GROODU DQG WR HXUR LQ ZDV 86
HXUR ]ORW\ 6WDWLVWLFDO <HDUERRN 3RODQG S ]ORW\ DQG Source: Own calculations based on panel data for 2007-2008, 2008-2009 and 2009-2010
from Household Budget Surveys 2007-2010, Central Statistical Office (GUS), Poland,
Warsaw.
7KH OHYHO RI KRXVHKROG LQFRPH ZDV SRVLWLYHO\ FRUUHODWHG ZLWK WKH KRXVHKROG
VDYLQJ UDWHV 'LVSRVDEOH LQFRPH RI KRXVHKROGV JUHZ IURP \HDU WR \HDU GXULQJ
LQ DOO KRXVHKROGV JURXSHG E\ VDYLQJ UDWHV 7KLV JURZWK RI KRXVHKROG
GLVSRVDEOH LQFRPH ZDV KLJKHU LQ WKDQ LQ WKH IROORZLQJ \HDUV ZKHQ ILQDQFLDO
VKRFNV FRQWLQXHG DIIHFWLQJ WKH 3ROLVK HFRQRP\ 7KH DYHUDJH JURZWK RI UHDO
GLVSRVDEOH LQFRPH RI 3ROLVK KRXVHKROGV REVHUYHG RQ D PLFUR VFDOH ZDV DERXW SHU \HDU GXULQJ 277
STATISTICS IN TRANSITION-new series, Summer 2013
7KH LQFUHDVH RI GLVSRVDEOH LQFRPH ZDV GLIIHUHQW LQ HDFK JURXS RI KRXVHKROGV
FODVVLILHG E\ VDYLQJ UDWHV ZLWK QR FOHDU WHQGHQF\ GHWHFWHG +RXVHKROGV ZLWK WKH
KLJKHVW VDYLQJ UDWHV HQFRXQWHUHG YHU\ ORZ JURZWK RI LQFRPH EHWZHHQ \HDUV VLPLODU WR LQFRPH JURZWK RI KRXVHKROGV ZKLFK VDYH DW ORZ UDWHV ,Q WKH LQFRPH RI KLJK VDYLQJ KRXVHKROGV UHFRYHUHG IDVW ZKLOH WKH ORZ VDYLQJ
KRXVHKROGV H[SHULHQFHG VWLOO GHFOLQLQJ JURZWK UDWHV RI \HDUO\ LQFRPH LQ WKH VDPH
\HDUV
:LWK YDU\LQJ YRODWLOLW\ RI UHDO KRXVHKROG GLVSRVDEOH LQFRPH DQG LQFUHDVLQJ
XQFHUWDLQW\ FDXVHG E\ WKH ILQDQFLDO FULVLV 3ROLVK KRXVHKROGV PDLQWDLQHG KLJK DQG
ULVLQJ VDYLQJ UDWHV IURP WKHLU FXUUHQW GLVSRVDEOH LQFRPH GXULQJ 7DEOH Table 4. +RXVHKROG VDYLQJ UDWHV LQ 3RODQG LQ 0HGLDQ
RI GLVSRVDEOH LQFRPH
Source: Own calculations based on Household Budget Surveys 2007-2010, Central
Statistical Office (GUS), Poland, Warsaw.
7KH PHGLDQ RI WKH VDYLQJ UDWH IRU DOO KRXVHKROGV LQFUHDVHG LQ IURP D
UHODWLYHO\ KLJK OHYHO RI LQ DQG ZDV ULVLQJ GXULQJ WKH VXEVHTXHQW \HDUV
WR UHDFK LQ 7KLV LQFUHDVH RI KRXVHKROGV¶ VDYLQJ UDWHV WRRN SODFH DW
WKH WLPH RI WKH IDOO RI WKH YDOXH RI KRXVHKROG DVVHWV LQ GLIIHUHQW ILQDQFLDO
LQVWUXPHQWV OLNH VKDUHV LQYHVWPHQW IXQGV SHQVLRQ IXQGV HWF
'XULQJ WKH WXUEXOHQW \HDUV RI WKH ILQDQFLDO FULVLV 3ROLVK KRXVHKROGV WRRN RQ
WKH ZKROH UDWLRQDO ILQDQFLDO GHFLVLRQV 7KH\ GLG QRW VWRS LQYHVWLQJ LQ UHDO HVWDWHV
KRXVHV SDUWO\ EHFDXVH PDQ\ RI WKRVH LQYHVWPHQWV ZHUH XQGHUWDNHQ HDUOLHU DQG
UHVXOWHG LQ PRUWJDJH SD\PHQWV LQ WKH IROORZLQJ \HDUV *HQHUDOO\ KRXVHKROGV
PDLQWDLQHG UHSD\LQJ PRUWJDJH ORDQV EXW UDLVHG OHVV ORDQV DQG FUHGLWV 7KH\ DOVR
GHFUHDVHG WKH VWRFN RI GHSRVLWV DQG VHFXULWLHV DOEHLW RQ D PRGHUDWH VFDOH 7DEOH Table 5. $YHUDJH ILQDQFLDO LQYHVWPHQW DQG FUHGLWV RI 3ROLVK KRXVHKROGV LQ LQ ]ORW\V SHU KRXVHKROG SHU PRQWK
<HDU
1HW SXUFKDVH RI UHDO HVWDWHV
1HW LQFUHDVH RI GHSRVLWV DQG VHFXULWLHV
/RDQV DQG FUHGLWV UHSDLG
/RDQV DQG FUHGLWV UDLVHG
Source: Own calculations based on Household Budget Surveys 2007-2010, Central
Statistical Office (GUS), Poland, Warsaw.
7KH VWUDWHJLHV RI ILQDQFLDO LQYHVWPHQW RI 3ROLVK KRXVHKROGV ZHUH UDWKHU
VWDQGDUG DQG VWHHUHG KRXVHKROGV WR LQFUHDVH VDYLQJ IURP FXUUHQW GLVSRVDEOH
LQFRPH LQ RUGHU WR SURWHFW GHFUHDVLQJ YDOXH RI WKHLU WRWDO ILQDQFLDO VWRFNV DQG UHDO
ZHDOWK
278
B. Liberda, 0 3ĊF]NRZVNL: Households’ saving…
4. Mobility of households with regard to saving rates during the years
2007-2010 and 1997-2000
,Q WKLV VHFWLRQ ZH LQYHVWLJDWH WKH FKDQJHV LQ WKH VWUXFWXUH RI KRXVHKROGV ZLWK
UHJDUG WR VDYLQJ UDWHV IURP \HDU WR \HDU GXULQJ DQG FRPSDUH WKH UHVXOWV
ZLWK WKH VLPLODU DQDO\VLV IRU D SDQHO RI KRXVHKROGV RQH GHFDGH HDUOLHU GXULQJ
+DYLQJ FODVVLILHG WKH ILYH JURXSV RI KRXVHKROGV ZLWK GLIIHUHQW OHYHOV RI VDYLQJ
UDWHV 7DEOH ZH H[DPLQH WKH KRXVHKROGV¶ PRELOLW\ EHWZHHQ WKHVH JURXSV LQ DQ\
RI WZR FRQVHFXWLYH \HDUV DQG 7DEOHV DQG
LOOXVWUDWH WKH GLVWULEXWLRQ RI PRELOLW\ IURP D SDUWLFXODU FODVVJURXS LQ WKH LQLWLDO
\HDU WR WKH VDPH RU RWKHU JURXSV LQ WKH IROORZLQJ \HDU WUDQVLWLRQ PDWUL[ 7KLV
PHWKRG RI UHVHDUFK LV XVHG LQ 0DUNRZ SURFHVVHV 3RGJyUVND HW DO DQG
FRQFHUQV PDQ\ ILHOGV OLNH LQFRPH PRELOLW\ UHJLRQDO FRQYHUJHQFH DQG ODERXU
PDUNHWV -HQNLQV 4XDK :yMFLN 7\URZLF] :yMFLN 7R FRQFOXGH DERXW D ORQJWHUP GLVWULEXWLRQ RI KRXVHKROGV VXEMHFW WR WKH
VDYLQJ UDWHV ZH SUHVXPH D FRQVWDQW KRXVHKROG PRELOLW\ EHWZHHQ WKH KLJK DQG ORZ
OHYHOV RI VDYLQJ UDWHV %DVHG RQ WKH FDOFXODWHG WUDQVLWLRQ PDWUL[ IRU \HDUO\
WUDQVLWLRQV LQ DQG VXFK D SURFHGXUH ZRXOG
DOORZ IRU D FRQVWUXFWLRQ RI DQ HUJRGLF GLVWULEXWLRQ 7KH GLVWULEXWLRQ ZRXOG
LOOXVWUDWH D SRWHQWLDO ORQJWHUP KRXVHKROG VWUXFWXUH ZKLFK UHIOHFWV WKH SUREDELOLW\
RI WKH KRXVHKROG WR IDOO LQWR WKH JURXS RI KRXVHKROGV RI KLJKHU ORZHU RU WKH VDPH
OHYHO RI VDYLQJ UDWH XQGHU WKH DVVXPSWLRQ WKDW PRELOLW\ LQ WKH ORQJ UXQ ZLOO EH
VLPLODU WR WKH PRELOLW\ REVHUYHG LQ WKH DQDO\VHG SHULRG
,Q RUGHU WR YHULI\ VXFK DQ DVVXPSWLRQ WKH ORQJWHUP KRXVHKROG GLVWULEXWLRQ
VXEMHFW WR WKH VDYLQJ UDWHV ZDV FDOFXODWHG LQLWLDWLQJ D 0DUNRY SURFHVV IURP
PRELOLW\ PDWUL[ LQ SDUWLFXODU \HDUV DQG Table 6. +RXVHKROGV¶ PRELOLW\ PDWUL[ VXEMHFW WR VDYLQJ UDWHV 6DYLQJ WR WR UDWHV
WR 7RWDO
6DYLQJ UDWHV WR WR WR 7RWDO
Source: Own calculations based on panel data for 2007-2008 from Household Budget
Surveys 2007-2008, Central Statistical Office (GUS), Poland, Warsaw.
$PRQJ WKH KRXVHKROGV FKDUDFWHUL]HG E\ YHU\ ORZ QHJDWLYH VDYLQJ UDWHV
EHORZ PLQXV RI WKH KRXVHKROG LQFRPH LQ DERXW RQH WKLUG UHPDLQHG LQ
WKH VDPH JURXS LQ WKH IROORZLQJ \HDU 7KUHH JURXSV RI FD RI WKH KRXVHKROGV
HDFK PRYHG WR WKH µORZ VDYLQJ UDWH¶ FODVV PLQXV WR PLQXV RI WKH
KRXVHKROG LQFRPH µFORVH WR ]HUR VDYLQJ UDWHV¶ FODVV PLQXV WR SOXV RI
STATISTICS IN TRANSITION-new series, Summer 2013
279
WKH KRXVHKROG LQFRPH DQG WR D µKLJK VDYLQJ UDWHV¶ FODVV WR RI WKH
KRXVHKROG LQFRPH
7KH PRVW VSHFWDFXODU PRYH ZDV REVHUYHG E\ DOPRVW RQH IRXUWK RI WKH
KRXVHKROGV WKDW VKLIWHG XS WR WKH µYHU\ KLJK VDYLQJ UDWH¶ FODVV DERYH RI WKH
KRXVHKROG LQFRPH LQ IURP WKH µYHU\ ORZ QHJDWLYH VDYLQJ UDWHV¶ FODVV EHORZ
PLQXV RI WKH KRXVHKROG LQFRPH LQ 0RUHRYHU LQ WKH µYHU\ KLJK VDYLQJ
UDWH¶ JURXS WKUHH ILIWKV RI WKH KRXVHKROGV UHPDLQHG LQ WKH VDPH FODVV LQ WKH
IROORZLQJ \HDU 7DEOH 7DEOHV DQG UHIOHFW ODUJH IOXFWXDWLRQV EHWZHHQ SDUWLFXODU JURXSV RI
KRXVHKROGV LQ HDFK SHULRG RI WZR FRQVHFXWLYH \HDUV DQG
$GGLWLRQDOO\ WKH µYHU\ KLJK VDYLQJ UDWHV¶ FODVV LV WKH PRVW VWDEOH RQH
EHFDXVH RI KRXVHKROGV IURP WKDW JURXS UHPDLQHG LQ WKH VDPH JURXS
WKURXJKRXW 7KH UHWHQWLRQ RI KRXVHKROGV LQ WKH µORZHVW VDYLQJ UDWHV¶
JURXS LV FD RI WKH VL]H RI WKLV JURXS 7KH µORZHVW VDYLQJ UDWHV¶ JURXS
FRQVLVWV QRW RQO\ RI KRXVHKROGV ZLWK YHU\ ORZ LQFRPH EXW DOVR RI KRXVHKROGV WKDW
WDNH ODUJH PRUWJDJH FUHGLWV WKDW OHDGV WR KLJKHU VDYLQJV IURP FXUUHQW GLVSRVDEOH
LQFRPH LQ WKH QH[W PRQWKV \HDUV ZKHQ WKH FUHGLWV DUH LQ UHSD\PHQW
7KH QXPEHU RI KRXVHKROGV LQ HDFK VDYLQJ UDWHV¶ FODVV DQG VKLIWV IURP D
SDUWLFXODU FODVV LQ WKH LQLWLDO \HDU WR RWKHU FODVVHV RI KRXVHKROGV LQ WKH IROORZLQJ
\HDU DUH SUHVHQWHG LQ WKH FXPXODWHG EDU FKDUWV )LJXUHV DQG Figure 1. +RXVHKROGV¶ PRELOLW\ VXEMHFW WR VDYLQJ UDWHV Source: Own calculations based on panel data for 2007-2008 from Household Budget
Surveys 2007-2008, Central Statistical Office (GUS), Warsaw.
(DFK EDU LQ )LJXUHV DQG UHSUHVHQWV RQH URZ LQ 7DEOHV DQG UHVSHFWLYHO\ ,W VKRZV KRZ WKH KRXVHKROGV WKDW EHORQJHG LQ WKH LQLWLDO \HDU RI
REVHUYDWLRQ HJ WR D SDUWLFXODU FODVV RI VDYLQJV IRU H[DPSOH PLQXV RI
280
B. Liberda, 0 3ĊF]NRZVNL: Households’ saving…
WKH KRXVHKROG LQFRPH DUH GLVWULEXWHG EHWZHHQ FODVVHV RI KRXVHKROGV ZLWK
GLIIHUHQW VDYLQJ UDWHV LQ WKH VHFRQG \HDU RI REVHUYDWLRQ HJ Table 7. +RXVHKROGV¶ PRELOLW\ PDWUL[ VXEMHFW WR VDYLQJ UDWHV 6DYLQJ UDWHV 6DYLQJ
UDWHV
WR WR WR 7RWDO
WR WR WR 7RWDO
Source: Own calculations based on panel data for 2008-2009 from Household Budget
Surveys 2008-2009, Central Statistical Office (GUS), Poland, Warsaw.
(DFK EDU LQ WKH FKDUW DQG D URZ LQ WKH WDEOH VXPV XS WR RI KRXVHKROGV
RI WKLV SDUWLFXODU VDYLQJ UDWH FODVV 7KH KHLJKW RI WKH EDU UHIOHFWV WKH QXPEHU RI
KRXVHKROGV WKDW EHORQJ WR RQH FODVV RI VDYLQJ UDWHV LQ WKH LQLWLDO \HDU RI
REVHUYDWLRQ DQG WKH GLVWULEXWLRQ RI WKLV FODVV RI KRXVHKROGV EHWZHHQ FODVVHV RI
KRXVHKROGV ZLWK GLIIHUHQW VDYLQJ UDWHV LQ WKH IROORZLQJ \HDU
Figure 2. +RXVHKROGV¶ PRELOLW\ VXEMHFW WR VDYLQJ UDWHV Source: Own calculations based on panel data for 2008-2009 from Household Budget
Surveys 2008-2009, Central Statistical Office (GUS), Poland, Warsaw.
281
STATISTICS IN TRANSITION-new series, Summer 2013
7KH GLIIHUHQFHV LQ KRXVHKROGV¶ PRELOLW\ EHWZHHQ SDUWLFXODU \HDUV DUH VPDOO
7KH JURXSV RI KRXVHKROGV WKDW VWD\HG ULJKW ZKHUH WKH\ ZHUH D \HDU EHIRUH DUH
WKRVH WKDW VDYH WKH PRVW DQG WKRVH WKDW VDYH WKH OHDVW
Table 8. +RXVHKROGV¶ PRELOLW\ PDWUL[ VXEMHFW WR VDYLQJ UDWHV 6DYLQJ UDWHV WR 6DYLQJ
WR UDWHV WR 7RWDO
WR WR WR 7RWDO
Source: Own calculations based on panel data for 2009-2010 from Household Budget
Surveys 2009-2010, Central Statistical Office (GUS), Poland, Warsaw.
Figure 3. +RXVHKROGV¶ PRELOLW\ VXEMHFW WR VDYLQJ UDWHV Source: Own calculations based on panel data for 2009-2010 from Household Budget
Surveys 2009-2010, Central Statistical Office (GUS), Poland, Warsaw.
$VVXPLQJ D FRQVWDQW KRXVHKROG PRELOLW\ ZH FRXOG GUDZ VRPH FRQFOXVLRQV
DERXW WKH ORQJWHUP GLVWULEXWLRQ RI KRXVHKROGV ZLWK UHJDUG WR WKH VDYLQJ UDWHV
6XFK SURFHGXUH ZRXOG DOORZ IRU D FRQVWUXFWLRQ RI DQ HUJRGLF GLVWULEXWLRQ 7KLV
GLVWULEXWLRQ ZRXOG LOOXVWUDWH D ORQJWHUP KRXVHKROG VWUXFWXUH ZKLFK UHIOHFWV WKH
SUREDELOLW\ RI IDOOLQJ LQWR D KLJKHU ORZHU RU WKH VDPH OHYHO RI VDYLQJ UDWH
282
B. Liberda, 0 3ĊF]NRZVNL: Households’ saving…
,Q RUGHU WR YHULI\ VXFK DVVXPSWLRQ WKH ORQJWHUP KRXVHKROG GLVWULEXWLRQ
VXEMHFW WR WKH VDYLQJ UDWH ZDV FDOFXODWHG LQLWLDWLQJ D 0DUNRY SURFHVV IURP
PRELOLW\ PDWUL[ LQ SDUWLFXODU \HDUV DQG 7DEOH
VKRZV WKH ORQJWHUP KRXVHKROG GLVWULEXWLRQ VXEMHFW WR VDYLQJ UDWHV IRU SDUWLFXODU
LQLWLDO SHULRGV
Table 9. /RQJWHUP GLVWULEXWLRQ RI KRXVHKROGV VXEMHFW WR VDYLQJ UDWHV 6DYLQJ UDWHV OHYHOV
WR WR WR /RQJWHUP KRXVHKROGV¶ GLVWULEXWLRQ
<HDUV
.
*6WDUWLQJ GDWHV RI WKH 0DUNRY SURFHVVHV
Source: Own calculations based on panel data for 2007-2008, 2008-2009 and 2009-2010
from Household Budget Surveys 2007-2010, Central Statistical Office (GUS), Poland,
Warsaw.
7DEOH LQGLFDWHV WKDW LQ WKUHH RI WKH ORQJWHUP KRXVHKROG GLVWULEXWLRQV ZLWK
UHJDUG WR VDYLQJ UDWHV WKH SUREDELOLW\ RI IDOOLQJ LQWR D JURXS RI YHU\ KLJK VDYLQJ
UDWHV DERYH RI WKH KRXVHKROG GLVSRVDEOH LQFRPH ZDV WKH KLJKHVW FD 7KH SUREDELOLW\ RI EHORQJLQJ WR WKH ORZHVW VDYLQJ UDWH FODVV ZDV FORVH WR *URXSV IDOOLQJ LQWR µPLQXV WR PLQXV ¶ VDYLQJ UDWH JURXS DQG µPLQXV WR
SOXV ¶ VDYLQJ UDWH JURXS ZHUH WKH IHZHVW
7KH UHVXOWV RI WKH KRXVHKROGV¶ PRELOLW\ WR GLIIHUHQW JURXSV RI VDYLQJ GXULQJ
DUH FRPSDUHG WR WKH DXWKRUV¶ SUHYLRXV UHVHDUFK RQ KRXVHKROGV¶ VDYLQJ
PRELOLW\ IRU 3RODQG IRU \HDUV 7DEOH Table 10. /RQJWHUP GLVWULEXWLRQ RI KRXVHKROGV VXEMHFW WR VDYLQJ UDWHV 6DYLQJ UDWHV OHYHOV
/RQJWHUP KRXVHKROGV¶ GLVWULEXWLRQ
<HDUV
6WDUWLQJ GDWHV RI WKH 0DUNRY SURFHVVHV
Source: Liberda, Peczkowski, 2005, p. 40; own calculations based on the 4-year panel
data of 3001 households from Household Budget Surveys 1997-2000 for Poland, Central
Statistical Office (GUS), Warsaw.
STATISTICS IN TRANSITION-new series, Summer 2013
283
,Q ERWK ORQJWHUP GLVWULEXWLRQV RI KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV IRU
\HDUV DQG 7DEOHV DQG WKH SUREDELOLWLHV RI EHORQJLQJ
WR WKH WZR WRS JURXSV DQG WR WKH ERWWRP JURXS RI VDYLQJ UDWHV DUH WKH ELJJHVW
+RZHYHU WKH VKDUHV RI WKH KRXVHKROGV ZLWK WKH KLJKHVW DQG ZLWK WKH ORZHVW
VDYLQJ UDWHV GLIIHU LQ WKH WZR VWXGLHG SHULRGV RI DQG 7KH
JURXS RI KRXVHKROGV ZLWK WKH KLJKHVW VDYLQJ UDWHV LV UHODWLYHO\ ELJJHU D GHFDGH
ODWHU DQG WKH JURXS ZLWK WKH ORZHVW VDYLQJ UDWHV LV UHODWLYHO\ VPDOOHU 7KH VKDUH RI
KRXVHKROGV LQ WKH PLGGOH JURXSV RI WKH VDYLQJV¶ GLVWULEXWLRQ LV GLPLQLVKLQJ IURP
RI WKH WRWDO QXPEHU RI KRXVHKROGV LQ WR LQ 7KH FKDQJH LQ WKH GLVWULEXWLRQ RI KRXVHKROGV EHWZHHQ DQG GHPRQVWUDWHV WKH SRODUL]DWLRQ RI KRXVHKROGV ZLWK UHJDUG WR VDYLQJ UDWHV
3RODUL]DWLRQ LV XQGHUVWRRG DV D UHODWLYH VKULQNLQJ RI JURXSV LQ WKH PLGGOH RI WKH
KRXVHKROGV¶ GLVWULEXWLRQ E\ VDYLQJ UDWHV 7KH PHWKRGLFDO LQGHSWK DQDO\VLV RI
GLIIHUHQW PHDVXUHV RI SRODUL]DWLRQ LV GRQH E\ .RW %HWZHHQ DQG
WKH SRODUL]DWLRQ RI 3ROLVK KRXVHKROGV ZDV DV\PPHWULFDO WRZDUG WKH
KLJKHVW VDYLQJ UDWH JURXSV
5. Conclusions
,Q WKLV SDSHU ZH H[DPLQHG WKH PRELOLW\ RI KRXVHKROGV LQ 3RODQG ZLWK UHJDUG WR
VDYLQJ UDWHV LQ WZR SHULRGV DQG 7KH DQDO\VLV ZDV EDVHG RQ
WKH KRXVHKROG EXGJHW SDQHO GDWD VHOHFWHG E\ DXWKRUV IURP WKH +RXVHKROG %XGJHW
6XUYH\V IRU \HDUV DQG :H DSSOLHG WKH 0DUNRY PRELOLW\
PDWUL[ DQG HVWLPDWHG WKH ORQJWHUP HUJRGLF GLVWULEXWLRQ RI KRXVHKROGV ZLWK UHJDUG
WR VDYLQJ UDWHV ,W LOOXVWUDWHV WKH SUREDELOLW\ RI D KRXVHKROG WR IDOO LQWR RQH RI WKH
VDYLQJ UDWHV FODVVHV UDQJLQJ IURP QHJDWLYH VDYLQJV RI PLQXV RU OHVV WR RU PRUH RI WKH KRXVHKROG GLVSRVDEOH LQFRPH
2XU UHVXOWV FRQFHUQLQJ WKH \HDUV VKRZ WKDW GXULQJ IRXU FRQVHFXWLYH
\HDUV DOPRVW RQH WKLUG RI KRXVHKROGV WKDW KDG QHJDWLYH VDYLQJV RI
PLQXV RI WKH KRXVHKROG GLVSRVDEOH LQFRPH LQ WKH ILUVW \HDU RI REVHUYDWLRQ
UHPDLQHG LQ WKHLU FODVV DOVR WKH IROORZLQJ \HDU %XW RQH IRXUWK RI WKLV JURXS RI
KRXVHKROGV VKLIWHG XS LQ WKH IROORZLQJ \HDU WR WKH JURXS ZLWK SRVLWLYH VDYLQJV RI
PRUH WKDQ RI WKH KRXVHKROG GLVSRVDEOH LQFRPH ,Q WKH FODVV RI KRXVHKROGV
ZLWK WKH KLJKHVW VDYLQJ UDWHV WKUHH ILIWKV RI KRXVHKROGV NHSW WKHVH KLJK VDYLQJ
UDWHV
7KH ORQJWHUP HUJRGLF GLVWULEXWLRQ RI KRXVHKROGV UHYHDOV D YHU\ KLJK
SUREDELOLW\ RI D KRXVHKROG WR IDOO LQWR D JURXS ZLWK WKH KLJKHVW VDYLQJ UDWHV
DQG D UHODWLYHO\ KLJK SUREDELOLW\ RI EHORQJLQJ WR D JURXS ZLWK WKH ORZHVW
VDYLQJ UDWHV 7KH VKDUH RI KRXVHKROGV LQ WKH PLGGOH RI WKH VDYLQJV¶ GLVWULEXWLRQ LV
ORZHU WKDQ LV WKH VXP RI WKH VKDUHV RI KRXVHKROGV ZLWK WKH KLJKHVW DQG ZLWK WKH
ORZHVW VDYLQJ UDWHV ,W LQGLFDWHV D WHQGHQF\ WRZDUG SRODUL]DWLRQ RI KRXVHKROGV
ZLWK UHJDUG WR VDYLQJ UDWHV
284
B. Liberda, 0 3ĊF]NRZVNL: Households’ saving…
&RPSDULQJ WKH UHVXOWV IRU ZLWK WKH DXWKRUV¶ SUHYLRXV UHVHDUFK RQ
WKH KRXVHKROGV¶ VDYLQJ PRELOLW\ IRU \HDUV ZH SURYHG WKDW WKH ORQJ
WHUP FKDQJH LQ WKH GLVWULEXWLRQ RI KRXVHKROGV ZDV DV\PPHWULFDO EHWZHHQ DQG WRZDUG WKH KLJKHVW VDYLQJ UDWH JURXSV 7KH JURXS RI
KRXVHKROGV ZLWK WKH KLJKHVW VDYLQJ UDWHV LV ELJJHU D GHFDGH ODWHU DQG D JURXS ZLWK
WKH ORZHVW VDYLQJ UDWHV LV VPDOOHU 7KH DV\PPHWULFDO SRODUL]DWLRQ RI KRXVHKROGV
WRZDUGV WKH KLJKHVW VDYLQJ UDWH JURXSV LV VLJQLILFDQW LQ H[SODLQLQJ ZK\ 3ROLVK
KRXVHKROGV FRXOG PDLQWDLQ SRVLWLYH DQG ULVLQJ VDYLQJV GXULQJ WKH KLJKO\ XQFHUWDLQ
SHULRG RI WKH ILQDQFLDO FULVLV LQ STATISTICS IN TRANSITION-new series, Summer 2013
285
REFERENCES
%$;7(5 0 -(50$11 8 - +RXVHKROG 3URGXFWLRQ DQG WKH ([FHVV
6HQVLWLYLW\ RI &RQVXPSWLRQ WR &XUUHQW ,QFRPH American Economic Review
9RO 1R SS ±
&$03%(// - < 'RHV 6DYLQJ $QWLFLSDWH 'HFOLQLQJ /DERXU ,QFRPH"
$Q $OWHUQDWLYH 7HVW RI WKH 3HUPDQHQW ,QFRPH +\SRWKHVLV Econometrica, SS ±
&$552// & ' +RZ 'RHV )XWXUH ,QFRPH $IIHFW &XUUHQW
&RQVXPSWLRQ" Quarterly Journal of Economics, )HEUXDU\ SS ±
&$552// & ' 3UHFDXWLRQDU\ 6DYLQJ DQG WKH 0DUJLQDO 3URSHQVLW\ WR
&RQVXPH 2XW RI 3HUPDQHQW ,QFRPH Journal of Monetary Economics,
9RO 1R SS ±
'($721 $ 8QGHUVWDQGLQJ &RQVXPSWLRQ &ODUHQGRQ 3UHVV 2[IRUG
)/$9,1 0 $ 7KH $GMXVWPHQW RI &RQVXPSWLRQ WR &KDQJLQJ
([SHFWDWLRQV DERXW )XWXUH ,QFRPH Journal of Political Economy, 9RO 1R SS ±
+$// 5 ( 6WRFKDVWLF ,PSOLFDWLRQV RI WKH /LIH &\FOH3HUPDQHQW
,QFRPH +\SRWKHVLV 7KHRU\ DQG (YLGHQFH Journal of Political Economy 9RO
1R SS ±
+RXVHKROG %XGJHW 6XUYH\V LQ DQG 3RODQG, &HQWUDO
6WDWLVWLFDO 2IILFH *86 :DUVDZ
-(1.,16 6 3 9$1 .(50 3 7UHQGV LQ LQFRPH LQHTXDOLW\ SURSRRU
LQFRPH JURZWK DQG LQFRPH PRELOLW\ Oxford Economic Papers SS ±
.27 6 0 3RODU\]DFMD HNRQRPLF]QD 7HRULD L ]DVWRVRZDQLH 3:1
:DUV]DZD
/,%(5'$ % *Ï5(&., % 3ĉ&=.2:6., 0 8QFHUWDLQW\ RI
+RXVHKROGV¶ ,QFRPH LQ (XURSHDQ &RXQWULHV DQG 3RODQG EMERGO 9RO 1R SS ±
/,%(5'$ % *Ï5(&., % 3ĉ&=.2:6., 0 6DYLQJ IURP
3HUPDQHQW DQG 7UDQVLWRU\ ,QFRPH 7KH &DVH RI 3ROLVK +RXVHKROGV
Ekonomia, 1R SS ±
/,%(5'$ % 3ĉ&=.2:6., 0 0RELOQRĞü RV]F]ĊG]DQLD
JRVSRGDUVWZ GRPRZ\FK Z 3ROVFH Ekonomia, 1R SS ±
286
B. Liberda, 0 3ĊF]NRZVNL: Households’ saving…
0HWRGRORJLD EDGDQLD EXGĪHWyZ JRVSRGDUVWZ GRPRZ\FK 0HWKRGRORJ\ RI
+RXVHKROG %XGJHW 6XUYH\V *86 &HQWUDO 6WDWLVWLFDO 2IILFH 3RODQG
:DUVDZ
02'< $ 2+1625*( ) 6$1'5, ' 3UHFDXWLRQDU\ 6DYLQJV LQ WKH
*UHDW 5HFHVVLRQ IMF Economic Review, 9RO 1R SS ±
32'*Ï56.$ 0 ĝ/,:.$ 3 7232/(:6., 0 :5=26(. 0 àDĔFXFK\ 0DUNRZD Z WHRULL L Z ]DVWRVRZDQLDFK 2ILF\QD :\GDZQLF]D 6*+
:DUV]DZD
327(5%$ - 0 HG ,QWHUQDWLRQDO &RPSDULVRQV RI +RXVHKROG 6DYLQJ
8QLYHUVLW\ RI &KLFDJR 3UHVV &KLFDJR
48$+ ' 7 (PSLULFV IRU HFRQRPLF JURZWK DQG FRQYHUJHQFH European
Economic Review 9RO 1R SS ±
7<52:,&= - :Ï-&,. 3 $FWLYH /DERXU 0DUNHW 3ROLFLHV DQG
8QHPSOR\PHQW &RQYHUJHQFH LQ (XURSH Review of Economic Analysis 9RO
1R SS ±
:Ï-&,. 3 $UH 3ROLVK 5HJLRQV &RQYHUJLQJ" 6LPSOH VSDWLDO DSSURDFK
LQ Civilizational competences and regional development in Poland HGV
% /LEHUGD $ *URFKRZVND :DUVDZ 8QLYHUVLW\ 3UHVV :DUVDZ SS ±
STATISTICS IN TRANSITION-new series, Summer 2013
287
STATISTICS IN TRANSITION-new series, Summer 2013
Vol. 14, No. 2, pp. 287–318
COHERENCE AND COMPARABILITY AS CRITERIA
OF QUALITY ASSESSMENT IN BUSINESS
STATISTICS
$QGU]HM 0áRGDN ABSTRACT
7KH SUREOHPV RI FRKHUHQFH DQG FRPSDUDELOLW\ H[FHHG WKH FODVVLFDO QRWLRQ RI
DQDO\VLV RI VXUYH\ HUURUV EHFDXVH WKH\ GR QRW FRQFHUQ VLQJOH VXUYH\V RU YDULDEOHV
EXW WKH TXHVWLRQ RI KRZ UHVXOWV RI WZR RU PRUH VXUYH\V FDQ EH XVHG WRJHWKHU DQG
KRZ UHOHYDQW GDWD FDQ HIIHFWLYHO\ EH FRPSDUHG WR REWDLQ D EHWWHU SLFWXUH RI VRFLDO
DQG HFRQRPLF SKHQRPHQD RYHU YDULRXV DVSHFWV HJ VSDFH RU WLPH 7KLV SDSHU
GLVFXVVHV FKDUDFWHULVWLFV RI WKH PDLQ FRQFHSWV RI FRKHUHQFH DQG FRPSDUDELOLW\ DV
ZHOO DV D GHVFULSWLRQ RI GLIIHUHQFHV DQG VLPLODULWLHV EHWZHHQ WKHVH WZR QRWLRQV
7\SHV RI FRKHUHQFH DQG YDULRXV DVSHFWV RI SHUFHSWLRQ RI WKHVH QRWLRQV LQ EXVLQHVV
VWDWLVWLFV DUH DQDO\VHG 0DLQ VRXUFHV RI ODFN RI FRKHUHQFH DQG FRPSDUDELOLW\
IDFWRUV DIIHFWLQJ WKHP HJ PHWKRGRORJ\ WLPH UHJLRQ HWF DQG PHWKRGV RI WKHLU
PHDVXUHPHQW LQ FRQWH[W RI LQIRUPDWLRQ REWDLQHG IURP EXVLQHVVHV ZLOO EH DOVR
SUHVHQWHG
Key words FRKHUHQFH FRPSDUDELOLW\ PLUURU VWDWLVWLFV EHQFKPDUNLQJ
GDWD SUHFLVLRQ FRPSOH[ LQGLFHV
1. Introduction
&RKHUHQFH DQG FRPSDUDELOLW\ RI GDWD DUH RQH RI WKH PRVW LPSRUWDQW DVSHFWV RI
HDFK VXUYH\ HVSHFLDOO\ LI LW LV UHJXODUO\ UHSHDWHG RYHU WLPH ,W LV REYLRXV WKDW
SURSHUO\ FRKHUHQW DQG FRQVLVWHQW PHWKRGRORJ\ JXDUDQWHHV HIILFLHQW ORQJ±WLPH
7KH SDSHU ZDV SUHSDUHG IRU SUHVHQWDWLRQ DW WKH &RQIHUHQFH Statistics–Knowledge–Development
RUJDQL]HG WR FHOHEUDWH WKH ,QWHUQDWLRQDO <HDU RI 6WDWLVWLFV LQ àyGĨ 3RODQG WK ± WK 2FWREHU
7KH SDSHU LV EDVHG RQ WKH RXWSXW RI WKH (66QHW SURMHFW 0HWKRGRORJ\ IRU 0RGHUQ %XVLQHVV
6WDWLVWLFV ± 0H0R%X6W 6SHFLILF *UDQW $JUHHPHQWV 1R DQG
7KH DXWKRU H[SUHVVHV KLV JUDWLWXGH WR 0UV -XGLW 9LJK +XQJDULDQ
&HQWUDO 6WDWLVWLFDO 2IILFH DV ZHOO DV WR WZR DQRQ\PRXV UHYLHZHUV IRU YDOXDEOH FRPPHQWV DQG
VXJJHVWLRQV
$GGUHVV 6WDWLVWLFDO 2IILFH LQ 3R]QDĔ 6PDOO $UHD 6WDWLVWLFV &HQWUH %UDQFK LQ .DOLV] SO
- .LOLĔVNLHJR ± .DOLV] 3RODQG (PDLO DPORGDN#VWDWJRYSO
288
$ 0áRGDN: Coherence and comparability …
DQDO\VLV FRPELQLQJ PDQ\ YDULDEOHV DQG WDNLQJ LQWR DFFRXQW YDULRXV FURVV±
VHFWLRQV GLYLVLRQV RU FOXVWHUV RI LQYHVWLJDWHG REMHFWV HFRQRPLF HQWLWLHV VSDWLDO
DUHDV EUDQFK JURXSV RI HQWHUSULVHV HWF ,Q PRGHUQ UHDOLW\ ZKHUH PDQ\
JOREDOL]DWLRQ SURFHVVHV EDVHG RQ KLJKO\ GHYHORSHG VWULFW LQWHUUHJLRQDO DQG
LQWHUQDWLRQDO HFRQRPLF FRQQHFWLRQV DUH REVHUYHG D FROOHFWLRQ DQG XVH RI PXOWL±
DVSHFW FRKHUHQW DQG FRPSDUDEOH VWDWLVWLFDO GDWD LV RQH RI NH\ SULRULWLHV 7KH\
HQDEOH HIILFLHQW PRQLWRULQJ RI RFFXUULQJ FKDQJHV DQG UHDFWLQJ ZKHQ VRPH
SUREOHPV RU WKUHDWV DUH UHFRJQL]HG
7KH UROH RI FRKHUHQFH DQG FRPSDUDELOLW\ RI GDWD LQ (XURSHDQ VWDWLVWLFV ZDV
DSSUHFLDWHG E\ WKH 6WDWLVWLFDO 2IILFH IRU WKH (XURSHDQ 8QLRQ (XURVWDW ZKLFK LQ
LWV &RGH RI 3UDFWLFH IRUPXODWHG WKHVH UHTXLUHPHQWV DV WKH 3ULQFLSOH H[SUHVVHG
DV IROORZV (XURVWDW European statistics should be consistent internally, over time and comparable
between regions and countries; it should be possible to combine and make joint
use of related data from different sources.
Indicators
x Statistics are internally coherent and consistent (e.g. arithmetic and
accounting identities observed).
x Statistics are coherent or reconcilable over a reasonable period of time.
x Statistics are compiled on the basis of common standards with respect to
scope, definitions, units and classifications in the different surveys and
sources.
x Statistics from the different surveys and sources are compared and reconciled.
x Cross–national comparability of the data is ensured through periodical
exchanges between the European statistical system and other statistical
systems; methodological studies are carried out in close cooperation between
WKH 0HPEHU 6WDWHV DQG (XURVWDW
7KLV SDSHU GLVFXVVHV DQG DQDO\VHV WKH EDVLF FKDUDFWHULVWLFV RI WKH PDLQ
FRQFHSWV RI FRKHUHQFH DQG FRPSDUDELOLW\ DV ZHOO DV D GHVFULSWLRQ RI GLIIHUHQFHV
DQG VLPLODULWLHV EHWZHHQ WKHVH WZR QRWLRQV ,W LV ZRUWK QRWLQJ WKDW ³FRKHUHQFH´ KDV
PXFK PRUH ZLGHU VHQVH WKDQ µFRPSDUDELOLW\¶ 3DUWLFXODU W\SHV RI FRKHUHQFH DQG
YDULRXV DVSHFWV RI SHUFHSWLRQ RI WKHVH QRWLRQV LQ EXVLQHVV VWDWLVWLFV ZLOO EH
DQDO\VHG 0DLQ VRXUFHV RI ODFN RI FRKHUHQFH DQG PHWKRGV RI LWV DVVHVVPHQW LQ WKH
FRQWH[W RI LQIRUPDWLRQ REWDLQHG IURP EXVLQHVVHV ZLOO EH DQDO\]HG 6LPLODUO\
SUREOHPV FRQFHUQLQJ FRPSDUDELOLW\ ZLOO EH FKDUDFWHUL]HG LQGLFDWLQJ SRVVLEOH
UHDVRQV RI LWV ODFN DQG IDFWRUV DIIHFWLQJ LW VXFK DV WLPH UHJLRQ QDWLRQDO DFFRXQWV
DQG HFRQRPLF EHQFKPDUN DV ZHOO DV FRPSOH[ PHWKRGV RI PHDVXUHPHQW RI
FRPSDUDELOLW\ OHYHO
7KH SDSHU FRQVLVWV RI WZR PDLQ VHFWLRQV GHYRWHG WR FRKHUHQFH DQG
FRPSDUDELOLW\ 7KH ILUVW RI WKHP 6HFWLRQ GLVFXVVHV PHWKRGRORJLFDO IXQGDPHQWV
RI FRQFHSWV RI FRKHUHQFH LQ WKH FRQWH[W RI DFFXUDF\ DQG UHFRJQLWLRQ RI
LQFRKHUHQFH 7\SHV RI FRKHUHQFH WDNLQJ LQWR DFFRXQW WKH FKDUDFWHU RI VWDWLVWLFV DQG
VRXUFHV RI LQFRKHUHQFH DV ZHOO DV PRGHOOLQJ RI DVVHVVPHQW RI FRKHUHQFH XVLQJ
STATISTICS IN TRANSITION-new series, Summer 2013
289
YDULRXV IDFWRUV KDYLQJ DQ LPSDFW RQ LW DUH KHUH DOVR SUHVHQWHG 6HFWLRQ FRQFHUQV
WKH FRPSDUDELOLW\ DQG VKRZV LWV UHODWLRQ WR WKH FRKHUHQFH PHWKRGRORJLFDO DQG
HPSLULFDO VRXUFHV RI LQFRPSDUDELOLW\ EDVLF GLUHFWLRQV RI DSSUDLVDO RI WKH OHYHO RI
WKLV SURSHUW\ $W WKH HQG 6HFWLRQ VRPH LQGLFHV ZKLFK FDQ PHDVXUH FRKHUHQFH
DQG FRPSDUDELOLW\ LQ D FRPSOH[ ZD\ FKDUDFWHULVWLFV RI DFFXUDF\ DQG UHODWHG
SUREOHPV DUH SURSRVHG ,Q 6HFWLRQ VRPH FRQFOXVLRQV DUH IRUPXODWHG
2. Coherence
7R REWDLQ EXVLQHVV VWDWLVWLFV RI VDWLVIDFWRU\ TXDOLW\ LW LV QHFHVVDU\ WR JXDUDQWHH
FRKHUHQFH EHWZHHQ UHOHYDQW GDWD Coherence LV D JHQHUDO WHUP UHIHUULQJ WR WKH
FRQVLVWHQF\ EHWZHHQ D VHW RI VWDWLVWLFDO YDULDEOHV GHVFULELQJ ILQLWH SRSXODWLRQ
SDUDPHWHUV LQ WHUPV RI YDULRXV EXW ± IURP WKH PHWKRGRORJLFDO SRLQW RI YLHZ ±
PXWXDOO\ FRQQHFWHG VRFLDO RU HFRQRPLF SKHQRPHQD REVHUYHG LQ EXVLQHVV UHDOLW\
0RUH SUHFLVHO\ WKH OHYHO RI FRKHUHQFH LQIRUPV XV ZKHWKHU DQG WR ZKDW GHJUHH
VRPH VWDWLVWLFV FDQ EH DQDO\VHG MRLQWO\ DQG KRZ WR LQGLFDWH WKHLU µRSWLPXP¶ OHYHOV
7KDW LV LI WZR YDULDEOHV DUH VWULFWO\ PHWKRGRORJLFDOO\ FRQQHFWHG DQG FKDQJHV RI
RQH YDULDEOH DIIHFW YDOXHV RI WKH RWKHU DQG YLFH YHUVD WKHQ WKH\ FDQ DQG VKRXOG
EH DQDO\VHG MRLQWO\ )RU H[DPSOH VXFK D MRLQW DQDO\VLV PD\ FRQFHUQ SURGXFWLRQ
RXWSXW DQG HPSOR\PHQW SURGXFWLRQ RXWSXW DQG IRUHLJQ WUDGH WXUQRYHU VROG
SURGXFWLRQ DQG ZDJHV DQG VDODULHV HWF 7KHVH YDULDEOHV PD\ DOVR EH FRPELQHG WR
REWDLQ RQH V\QWKHWLF UHVXOW
2.1. Definition of coherence
$FFRUGLQJ WR (XURVWDW the coherence of two or more statistical
outputs refers to the degree to which the statistical processes by which they
were generated relied on the same concepts – classifications, definitions, and
target populations – and harmonised methods ,I VWDWLVWLFDO YDULDEOHV DUH
FRKHUHQW LW PHDQV WKDW WKH\ KDYH WKH SRWHQWLDO WR EH YDOLGO\ FRPELQHG DQG XVHG
MRLQWO\ $V LW ZDV QRWHG HDUOLHU H[DPSOHV RI VXFK MRLQW XVH UHIOHFW WKH VLWXDWLRQ
ZKHUH VWDWLVWLFDO RXWSXWV UHIHU WR WKH VDPH OHYHO RI DJJUHJDWLRQ IRUPV SRSXODWLRQ
UHIHUHQFH SHULRG WHUULWRULDO OHYHO HWF EXW FRQFHUQ GLIIHUHQW VHWV RI GDWD LWHPV HJ
GDWD RQ ZDJHV DQG VDODULHV DQG SURGXFWLRQ &RKHUHQFH FDQ DOVR RFFXU LQ WKH
RSSRVLWH VLWXDWLRQ LH ZKHUH WKH LQYHVWLJDWHG YDULDEOHV FRPSULVH WKH VDPH GDWD
LWHPV HJ HPSOR\PHQW GDWD EXW DUH FROOHFWHG IRU GLIIHUHQW UHIHUHQFH SHULRGV
UHJLRQV RU RWKHU GRPDLQV
9DULRXV GDWD DUH XVXDOO\ FROOHFWHG XVLQJ GLIIHUHQW SURFHVVHV HJ GLIIHUHQW
UHSRUWLQJ IRUPV DUH XVHG IRU WKH VXUYH\ RI HPSOR\PHQW DQG SURGXFWLRQ RXWSXW IRU
PHGLXP DQG ODUJH HFRQRPLF HQWLWLHV ± LQ DGGLWLRQ WKH IRUPHU LV FRQGXFWHG
PRQWKO\ DQG WKH ODWWHU TXDUWHUO\ KHQFH LQ WKLV VLWXDWLRQ RQH FDQ ORRN IRU
FRKHUHQFH RQO\ IRU TXDUWHUV $FFRUGLQJ WR (XURVWDW WKH WHUP FRKHUHQFH LV
XVXDOO\ XVHG ZKHQ DVVHVVLQJ WKH H[WHQW WR ZKLFK RXWSXWV IURP GLIIHUHQW VWDWLVWLFDO
SURFHVVHV KDYH WKH SRWHQWLDO WR EH UHOLDEO\ XVHG LQ FRPELQDWLRQ 0RUH SUHFLVHO\
290
$ 0áRGDN: Coherence and comparability …
FRKHUHQFH FRQFHUQV WKH SRVVLELOLW\ RI FRPELQLQJ WKH WZR DIRUHPHQWLRQHG YDULDEOHV
IRU WKH VDPH SRSXODWLRQ DQG WLPH SHULRG &RKHUHQFH GHSHQGV RQ VWDWLVWLFDO
SURFHVVHV OHDGLQJ WR D JLYHQ RXWSXW DQG LWV OHYHO LV DVVHVVHG RQ WKH EDVLV RI ILQDO
UHVXOWV LQ WHUPV RI TXDOLW\ RI WKHVH SURFHVVHV
$QRWKHU DVSHFW RI FRKHUHQFH LV statistical accuracy ,Q RUGHU WR XVH VHYHUDO
VHWV RI YDULDEOHV RU RQH ODUJH VHW RI YDULRXV YDULDEOHV LW LV YHU\ LPSRUWDQW WR
LQGLFDWH ZKLFK LQJUHGLHQWV RI WKH GHILQLWLRQ RI WKHVH YDULDEOHV DUH FRQVWDQW DQG
ZKLFK YDU\ DQG WR ZKDW H[WHQW )RU H[DPSOH LW LV GHVLUDEOH WR NQRZ ZKDW
PHWKRGRORJLFDO UXOHV ZHUH XVHG WR FROOHFW VWDWLVWLFV DERXW SURGXFWLRQ RXWSXW WKH
QXPEHU RI HPSOR\HHV RU WXUQRYHU LQ YDULRXV VXUYH\V DQG KRZ WKH\ FDQ EH
FRPSDUHG DFURVV YDULRXV JHRJUDSKLFDO DUHDV RU W\SHV RI HQWHUSULVHV 7KH SUHFLVLRQ
DQG DFFXUDF\ RI FROOHFWHG GDWD FDQ EH D VLJQLILFDQW IDFWRU )RU H[DPSOH LI RQH RI
VHYHUDO VXFFHVVLYH VXUYH\V FRQWDLQV PLVVLQJ YDOXHV DERXW WXUQRYHU IRU PDQ\ XQLWV
LW FDQ EH GURSSHG IURP WKH VWXG\ SURYLGHG RI FRXUVH WKLV DFWLRQ GRHV QRW DIIHFW
WKH UHVXOWLQJ DQDO\VLV
,W LV ZRUWK QRWLQJ WKDW there is a significant difference between coherence
and accuracy 1DPHO\ LI UHVXOWV RI WZR GLIIHUHQW SURFHVVHV RU RI WKH VDPH
SURFHVV DW GLIIHUHQW DJJUHJDWLRQ OHYHOV DUH FRPSDUHG GLIIHUHQFHV EHWZHHQ WKHP
DUH DQ HIIHFW RI LQFRQVLVWHQF\ RI UHOHYDQW HVWLPDWHV GXH WR WKHLU YDULRXV SUHFLVLRQ
7KLV LV DQ H[DPSOH RI LQDFFXUDF\ ZKLFK LV GLIIHUHQW IURP LQFRKHUHQFH VLQFH LW
GRHV QRW LQYROYH DQDO\]LQJ WKH SRVVLELOLW\ RI FRPELQLQJ WKHVH SURFHVVHV ,Q
JHQHUDO FI (XURVWDW FRKHUHQFHFRPSDUDELOLW\ UHIHUV WR GHVFULSWLYH
GHVLJQ PHWDGDWD LH FRQFHSWV DQG PHWKRGV DERXW WKH SURFHVVHV ZKHUHDV
DFFXUDF\ LV PHDVXUHG DQG DVVHVVHG LQ WHUPV RI RSHUDWLRQDO PHWDGDWD VDPSOLQJ
UDWHV GDWD FDSWXUH HUURU UDWHV HWF DVVRFLDWHG ZLWK WKH DFWXDO RSHUDWLRQV WKDW
SURGXFHG WKH GDWD $FFXUDF\ DOVR FRQFHUQV WKH SUREOHP RI GLIIHUHQFHV EHWZHHQ
YDULRXV HVWLPDWHV RI WDUJHW YDULDEOHV DQG WKHLU HUURUV HVSHFLDOO\ LI HUURU SURILOHV
DUH LQFRPSOHWH RU XQNQRZQ 7KH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW QRWH WKDW ZKHUH HUURU SURILOHV RI WKH VWDWLVWLFDO SURFHVVHV DUH NQRZQ DQG LQFOXGHG
ZLWKLQ WKH GHVFULSWLRQ RI DFFXUDF\ WKHUH LV QR QHHG IRU IXUWKHU UHIHUHQFH WR WKHP
XQGHU FRKHUHQFH DQG DOVR FRPSDUDELOLW\ 7KH\ JLYH DQ H[DPSOH ZKHUH LW LV
VXSSRVHG WKDW VDPSOLQJ HUURU ERXQGV DUH SXEOLVKHG IRU WZR YDOXHV RI WKH VDPH
GDWD LWHP IRU DGMDFHQW WLPH SHULRGV LQGLFDWLQJ WKH UDQJH ZLWKLQ ZKLFK D PRYHPHQW
IURP RQH SHULRG WR WKH QH[W PD\ EH GXH WR FKDQFH DORQH DQG GRHV QRW UHIOHFW DQ\
DFWXDO FKDQJH LQ WKH SKHQRPHQRQ EHLQJ PHDVXUHG ,I DQG RQO\ LI WKH PHDVXUHG
PRYHPHQW LV ODUJHU WKDQ WKHVH ERXQGV RQH FDQ GLVFXVV ZKHWKHU WKH PRYHPHQW LV
UHDO RU GXH WR WKH ODFN RI FRKHUHQFH DQG FRPSDUDELOLW\ 2Q WKH RWKHU KDQG WKH
DVVHVVPHQW RI FRKHUHQFH VKRXOG LQFOXGH HOHPHQWV QRW DQDO\VHG LQ WHUPV RI
DFFXUDF\ HJ RQ QRQUHVSRQVH RU QRQVDPSOLQJ HUURUV LI WKH\ ZHUH QRW WDNHQ LQWR
DFFRXQW ZKHQ DVVHVVLQJ DFFXUDF\
.|UQHU DQG 3XFK GLVFXVV (XURVWDW¶V DWWHPSWV WR GHILQH FRKHUHQFH DQG
QRWH WKDW WZR VRXUFHV SURYLGLQJ QRQGHYLDWLQJ UHVXOWV DUH WKHUHIRUH QRW QHFHVVDULO\
FRKHUHQW DV YDULRXV HIIHFWV LQ WKH XQGHUO\LQJ SURFHVVHV PLJKW PXWXDOO\
FRPSHQVDWH HDFK RWKHU 7KHUHIRUH LW LV HDVLHU WR UHFRJQL]H LQFRKHUHQFH WKDQ
STATISTICS IN TRANSITION-new series, Summer 2013
291
FRKHUHQFH 7KHLU RSHUDWLRQDO GHILQLWLRQ VWDUWV IURP VXFK GHYLDWLRQV RI UHVXOWV RI
WZR GLIIHUHQW SURFHVVHV DQG WDNHV WKH H[SHFWDWLRQV RI XVHUV UHJDUGLQJ FRQVLVWHQF\
RI UHVXOWV LQWR DFFRXQW ,W DVVXPHV WKDW VWDWLVWLFDO RXWSXWV UHIHUULQJ WR LGHQWLFDO
FRQFHSWV KDYH WR EH QXPHULFDOO\ FRQVLVWHQW 7KDW LV WZR UHODWHG VXUYH\V DUH
FRKHUHQW LI WKH YDOXH RI VRPH EDVLF YDULDEOH REVHUYHG LQ ERWK VXUYH\V GRHV QRW
GHYLDWH JLYHQ WKDW LGHQWLFDO FRQFHSWV DUH EHLQJ XVHG IURP WKDW H[SHFWHG E\ WKH
XVHU )RU LQVWDQFH LW FDQ EH WKH QXPEHU RI HQWHUSULVHV LQ PRQWKO\ HPSOR\PHQW
VXUYH\V DQG TXDUWHUO\ UHSRUWV RQ ILQDQFLDO UHVXOWV
7KH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW YLHZ WKH UHODWLRQVKLS
EHWZHHQ FRKHUHQFHFRPSDUDELOLW\ DQG DFFXUDF\ E\ QRWLQJ WKDW WKH QXPHULF
FRQVLVWHQF\ RI HVWLPDWHV GHSHQGV RQ WZR IDFWRUV
x ORJLFDO FRQVLVWHQF\ FDOOHG KHUH FRKHUHQFHFRPSDUDELOLW\ RI WKH SURFHVVHV WKDW
JHQHUDWHG WKRVH HVWLPDWHV DQG
x HUURUV WKDW DFWXDOO\ RFFXUUHG LQ WKRVH SURFHVVHV LQ JHQHUDWLQJ WKH HVWLPDWHV
DQG FRQFOXGH WKDW FRKHUHQFH DQG FRPSDUDELOLW\ LV D SUHUHTXLVLWH IRU QXPHULFDO
FRQVLVWHQF\ 7KH GHJUHH RI FRKHUHQFHFRPSDUDELOLW\ GHWHUPLQHV WKH SRWHQWLDO IRU
QXPHULFDO FRQVLVWHQF\ EXW GRHV QRW JXDUDQWHH LW VLQFH LW DOVR GHSHQGV RQ HUURUV
2.2. Types of coherence
,Q WHUPV RI EXVLQHVV VWDWLVWLFV WZR W\SHV RI FRKHUHQFH DUH XVXDOO\
GLVWLQJXLVKHG
x internal coherence ± FRKHUHQFH ZLWKLQ D XQLIRUP VHW RI DQQXDO DQG VKRUW±WHUP
EXVLQHVV VWDWLVWLFV RU EHWZHHQ GDWD GHULYHG IURP GLIIHUHQW VRXUFHV VXUYH\V
DGPLQLVWUDWLYH ,175$67$7 HWF
x external coherence ± FRQVLVWHQF\ EHWZHHQ EXVLQHVV VWDWLVWLFV DQG PDLQ
PDFURHFRQRPLF LQGLFDWRUV HJ ZLWK QDWLRQDO DFFRXQWV VWDWLVWLFV RQ SULFHV DQG
ZDJHV H[WHUQDO WUDGH HWF
,Q WKH ILUVW FDVH WKHUH DUH PDQ\ SRVVLEOH FDXVHV RI GLYHUJHQW WUHQGV EHWZHHQ
VKRUWWHUP LQGLFHV DQG DQQXDO EXVLQHVV VWDWLVWLFV 'DYLHV DQG %HUJGDKO
et al. DQDO\]H VHYHUDO DVSHFWV LQ WHUPV RI ZKLFK FRKHUHQFH VKRXOG EH
SHUFHLYHG
)LUVW LW LV LPSRUWDQW KRZ D YDULDEOH LV GHILQHG $ W\SLFDO GHILQLWLRQ LQFOXGHV
WKH PDLQ IHDWXUHV RI WKH YDULDEOH WR EH FROOHFWHG VXFK DV VWDWLVWLFDO PHDVXUH WRWDO
PHDQ PHGLDQ HWF XQLW RI PHDVXUHPHQW HJ GLIIHUHQW XQLWV DUH XVHG WR PHDVXUH
SURGXFWLRQ RXWSXW QXPEHU RI KRXUV ZRUNHG QXPEHU RI HPSOR\HHV ZDJHV DQG
VDODULHV HWF XQLW RI REVHUYDWLRQ HQWHUSULVH .$8 /.$8 ORFDO XQLWV HWF
GRPDLQ GHILQLWLRQ RI VXESRSXODWLRQ ± HJ XVLQJ WKH 1$&( FODVVLILFDWLRQ ± RU
FODVVHV HJ E\ QXPEHU RI HPSOR\HHV DQG UHIHUHQFH WLPHV D WLPH SRLQW RU SHULRG
ZKLFK XQLWV DQG YDULDEOH YDOXHV UHODWH WR
7KH SUREOHP RI FRKHUHQFH ZLWK UHVSHFW WR WKHVH DVSHFWV LV HTXLYDOHQW WR WKH
FRPSDUDELOLW\ RI GDWD RYHU VXFK IDFWRUV 7KDW LV RQH H[SHFWV FRPSDUDELOLW\ RYHU
WLPH EHWZHHQ FRXQWULHV EHWZHHQ QRQ±JHRJUDSKLFDO JURXSV RU IXQFWLRQDO DUHDV
292
$ 0áRGDN: Coherence and comparability …
DQG EHWZHHQ VWDWLVWLFV IURP VHYHUDO VXUYH\V 7KHVH LVVXHV ZLOO EH GHVFULEHG
EURDGO\ LQ 6HFWLRQ 1RZ LW LV HQRXJK WR QRWH WKDW LQ SUDFWLFH UHIHUHQFH WLPHV DUH
PDLQO\ WLPH LQWHUYDOV VXFK DV FDOHQGDU \HDU TXDUWHU RU PRQWK VRPHWLPHV WKH\
DUH DOVR SRLQWV LQ WLPH HJ VW -DQXDU\ RI WKH UHIHUHQFH \HDU 7KH UHIHUHQFH WLPH
VKRXOG EH WKH VDPH IRU DOO XQLWV DQG YDULDEOHV 8VXDOO\ UHIHUHQFH WLPHV DJUHH IRU
DOO YDULDEOHV DQG XQLWV LQ D )33 )RU PRQWKO\ VWDWLVWLFV IRU LQVWDQFH WKLV PHDQV
WKDW WKH GHOLQHDWLRQ RI XQLWV VKRXOG UHIHU WR WKH FXUUHQW PRQWK
7KH VHFRQG W\SH RI FRKHUHQFH LQ EXVLQHVV VWDWLVWLFV LH H[WHUQDO FRKHUHQFH
FDQ EH SHUFHLYHG LQ WHUPV RI ORJLFDO UHODWLRQVKLSV EHWZHHQ WDUJHW VWDWLVWLFV )RU
H[DPSOH ZKHQ ERWK PRQWKO\ DQG DQQXDO VWDWLVWLFV RQ H[SHQGLWXUHV DUH XVHG WKH
VXP RI WZHOYH PRQWKO\ YDOXHV VKRXOG VXP XS WR WKH DQQXDO WRWDO
7KH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW DOVR LQGLFDWH VHYHUDO RWKHU
W\SHV RI FRKHUHQFH UHODWHG VWULFWO\ WR EXVLQHVV VWDWLVWLFV
x coherence between short-term (i.e. sub-annual) and annual statistics D JRRG
H[DPSOH DUH PRQWKO\ DQG DQQXDO SURGXFWLRQ GDWD IRU WKH VDPH LQGXVWULHV LQ WKH
VDPH UHJLRQ
x coherence with the National Accounts ± XQGHUOLQHV WKH NH\ LPSRUWDQFH RI
FRKHUHQFH IRU HFRQRPLF VXUYH\V XVLQJ WKH QDWLRQDO DFFRXQWV WKH 1DWLRQDO
$FFRXQWV FRPSLODWLRQ SURFHVV ZLOO GHWHFW WKH SRVVLEOH ODFN RI FRKHUHQFH
x coherence with other statistics IRU H[DPSOH FRKHUHQFH EHWZHHQ HPSOR\PHQW
SURGXFHG E\ D ODERXU IRUFH VXUYH\ RI KRXVHKROG PHPEHUV DQG WKH QXPEHU RI
HPSOR\HHV SURGXFHG E\ DQ HFRQRPLF VXUYH\ RI HQWHUSULVHV
%HUJGDKO et al. QRWHG WKDW GLIILFXOWLHV HQFRXQWHUHG E\ WKH XVHU RIWHQ
GHSHQG VWURQJO\ RQ WKH µGLVWDQFH¶ EHWZHHQ VWDWLVWLFV XVHG MRLQWO\ VLQFH GHILQLWLRQV
RI YDULDEOHV XVHG HYHQ LQ WKH VDPH VXUYH\ FDQ YDU\ LQ WHUPV RI UHIHUHQFH WLPHV ± D
SHULRG LQ RQH FDVH D SRLQW LQ WLPH LQ DQRWKHU 0RUHRYHU UHIHUHQFH WLPHV PD\
FRUUHVSRQG WR WKDW RI WKH VDPSOH IUDPH RU WKH YDULDEOH DQG GHILQLWLRQV RI
HQWHUSULVHV FDQ YDU\ LQ GLIIHUHQW FRXQWULHV DFURVV WKH (8
2.3. Sources of incoherence
.|UQHU DQG 3XFK QRWH WKDW GHYLDWLQJ UHVXOWV KDYH WZR PDLQ VRXUFHV
x differences due to concepts OLNH WKH WDUJHW SRSXODWLRQ WKH UHIHUHQFH SHULRG RU
WKH GHILQLWLRQ RI WKH LWHPV IRU DQDO\VLV DQG
x differences due to methods used HJ GDWD FROOHFWLRQ PHWKRGV DQG SURFHGXUHV
WKH GDWD SURFHVVLQJ DSSURDFK RU WKH VDPSOLQJ GHVLJQ
7KH\ LQYHVWLJDWH WKH *HUPDQ /DERXU )RUFH 6XUYH\ DQG 1DWLRQDO $FFRXQWV E\
LGHQWLI\LQJ DQG TXDQWLI\LQJ GHILQLWLRQDO GLIIHUHQFHV DQG WKHQ UHFRJQL]LQJ
PHWKRGRORJLFDO GLIIHUHQFHV 0HWKRGRORJLFDO GLIIHUHQFHV FDQ FRYHU YDULRXV
)33 ± )LQLWH 3RSXODWLRQ 3DUDPHWHUV D JHQHUDO QRWLRQ FRYHULQJ EDVLF GHVFULSWLYH VWDWLVWLFV IRU ILQLWH
SRSXODWLRQ ZKLFK GLVWLQJXLVK LW IURP FKDUDFWHULVWLFV RI WKH LQILQLWH SRSXODWLRQ LQ VWDWLVWLFDO
PRGHOOLQJ HJ SRSXODWLRQ WRWDO DQG DYHUDJH RI D JLYHQ YDULDEOH WKH UDWLR RI WKH SRSXODWLRQ
DYHUDJHV RI WZR YDULDEOHV WKH SRSXODWLRQ YDULDQFH RU WKH SRSXODWLRQ PHGLDQ RI D JLYHQ YDULDEOH
HWF FI %HUJGDKO et al. STATISTICS IN TRANSITION-new series, Summer 2013
293
DVSHFWV VXFK DV DOO HOHPHQWV RI VXUYH\ GHVLJQ DQG HUURUV EXW DOVR WKH DFFRXQWLQJ
UXOHV DQG HVWLPDWLRQ PHWKRGRORJ\ ,I PHWKRGRORJLFDO GLIIHUHQFHV DUH VLJQLILFDQW
WKHQ PHWKRGVUHODWHG GLIIHUHQFHV DUH XVXDOO\ QRW HDVLO\ LGHQWLILHG DQG VRPH
DGGLWLRQDO DOJRULWKPV DUH QHFHVVDU\
6RXUFHV RI LQFRKHUHQFH FDQ DOVR EH FRPELQHG 7KDW LV HUURUV RI RQH W\SH DUH
XVXDOO\ WR VRPH H[WHQW LQKHUHQW LQ WKH VHFRQG )RU H[DPSOH .|UQHU DQG 3XFK
WKH VDPSOLQJ HUURU LV D FRPELQDWLRQ RI HIIHFWV GXH WR WKH VDPSOLQJ GHVLJQ
DQG GHYLDWLRQV IURP LW LQ SUDFWLFDO LPSOHPHQWDWLRQ 6LPLODUO\ WKH VXUYH\ PRGH
DOEHLW SDUW RI WKH PHWKRGRORJ\ ZLOO GLUHFWO\ LQIOXHQFH WKH UHVXOWV ZKLFK FDQ EH
REWDLQHG
'LIIHUHQFHV EHWZHHQ VKRUW±WHUP DQG DQQXDO VWDWLVWLFV UHVXOW IURP IUDPHV DQG
YDULRXV XQLWV XVHG LQ WKH VRXUFHV $OVR D ORW GHSHQGV RQ WKH FKRLFH RI WKH GRPDLQ
IRU XQLW DJJUHJDWLRQ HJ LQ VXUYH\LQJ WKH VDPH VWDWLVWLFV YDULDEOHV GLIIHUHQW
GDWD FDQ EH REWDLQHG GHSHQGLQJ RQ ZKHWKHU XQLWV DUH JURXSHG E\ WKH W\SH RI
DFWLYLW\ RU E\ ORFDWLRQ ,W LV ZRUWK QRWLQJ WKDW LI VKRUW±WHUP FKDQJHV RYHU WLPH ±
LH WKH UHDOL]DWLRQ DQG WUHQG RI WLPH VHULHV ± DUH DQDO\VHG FRKHUHQFH FDQ RQO\
UHIHU WR LQWUD±DQQXDO UHVXOWV .|UQHU DQG 3XFK QRWH WKDW FRKHUHQFH RI WLPH
VHULHV ZLOO WKHUHIRUH EH FRYHUHG LQ GHGLFDWHG VHFWLRQV IRFXVLQJ RQ DVSHFWV VSHFLILF
WR WKH VKRUWHU HJ PRQWKO\ DQG TXDUWHUO\ WLPH VHULHV
%HFDXVH FRKHUHQFH DQG FRPSDUDELOLW\ KDYH XVXDOO\ VLPLODU UHDVRQV WKHLU
YDULRXV DVSHFWV ZLOO EH GHVFULEHG LQ GHWDLO LQ WKH SDUW RI WKLV SDSHU GHYRWHG WR
FRPSDUDELOLW\ LH 6HFWLRQ 7KLV VXEVHFWLRQ ZDV RQO\ DQ RYHUYLHZ RI WKH
JHQHUDO QDWXUH RI WKHVH SUREOHPV
2.4. Measurement of coherence
7KH PHDVXUHPHQW RI FRKHUHQFH DQG PRUH SUHFLVHO\ LQFRKHUHQFH LV
VRSKLVWLFDWHG 2I FRXUVH WKH VLPSOHVW ZD\ LQYROYHV FRPSXWLQJ GLIIHUHQFHV
EHWZHHQ UHVXOWV RI DQDO\]HG VXUYH\V RU GDWD VRXUFHV 2QH VKRXOG UHPHPEHU
KRZHYHU WKDW QRW DOO DVSHFWV RI FRKHUHQFH DUH PHDVXUDEOH DQG QXPHULFDO
DVVHVVPHQW PD\ EH WKH UHVXOW RI D QXPEHU RI IDFWRUV VXFK DV SURSHUWLHV RI
FRQFHSWV DQG PHWKRGV XVHG &RRN QRWHV WKDW coherence in economic
statistics is increasingly dependent on integration of information obtained from
individual large enterprises from different sources. Making balancing
adjustments at industry or industry group level is of diminishing effectiveness as
economic activity is concentrated in fewer enterprises, where coverage rates
differ across surveys. In some industries, such as pension funds, the scale of intercompany transfers is so large that it makes it difficult to estimate industry change
in an unbiased manner. Coherence is improved by survey design, and most
countries have a long way to go, in doing as well as they could. Much
improvement is still possible in the way that statistical frames are adopted in
individual surveys
,W LV WKHUHIRUH YHU\ LPSRUWDQW WR EH DZDUH RI KRZ WKHVH DVSHFWV DIIHFW
LQFRQVLVWHQFLHV $ JRRG H[DPSOH RI VXFK TXDOLW\ DVVHVVPHQW LV WKH VWXG\
294
$ 0áRGDN: Coherence and comparability …
FRQGXFWHG E\ &DVFLDQR et al. ZKR DQDO\VH FRKHUHQFH E\ VWXG\LQJ WKH
GLIIHUHQFH LQ WKH ILQDO HVWLPDWH IRU WXUQRYHU DQG YDOXH DGGHG 7KH\ FRPSDUH WKH
HVWLPDWLRQ RI WXUQRYHU REWDLQHG VROHO\ RQ WKH EDVLV RI WKH VXUYH\ ZLWK WKDW EDVHG
RQ WKH VXUYH\ FRPELQHG ZLWK GDWD IURP DGPLQLVWUDWLYH VRXUFHV 7KH QHZ HVWLPDWH
LV YHU\ FORVH WR WKH LQLWLDO RQH ZLWK D SHUFHQWDJH GLIIHUHQFH RI DOWKRXJK
WKHUH LV D KLJK YDULDELOLW\ LQ UHVXOWV ZKHQ D EUHDNGRZQ E\ HFRQRPLF DFWLYLWLHV DQG
VL]H FODVVHV LV XVHG 2WKHU IDFWRUV WKDW KDYH DQ LPSDFW RQ WKH DVVHVVPHQW DUH
ZHLJKWLQJ DQG QRQUHVSRQVH WKH GLIIHUHQFH GXH WR XQLW QRQUHVSRQVH LV KLJKHU LQ
FRQVWUXFWLRQ DFWLYLWLHV DQG ORZHU LQ VHUYLFH VHFWRU ZKLFK KDV SURGXFHG D KLJKHU
HVWLPDWH RI WXUQRYHU IRU PLFUR DQG VPDOO ILUPV DQG D VWURQJ XQGHUHVWLPDWH IRU
PHGLXP HQWHUSULVHV HVSHFLDOO\ LQ VHUYLFH VHFWRUV
7KH PHDVXUH RI RYHUDOO LQDFFXUDF\ VKRXOG FRQFHUQ DOO GDWD VRXUFHV QRW RQO\
WKH VDPSOH 2QH VKRXOG DOVR H[SHFW VLJQLILFDQW LH UHODWHG WR PHWKRGRORJ\ RU
QRQUHVSRQVH DQG QRQVLJQLILFDQW JHQHUDWHG E\ HJ HFRQRPHWULFDOO\ PRGHOOHG
µZKLWH QRLVH¶ LH UDQGRP GLVWXUEDQFHV LQDFFXUDFLHV 2QH FDQ H[SHFW WKDW
UHODWLRQVKLSV DQG FRQQHFWLRQV EHWZHHQ SDUDPHWHUV ZLOO DOVR EH UHIOHFWHG LQ WKHLU
HVWLPDWHV )RU H[DPSOH WKH VXP RI PRQWKO\ HVWLPDWHV RI WKH QXPEHU RI
HPSOR\HHV VKRXOG EH HTXDO WR WKH UHOHYDQW DQQXDO HVWLPDWH 2I FRXUVH LQ VRPH
VLWXDWLRQV HJ LQ WKH FDVH RI LQGLFHV FRQVLVWHQF\ FDQ RQO\ EH DSSUR[LPDWH EXW
VXFK DSSUR[LPDWLRQV VKRXOG EH DV SUHFLVH DV SRVVLEOH 6LJQLILFDQW GLIIHUHQFHV LQ
HVWLPDWHV IRU WKH VDPH SDUDPHWHU LPSO\ LQFRKHUHQFH 2QH VKRXOG KRZHYHU EHDU
LQ PLQG WKDW VXFK SUREOHPV FDQ UHVXOW QRW RQO\ IURP GHILQLWLRQV EXW DOVR IURP
V\VWHPDWLF HUURUV 7KHUHIRUH VRXUFHV RI WKHVH SUREOHPV VKRXOG DOZD\V EH
FDUHIXOO\ DQDO\]HG DQG UHFRJQL]HG
3 'DYLHV SURYLGHV D FRPSDULVRQ EHWZHHQ VKRUWWHUP VWDWLVWLFV DQQXDO
VWDWLVWLFV DQG QDWLRQDO DFFRXQWV LQ 6ZHGHQ ,Q KLV H[DPSOH VKRUWWHUP VWDWLVWLFV
PHDVXUHV RZQ SURGXFWLRQ RXWSXW ZKHUHDV WKH RWKHU WZR VHWV RI VWDWLVWLFV HVWLPDWH
WKH YDOXH DGGHG +H REVHUYHG WKDW WKH JURZWK UDWH EHWZHHQ GLIIHUHQW \HDUV ZDV
XQXVXDOO\ ODUJH EXW KH DOVR QRWLFHG WKDW LI JURZWK UDWHV IRU RXWSXW DQG YDOXH DGGHG
ZHUH DVVXPHG WR EH HTXDOVLPLODU VRPH VKRUWWHUP VWDWLVWLFV IRU RXWSXW FRXOG EH
UHJDUGHG DV D ILUVW HVWLPDWH RI WKH YDOXH DGGHG
3. Comparability
,Q PDQ\ SURIHVVLRQDO SDSHUV WKH WHUPV ³FRKHUHQFH´ DQG ³FRPSDUDELOLW\´ DUH
XVHG LQWHUFKDQJHDEO\ 6XFK XVDJH FDQ EH MXVWLILHG E\ WKH IDFW WKDW FRPSDUDELOLW\ LV
D VSHFLDO FDVH RI FRKHUHQFH DQG LQYROYHV VLWXDWLRQV ZKHUH VWDWLVWLFDO RXWSXWV UHIHU
WR WKH VDPH GDWD LWHPV DQG WKH DLP RI FRPELQLQJ WKHP LV WR PDNH FRPSDULVRQV
RYHU WLPH RU DFURVV GRPDLQV +RZHYHU WKH LGHD RI FRPSDUDELOLW\ KDV LWV VSHFLDO
IHDWXUHV DQG WKHUHIRUH GHVHUYHV D EURDGHU GHVFULSWLRQ DQG DQDO\VLV 7KHUHIRUH LWV
GHILQLWLRQ ZLOO EH SUHVHQWHG DORQJ ZLWK KLJKOLJKWLQJ KRZ LW GLIIHUV IURP WKH PDLQ
FRQFHSWV RI FRKHUHQFH DQG GLVFXVVLQJ VRPH PHWKRGV WKDW HQDEOH XV WR DVVHVV DQG
LPSURYH WKH FRPSDUDELOLW\ RI VWDWLVWLFDO RXWSXWV
STATISTICS IN TRANSITION-new series, Summer 2013
295
3.1. Definition of comparability and its relation to the problem of coherence
7KH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW QRWH WKDW XQOLNH FRKHUHQFH
FRPSDUDELOLW\ LV XVHG ZKHQ DVVHVVLQJ WKH H[WHQW WR ZKLFK RXWSXWV IURP
QRPLQDOO\ WKH VDPH VWDWLVWLFDO SURFHVV EXW IRU GLIIHUHQW WLPH SHULRGV DQGRU IRU
GLIIHUHQW UHJLRQV KDYH WKH SRWHQWLDO WR EH UHOLDEO\ XVHG LQ FRPELQDWLRQ UHFDOO WKDW
FRKHUHQFH FRQFHUQV WKH SRVVLELOLW\ RI FRPELQLQJ GLIIHUHQW YDULDEOHV IRU WKH VDPH
UHJLRQ RU WLPH SHULRG 7KHUHIRUH FRKHUHQFH LV D VWURQJHU QRWLRQ 0RUH SUHFLVHO\
LI VHYHUDO GLIIHUHQW WLPH SHULRGV DQG WKH VDPH SRSXODWLRQ DQG UHJLRQ DUH DQDO\VHG
WKHQ WKH YDOLGLW\ RI WKH FRPELQHG XVH RI HJ HPSOR\PHQW GDWD IRU WKLV VWUXFWXUH
ZLOO EH SHUFHLYHG LQ WKH FRQWH[W RI FRPSDUDELOLW\ ZKHUHDV FRPELQLQJ WKLV YDULDEOH
ZLWK HJ GDWD RQ ZDJHV DQG VDODULHV IRU WKH VDPH UHIHUHQFH SRLQWV ZLOO EH
FRQVLGHUHG LQ WHUPV RI FRKHUHQFH
+HQFH WKH FRPSDUDELOLW\ UHIHUV WR WKH SRVVLELOLW\ RI PDNLQJ HIILFLHQW
FRPSDULVRQV EHWZHHQ XQLWV DQG YDULDEOHV DFFRUGLQJ WR YDULRXV DVSHFWV DQG FULWHULD
2QH PRVW IUHTXHQWO\ XVHG EDVLV RI VXFK FRPSDULVRQV LV WLPH 7R PDNH VXFK
FRPSDULVRQV SRVVLEOH WKH VWDELOLW\ RI GHILQLWLRQV LQ VXFFHVVLYH VXUYH\
DGPLQLVWUDWLRQV VKRXOG EH HQVXUHG DQG WKH µVWDWH RI WKH DUW¶ LQ DOO WLPH SHULRGV
VKRXOG EH ZHOO GHVFULEHG 7R GR VR RQH VKRXOG UHPHPEHU WKDW ZKHQ D FKDQJH LV
PDGH VSHFLDO PHDVXUHV DUH UHFRPPHQGHG WR LPSURYH FRPSDUDELOLW\ IRU H[DPSOH
SURGXFLQJ VWDWLVWLFV LQ ERWK ZD\V RQ RQH RFFDVLRQ RU HYHQ UH±HVWLPDWLQJ SDUW RI
WKH ROG VHULHV LQ WHUPV RI QHZ GHILQLWLRQV DFFRUGLQJ WR %HUJGDKO et al. 3.2. Sources of incomparability
7KH GRFXPHQW E\ (XURVWDW SURYLGHV WKH IROORZLQJ OLVW RI VRXUFHV RI WKH
ODFN RI FRPSDUDELOLW\ ZKLFK FDQ EH WKH EDVLV IRU GHVLJQLQJ HDFK TXDOLW\ DQDO\VLV
DQG TXDOLW\ UHSRUW
&RQFHSWV
x 6WDWLVWLFDO FKDUDFWHULVWLFV
x 6WDWLVWLFDO PHDVXUH LQGLFDWRU
x 6WDWLVWLFDO XQLW
x 7DUJHW SRSXODWLRQ
x )UDPH SRSXODWLRQ
x 5HIHUHQFH SHULRG DQG IUHTXHQF\
x 6WXG\ GRPDLQV
x *HRJUDSKLFDO FRYHUDJH IRU FRPSDUDELOLW\ RYHU WLPH
x 6WDQGDUGV
x 6WUXFWXUH HIIHFWV
x &RQFHSWXDO DVSHFWV VSHFLILF IRU D GRPDLQ XQGHU VWXG\
0HDVXUHPHQW 4XDOLW\ 'LPHQVLRQV
x 6DPSOH GHVLJQ
x 'DWD FROOHFWLRQ
296
$ 0áRGDN: Coherence and comparability …
x 'DWD SURFHVVLQJ
x (VWLPDWLRQ
0HDVXUHPHQW DVSHFWV VSHFLILF IRU D GRPDLQ XQGHU VWXG\ WKHVH LQFOXGH
FKDUDFWHULVWLFV SHUWLQHQW WR DQ\ VSHFLILF GRPDLQ HJ WKUHVKROGV IRU )RUHLJQ 7UDGH
6WDWLVWLFV
$V RQH FDQ VHH WKH SRVVLEOH UHDVRQV DUH QXPHURXV EXW WKH DXWKRUV RI WKH QH[W
YHUVLRQ RI WKLV GRFXPHQW (XURVWDW GHVFULEH WKHVH SUREOHPV LQ D PXFK
PRUH FRQVROLGDWHG IRUP 7KH\ DUJXH WKDW SRVVLEOH UHDVRQV IRU WKH ODFN RI
FRPSDUDELOLW\ EHWZHHQ RXWSXWV RI VWDWLVWLFDO SURFHVVHV PD\ EH VXPPDULVHG XQGHU
WZR EURDG KHDGLQJV XVHG DOUHDG\ WR SUHVHQW FDXVHV RI LQFRKHUHQFH LH ±
GLIIHUHQFHV LQ FRQFHSWV DQG GLIIHUHQFHV LQ PHWKRGV 7KLV LV WKH VWDUWLQJ SRLQW IRU
LQWURGXFLQJ PRUH GHWDLOHG FODVVLILFDWLRQ )LUVW FLUFXPVWDQFHV FRQQHFWHG ZLWK
FRQFHSWV ZKLFK DIIHFW FRPSDUDELOLW\ ZLOO EH GHVFULEHG
Target population – units and coverage 3UREOHPV ZLWK FRPSDUDELOLW\ PD\
UHVXOW IURP WKH IDFW WKDW WDUJHW SRSXODWLRQV FRXOG GLIIHU IRU WZR VWDWLVWLFDO
SURFHVVHV RU IRU WKH VDPH SURFHVV RYHU WLPH LQ D YDULHW\ RI GLIIHUHQW ZD\V 7KHVH
GLIIHUHQFHV FDQ DOVR FRQFHUQ WKH VSDWLDO DVSHFW RI GHILQLWLRQV RI D JLYHQ QRWLRQ RU
WKH ODFN RI LWV KDUPRQL]DWLRQ )RU H[DPSOH PDQ\ (8 FRXQWULHV XVH D GLIIHUHQW
GHILQLWLRQ RI HFRQRPLFDOO\ DFWLYH SRSXODWLRQ LQ /DERXU )RUFH 6XUYH\ /)6 7KLV
FDQ UHVXOW IURP YDULRXV OHJLVODWLRQV FRQFHUQLQJ WKH UHWLUHPHQW DJH IRU H[DPSOH LQ
3RODQG LW LV \HDUV IRU ZRPHQ DQG \HDUV IRU PHQ EXW LQ )UDQFH WKH
UHWLUHPHQW DJH ZDV HVWDEOLVKHG DW IRU ERWK JHQGHUV ,Q WKH 86$ SHUVRQV
ZDLWLQJ WR VWDUW D QHZ MRE DUH FODVVLILHG DV HPSOR\HG EXW LQ (8 /)6 ± DV
XQHPSOR\HG 2Q WKH RWKHU KDQG HYHQ LQ RQH FRXQWU\ WKLV GHILQLWLRQ FDQ GLIIHU
RYHU WLPH )RU H[DPSOH PDQ\ FRXQWULHV DUH SODQQLQJ WR H[WHQG WKH DJH IRU
UHWLUHPHQW ± HJ LQ 3RODQG WR DQG LQ )UDQFH WR IRU ERWK JHQGHUV 7KLV IDFW
ZLOO UHVXOW LQ FKDQJHV RI WKH GHILQLWLRQ RI WKH WDUJHW SRSXODWLRQ DQG WKH
FRPSDUDELOLW\ RI IXWXUH VWDWLVWLFV RYHU WLPH (XURVWDW DOVR SURYLGHV DQRWKHU
H[DPSOH ± PRQWKO\ VWDWLVWLFV RI LQGXVWU\ PLJKW RQO\ LQFOXGH PDQXIDFWXULQJ
HQWHUSULVHV ZKHUHDV DQRWKHU VWDWLVWLFDO RXWSXW ZLWK WKH VDPH QDPH PLJKW LQFOXGH
PDQXIDFWXULQJ DQG HOHFWULFLW\ JDV DQG ZDWHU SURGXFWLRQ 7ZR UHODWHG EXW GLIIHUHQW
VXUYH\V PD\ XVH YDULRXV XQLWV WR EH LQYHVWLJDWHG ± RQH FDQ XVH DQ HQWHUSULVH
ZKHUHDV DQRWKHU ± ORFDO XQLW /$8 RU NLQG RI DFWLYLW\ XQLW /.$8
Geographic coverage ± VRPH VSDWLDO DUHDV PD\ EH LQFOXGHG LQ WKH VXUYH\ RI
RQH FRXQWU\ DQG H[FOXGHG LQ DGYDQFH IURP DQRWKHU )RU H[DPSOH ZDJHV DQG
VDODULHV LQ PDQXIDFWXULQJ FDQ EH LQYHVWLJDWHG RQO\ LQ XUEDQ DUHDV ZKHUH WKLV NLQG
RI HFRQRPLF DFWLYLW\ LV PRVWO\ FRQFHQWUDWHG RU DOVR LQ UXUDO DUHDV 0RUHRYHU WKH
LQWHUQDO VWUXFWXUH RI VDPSOHG WHUULWRULDO DUHDV LQ RQH FRXQWU\ PD\ EH GLIIHUHQW IURP
WKRVH LQ DQRWKHU RQH $V D UHVXOW WKH FRYHUDJH RI IXQFWLRQDO DUHDV ZLOO DOVR EH
GLIIHUHQW
Reference period ± WLPH SRLQWV RI PHDVXUHPHQW RI D JLYHQ IHDWXUH ZLWKLQ D
JLYHQ VXUYH\ PD\ GLIIHU )RU H[DPSOH FI (XURVWDW LQ D VXUYH\ RI
HPSOR\HHV DQ HQWHUSULVH PLJKW EH DVNHG IRU WKH QXPEHU RI IXOOWLPH HPSOR\HHV RQ
STATISTICS IN TRANSITION-new series, Summer 2013
297
WKH WKLUG 0RQGD\ LQ WKH PRQWK RU RQ WKH ILUVW GD\ RI WKH PRQWK DQ DQQXDO VXUYH\
PD\ UHIHU WR D ILVFDO \HDU EHJLQQLQJ LQ 0DUFK DQRWKHU WR D FDOHQGDU \HDU
Data item definitions, classifications ± LW LV D YHU\ LPSRUWDQW FDXVH RI WKH
ODFN RI FRPSDUDELOLW\ $ YDULHW\ RI QRQKDUPRQLVHG PHWKRGRORJLFDO GHILQLWLRQV
DUH LQ XVH $ JRRG H[DPSOH DUH GLIIHUHQFHV EHWZHHQ FRXQWULHV ZKLFK VHHP WR EH
XQDYRLGDEOH HJ LQ WHUPV RI DFFRXQWLQJ V\VWHPV GHILQLWLRQV RI XQLWV DQG
YDULDEOHV HWF ,Q WKH FRPPRQ (8 PHWKRGRORJ\ HJ H[SUHVVHG LQ 85%$1
$8',7 SURMHFW WKH FRQFHSWV RI ³HPSOR\HHV´ DQG ³HPSOR\HG SHUVRQV´ DUH QRW
UHDOO\ GLVWLQJXLVKHG +RZHYHU LQ 3ROLVK RIILFLDO VWDWLVWLFV HDFK RI WKHVH WHUPV KDV
D GLIIHUHQW PHDQLQJ 1DPHO\ HPSOR\HHV DUH GHILQHG DV SHUVRQV SHUIRUPLQJ ZRUN
DQG UHFHLYLQJ HDUQLQJV RU LQFRPH LH
x HPSOR\HHV KLUHG RQ WKH EDVLV RI HPSOR\PHQW FRQWUDFWV ODERXU FRQWUDFW
SRVWLQJV DSSRLQWPHQW RU HOHFWLRQ
x HPSOR\HUV DQG RZQ DFFRXQW ZRUNHUV
x RXWZRUNHUV
x DJHQWV LQFOXGLQJ FRQWULEXWLQJ IDPLO\ ZRUNHUV DQG SHUVRQV HPSOR\HG E\
DJHQWV
x PHPEHUV RI DJULFXOWXUDO FR±RSHUDWLYHV DJULFXOWXUDO SURGXFHUV¶ FR
RSHUDWLYHV RWKHU FRRSHUDWLYHV HQJDJHG LQ DJULFXOWXUDO SURGXFWLRQ DQG
DJULFXOWXUDO IDUPHUV¶ FR±RSHUDWLYHV
x FOHUJ\ IXOILOOLQJ WKHLU REOLJDWLRQV
'DWD DERXW HPSOR\HHV DUH SUHVHQWHG ZLWKRXW FRQYHUWLQJ SDUWWLPH HPSOR\HHV
LQWR IXOOWLPH HPSOR\HHV DQG DSSO\LQJ WKH SULQFLSOH WKDW HDFK SHUVRQ LV OLVWHG RQFH
DFFRUGLQJ WR WKHLU PDLQ MRE ,QVWHDG WKH QXPEHU RI HPSOR\HG SHUVRQV LV GHILQHG
DV WKH VXP RI WKH QXPEHU RI IXOOWLPH HPSOR\HHV DQG WKH QXPEHU RI SDUW±WLPH
HPSOR\HHV )XOO±WLPH HPSOR\HHV DUH SHUVRQV HPSOR\HG RQ D IXOO±WLPH EDVLV DV
GHILQHG E\ D JLYHQ FRPSDQ\ RU IRU D JLYHQ SRVLWLRQ DV ZHOO DV SHUVRQV ZKR LQ
DFFRUGDQFH ZLWK UHJXODWLRQV ZRUN D VKRUWHQHG ZRUNWLPH SHULRG HJ GXH WR
KD]DUGRXV FRQGLWLRQV RU D ORQJHU ZRUNWLPH SHULRG HJ SURSHUW\ FDUHWDNHUV 3DUW
WLPH HPSOR\HHV DUH SHUVRQV ZKR LQ DFFRUGDQFH ZLWK ODERXU FRQWUDFWV UHJXODUO\
ZRUN RQ D SDUWWLPH EDVLV ,Q WKH PHWRGRORJ\ DGRSWHG LQ 85%$1 $8',7 RQ WKH
RWKHU KDQG WKH FDWHJRU\ RI µHPSOR\HG SHUVRQV¶ LQFOXGHV RQO\ SHUVRQV SHUIRUPLQJ
ZRUN RQ WKH EDVLV RI D UHOHYDQW FRQWUDFW ± WKDW LV LW GRHV QRW LQFOXGH HPSOR\HUV
IRU H[DPSOH
(XURVWDW DOVR SURYLGHV D GHILQLWLRQ RI XQHPSOR\HG SHUVRQ LQ /)6
ZKLFK LQFOXGHV DQ\ HFRQRPLFDOO\ DFWLYH SHUVRQ ZKR GRHV QRW ZRUN LV DFWLYHO\
ORRNLQJ IRU D MRE DQG LV DYDLODEOH IRU HPSOR\PHQW GXULQJ WKH VXUYH\ RU DQ\
HFRQRPLFDOO\ DFWLYH SHUVRQ ZKR GRHV QRW ZRUN LV DFWLYHO\ ORRNLQJ IRU D MRE DQG LV
RU ZLOO EH DYDLODEOH IRU HPSOR\PHQW LQ WKH SHULRG RI XS WR WZR ZHHNV DIWHU WKH
VXUYH\¶V UHIHUHQFH ZHHN $ ZHOO±NQRZQ UHDVRQ IRU LQFRPSDUDELOLW\ DUH FKDQJHV LQ
FODVVLILFDWLRQ VFKHPHV RU LQ SDUWLFXODU UHYLVLRQV LQ DFFRUGDQFH ZLWK QHZ YHUVLRQV
RI LQWHUQDWLRQDO VWDQGDUGV )RU LQVWDQFH WKH FXUUHQW YHUVLRQ RI WKH 1$&(
FODVVLILFDWLRQ FDQ KDYH VLJQLILFDQW PRGLILFDWLRQV LQ UHODWLRQ WR LWV ROGHU RZQ
298
$ 0áRGDN: Coherence and comparability …
RXWSXWV RU YDULDQWV XVHG LQ SDUWLFXODU FRXQWULHV HJ WKH 3ROLVK &ODVVLILFDWLRQ RI
$FWLYLW\ LV EDVHG RQ 1$&( EXW LV PRUH GHWDLOHG DW ORZHVW OHYHOV DQG WDNHV LQWR
DFFRXQW W\SHV RI HFRQRPLF DFWLYLW\ VSHFLILF IRU WKLV FRXQWU\ 2Q WKH RWKHU KDQG
FI (XURVWDW HYHQ ZLWKRXW D FKDQJH LQ FODVVLILFDWLRQ WKH SURFHGXUHV IRU
DVVLJQLQJ FODVVLILFDWLRQ FRGHV PD\ EH GLIIHUHQW RU FKDQJH RYHU WLPH IRU H[DPSOH
ZLWK LPSURYHG WUDLQLQJ RI VWDII RU WKH LQWURGXFWLRQ RI DQ DXWRPDWHG RU FRPSXWHU
DVVLVWHG VFKHPHV
7KH QH[W SDUW RI RXU FODVVLILFDWLRQ ZLOO FRQFHUQ WKH LPSDFW RI PHWKRGV RI GDWD
FROOHFWLRQ SURFHVVLQJ DQG DQDO\VLV RQ FRPSDUDELOLW\
Frame population ± ZLWKLQ WKH VDPH VXUYH\ EDVHG RQ D JHQHUDOO\ HVWDEOLVKHG
WDUJHW SRSXODWLRQ WKH DFWXDO FRYHUDJH RI D VXUYH\ PD\ GHSHQG RQ WKH IUDPH XVHG
7KDW LV HJ HPSOR\PHQW DQG ZDJHV DQG VDODULHV LQ HQWHUSULVHV ZLWK IHZHU WKDQ HPSOR\HHV DUH VXUYH\HG RQO\ RQFH D \HDU DQG LW LV RQO\ D VDPSOH VXUYH\ ZKHUHDV
IRU ODUJHU HQWLWLHV VXFK D VXUYH\ LV FRQGXFWHG PRQWKO\ DQG LQ JHQHUDO PD\EH ZLWK
VRPH VPDOO H[FHSWLRQV LW LV H[KDXVWLYH 3UREOHPV PD\ DOVR RFFXU ZKHQ IUDPHV
DUH EDVHG RQ YDULRXV DGPLQLVWUDWLYH VRXUFHV HJ RQH LV FRQVWUXFWHG XVLQJ WKH WD[
UHJLVWHU DQG DQRWKHU RQH ± XVLQJ WKH EXVLQHVV UHJLVWHU $SDUW IURP WKH GLIIHUHQFH
UHVXOWLQJ IURP YDULRXV GHILQLWLRQV RI XQLWV WR EH UHJLVWHUHG LQ WKHVH GDWDEDVHV RQH
FDQ DOVR FRQVLGHU SRVVLEOH FKDQJHV LQ UHJLVWUDWLRQ ZKLFK PD\ RFFXU LQ UHODWLRQ WR
RQH RU ERWK VRXUFHV DQG VXUYH\ GHVLJQV RQH FDQ EH HJ FURVV VHFWLRQDO DQG WKH
VHFRQG ± ORQJLWXGLQDO ZKLFK SURGXFHV VLJQLILFDQW GLIIHUHQFH LQ HVWLPDWHV 2QH
VKRXOG DOVR DFFRXQW IRU SRVVLEOH FKDQJHV RI SDQHOV RU URWDWLRQ SDWWHUQV RU WUDLQLQJ
RU DSSOLFDWLRQ RI QHZ PHWKRGV HJ IRU FUHDWLRQ DPDOJDPDWLRQ FOXVWHULQJ
DOORFDWLRQ HWF RFFXUULQJ RYHU WLPH RU EHWZHHQ YDULRXV FRXQWULHV
Source(s) of data and sample design ± WKLV SUREOHP FRQFHUQV D VLWXDWLRQ
ZKHQ LQ RQH VWDWLVWLFDO VWUXFWXUDO VXUYH\ GDWD DUH REWDLQHG IURP DQ DGPLQLVWUDWLYH
GDWD VRXUFH DQG LQ DQRWKHU ± IURP D GLUHFW VXUYH\ RU ZKHQ DFWXDO VDPSOH GHVLJQV
DUH GLIIHUHQW $ JRRG H[DPSOH PD\ EH ILQDQFLDO GDWD IRU ODUJH DQG PHGLXP
HQWHUSULVHV ZKLFK FDQ EH REWDLQHG HLWKHU IURP WKH WD[ UHJLVWHU RU IURP WKH FXUUHQW
UHSRUWLQJ
Data collection, capture and editing ± WKH VDPH VXUYH\ FDQ GLIIHU LQ WHUPV RI
WKH LQFLGHQFH RI QRQ±UHVSRQVH SUREOHPV DQG SRVVLELOLWLHV RI WKHLU UHGXFWLRQ 7KHVH
LVVXHV DUH GHVFULEHG LQ GHWDLOV HJ E\ <DQFKHYD DQG ,VNURYD $W WKLV SRLQW
OHW XV MXVW JLYH RQH H[DPSOH LQ RQH FDVH WKH QRQUHVSRQVH UDWH PD\ DPRXQW WR
DQG LQ DQRWKHU HJ LQ DQRWKHU URXQG RI WKH VDPH VXUYH\ ± WR 7KLV IDFW
PD\ UHVXOW HLWKHU IURP VRPH FKDQJHV LQ WKH IUDPH VDPSOH RU TXHVWLRQQDLUH RU
IURP WKH DSSOLFDWLRQ RI PRUH HIILFLHQW PHWKRGV RU UHGXFWLRQ RI EXUGHQV
Imputation and estimation ± PHWKRGV RI LPSXWDWLRQ DQG HVWLPDWLRQ PD\
GLIIHU GHSHQGLQJ RQ WKH SODFH RU WLPH ZKHQ D JLYHQ VXUYH\ LV FRQGXFWHG )RU
H[DPSOH FI (XURVWDW LQ RQH VXUYH\ ]HURHV PD\ EH LPSXWHG IRU PLVVLQJ
ILQDQFLDO LWHPV ZKHUHDV LQ DQRWKHU VXUYH\ QRQ]HUR YDOXHV PD\ EH LPSXWHG EDVHG
RQ D µQHDUHVW QHLJKERXULQJ¶ UHFRUG /LNHZLVH LQ GHDOLQJ ZLWK PLVVLQJ UHFRUGV LQ
DQ HQWHUSULVH VXUYH\ WKHUH DUH YDULRXV RSWLRQV VXFK DV DVVXPLQJ WKDW WKH
STATISTICS IN TRANSITION-new series, Summer 2013
299
FRUUHVSRQGLQJ HQWHUSULVHV DUH QRQRSHUDWLRQDO RU DVVXPLQJ WKDW WKH\ DUH VLPLODU WR
HQWHUSULVHV WKDW KDYH UHVSRQGHG +RZHYHU LI WKH QXPEHU RI PLVVLQJ GDWD LV
UHODWLYHO\ ODUJH WKH KRW±GHFN VXFK DV QHDUHVW QHLJKERXU IRU H[DPSOH PHWKRGV RI
LPSXWDWLRQ DUH UHFRPPHQGHG FI GH :DDO et al. 7R LOOXVWUDWH WKH SUREOHP RI LQFRPSDUDELOLW\ DQ H[DPSOH EDVHG RQ HPSLULFDO
H[SHULHQFH RI 3ROLVK EXVLQHVV VWDWLVWLFV LV JLYHQ 'XULQJ SURFHVVLQJ GDWD RQ
HFRQRPLF DFWLYLW\ RI HQWLWLHV VRPH LPSRUWDQW GDWD DUH JHQHUDOL]HG RQ WKH OHYHO RI
JURXS IRU VRPH 1$&( 5HY VHFWLRQV RWKHUV RQ WKH OHYHO RI GLYLVLRQ 'DWD DUH
JHQHUDOL]HG DOVR RQ WKH RZQHUVKLS VHFWRUV IRU 1$&( 5HY VHFWLRQV ,Q 3RODQG
WKH REOLJDWLRQ RI WUDQVPLVVLRQ RI UHSRUWV RQ HFRQRPLF DFWLYLW\ SHUWDLQV WR DOO
HFRQRPLF HQWLWLHV EHORQJLQJ WR HVWDEOLVKHG 1$&( 5HY VHFWLRQV WKH\ FRYHU
PDLQO\ PDQXIDFWXULQJ XQLWV KDYLQJ PRUH WKDQ HPSOR\HHV DQG VDPSOHG HQWLWLHV
HPSOR\LQJ XS WR SHUVRQV 7R JHQHUDOL]H FROOHFWHG GDWD WKH QXPEHU RI
HPSOR\HHV LV XVHG 7KDW LV IRU HQWLWLHV ZKLFK KDYH WUDQVPLWWHG WKH UHSRUW WKLV
QXPEHU LI WDNHQ IURP WKHVH UHSRUWV DQG LV FDOOHG WKH YDULDEOH QXPEHU RI
HPSOR\HHV 2Q WKH RWKHU KDQG WKH VDPSOLQJ IUDPH FRQWDLQV GDWD RQ QXPEHU RI
HPSOR\HHV FROOHFWHG IURP EXVLQHVV UHJLVWHU RU HDUOLHU UHSRUWV FDOOHG WKH YDULDEOH
QXPEHU RI HPSOR\HHV 7KXV WR REWDLQ WKH HVWLPDWHV RI YDULRXV YDOXHV IRU D
SRSXODWLRQ WKH IROORZLQJ JHQHUDOL]DWLRQ FRHIILFLHQW LV XVHG
uୢ ‫؝‬
σ୨‫୒א‬ౚ౨ Ԃ୨ + σ୨‫୒א‬ౚ\୒ౚ౨ Ʌ୨
σ୨‫୒א‬ౚ౨ Ԃ୨
IRU D OHYHO RI DJJUHJDWLRQ d ZKHUH Nୢ LV WKH VHW RI DOO XQLWV DW WKH OHYHO d DQG Nୢ୰
LV WKH VHW RI XQLWV ZKLFK KDYH WUDQVPLWWHG WKHLU UHSRUWV EHORQJLQJ WR WKH OHYHO d Ԃ୨
LV WKH YDULDEOH QXPEHU RI HPSOR\HHV RI WKH j±WK XQLW DQG Ʌ୨ ± IL[HG QXPHU RI
HPSOR\HHV IRU j±WK XQLW
2Q WKH EDVLV RI WKLV FRHIILFLHQW YDULRXV TXDQWLWLHV VXFK DV UHYHQXHV ILUP VDOH
RI SURGXFWV DQG VHUYLFHV WXUQRYHU LQ FXUUHQW SURFHVV JURVV ZDJHV DQG VDODULHV
UHWDLO VDOH HWF DUH HVWLPDWHG XVLQJ WKH IROORZLQJ JHQHUDO IRUPXOD ZLWK VPDOO
YDULDQWV LQ VRPH SDUWLFXODU FDVHV
ɔ
ෝ (ୢ) ‫ ؝‬uୢ ෍ ɔ୧
୧‫୒א‬ౚ౨
IRU HYHU\ OHYHO RI DJJUHJDWLRQ d ZKHUH ɔ୧ LV WKH YDOXH RI LQWHUHVW IRU iWK XQLW
7KXV WZR LPSRUWDQW SUREOHPV FRQFHUQLQJ FRKHUHQFH DQG FRPSDUDELOLW\ RFFXU
D WKH QXPEHU RI HPSOR\HHV LQ UHJLVWHU FDQ EH VLJQLILFDQWO\ GLIIHUHQW WKDQ WKH
DFWXDO QXPEHU RI HPSOR\HHV RI D JLYHQ HQWLW\
E WKH JHQHUDOL]DWLRQ FRHIILFLHQW DQG LQ FRQVHTXHQFH HVWLPDWH GHSHQG RQ WKH
OHYHO RI DJJUHJDWLRQ 7KXV WKH VXPV RI UHOHYDQW HVWLPDWHV IRU HJ 1876 XQLWV EHORQJLQJ WR WKH 1876 XQLW REWDLQHG RQ WKH EDVLV RI JHQHUDOL]DWLRQ
IRU 1$&( JURXSV FDQ EH VLJQLILFDQWO\ GLIIHUHQW IURP UHOHYDQW HVWLPDWHV
REWDLQHG ZKHQ JHQHUDOL]DWLRQ LV PDGH DW WKH OHYHO RI VHFWRUV RI RZQHUVKLS
300
$ 0áRGDN: Coherence and comparability …
7KH ILUVW RI WKHVH LQFRQYHQLHQFHV FDQ KDYH DQ LPSRUWDQW LPSDFW RQ WKH TXDOLW\
RI HVWLPDWLRQ GXH WR DQ HUURU RFFXUULQJ ZKHQ XQNQRZQ DFWXDO QXPEHU RI
HPSOR\HHV IRU WKRVH XQLWV ZKLFK KDYH QRW WUDQVPLWWHG WKH UHSRUW LV UHSODFHG ZLWK
WKH QXPEHU RI HPSOR\HHV EDVHG RQ WKH EXVLQHVV UHJLVWHU +RZHYHU VRPH DYHUDJH
LPSDFW RI VXFK ELDV FDQ EH HVWLPDWHG DV
vୢ ‫ ؝‬ቤ
1
σ୨‫୒א‬ౚ౨ Ԃ୨
െ
1
σ୨‫୒א‬ౚ౨ Ʌ୨
ቤ
σ୨‫୒א‬ౚ\୒ౚ౨ Ʌ୨
uୢ
DQG H[SUHVVHG LQ SHUFHQWV 6XPPLQJ RU DYHUDJLQJ WKHVH LQGLFHV RYHU GRPDLQV d
ZLWKLQ D JLYHQ ODUJHU GRPDLQ RQH FDQ HVWLPDWH D OHYHO RI LQFRKHUHQFH
LQFRPSDUDELOLW\ LQ WKLV FDVH
7R UHGXFH WKH VHFRQG SUREOHP DQ LPSXWDWLRQ DW WKH OHYHO RI XQLWV LV
UHFRPPHQGHG 7KH DIRUHPHQWLRQHG LQGH[ FDQ EH XVHIXO WR LGHQWLI\ DUHDV ZKHUH
WKH LPSXWDWLRQ LV PRVW QHFHVVDU\ 1RZ LQ 3ROLVK VWDWLVWLFV VRPH ZRUNV RQ WKLV
ZHUH XQGHUWDNHQ
3.3. Types of comparability
,W VKRXOG EH QRWHG WKDW WKH +DQGERRN LVVXHG E\ (XURVWDW PHQWLRQV WKH
IROORZLQJ W\SHV RI FRKHUHQFHFRPSDUDELOLW\ WKDW DUH WR EH LQFOXGHG LQ D UHOLDEOH
TXDOLW\ UHSRUW
x comparability over time ± GDWD VKRXOG VKRZ ZKHWKHU FROOHFWHG LQIRUPDWLRQ
IRU D JLYHQ UHJLRQ LQ VHYHUDO GLIIHUHQW WLPH SRLQW ZDV JDWKHUHG XQGHU WKH
VDPH FLUFXPVWDQFHV LQ WHUPV RI GHILQLWLRQV SRSXODWLRQ HWF
x comparability over region ± IRU H[DPSOH GDWD IRU WKH VDPH PRQWK IURP WKH
VWUXFWXUDO EXVLQHVV VXUYH\ FRQGXFWHG LQ WZR 0HPEHU 6WDWHV LQGLFDWH ZKLFK
UHJLRQV DUH FRYHUHG LQ ERWK VXUYH\V DQG ZKLFK QRW DQG ZK\
x comparability over other domains ± GRPDLQV RYHU ZKLFK FRPSDULVRQV DUH
RIWHQ PDGH LQFOXGH HFRQRPLF DFWLYLW\ JURXS RFFXSDWLRQDO JURXS DQG VH[
$Q H[DPSOH ZRXOG EH DQQXDO VWUXFWXUDO GDWD IRU DJULFXOWXUH ZLWK DQQXDO
VWUXFWXUDO GDWD IRU PDQXIDFWXULQJ FROOHFWHG E\ D GLIIHUHQW VXUYH\
x internal comparability ± UHIHUULQJ WR GDWD SURGXFHG E\ D VLQJOH VWDWLVWLFDO
SURFHVV EXW SRVVLEO\ FRPSULVLQJ VHYHUDO GLIIHUHQW VHJPHQWV IRU D VLQJOH
WLPH SHULRG DQG UHJLRQ
x comparability between short-term (sub-annual) and annual statistics ± IRU
H[DPSOH PRQWKO\ DQG DQQXDO SURGXFWLRQ GDWD IRU WKH VDPH LQGXVWULHV LQ WKH
VDPH UHJLRQ
x comparability with the National Accounts ± IRU HFRQRPLF VXUYH\V WKDW
IHHG LQWR WKH QDWLRQDO DFFRXQWV FRKHUHQFH LV YLWDO DQG LQ VR IDU DV LW LV
ODFNLQJ WKH 1DWLRQDO $FFRXQWV FRPSLODWLRQ SURFHVV ZLOO GHWHFW LW
x comparability with other statistics ± IRU H[DPSOH FRKHUHQFH EHWZHHQ
HPSOR\PHQW SURGXFHG E\ D ODERXU IRUFH VXUYH\ RI PHPEHUV RI KRXVHKROGV
DQG QXPEHUV RI HPSOR\HHV SURGXFHG E\ DQ HFRQRPLF VXUYH\ RI HQWHUSULVHV
STATISTICS IN TRANSITION-new series, Summer 2013
301
3.4. Assessment of comparability
$Q HIILFLHQW DVVHVVPHQW RI FRPSDUDELOLW\ UHTXLUHV WKH NQRZOHGJH RI PRVW
XVHIXO PHWKRGV LQFOXGLQJ FKDUDFWHULVWLF IHDWXUHV RI GHILQLWLRQV DQG GHVLJQ
7KHUHIRUH WKH FXUUHQW W\SH RI LQFRPSDUDELOLW\ DFFRUGLQJ WR WKH W\SRORJ\ SUHVHQWHG
LQ 6HFWLRQ KDV WR EH UHFRJQL]HG 7KLV SUHVHQWDWLRQ RI PHWKRGV IRU DVVHVVLQJ
DQG UHSRUWLQJ FRPSDUDELOLW\ ZLOO VWDUW IURP WKH JHQHUDO DSSURDFK DQG QH[W VRPH
SUREOHPV ZLOO EH DGGUHVVHG E\ UHIHUULQJ WR WKH DIRUHPHQWLRQHG W\SRORJ\ LQ WKH
FRQWH[W RI FRQVWUXFWLQJ TXDOLW\ UHSRUWV
7KH General Approach LV LQWHQGHG WR H[SODLQ FDXVHV RI WKH ODFN RI
FRKHUHQFHFRPSDUDELOLW\ 1DPHO\ LQ TXDOLW\ UHSRUWV HIIHFWV RI WKH PDLQ VRXUFHV RI
LQFRPSDUDELOLW\ VKRXOG EH UHFRJQL]HG DQG GHVFULEHG 7KHLU LPSDFW RQ HVWLPDWHV
KDV WR EH GHWHUPLQHG $Q DWWHPSW WR UHFRQFLOH WKHVH HVWLPDWHV RQ WKH EDVLV RI VXFK
NQRZOHGJH LV DOVR UHTXLUHG 7KH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW HPSKDVL]H WKDW DQ\ JHQHUDO FKDQJHV WKDW KDYH RFFXUUHG ZKLFK PD\ KDYH DQ
LPSDFW RQ FRPSDUDELOLW\ VKRXOG EH UHSRUWHG IRU H[DPSOH FKDQJHV LQ OHJLVODWLRQ
DIIHFWLQJ GDWD VRXUFHV RU GHILQLWLRQV UHHQJLQHHULQJ RU FRQWLQXDO LPSURYHPHQW RI
VWDWLVWLFDO SURFHVVHV FKDQJHV LQ RSHUDWLRQV UHVXOWLQJ IURP UHGXFWLRQV RU LQFUHDVHV
LQ SURFHVVLQJ EXGJHW GHYLDWLRQV IURP UHOHYDQW (66 OHJLVODWLRQ DQG RWKHU
LQWHUQDWLRQDO VWDQGDUGV HWF $OWKRXJK LQ PDQ\ FDVHV FRPSDUDELOLW\ LV HTXLYDOHQW
WR FRKHUHQFH WKHUH DUH VRPH VLWXDWLRQV ZKHQ VXFK HTXLYDOHQFH GRHV QRW KROG 7KDW
LV HYHQ LI FRKHUHQW VWDWLVWLFDO GDWD GHVFULEHV WKH VDPH SKHQRPHQRQ WKLV
LQIRUPDWLRQ FDQ EH LQFRPSDUDEOH GXH WR WKH RFFXUUHQFH RI VRPH HUURUV
$ SURSHU FRPSDUDELOLW\ DQDO\VLV VKRXOG FRQWDLQ D SUHVHQWDWLRQ RI FRQFHSWV DQG
PHWKRGV H[SODQDWLRQ RI ZKDW FDXVHV D JLYHQ SUREOHP DQG HDFK SRVVLEOH VRXUFH RI
SUREOHPV FRQFHUQLQJ FRPSDUDELOLW\ VKRXOG EH VHSDUDWHO\ GHVFULEHG $FFRUGLQJ WR
(XURVWDW WKH ILUVW VWHS LV WR FRQGXFW D V\VWHPDWLF DVVHVVPHQW RI SRVVLEOH
UHDVRQV IRU WKH ODFN RI FRPSDUDELOLW\ EDVHG SULPDULO\ RQ WKH H[DPLQDWLRQ RI NH\
PHWDGDWD HOHPHQWV DQG LGHQWLILFDWLRQ DQG DQDO\VLV RI GLIIHUHQFHV 7KLV DFWLRQ FDQ
HQDEOH XV WR PDNH D SLFWXUH FRQFHUQLQJ WKH PDJQLWXGH RI DQ\ ODFN RI
FRPSDUDELOLW\ 7KH VHFRQG VWHS FRQVLVWV LQ SUHGLFWLQJ WKH OLNHO\ HIIHFW RI VXFK D
GLIIHUHQFH RQ VWDWLVWLFDO RXWSXWV 7KH ILQDO VWHS LV WR DJJUHJDWH DQG VXPPDULVH LQ
VRPH ZD\ WKH WRWDO SRVVLEOH HIIHFW LQ RWKHU ZRUGV WR IRUP DQ LPSUHVVLRQ RI WKH
GHJUHH RI ODFN RI FRPSDUDELOLW\
$ GLIIHUHQW TXHVWLRQ LV KRZ WR GHWHFW SRVVLEOH SUREOHPV LQ PHWKRGRORJ\ RU
UHVSRQVH ZKHQ RQO\ µUDZ¶ GDWD ZLWK PDQ\ UHSRUWV DQG SRVVLELOLWLHV WR DJJUHJDWH
WKHP LQ JLYHQ FDWHJRULHV HJ WLPH VSDFH E\ XQLW LQFRPHV E\ WKH QXPEHU RI
HPSOR\HHV HWF DUH DW GLVSRVDO 7KH quality control of variables VKRXOG SURYLGH
WKH ILUVW LQGLFDWLRQ RI VXFK SUREOHPV 2QH FDQ XVH JHQHUDO UXOHV SURSRVHG LQ WKH
GRFXPHQW E\ (XURVWDW Multi–variate type of control ± FKHFNLQJ LI FDOFXODWHG VXPV RI GLIIHUHQW
YDULDEOHV DQG WKHLU YDOXHV FRLQFLGH ZLWK WKH WRWDO SURYLGHG )RU H[DPSOH RQH
VKRXOG YHULI\ ZKHWKHU WKH VXP RI WKH QXPEHU RI HQWLWLHV E\ WKH QXPEHU RI
302
$ 0áRGDN: Coherence and comparability …
HPSOR\HH JURXSV FRUUHVSRQGV WR WKH WRWDO QXPEHU RI XQLWV ,I QRW WKH FDXVH RI WKLV
IDFW KDV WR EH ORRNHG IRU
Hierarchy type of control ± LW FRQVLVWV LQ FRPSDULQJ VXPV RI WKH VDPH
YDULDEOH DJDLQVW WKH YDULDEOH YDOXH SURYLGHG DW DQ XSSHU VSDWLDO OHYHO )RU H[DPSOH
LW LV FKHFNHG ZKHWKHU LQ DQ\ FDVH WKH VXP RI WKH QXPEHU RI XQLWV LQ 1876 DUHDV
LQFOXGHG LQ D JLYHQ 1876 DUHD FRUUHVSRQGV WR WKH QXPEHU SURYLGHG DW WKH
UHOHYDQW 1876 OHYHO 7R DOORZ URXQGHG QXPEHUV DQG HVWLPDWHV VRPHWLPHV D
WROHUDQFH RU GHYLDWLRQ RI RI WKH FKHFNHG YDOXH IURP WKH FRQWURO YDOXH LV VHW
7KLV W\SH RI FRQWURO UHIHUV WR WKH VDPH YDULDEOH EXW WR GLIIHUHQW VSDWLDO OHYHOV
,Q SUDFWLFH PDQ\ YDULDEOHV KDYH WKH IRUP RI LQGLFHV ,Q RWKHU ZRUGV WKH\ DUH
REWDLQHG DV UHOHYDQW UDWLRV RI JLYHQ GDWD H[SUHVVHG LQ DEVROXWH YDOXHV HJ DYHUDJH
ZDJH DQG VDODU\ SHU HPSOR\HH LV WKH UDWLR RI WKH WRWDO VXP RI SDLG ZDJHV DQG
VDODULHV DQG WKH WRWDO QXPEHU RI HPSOR\HHV 7KH µVXP FRQWURO¶ LV LQDSSURSULDWH LQ
WKLV FDVH DQG WKH H[WUHPH YDOXHV KDYH WR EH ORRNHG IRU LQVWHDG 7KH DXWKRUV RI WKH
GRFXPHQW E\ (XURVWDW SURSRVH WKUHH ZD\V RI detection of outliers ZKLFK
DUH XVXDOO\ µVXVSHFWHG¶ WR EH LQFUHGLEOH
Classical interval of variation ± LWV FRQVWUXFWLRQ LV EDVHG RQ WKH DYHUDJH DQG
WKH VWDQGDUG GHYLDWLRQ RI WKH LQGLFDWRU YDOXHV RYHU D VSHFLILHG SRSXODWLRQ 7KH
FRQWURO UDQJH LV GHWHUPLQHG E\ WKH LQWHUYDO xത ± z ή ɐ୶ ZKHUH xത LV WKH DULWKPHWLF
PHDQ DQG ɐ୶ ± WKH VWDQGDUG GHYLDWLRQ RI WKH LQGH[ X 7KH FRQWURO FRQVLVWV LQ
FKHFNLQJ ZKHWKHU WKH LQGLYLGXDO LQGLFDWRU YDOXH LV RXW RI WKH FRQWURO UDQJH 7KH
YDOXH RI z LV VHW E\ WKH XVHU PRUH RIWHQ LW LV VHW DV z = 2 ,Q H[WUHPH FDVHV
ZKHQ WKH LQGLFDWRU FDQQRW KDYH D QHJDWLYH YDOXH z LV VHW WR WKH UDWLR RI DYHUDJH
DQG VWDQGDUG GHYLDWLRQ
Median interval of variation ± D FRQVWUXFWLRQ RI DQ LQWHUYDO RI YDULDWLRQ EDVHG
RQ WKH PHGLDQ 7KDW LV WKH FRQWURO UDQJH LV GHWHUPLQHG E\ WKH LQWHUYDO med(X) ±
z ή mad(X) ZKHUH med(X) LV WKH PHGLDQ RI X DQG mad(X) = med୧ୀଵ,ଶ,…,୬ |x୧ െ
med(X)| x୧ LV WKH iWK YDOXH RI X i = 1,2, … , n n ± QXPEHU RI REVHUYDWLRQV ± LWV
PHGLDQ DEVROXWH GHYLDWLRQ 7KH SDUDPHWHU z LV HVWDEOLVKHG DV SUHYLRXVO\
Growth rates ± WKLV PHWKRG PDNHV XVH RI JURZWK UDWHV RI WKH GDWDVHW RYHU
YDULRXV SHULRGV ,W LV DQ H[WHQVLRQ RI WKH PHWKRG EDVHG RQ WKH FODVVLFDO LQWHUYDO RI
YDULDWLRQ DQG WDNHV LQWR DFFRXQW JDSV EHWZHHQ WKH DQDO\VHG \HDUV 7KH WKUHVKROG
OLPLWV DUH XVXDOO\ VSHFLILHG DV WKH PD[LPXP DOORZHG JURZWK UDWHV SHU \HDU ,I
WKHUH DUH PLVVLQJ WLPH SRLQWV EHWZHHQ WKH REVHUYHG RQHV WKLV KDV WR EH WDNHQ LQWR
DFFRXQW )RU H[DPSOH LI PRQWKO\ GDWD RQ HPSOR\PHQW DUH DQDO\]HG PRQWKV
ZKHUH WKH JURZWK UDWH H[FHHGV WKH DUELWUDULO\ DFFHSWHG WROHUDQFH LQWHUYDO HJ DUH LQGLFDWHG )RU PLVVLQJ WLPH SRLQW WKH OLPLWV VKRXOG EH DGMXVWHG
UHVSHFWLYHO\
6RPH DVSHFWV RI FRPSDUDELOLW\ TXDOLW\ ZLOO EH UHFDOOHG QRZ E\ UHIHUULQJ WR LWV
W\SRORJ\ LQWURGXFHG LQ VXEVHFWLRQ Comparability over time LV YHU\ LPSRUWDQW LI VWDWLVWLFDO RXWSXWV DUH SXEOLVKHG
DW D QXPEHU RI FRQVHFXWLYH WLPH SRLQWV +HQFH FKDQJHV RYHU WLPH RI HFRQRPLF RU
VRFLDO SKHQRPHQD FDQ EH REVHUYHG DQG DQDO\VHG DQG HQVXULQJ FRPSDUDELOLW\ RYHU
STATISTICS IN TRANSITION-new series, Summer 2013
303
WLPH VHHPV WR EH FUXFLDO IRU VXFK DQ DQDO\VLV WR EH HIILFLHQW 7KH XVHU ZKHQ XVLQJ
WLPH VHULHV SURYLGHG E\ WKH UHVSRQGHQW RU WKH VWDWLVWLFDO RIILFH RU FRQVWUXFWHG E\
KLPKHUVHOI RQ WKH EDVLV RI DYDLODEOH µUDZ¶ GDWD VKRXOG REWDLQ LQIRUPDWLRQ DERXW
SRVVLEOH OLPLWDWLRQV DQG SUREOHPV LQ GDWD XVH FRQFHUQLQJ FRPSDUDELOLW\ ZLWK
UHVSHFW RI WLPH 7KLV LQIRUPDWLRQ DOVR KDV WR EH LQFOXGHG LQ WKH TXDOLW\ UHSRUW
$FFRUGLQJ WR (XURVWDW LQ DVVHVVLQJ FRPSDUDELOLW\ RYHU WLPH WKH ILUVW VWHS LV
WR GHWHUPLQH IURP WKH PHWDGDWD WKH H[WHQW RI FKDQJHV LQ WKH XQGHUO\LQJ
VWDWLVWLFDO SURFHVV WKDW KDYH RFFXUUHG IURP RQH SHULRG WR WKH QH[W 7KHUH DUH WKUHH
EURDG SRVVLELOLWLHV
7KHUH KDYH EHHQ QR FKDQJHV LQ ZKLFK FDVH WKLV VKRXOG EH UHSRUWHG
7KHUH KDYH EHHQ VRPH FKDQJHV EXW QRW HQRXJK WR ZDUUDQW WKH GHVLJQDWLRQ RI D
EUHDN LQ VHULHV
7KHUH KDYH EHHQ VXIILFLHQW FKDQJHV WR ZDUUDQW WKH GHVLJQDWLRQ RI D EUHDN LQ
VHULHV
,I FKDQJHV UHVXOW LQ QHJOLJLEOH HIIHFWV RQ VWDWLVWLFDO RXWSXWV WKHQ LW LV VXIILFLHQW
WR PDNH D UHOHYDQW QRWH LQ WKH PHWDGDWD +RZHYHU LI WKH HIIHFW LV VLJQLILFDQW WZR
FDVHV VKRXOG EH FRQVLGHUHG ,I DQ HIIHFW LV WRR VPDOO WR ZDUUDQW D VHULHV EUHDN WKHQ
FI (XURVWDW WKH 16, PD\ ZHGJH LQ WKH FKDQJHV WR WKH RXWSXWV RYHU D
SHULRG RI WLPH VR WKDW EHWZHHQ DQ\ WZR SHULRGV WKH DGMXVWPHQW EHLQJ PDGH WR
PRYH IURP ROG WR QHZ YDOXHV LV OHVV WKDQ WKH VDPSOLQJ HUURU DQG WKXV FDQQRW E\
LWVHOI EH GHWHFWHG DQG LQWHUSUHWHG DV D UHDO FKDQJH ,Q WKH VHFRQG FDVH LH LI
FKDQJHV DUH VLJQLILFDQW DQG VXIILFLHQWO\ ODUJH WR FDXVH WKH EUHDN WKH XVHU VKRXOG
EH SUHFLVHO\ LQIRUPHG DERXW WKLV FLUFXPVWDQFH WKHLU ORFDWLRQ DQG FRQVHTXHQFHV
0RUHRYHU WKH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW UHFRPPHQG WKUHH
SRVVLEOH ZD\V WR KDQGOH WKHVH LQFRQYHQLHQFHV
x 7KH PRVW FRPSUHKHQVLYH WUHDWPHQW LV to carry forward both series for a
period of time and/or to backcast the series LH WR FRQYHUW WKH ROG VHULHV WR
ZKDW LW ZRXOG KDYH EHHQ ZLWK WKH QHZ DSSURDFK E\ GXSOLFDWLQJ WKH
PHDVXUHPHQW LQ RQH WLPH SHULRG XVLQJ WKH RULJLQDO DQG WKH UHYLVHG
GHILQLWLRQVPHWKRGV
x $ OHVV H[SHQVLYH WUHDWPHQW LV to provide the users with transition adjustment
factors giving them the means of dealing with the break IRU H[DPSOH E\
GRLQJ WKHLU RZQ EDFNFDVWLQJ
x 7KH OHDVW H[SHQVLYH WUHDWPHQW LV Wo simply describe the changes that have
occurred and provide only qualitative assessments of their probable impact
upon the estimates 2EYLRXVO\ WKLV LV WKH OHDVW VDWLVIDFWRU\ IURP WKH XVHU¶V
SHUVSHFWLYH
&RPSDUDELOLW\ RYHU WLPH LV HVSHFLDOO\ LPSRUWDQW IRU VKRUWWHUP EXVLQHVV
VWDWLVWLFV ZKLFK FDQ KDYH GLIIHUHQW SULRULWLHV DQG DUH XVXDOO\ PRUH VHQVLWLYH WR DQ\
FKDQJHV LQ PHWKRGRORJ\ DQG WKH FXUUHQW VLWXDWLRQ WKDQ HJ DQQXDO GDWD *LYHQ
FRPSDUDEOH GDWD XVHUV KDYH PRUH SRVVLELOLWLHV RI DGMXVWLQJ UHOHYDQW GDWD WR WKHLU
LQGLYLGXDO SUHIHUHQFHV DQG SULRULWLHV )RU H[DPSOH UHYHQXH RU VROG SURGXFWLRQ RI
HQWHUSULVHV QHHG WR EH DQDO\VHG ERWK LQ WKH FXUUHQW SHULRG DQG RYHU D ORQJHU WLPH
304
$ 0áRGDN: Coherence and comparability …
&RPSDUDELOLW\ LQ WLPH HQDEOHV WKH XVHU WR PDNH D EHWWHU DVVHVVPHQW RI WKH
VLWXDWLRQ WKH HIIHFW RI FXUUHQW EXVLQHVV VWUDWHJLHV DQG IXWXUH SURVSHFWV 7KHUHIRUH
XVHUV FDQ DOVR EH LQWHUHVWHG LQ PXFK PRUH DGYDQFHG WRROV VXFK DV WUHQG VHSDUDWLRQ
UHJXODU VHDVRQDO YDULDWLRQV RU UDQGRP DQG QRQUDQGRP GLVWXUEDQFHV 7KXV WLPH
VHULHV PRGHOOLQJ VKRXOG DOVR VWURQJO\ UHO\ RQ FRPSDUDELOLW\ RYHU WLPH
Comparability over region LV DQ DVSHFW ZKLFK FRXOG EH DVVHVVHG LQ WZR
GLIIHUHQW ZD\V SDLUZLVH FRPSDULVRQV RI PHWDGDWD DFURVV UHJLRQV RU FRPSDULVRQ RI
PHWDGDWD IRU WKH UHJLRQ ZLWK D VWDQGDUG VXFK VWDQGDUG FDQ EH SHUFHLYHG LQ WHUPV
RI QRUPV YDOLG LQ (66 RU EHVW SUDFWLFHV RI VWDWLVWLFDO LQVWLWXWHV $FFRUGLQJ WR
(XURVWDW WZR EURDG FDWHJRULHV RI VLWXDWLRQ FDQ EH LGHQWLILHG
x ZKHUH HVVHQWLDOO\ WKH VDPH VWDWLVWLFDO SURFHVVHV DUH XVHG HJ D ODERXU IRUFH
VXUYH\ GHVLJQHG LQ DFFRUGDQFH ZLWK (66 VWDQGDUG DQG GLIIHUHQFHV DFURVV
UHJLRQV DUH H[SHFWHG WR EH TXLWH VPDOO DQG
x ZKHUH D GLIIHUHQW VRUW RI VWDWLVWLFDO SURFHVV LV XVHG IRU H[DPSOH D GLUHFW
VXUYH\ LQ RQH FDVH DQG D UHJLVWHU EDVHG VXUYH\ LQ DQRWKHU ,Q VXFK FDVHV
GLIIHUHQFHV DUH OLNHO\ WR EH PRUH SURIRXQG
$ FRPSOH[ PHDVXUH RI GLIIHUHQFHV FRXOG EH FRQVWUXFWHG DV D VXP RI SDUWLDO
DEVROXWH GLIIHUHQFHV TXDQWLILHG E\ D VFRULQJ V\VWHP 2I FRXUVH WKH VLPSOHVW
VROXWLRQ LQ WKLV FRQWH[W LV WR UHFRJQL]H WKH NH\ PHWDGDWD HOHPHQWV IRU ZKLFK D
GLIIHUHQFH RFFXUV DQG XVH WKH ELQDU\ FRGH QR GLIIHUHQFH RU GLIIHUHQFH ,I WKH DLP
LV WR FDWHJRUL]H WKH OHYHOV RI GLVFUHSDQFLHV VHYHUDO FDWHJRULHV HJ IURP WR E\
LH IURP WKH PRVW HVVHQWLDO GLIIHUHQFH WR QR GLIIHUHQFH KDYH WR EH
DVVXPHG 7KH LQWHQVLW\ RI VXFK GLIIHUHQFH FRXOG EH TXDQWLILHG XVLQJ DUELWUDULO\
DVVXPHG FODVVLILFDWLRQ EDVHG HJ RQ WKH UDQJH RI YDOXHV RI D JLYHQ YDULDEOH RU
H[SHUWV¶ RSLQLRQV $SDUW IURP WKLV RQH VKRXOG DOVR FRQVLGHU WKH SRVVLEOH HIIHFW RI
VXFK GLIIHUHQFHV 7KLV GLIIHUV IURP DQDO\]LQJ µSXUH¶ GLIIHUHQFHV EHFDXVH IRU
H[DPSOH LQ VRPH FLUFXPVWDQFHV HJ IRU UDWLRV HYHQ VLJQLILFDQW µSXUH¶
GLIIHUHQFHV FRXOG JHQHUDWH QHJOLJLEOH HIIHFWV LQ WHUPV RI FRPSDUDELOLW\ 7KHUHIRUH
DVVLJQLQJ D ZHLJKW WR HDFK PHWDGDWD HOHPHQW ZKHUH WKH GLIIHUHQFH RFFXUV
DFFRUGLQJ WR LWV SRWHQWLDO HIIHFW RQ FRPSDUDELOLW\ DQG FRPSXWLQJ D ZHLJKWHG VFRUH
DFURVV DOO PHWDGDWD HOHPHQWV LV GHVLUDEOH 6XFK DVVHVVPHQW FDQ EH VXPPDULVHG QRW
RQO\ ZLWKLQ D JLYHQ FRXQWU\ EXW RYHU DOO FRXQWULHV ZLWKLQ (66
2QH FDQ VD\ WKDW RZLQJ WR WKH LQWHQVLYH LQWHJUDWLRQ RI HFRQRPLHV RI FRXQWULHV
DFURVV WKH ZRUOG SUHFLVH LQWHUDFWLRQ DQDO\VHV DUH SDUWLFXODUO\ GHVLUDEOH 7KH\ KHOS
WR UHFRJQL]H WKH SRVLWLRQ RI D SDUWLFXODU FRPSDQ\ LQ D JLYHQ FRXQWU\ LQ WKH FRQWH[W
RI RWKHU FRXQWULHV HVSHFLDOO\ WKRVH DIILOLDWHG LQ VXFK SUHVWLJLRXV LQWHUQDWLRQDO
HFRQRPLF RUJDQL]DWLRQV DV 2(&' (8 (($ ()7$ &()7$ *± 1$)7$
$6($1 23(& HWF 7KH YDULHW\ RI SURGXFHUV RI VWDWLVWLFDO GDWD HFRQRPLF
SUDFWLFHV OHJDO UHJXODWLRQV HJ LQ WHUPV RI FRQGXFWLQJ HFRQRPLF DFWLYLW\ RU
WD[HV PHWKRGRORJLHV XVHG WR FROOHFW DQG SURFHVV VWDWLVWLFDO GDWD UHVXOW LQ PDQ\
VHULRXV GLIILFXOWLHV LQ REWDLQLQJ LQWHUQDWLRQDOO\ FRPSDUDEOH GDWD ,Q UHFHQW \HDUV
PDQ\ SURMHFWV GHVLJQHG WR LPSURYH LQWHUQDWLRQDO GDWD FRPSDUDELOLW\ KDYH EHHQ
LQLWLDWHG 2QH VKRXOG PHQWLRQ WKH VRFDOOHG 2SHUDWLRQ ZKLFK KDV UHVXOWHG LQ
WKH KDUPRQL]DWLRQ RI PDMRU HFRQRPLF FODVVLILFDWLRQV DQG QRPHQFODWXUHV XVHG LQ
STATISTICS IN TRANSITION-new series, Summer 2013
305
WKH (8 ZLWK WKRVH XVHG LQ RWKHU SDUWV RI WKH ZRUOG 6RPH DWWHPSWV DUH DOVR
XQGHUWDNHQ WR KDUPRQL]H WKH SURJUDPPH RI VWDWLVWLFDO PRQLWRULQJ RI XUEDQ DUHDV
85%$1 $8',7 HJ LQ WHUPV RI WKH VFRSH RI WKH IXQFWLRQDO LPSDFW RI FLWLHV 0
%HUJGDKO et al. GLVFXVV RWKHU KDUPRQL]DWLRQ DFWLRQV HJ LQ WHUPV RI 1$&(
DQG 352'&20 DSSOLHG LQ *HUPDQ\ DQG 8.
Comparability over other domains ± DUHDV RU WLPH SHULRGV DUH RI FRXUVH
QRW WKH RQO\ GRPDLQV RYHU ZKLFK FRPSDULVRQV FDQ EH SHUIRUPHG 8VXDOO\ RIILFLDO
VWDWLVWLFDO DQG YDULRXV VWDWLVWLFDO VWXGLHV SUHVHQW EUHDNGRZQV E\ HJ VL]H JURXSV
RI HQWHUSULVHV HFRQRPLF DFWLYLW\ JURXS RFFXSDWLRQDO JURXS VH[ HGXFDWLRQ RI
HPSOR\HHV HWF 7KHVH DJJUHJDWHV FDQ EH WUHDWHG VLPLODUO\ WR DUHDV DQG WKXV
PHWKRGV IRU DVVHVVLQJ FRPSDUDELOLW\ DUH XVXDOO\ DQDORJRXV WR WKRVH PHQWLRQHG
HDUOLHU 2QH VKRXOG KRZHYHU FRQVLGHU WKH SRVVLEOH GLIIHUHQFHV EHWZHHQ YDULRXV
VWDWLVWLFDO WRROV
Internal coherence/comparability ± XVHUV RI VWDWLVWLFDO GDWD H[SHFW ZKLFK LV
REYLRXV DQG ORJLFDO WKDW HDFK VHW RI SXEOLVKHG RXWSXWV VKRXOG EH LQWHUQDOO\
FRKHUHQW LH DOO WKH DSSURSULDWH DULWKPHWLF DQG ORJLFDO GHSHQGHQFLHV VKRXOG EH
REVHUYHG +RZHYHU WKLV UHTXLUHPHQW LV VRPHWLPHV GLIILFXOW WR VDWLVI\ )RU
H[DPSOH VRPH HIILFLHQW HVWLPDWLRQ PHWKRGV KDYH D GUDZEDFN RU WKH LPSOHPHQWHG
SURFHVV FRPSULVHV PRUH WKDQ RQH VHJPHQW ZLWK GDWD IURP GLIIHUHQW VRXUFHV RU IRU
GLIIHUHQW XQLWV LQ HDFK VHJPHQW 7KH DXWKRUV RI WKH GRFXPHQW E\ (XURVWDW VXJJHVW JLYLQJ D EULHI H[SODQDWLRQ WR XVHUV DQG PHQWLRQLQJ WKHVH SUREOHPV LQ D
TXDOLW\ UHSRUW ZLWK WKH UHDVRQV IRU SXEOLVKLQJ QRQFRKHUHQW UHVXOWV H[SODLQHG
Coherence/comparability between short-term (sub–annual) and annual
statistics ± DQRWKHU QDWXUDO H[SHFWDWLRQ RQ WKH SDUW RI XVHUV LV WKDW VXEDQQXDO DQG
DQQXDO VWDWLVWLFDO RXWSXWV DUH FRQVLVWHQW 2Q WKH RQH KDQG LW PHDQV WKDW VLPLODU
DULWKPHWLF GHSHQGHQFLHV VKRXOG RFFXU VXP RI JURVV PRQWKO\ UHYHQXH IRU
HFRQRPLF HQWLWLHV VKRXOG EH HTXDO WR LWV DQQXDO UHYHQXH RU WKH QXPEHU RI QHZO\
HPSOR\HG SHUVRQV LQ D JLYHQ PRQWK VKRXOG QRW EH JUHDWHU WKDQ LWV WRWDO LQ WKH
UHOHYDQW TXDUWHU DQG RQ WKH RWKHU KDQG VWDWLVWLFDO SURFHVVHV SURGXFLQJ WKHVH GDWD
DUH RIWHQ TXLWH GLIIHUHQW 7KXV DOO FDXVHV RI WKH ODFN RI FRKHUHQFH QHHG WR EH
DVVHVVHG DQG DFFRXQWHG IRU (XURVWDW VXJJHVWV WKDW D FRPSDULVRQ RI VXE
DQQXDO DQG DQQXDO HVWLPDWHV VKRXOG EH WKH VWDUWLQJ SRLQW IRU DVVHVVLQJ WKH
PDJQLWXGH RI GLIIHUHQFHV GXH WR WKH ODFN RI FRKHUHQFH
x LI ERWK DQQXDO DQG VXEDQQXDO VHULHV PHDVXUH WKH VDPH SKHQRPHQRQ LQ
DEVROXWH YDOXHV RU LQGLFHV RWKHU WKDQ JURZWK UDWHV DQQXDO DJJUHJDWHV FDQ
EH FRQVWUXFWHG IURP VXEDQQXDO HVWLPDWHV DQG FRPSDUHG WR WRWDOV IURP WKH
DQQXDO VHULHV
x LI RQH RU RWKHU RI WKH VHULHV SURGXFHV RQO\ JURZWK UDWHV WKHQ FRPSDULVRQ
FDQ EH PDGH RI \HDU RYHU \HDU JURZWK UDWHV
3RVVLEOH GLVFUHSDQFLHV FDQ RIWHQ EH H[SODLQHG LQ WHUPV RI VDPSOLQJ HUURU RU
VRPH RWKHU PHDVXUHV RI DFFXUDF\ 6RPHWLPHV KRZHYHU WKH\ KDYH WKHLU VRXUFH LQ
RWKHU SUREOHPV HJ PHWKRGRORJLFDO DQG WKHQ WKHLU H[SODQDWLRQ UHTXLUHV DQ
DVVHVVPHQW RI WKH SRVVLEOH FDXVHV E\ PHWDGDWD FRPSDULVRQ DV IRU DOO IRUPV RI
FRKHUHQFH DVVHVVPHQW
306
$ 0áRGDN: Coherence and comparability …
Coherence/comparability with the National Accounts ± WKH DXWKRUV RI WKH
GRFXPHQW E\ (XURVWDW QRWH WKDW WKH 1DWLRQDO $FFRXQWV FRPSLODWLRQ SURFHVV
LV D PHWKRG IRU GHWHFWLQJ WKH ODFN RI FRKHUHQFH LQ GDWD UHFHLYHG IURP LWV YDULRXV
VRXUFH VWDWLVWLFDO SURFHVVHV ZKHWKHU WKH\ EH GLUHFW VXUYH\V UHJLVWHU EDVHG VXUYH\V
RU LQGLFHV 7KXV WKH OHYHO RI FRPSDUDELOLW\ FDQ EH HIILFLHQWO\ DVVHVVHG DQG VWXGLHG
HJ LQ WHUPV RI FDXVHV RI SRVVLEOH LQFRPSDUDELOLWLHV XVLQJ UHOHYDQW GDWD REWDLQHG
IURP WKLV V\VWHP DQG SURSHUWLHV RI WKH DGMXVWPHQWV DLPHG DW REWDLQLQJ WKH UHOLDEOH
EDODQFH RI DFFRXQWV )RU PRUH GHWDLOV VHH HJ '(67$7,6 $QRWKHU LQWHUHVWLQJ WRRO HQDEOLQJ DQ HIILFLHQW DVVHVVPHQW RI FRPSDUDELOLW\ DUH
mirror statistics 7KHUH DUH VRPH YDULDEOHV IRU D JLYHQ XQLW DUHD WKDW KDYH WKHLU
FRXQWHUSDUWV LQ DQRWKHU UHJLRQ RU HYHQ FRXQWU\ )RU H[DPSOH LI HPSOR\PHQW
UHODWHG SRSXODWLRQ IORZV FRPPXWLQJ IURP XQLW $ WR XQLW % LV REVHUYHG WKHQ WKH
QXPEHU RI HPSOR\HG SHUVRQV FRPLQJ IURP $ WR % VKRXOG EH HTXDO WR WKH QXPEHU
RI HPSOR\HHV FRPLQJ WR % IURP $ 6LPLODUO\ LQ FODVVLFDO PLJUDWLRQ VWXGLHV
HPLJUDWLRQ IURP 3RODQG WR 8. DQG LPPLJUDWLRQ WR 8. IURP 3RODQG VKRXOG
FRLQFLGH 8VLQJ VXFK GDWD D IORZ PDWUL[ FDQ EH FRQVWUXFWHG DQG DQDO\VHG VHH HJ
7 -y]HIRZVNL DQG $ 0áRGDN $QRWKHU H[DPSOH H[SRUWV RI FRXQWU\ $ WR
FRXQWU\ % VKRXOG EH HTXDO WR LPSRUWV RI FRXQWU\ % IURP FRXQWU\ $ 7KXV DQ
HIIRUW VKRXOG EH PDGH WR HQVXUH WKDW UHOHYDQW WZRZD\ VWDWLVWLFV FRLQFLGH +HQFH
GLIIHUHQFHV LQ GHILQLWLRQV KDYH WR EH FDUHIXOO\ VWXGLHG DQG PLQLPL]HG $V RQH FDQ
VHH PLUURU VWDWLVWLFV FDQ EH XVHG WR YHULI\ FRKHUHQFH JHRJUDSKLFDO FRPSDUDELOLW\
DQG DFFXUDF\ 7KXV WKH GLIIHUHQFH LQ µPLUURU¶ GDWD FDQ LQGLFDWH WKH ODFN RI
DFFXUDF\ LQ HLWKHU RU ERWK RI WKH RXWSXWV DQGRU PD\ UHIOHFW WKH ODFN RI
FRPSDUDELOLW\ EHWZHHQ UHJLRQV RU FRXQWULHV IRU WKH VDPH GDWD LWHPV )RU
H[DPSOH FI (XURVWDW LI WKH 3ROLVK HVWLPDWH RI HPLJUDWLRQ WR 8. LQ D
SDUWLFXODU \HDU H[FHHGV WKDW RI WKH %ULWLVK HVWLPDWH RI LPPLJUDWLRQ IURP 3RODQG IRU
WKH VDPH \HDU E\ WKHQ WKLV IDFW PD\ LQGLFDWH WKH ODFN RI DFFXUDF\ GXH WR
RYHUHVWLPDWLRQ LQ 3RODQG RU XQGHUHVWLPDWLRQ LQ 8. 2QH VKRXOG WKHQ ORRN IRU
FDXVHV HJ LQ PHWKRGRORJLHV VXFK DV WKH GHILQLWLRQ RI HPLJUDQWVLPPLJUDQWV ,Q
JHQHUDO WKHUH DUH UHJXODWLRQV FRQFHUQLQJ %XVLQHVV 5HJLVWHUV %5V DQG VWDWLVWLFV
OLNH 6WUXFWXUDO %XVLQHVV 6WDWLVWLFV 6%6 DQG 6KRUW±7HUP 6WDWLVWLFV 676
UHJXODWLRQV DERXW VWDWLVWLFDO XQLWV IRU WKH REVHUYDWLRQ DQG DQDO\VLV RI WKH
SURGXFWLRQ V\VWHP LQ WKH &RPPXQLW\ ZKHUH XQLW GHOLQHDWLRQ DQG WKH %5 WRJHWKHU
IRUP DQ LPSRUWDQW SDUW RI WKH EDVLV RI VWDWLVWLFDO RXWSXW 7R RYHUFRPH WKH PRVW
LPSRUWDQW SUREOHPV RQH VKRXOG JXDUDQWHH FRRUGLQDWLRQ EHWZHHQ VWDWLVWLFDO
VXUYH\V IRU H[DPSOH LQ TXHVWLRQQDLUHV LQVWUXFWLRQV IRU UHVSRQGHQWV GDWD
SURFHVVLQJ HWF 7KLV VKRXOG LGHDOO\ EH GRQH ZLWKLQ UHVSHFWLYH 1DWLRQDO
6WDWLVWLFDO ,QVWLWXWHV ZKHUH LW ZRXOG EH PXFK HDVLHU WKDQ HOVHZKHUH $FFRUGLQJ WR
0 %HUJGDKO et al. XVLQJ WKH VDPH %5 DV D IUDPH FRQVWUXFWLQJ WKH IUDPH
DW WKH VDPH WLPH XSGDWLQJ XQLWV LQ WKH VDPH ZD\ DW WKH VDPH WLPH ZLWK UHJDUG WR
EXVLQHVV VWUXFWXUH FODVVLILFDWLRQV HWF DGGUHVVLQJ TXHVWLRQQDLUHV WR WKH VDPH
XQLW HWF DUH IXUWKHU DFWLRQV LQIOXHQFLQJ FRKHUHQFH DQG DFFXUDF\
STATISTICS IN TRANSITION-new series, Summer 2013
307
7KH QH[W SUREOHP LV coherence/comparability with other statistics and
benchmarking ,W PHDQV WKDW WKHUH PD\ EH RWKHU VWDWLVWLFDO VXUYH\V RU GDWD
VRXUFHV VXFK WKDW WKHLU VWDWLVWLFDO RXWSXWV FDQ EH XVHG LQ FRPELQDWLRQ ZLWK WKH
UHVXOWV RI D JLYHQ VXUYH\ )RU H[DPSOH VRPH GDWD IURP UHSRUWLQJ RQ ILQDQFLDO
UHVXOWV RI HQWHUSULVHV FDQ EH FRPELQHG ZLWK UHOHYDQW GDWD IURP WKH WD[ UHJLVWHU
$Q\ VXFK FRPELQDWLRQ FDQ VKRZ GLVFUHSDQFLHV ZKLFK VKRXOG EH DOO SRVVLEOH
FRQWDLQHG LQ WKH TXDOLW\ UHSRUW 7KLV SUREOHP LV DOVR FRQQHFWHG ZLWK WKH TXHVWLRQ
RI EHQFKPDUNLQJ $FFRUGLQJ WR ,XUFRYLFK et al. EHQFKPDUNLQJ LV
XQGHUVWRRG DV DQ LPSURYHPHQW SURFHVV LQ ZKLFK D FRPSDQ\ RUJDQLVDWLRQ RU DQ\
RWKHU PXOWLRUJDQLVDWLRQDO V\VWHP FDUULHV RXW WKUHH SURFHVVHV
FRPSDUHV LWV SHUIRUPDQFH DJDLQVW EHVWLQFODVV V\VWHPV
GHWHUPLQHV KRZ WKHVH V\VWHPV KDYH DFKLHYHG WKHLU VXSHULRU SHUIRUPDQFH
DQG
XVHV WKH FROOHFWHG LQIRUPDWLRQ WR LPSURYH LWV RZQ SHUIRUPDQFH %DVLFDOO\
DOO SURFHVVHV FDQ EH WKH REMHFW RI EHQFKPDUNLQJ
,Q WKH VWDWLVWLFDO FRQWH[W EHQFKPDUNLQJ FDQ EH WUHDWHG DV D FRQWLQXRXV SURFHVV
LQ ZKLFK V\VWHPV FRQWLQXRXVO\ VHHN WR FKDOOHQJH WKHLU SUDFWLFHV 0RUH SUHFLVHO\
EHQFKPDUNLQJ LV DLPHG DW LPSURYLQJ SURFHVVHV EDVHG XSRQ WKH LQVLJKWV RQ ZKDW
PDNHV SURFHVVHV HIIHFWLYH DQG HIILFLHQW ,XUFRYLFK et al. REVHUYH WKDW
EHQFKPDUNLQJ VWHPV IURP WKH SULYDWH VHFWRU EXVLQHVV DQG KDV EHFRPH LQFUHDVLQJO\
SRSXODU IRU SROLWLFDO V\VWHPV RYHU WKH SDVW \HDUV DV QDWLRQV DQG UHJLRQV IDFH
LQFUHDVHG FRPSHWLWLRQ IURP RWKHU FRPSHWLQJ V\VWHPV 6WDWLVWLFV DOVR XVHV
EHQFKPDUNLQJ WRROV )RU H[DPSOH %DUFHOODQ SURYLGHV D ZLGH RYHUYLHZ RI
VXFK PHWKRGRORJ\ IURP WKH SRLQW RI YLHZ RI WKH QDWLRQDO DFFRXQWV DQG DQDO\VHV
VSHFLILF DVSHFWV RI WKH (XURSHDQ DJJUHJDWHV EHQFKPDUNLQJ VXFK DV FRPSRVLWLRQ
DQG TXDOLW\ RI WKH LQGLFDWRUV DV ZHOO DV SRVVLEOH HIIHFWV RI EUHDNV JHQHUDWHG E\
IRUHVHHQ PHWKRGRORJLFDO FKDQJHV DQG WKH LPSDFW RI WKH LQWURGXFWLRQ RI WKH QHZ
DSSURDFK WR SULFH DQG YROXPH PHDVXUHV FKDLQOLQNLQJ RQ WKH EHQFKPDUNLQJ
EDVHG FRPSLODWLRQ RI WKH (XURSHDQ DJJUHJDWHV 7KH JHQHUDO EHQFKPDUNLQJ XVHG LQ
DQDO\]LQJ GDWD FRPSDUDELOLW\ WDNHV LQWR DFFRXQW EHQFKPDUNLQJ RI SROLWLFDO
V\VWHPV DQG LQIUDVWUXFWXUHV DW QDWLRQDO OHYHO DQG OHVV VR DW UHJLRQDO OHYHO E\
DGRSWLRQ DQG DGDSWDWLRQ RI PRGHUQ WHFKQLTXHV OLNH EHQFKPDUNLQJ IRU
LPSURYHPHQW RI GDWD FRPSDUDELOLW\ 6WDWLVWLFDO EHQFKPDUNLQJ FRPSULVHV DOVR WKH
FROOHFWLRQ DQDO\VLV DQG GRFXPHQWDWLRQ RI JRRG SUDFWLFHV DQG XVH WKHP WR
HODERUDWH QHZ VROXWLRQ DV PXFK KDUPRQL]HG DFURVV FRXQWULHV DQG UHJLRQV DV
SRVVLEOH
7R HQDEOH DQ\ FRPSDULVRQ VRPH GHILQLWLRQV XQLWV UHIHUHQFH WLPH YDULDEOHV
VDPSOH IUDPH HWF VKRXOG EH HTXLYDOHQW 7KH XVHU VKRXOG REWDLQ SUHFLVH
LQIRUPDWLRQ DERXW DOO GLIIHUHQFHV SUREOHPV DQG WKHLU SUDFWLFDO FRQVHTXHQFHV
6XFK LQIRUPDWLRQ LV XVXDOO\ FRQWDLQHG LQ VSHFLDO TXDOLW\ UHSRUWV 7KH SUREOHPV RI
DFFXUDF\ VKRXOG DOVR EH PHQWLRQHG LQ WKLV FRQWH[W
308
$ 0áRGDN: Coherence and comparability …
4. Measurement and improving degree of coherence and comparability
,W LV REYLRXV WKDW DQ HIILFLHQW DQG FRPSOHWH TXDOLW\ UHSRUW VKRXOG FRQWDLQ EDVLF
PHDVXUHV RI VXUYH\ FRKHUHQFH DQG FRPSDUDELOLW\ 7KHVH PHDVXUHV VKRXOG EH
FRQVWUXFWHG RQ WKH EDVLV RI H[SHUW RSLQLRQV RQ FRKHUHQFH DQG FRPSDUDELOLW\ LQ
WHUPV RI YDULRXV SDUWLFXODU DVSHFWV GHVFULEHG LQ SUHYLRXV VHFWLRQV RI WKLV SDSHU
6XFK SURFHHGLQJ LV PRWLYDWHG E\ WKH IDFW WKDW WKH GHJUHH RI FRKHUHQFH DQG
FRPSDUDELOLW\ LV LQ JHQHUDO QRW PHDVXUDEOH DQG PD\ GHSHQG RQ VXEMHFWLYH
DVVHVVPHQW RI LPSRUWDQFH RI SDUWLFXODU IDFWRUV RI WKHP 2XU SURSRVDO LQ WKLV
UHVSHFW FRQVLVWV RI WKUHH PDLQ LQGLFHV ZKHUH WKH WKLUG RI WKHP LV FRQVWUXFWHG
XVLQJ WZR SUHYLRXV RQHV DQG FDQ EH LQWHUSUHWHG DV WRWDO FRPSOH[ LQGH[ RI
FRKHUHQFH DQG FRPSDUDELOLW\
/HW m p q DQG t EH QDWXUDO QXPEHUV DQG Xଵ , X ଶ , … , X ୫ GHQRWH YDULDEOHV
FROOHFWHG LQ VXFFHVVLYH t HGLWLRQV RI WKH DQDO\]HG VXUYH\V $VVXPH WKDW DVVHVVPHQW
LV PDGH E\ p LQGHSHQGHQW H[SHUWV 2XU ILUVW LQGH[ ZLOO GHVFULEH methodological
differences LQ GHILQLWLRQV RI YDULDEOHV XVHG LQ WKH DIRUHPHQWLRQHG HGLWLRQV 7R
GHILQH LW LW VKRXOG EH DVVXPHG WKDW WKH VXEMHFWV RI DVVHVVPHQW DUH q DVSHFWV RI
GHILQLWLRQ RI DQDO\VHG YDULDEOHV ,W VHHPV WR EH REYLRXV WKDW YDULRXV H[SHUWV FDQ
KDYH GLIIHUHQW KLHUDUFK\ RI LPSRUWDQFH RI WKH HYDOXDWLRQ DVSHFWV LH ZKDW LV
FUXFLDO IRU RQH H[SHUW FDQ EH RI QR VLJQLILFDQFH IRU DQRWKHU 7KH LQGH[ FDQ EH WKHQ
FRPSXWHG DV D VXP RI QRQQHJDWLYH YDOXHV H[SUHVVLQJ HYDOXDWLRQV PDGH E\ WKHVH
H[SHUWV
୮
I୑(୰)
୯
୲
1
‫؝‬
෍ ෍ w୧୨ ෍ d୧୨୩୰
pq଴ (t െ 1)
୧ୀଵ ୨ୀଵ
(1)
୩ୀଶ
ZKHUH d୧୨୩୰ ‫[ א‬0,1] GHQRWHV WKH OHYHO RI FRQVLVWHQF\ RI WKH GHILQLWLRQ RI YDULDEOH
X ୰ LQ kWK HGLWLRQ RI WKH VXUYH\ LQ FRPSDULVRQ RI LWV k െ 1±WK HGLWLRQ LQ FRQWH[W RI
j±WK DVSHFW DFFRUGLQJ WR WKH RSLQLRQ H[SUHVVHG E\ i±WK H[SHUW ZKHUH GHQRWHV
WRWDO LQFRQVLVWHQF\ ± IXOO FRQVLVWHQF\ ZKLOH DQ LQFUHDVLQJ HYDOXDWLRQ QRWH
GHQRWHV D GHFUHDVLQJ OHYHO RI FRQVLVWHQF\ LQ WHUPV RI D JLYHQ DVSHFW DQG w୧୨ ‫א‬
[0,1] LV WKH ZHLJKW DVVRFLDWHG E\ i±WK H[SHUW ZLWK j±WK DVSHFW H[SUHVVLQJ LWV
SRWHQWLDO HIIHFW RQ FRPSDUDELOLW\ GHQRWHV WKDW UHOHYDQW DVSHFW LV GURSSHG WKH
ODUJHU LV WKH ZHLJKW WKH PRUH LPSRUWDQW LW LV IRU DQ H[SHUW i = 1,2, … , p j =
1,2, … , q k = 2,3, … , t DQG r = 1,2, … m 0 < q଴ ൑ q LV WKH QXPEHU RI DVSHFWV
ZKLFK KDYH QRQ±]HUR ZHLJKW DFFRUGLQJ WR DW OHDVW RQH H[SHUW ,W LV DOVR DVVXPHG
WKDW DFFRUGLQJ WR FODVVLFDO FRQVWUXFWLRQ RI ZHLJKWV
୯
෍ w୧୨ = 1
୨ୀଵ
IRU HYHU\ i = 1,2, … , p
(2)
309
STATISTICS IN TRANSITION-new series, Summer 2013
7KH LQGH[ I୑ WDNHV YDOXHV IURP [0,1] ± ODUJHU YDOXH LQGLFDWHV EHWWHU FRQVLVWHQF\
,W ZLOO EH QH[W DVVXPHG WKDW WKH YDULDEOH X ୰ IRU ZKLFK I୑(୰) ൒ Ʌ LV UHJDUGHG DV
VXIILFLHQWO\ FRQVLVWHQW IURP WKH SRLQW RI YLHZ RI LWV GHILQLWLRQ 7KH SDUDPHWHU
Ʌ ‫( א‬0,1] LV WKH DUELWUDULO\ DVVXPHG WKUHVKROG RI FRQVLVWHQF\ LW FDQ EH HVWDEOLVKHG
HJ DW WKH OHYHO RI /HW S୑ EH WKH VHW RI YDULDEOHV ZKLFK DUH VXIILFLHQWO\
FRQVLVWHQW DFFRUGLQJ WR LH S୑ ‫ ؝‬൛X୰ : r ‫{ א‬1,2, … , m} ‫ ר‬I୑(୰) ൒ Ʌൟ
7KH FRQVWUXFWLRQ FDQ EH SHUFHLYHG DV DQ H[WHQVLRQ RI WKH %RUGD JURXS
HYDOXDWLRQ PHWKRG 7KDW LV WKH H[SHUW RSLQLRQV DUH KHUH RQO\ RQH RI VHYHUDO
IDFWRUV DIIHFWLQJ WKH ILQDO HYDOXDWLRQ 2Q WKH RWKHU KDQG WKH ZHLJKWV w୧୨ FDQ EH
REWDLQHG RQ WKH EDVLV RI µKLGGHQ¶ LH VXEMHFWLYH DQG QRW FRPPRQO\ SXEOLVKHG
LQGLYLGXDO PDWULFHV RI SUHIHUHQFHV RI H[SHUWV FRQFHUQLQJ WKH LPSRUWDQFH RI WKH
LQYHVWLJDWHG DVSHFWV IRU WKH FRPSDUDELOLW\ XVLQJ WKH IX]]\ %RUGD DSSURDFK VHH
HJ *DUFtD /DSUHVWD DQG 0DUWtQH] 3DQHUR $Q LQWHUHVWLQJ DOWHUQDWLYH
FRXOG EH KHUH WKH XVH RI HVSHFLDOO\ PRGLILHG /LWYDN¶V PHWKRG FI /LWYDN ,Q WKH FODVVLFDO YHUVLRQ RI WKLV PHWKRG VXFK RSWLRQ LV SUHIHUUHG E\ DQ H[SHUW
ZKLFK LV UDQNHG ILUVW LQ DQ\ SUHIHUHQFH RUGHU WKDW PLQLPL]HV WKH VXP RI GLVWDQFHV
EHWZHHQ YHFWRUV RI SUHIHUHQFHV ,Q WKLV VLWXDWLRQ RQH FDQ SURSRVH WR VHW WKH H[SHUW
ZHLJKW RI DQ DVSHFW XVLQJ WKH GLVWDQFH FRPSXWHG DFFRUGLQJ WR WKH DIRUHPHQWLRQHG
GHILQLWLRQ ZKLFK LV PLQLPDO IRU DOO SUHIHUHQFH YHFWRUV ZKHUH WKLV DOWHUQDWLYH LV
UDQNHG ILUVW 7KH ZHLJKWV ZLOO EH VHW DV WKHVH PLQLPDO GLVWDQFHV DIWHU
QRUPDOL]DWLRQ WR VDWLVI\ WKH FRQGLWLRQ ,I WKH LQGH[ I୑ \LHOGV VDWLVIDFWRU\ UHVXOWV LH LI D VXIILFLHQW QXPEHU ± HJ
PRUH WKDQ D KDOI RI n ± YDULDEOHV DUH FRQVLVWHQW D VHFRQG LQGH[ EDVHG RQ VLPLODU
UXOHV VKRXOG EH FRQVWUXFWHG ,W LV related to comparability over time and over
domains of interest LH VSDWLDO XQLWV EUDQFK FOXVWHUV RI HFRQRPLF HQWLWLHV HWF ±
UHVWULFWHG WR WKRVH YDULDEOHV ZLWK VLPLODU GHILQLWLRQV ,W VKRXOG WDNH LQWR DFFRXQW
WKDW IRU VRPH YDULDEOHV FRPSDUDELOLW\ RYHU WLPH FDQ EH PRUH LPSRUWDQW WKDQ
FRPSDUDELOLW\ RYHU GRPDLQV HJ WRWDO UHYHQXHV IRU RWKHUV WKLV H[SHFWDWLRQ FDQ
EH RSSRVLWH HJ IRU VRPH QHZO\ LQWURGXFHG YDULDEOH KDYLQJ IRUP RI DQ LQGH[
ZKLFK XVHV UHVXOWV IURP QHZ SKHQRPHQD DQG QHHGV RI XVHUV )RUPDOO\ WKH LQGH[
Iୈ LV FRQVWUXFWHG LQ WKH IROORZLQJ ZD\
Iୈ(୰)
୮
୲
୲
୧ୀଵ
୩ୀଶ
୩ୀଶ
1
‫؝‬
෍ ൭w୧୰(୘) ෍ d୧୩୰(୘) + w୧୰(୙) ෍ d୧୩୰(୙) ൱
ap(t െ 1)
(3)
ZKHUH w୧୰(୘) DQG w୧୰(୙) GHQRWH ZHLJKWV DVVRFLDWHG E\ i±WK H[SHUW ZLWK WLPH DQG
DQDO\]HG GRPDLQV IRU WKH YDULDEOH X ୰ UHVSHFWLYHO\ w୧୰(୘) , w୧୰(୙) ‫[ א‬0,1] d୧୩୰(୘)
DQG d୧୩୰(୙) DUH DVVHVVPHQWV RI FRPSDUDELOLW\ RYHU WLPH DQG GRPDLQV
d୧୩୰(୘) , d୧୩୰(୙) ‫[ א‬0,1] ZKHUH GHQRWHV WRWDO ODFN RI FRPSDUDELOLW\ ± IXOO
FRPSDUDELOLW\ LQ D JLYHQ FRQWH[W i = 1,2, … , p k = 2,3, … , t IRU HYHU\ r ‫א‬
{1,2, … , m} VXFK WKDW X ୰ ‫ א‬S୑ 7KH SDUDPHWHU a WDNHV YDOXHV RU GHSHQGLQJ RQ
ZKHWKHU RQO\ RQH RU ERWK RI WKHVH DVSHFWV RI FRPSDUDELOLW\ KDYH QRQ±]HUR ZHLJKW
LQ WKH RSLQLRQ RI DW OHDVW RQH H[SHUW 6LPLODUO\ DV LQ WKH FDVH RI DOVR WKH LQGH[
310
$ 0áRGDN: Coherence and comparability …
WDNHV YDOXHV IURP [0,1] ZKHUH LQGLFDWHV WKH LGHDO FRPSDUDELOLW\ DQG ]HUR ±
LWV WRWDO ODFN
)LQDOO\ IRU HDFK HGLWLRQ RI WKH VXUYH\ D FRPSOH[ index of complex
coherence and comparability EDVHG RQ DQG VKRXOG EH FRPSXWHG ,W ZLOO
EH GHILQHG DV
med I୑(୰) + b
Iେ ‫؝‬
୰ୀଵ,ଶ,…,୫
min
୰‫{א‬ଵ,ଶ,…,୫}:ଡ଼౨ ‫א‬ୗ౉
2
Iୈ(୰)
.
௡
ZKHUH ܾ = 1 LI |S୑ | ൒ ቂ ቃ + 1 DQG ܾ = 0 RWKHUZLVH ଶ
$V RQH FDQ VHH WKH FRPSDUDELOLW\ RI VHOHFWHG YDULDEOHV KDV KHUH HVSHFLDO
LPSRUWDQFH ,W LV PRWLYDWHG E\ WKH IDFW WKDW PHWKRGRORJLFDOO\ FRQVLVWHQW VXUYH\
VKRXOG KDYH UHOHYDQW DQG KLJK OHYHO RI FRPSDUDELOLW\ 2I FRXUVH ‫ܫ‬஼ ‫[ א‬0,1] DQG
KLJKHU YDOXH LQIRUP DERXW EHWWHU TXDOLW\ RI WKH VXUYH\ LQ WKLV FRQWH[W 7KHVH
LQGLFHV FDQ VLJQLILFDQWO\ KHOS WR DVVHVV VXUYH\ TXDOLW\ ,W LV ZRUWK QRWLQJ WKDW WKH
H[SHUW ZHLJKWV KDYH D VXEMHFWLYH FKDUDFWHU 7KDW LV HYHU\ WLPH ZKHQ WKH VHW RI
H[SHUWV LV FKDQJHG D QHZ YDOXH RI WKH LQGH[ Iେ DQG RI FRXUVH SUHYLRXV LQGLFHV
LV REWDLQHG 7KXV LW LV UHFRPPHQGHG WR KDYH VWDEOH DQG FRPSHWHQW WHDP RI
H[SHUWV LH VXFK WKDW SRVVLEOH FKDQJH LQ LW ZLOO QRW DIIHFW VLJQLILFDQWO\ WKH
VWUXFWXUH RI SUHIHUHQFHV 2Q WKH RWKHU KDQG WKH FKDQJH RI WKH ZHLJKWV PD\ EH DOVR
D UHVXOW RI LPSRUWDQFH RI DFWXDO RU IRUHVHHQ FKDQJHV LQ TXDOLW\ RI GDWD FROOHFWLRQ RI
D JLYHQ YDULDEOH RI LWV PHWKRGRORJ\ RYHU WLPH ,Q WKLV FRQWH[W VXFK HODVWLFLW\ RI
ZHLJKWV LV UDWKHU GHVLUDEOH
$ VPDOO H[DPSOH LOOXVWUDWLQJ WKHVH SUREOHPV FDQ EH DV IROORZV $VVXPH WKDW D
VXUYH\ GR MRXUQH\V WR ZRUN LV FRQGXFWHG 7KH GDWD IROORZLQJ WKUHH YDULDEOHV DUH
FROOHFWHG Xଵ ± DYHUDJH WLPH RI MRXUQH\ WR PDLQ ZRUNSODFH X ଶ ± GLVWDQFH
EHWZHHQ SODFH RI UHVLGHQFH RI PDLQ ZRUNSODFH DQG X ଷ ± PHDQV RI WUDQVSRUW IURP
WKH SODFH RI UHVLGHQFH WR WKH PDLQ ZRUNSODFH 'DWD RQ YDULDEOHV Xଵ DQG X ଷ DUH
FROOHFWHG IURP WKH VDPSOH VXUYH\ RI RI WKH SRSXODWLRQ DQG GDWD RQ X ଶ DUH
GHWHUPLQHG RQ WKH EDVLV RI WKH WD[ UHJLVWHU 7KH IROORZLQJ PHWKRGRORJLFDO DVSHFWV
DUH FRQVLGHUHG IUDPH SRSXODWLRQ VRXUFHV RI GDWD DQG VDPSOH GHVLJQ GDWD
FROOHFWLRQ DQG SURFHVVLQJ DQG LPSXWDWLRQ DQG HVWLPDWLRQ 7KH SUREOHP RI GDWD
FRPSDUDELOLW\ RQ WKH OHYHO RI 1876 YRLYRGVKLSV DQG 1876 SRZLDWV
3ROLVK UHJLRQV DQG RYHU WLPH ZLOO EH DOVR FRQVLGHUHG ,Q FDVH RI WKH LQGH[ WKH
DVSHFWV DQG ZLOO KDYH JUHDWHU LPSRUWDQFH IRU FRQVLVWHQF\ WKDQ EHFDXVH
PRVW GDWD DUH FROOHFWHG LQ VDPSOH VXUYH\V +HQFH w୧୨ > w୧ଶ IRU DQ\ i 7KH YDOXH
RI d୧୨୩୰ ¶V ZLOO GHSHQG RQ FKDQJHV LQ PHWKRGRORJ\ RFFXUULQJ LQ FRPSDULVRQ ZLWK
SUHYLRXV HGLWLRQ RI WKH VXUYH\ ,I WKH FKDQJHV DUH YHU\ VPDOO WKHQ d୧୨୩୰ ¶V ZLOO EH
FORVH WR LQ DQ\ FDVH 2WKHUZLVH HJ LI LQ WKH QH[W HGLWLRQ RI WKH VXUYH\ WKH GDWD
RQ X ଶ DUH FROOHFWHG DOVR IURP VDPSOH VXUYH\ WKHQ d୧୨(୩ାଵ)ଶ ZLOO EH VPDOOHU
1
The symbol [ܿ] denotes the integer part of the real number ܿ, i.e. the greatest integer not
greater than ܿ. The symbol |ܼ| denotes the number of elements of the set ܼ.
STATISTICS IN TRANSITION-new series, Summer 2013
311
HVSHFLDOO\ IRU j = 1,2,4 $V UHJDUGV WKH LQGH[ WKH FRPSDUDELOLW\ RYHU WLPH FDQ
EH KHUH OHVV LPSRUWDQW WKDQ RWKHU UHJLRQV DQG KHQFH RQH FDQ H[SHFW WKDW w୧୰(୘) <
w୧୰(୙) IRU DQ\ r +RZHYHU WDNLQJ WKH FKDUDFWHU RI GDWD FROOHFWLRQ IRU SDUWLFXODU
YDULDEOHV LQWR DFFRXQW RQH FDQ REVHUYH WKDW WKH FRPSDUDELOLW\ IRU 1876 UHJLRQV
IRU Xଵ DQG X ଷ ZLOO EH VLJQLILFDQWO\ VPDOOHU WKDQ IRU X ଶ LH d୧୩୰(୙) ‫ ا‬d୧୩ଶ(୙) IRU
r = 1,3 )RU 1876 UHJLRQV GXH WR KLJKHU TXDOLW\ RI HVWLPDWLRQ WKH
FRPSDUDELOLW\ RI Xଵ DQG X ଷ FDQ VLJQLILFDQWO\ LQFUHDVH
2QH PRUH SUREOHP ZKLFK ZDV QRW LQGLFDWHG SUHYLRXVO\ GXH WR LWV SUDFWLFDO
FRPSOH[LW\ DQG LPSRUWDQFH LV KRZ WR WUHDW YDULDEOHV ZKLFK DUH H[SUHVVHG XVLQJ
YDULRXV PHDVXUHPHQW XQLWV DQG YDU\ IURP WKH SRLQW RI YLHZ RI WKH UDQJH RU
VLJQLILFDQFH RI LQIRUPDWLRQ SURYLGHG ,Q PDQ\ FDVHV ± GHVSLWH HIIRUWV PDGH WR
KDUPRQL]H PHWKRGRORJLHV ± VXFK GLVFUHSDQFLHV DUH XQDYRLGDEOH RZLQJ WR VSHFLILF
QHHGV RI XVHUV RI GDWD SURGXFHG DV D UHVXOW RI SDUWLFXODU VXUYH\V GLYHUVLILFDWLRQ RI
WUDGLWLRQV REVHUYHG EHWZHHQ UHJLRQV RU FRXQWULHV HWF 7KHUHIRUH VRPH REVWDFOHV
FDQQRW EH RYHUFRPH PHWKRGRORJLFDOO\ +HQFH QXPHULFDO PHWKRGV IRU WKH
QRUPDOL]DWLRQ RI YDULDEOHV VKRXOG EH DSSOLHG
,W LV ZRUWKZKLOH WR QRWH WKDW WKH QRUPDOL]DWLRQ VKRXOG GHQRWH DOVR
XQLIRUPL]DWLRQ RI FKDUDFWHUV RI SDUWLFXODU YDULDEOHV (DFK YDULDEOH KDV LWV RZQ
VWDWXV EHLQJ DUELWUDULO\ HVWDEOLVKHG WDNLQJ LQWR DFFRXQW WKH UHODWLRQVKLS EHWZHHQ
WKH YDOXHV DQG WKH UHDOLW\ WKH\ GHVFULEH 7KH IROORZLQJ WKUHH W\SHV RI YDULDEOHV FDQ
EH WKHQ GLVWLQJXLVKHG
x stimulant ± WKH KLJKHU WKH YDOXH RI WKH IHDWXUH WKH EHWWHU HJ DYHUDJH
PRQWKO\ ZDJH DQG VDODU\ RU *'3 SHU FDSLWD
x destimulant ± VPDOOHU YDOXHV DUH PXFK PRUH GHVLUDEOH WKDQ KLJKHU RQHV HJ
XQHPSOR\PHQW UDWH
x nominant ± KDV DQ RSWLPXP OHYHO RI YDOXH FDOOHG DOVR DQ LPEXHPHQW
SRLQW 7KXV EHORZ WKLV SRLQW WKH IHDWXUH LV WUHDWHG DV D VWLPXODQW DQG DERYH
LW ± DV D GHVWLPXODQW 2U FRQYHUVHO\ ± LQFUHDVLQJ YDOXHV DQG
VLPXOWDQHRXVO\ ORZHU WKDQ WKH RSWLPXP DUH ZRUVH ZKHUHDV GHFUHDVLQJ
RQHV EXW JUHDWHU WKDQ WKH RSWLPXP DUH UHJDUGHG DV EHWWHU 'HVWLPXODQWV DQG QRPLQDQWV VKRXOG EH FRQYHUWHG LQWR VWLPXODQWV HJ E\
WDNLQJ UHVSHFWLYH EDG YDOXHV ZLWK RSSRVLWH VLJQV 1H[W WKH\ DUH WKHQ
QRUPDOL]HG 7KH UHOHYDQW IRUPXOD FDQ OHDG HLWKHU WR XQLILFDWLRQ RI EDVLF VWDWLVWLFDO
PHDVXUHV VXFK DV DULWKPHWLF PHDQ PHGLDQ VWDQGDUG GHYLDWLRQ RU PHGLDQ
DEVROXWH GHYLDWLRQ RU UDQJHV RI IHDWXUHV $ ULFK FROOHFWLRQ RI WKRVH PHWKRGV FDQ
EH IRXQG LQ DUWLFOHV E\ =HOLDĞ RU E\ 0áRGDN D 7KH\ DUH EDVHG RQ
WKH IROORZLQJ IRUPXOD
z୧୨ െ a୨
z୧୨ =
,
b୨
ZKHUH x୧୨ LV WKH YDOXH RI j±WK YDULDEOH IRU i±WK XQLW z୧୨ LV LWV QRUPDOL]HG YDOXH a୨
DQG b୨ DUH SDUDPHWHUV IRU j±WK YDULDEOH i = 1,2, … , n j = 1,2, … , m ZKHUH n
GHQRWHV WKH QXPEHU RI DQDO\VHG XQLWV VXFK DV PHDQ VWDQGDUG PHGLDQ PHGLDQ
312
$ 0áRGDN: Coherence and comparability …
DEVROXWH GHYLDWLRQ j±WK FRRUGLQDWH RI WKH :HEHU PHGLDQ RU DQRWKHU VLQJXODU SRLQWV
RI WKH PXOWLGLPHQVLRQDO VSDFH FI $ 0áRGDN E HWF ,Q JHQHUDO LI WKH
DULWKPHWLF PHDQ RI HDFK RI QRUPDOL]HG YDULDEOH DPRXQWV WR DQG LWV YDULDQFH LV
HTXDO WR WKHQ QRUPDOL]DWLRQ LV FDOOHG VWDQGDUGLVDWLRQ LI WKH UDQJH LV FRQVWDQW
DQG HTXDO HJ WR WKHQ VXFK WUDQVIRUPDWLRQ LV FDOOHG unitarisation DQG LI
a୨ = 0 DQG b୨ LV DVVXPHG WR EH DULWKPHWLF PHDQ PLQLPXP PD[LPXP PHGLDQ
VXP VXP RI VTXDUHV VTXDUH URRW RI WKH VXP RI VTXDUHV RI WKH YDOXH RI WKH j±WK
YDULDEOH j = 1,2, … , m WKHQ LW LV FDOOHG quotient transformation
$QRWKHU RSWLRQ LQ WKLV FRQWH[W LV WKH XVH RI EHQFKPDUNLQJ 7KDW LV GLVWDQFHV
RI D JLYHQ REMHFW UHSUHVHQWHG E\ D YHFWRU RI GDWD RQ Թ୫ DQG WKH EHQFKPDUN DUH
FRPSXWHG LH D EHVW±LQ±FODVV REMHFW UHDO RU DUWLILFLDO FUHDWHG LH E\ RSWLPL]DWLRQ
RI YDOXHV RI SDUWLFXODU YDULDEOHV ZKLFK DOO LQYHVWLJDWHG REMHFWV DUH FRPSDUHG
ZLWK 7R WKLV HQG D VSHFLDO PHDVXUH RI GLVWDQFH EHWZHHQ VWUXFWXUHV FDQ EH DSSOLHG
HJ *RZHU¶V GLVWDQFH 0LQNRZVNL¶V PHWULFV DQG LWV SDUWLFXODU FDVHV &DQEHUUD
PHWULFV .D]LQLHF¶V *DWHZ¶V RU -HIIUH\¶V DQG 0DWXVLWD¶V IRUPXODV RU 3HDUVRQ¶V
FRUUHODWLRQ FRHIILFLHQW ± FI .D]LQLHF *DWHZ 0áRGDN %UX]]RQH et al. +HQFH WKH EHQFKPDUNLQJ QRUPDOL]DWLRQ FDQ EH
SHUIRUPHG HJ DV
หx୧୨ െ ɔ୨ ห
z୧୨ =
d୧
ZKHUH ɔ = (ɔଵ , ɔଶ , … , ɔ୫ ) LV WKH EHQFKPDUN d୧ GHQRWHV WKH GLVWDQFH RI i±WK
REMHFW IURP WKH EHQFKPDUN i = 1,2, … , n j = 1,2, … , m
'DWD IURP YDULRXV TXHVWLRQQDLUHV FDQ DOVR EH XVHG WR FRQVWUXFW FRPSOH[
LQGLFHV RI GHYHORSPHQW LQ D JLYHQ GRPDLQ ,W LV YHU\ FRPIRUWDEOH IRU WKH XVHU ZKR
REWDLQV RQH V\QWKHWLF LQIRUPDWLRQ LQVWHDG RI PDQ\ YDULRXV GDWD WKDW WHQG WR EH
GLUHFWO\ LQFRPSDUDEOH 6RPH FRQFHSWV FRQFHUQLQJ WKLV LVVXH DUH FRQWDLQHG LQ WKH
KDQGERRN E\ 2(&' EXW WKH\ DUH EDVHG PDLQO\ RQ VLPSOH QRUPDOL]DWLRQV
DQG GR QRW H[SORLW DOO LQWHUHVWLQJ SURSHUWLHV RI WKH PRGHOOHG GDWD +HQFH RQH FDQ
UHFRPPHQG KHUH DOVR 3ROLVK RXWSXW FRPELQLQJ WKH DIRUHPHQWLRQHG QRUPDOL]DWLRQ
DQG EHQFKPDUNLQJ DQG WDNLQJ LQWR DFFRXQW HIILFLHQW FKRLFH RI GLDJQRVWLF YDULDEOHV
FI $ 0áRGDN D $OVR VRPH VXJJHVWLRQV FRQFHUQLQJ WKHRUHWLFDO PHWKRGV
RI HVWDEOLVKLQJ WKH VKDUH RI HDFK REMHFW LQ WKH RYHUDOO GHYHORSPHQW RI WKHLU ZKROH
FROOHFWLRQ KDYH EHHQ IRUPXODWHG FI $ 0áRGDN ,I WKLV DQDO\VLV LV UHVWULFWHG RQO\ WR WKH uniformization RI YDULDEOHV RQH FRXOG
SURGXFH GHVLUDEOH characteristics of accuracy $OWKRXJK LW PD\ RIWHQ EH RI QR
SULPDU\ LPSRUWDQFH VRPHWLPHV HJ LI UHVXOWV RI RQH RI WZR VXUYH\V WR EH
FRPSDUHG H[KLELW ELDV HUURUV LWV FKDUDFWHULVWLFV ZRXOG EH GHVLUDEOH )RU H[DPSOH
ZKHQ WKH VDPH VWDWLVWLFV DUH REWDLQHG LQ WZR GLIIHUHQW VXUYH\V PHDVXUHV RI WKHLU
DFFXUDF\ PD\ EH FUXFLDO LQ RUGHU WR DVVHVV WKH FRQVLVWHQF\ RI UHVXOWLQJ HVWLPDWRUV
7KH TXDOLW\ UHSRUW VKRXOG DOVR LQFOXGH D GHVFULSWLRQ RI GLIIHUHQFHV EHWZHHQ
YDULRXV GDWD SURGXFHUV ZLWK WKH VDPH FRXQWU\ HJ RUJDQL]DWLRQV DJHQFLHV
STATISTICS IN TRANSITION-new series, Summer 2013
313
VWDWLVWLFDO RIILFHV HWF ZKLFK FDQ DIIHFW WKH ILQDO TXDOLW\ DQG FRPSDUDELOLW\ RI
FROOHFWHG GDWD DV ZHOO DV GLIIHUHQFHV EHWZHHQ TXDOLW\ PHDVXUHV XVHG LQ RWKHU
FRXQWULHV $FFXUDF\ FDQ EH TXDQWLILHG E\ PHDVXUHPHQW HUURUV IRU XQLWV VDPSOHG
ZLWK SUREDELOLW\ RQH WKDW GR QRW FRQWULEXWH WR VDPSOLQJ HUURUV RU GLIIHUHQFHV
EHWZHHQ EDVLF FKDUDFWHULVWLFV RI UHVSRQGHQWV LQ WZR VXUYH\V ,I D XQLW KDV GLIIHUHQW
UHVSRQGHQWV LQ GLIIHUHQW VXUYH\V DQG WKHLU LQWHUQDO VWUXFWXUHV DOVR GLIIHU WKH
PHDVXUHPHQW HUURU FDQ EH VHULRXV LI LW ZDV XQGHWHFWHG RU QRW UHGXFHG 6RPH
VHFRQGDU\ LQGLFDWRUV HJ ZDJH SHU HPSOR\HH RU SURILWDELOLW\ UDWH FDQ EH
EXUGHQHG E\ PLVVLQJ GDWD LI WKH QXPEHU RI QRQUHVSRQVH XQLWV LV UHODWLYHO\ ODUJH
,PSXWDWLRQ SUHFLVLRQ FDQ DOVR EH SHUFHLYHG DV D PHDVXUH RI WKH VXUYH\¶V DFFXUDF\
,Q PDQ\ FDVHV KRZHYHU DFFXUDF\ VKRXOG EH DVVHVVHG XVLQJ VHYHUDO LQGLFDWRUV
GHVFULELQJ YDULRXV DVSHFWV RI DFFXUDF\ LH YDULDELOLW\ FDXVHG E\ QRQUHVSRQVH
SUHFLVLRQ RI WKH VDPSOLQJ IUDPH UDQGRP HUURUV GXH WR VDPSOLQJ HWF 8VLQJ DOO
FRPSRQHQWV RI DFFXUDF\ VWDWLVWLFV LQFOXGLQJ HVWLPDWLRQ HUURU RQH FDQ GHWHUPLQH
D V\PPHWULF XQFHUWDLQW\ LQWHUYDO DURXQG D JLYHQ SRLQW HVWLPDWH ZKLFK LQIRUPV XV
DERXW WKH H[SHFWHG SUHFLVLRQ RI WKLV HVWLPDWH 7KH VPDOOHU WKLV LQWHUYDO LV WKH PRUH
HIILFLHQW WKH UHVXOWLQJ VWDWLVWLFDO LQIHUHQFH DQG GDWD FRPSDULVRQV PDGH RQ WKH EDVLV
RI ERWK VXUYH\V 7R DYRLG DQ\ RXWSXW GLVWRUWLRQ LW LV YHU\ LPSRUWDQW WR WDNH DOO
HUURU VRXUFHV LQWR DFFRXQW 2Q WKH RWKHU KDQG VRPH QHJDWLYH HIIHFWV FDQ EH
PXWXDOO\ UHGXFHG )RU H[DPSOH LI LQGLFHV GHILQHG DV D UDWLR RI WZR TXDQWLW\
VWDWLVWLFV REWDLQHG IURP WKH VDPH VXUYH\ RU GLIIHUHQW VXUYH\V ZLWK VLPLODU
VWUXFWXUHV DQG LQWHQVLW\ RI HUURUV DUH FRQVLGHUHG VXFK D UDWLR FDQ UHIOHFW WKHP
VXIILFLHQWO\ VLQFH WKH\ DUH LQFOXGHG ZLWK VLPLODU YDOXHV ERWK LQ WKH QXPHUDWRU RU
GHQRPLQDWRU RI VXFK DQ LQGH[ $ VLPLODU SUREOHP FDQ EH REVHUYHG LI SURILW WKH
GLIIHUHQFH EHWZHHQ UHYHQXHV DQG FRVWV LV LQYHVWLJDWHG +HQFH TXDOLW\
PHDVXUHPHQW VKRXOG DOVR EH GRQH XVLQJ WKH VLPSOHVW GDWD H[SUHVVHG LQ QRQ
QHJDWLYH DEVROXWH YDOXHV HJ UHYHQXH LQ (85 QXPEHU RI HPSOR\HHV IL[HG
DVVHWV LQ (85 HWF ,Q WKH FDVH RI PRQHWDU\ YDOXHV REVHUYHG RYHU WLPH RQH
VKRXOG UHO\ RQ WKH LQIODWLRQ IDFWRU XVLQJ WKH IL[HGEDVH LQGH[ IL[HG SULFHV LI
DSSOLFDEOH 7KH\ FDQ DOVR EH QRUPDOL]HG
0 %HUJGDKO et al. DOVR FRQVLGHU WKH PHWKRG RI FR±RUGLQDWLQJ VWDWLVWLFDO
RXWSXW FDOOHG DOVR EHQFKPDUNLQJ EXW LW LV G\QDPLF ZKHUHDV WKH SUHYLRXVO\
GHVFULEHG DSSURDFK FDQ EH SHUFHLYHG DV VWDWLF ZKHUH RQH VHW RI HVWLPDWHV LV
IRUFHG WR DJUHH ZLWK DQRWKHU 7\SLFDOO\ VKRUWWHUP VWDWLVWLFV FRXOG EH
EHQFKPDUNHG DJDLQVW DQQXDO VWDWLVWLFV LI WKH IRUPHU DIWHU DJJUHJDWLRQ WR WKH
FDOHQGDU \HDU DUH DQ LQGLFDWRU RI WKH ODWWHU 7KLV SURFHGXUH FDQ KDYH WZR EHQHILWV
IRU WKH XVHU LW XQLILHV WKH WZR WLPH VHULHV HQVXULQJ WKDW WKH PRQWKO\ VHULHV KDV WKH
VDPH DQQXDO VXP DV WKH DQQXDO VHULHV DQG LW LPSURYHV WKH DFFXUDF\ RI VKRUW±WHUP
VWDWLVWLFV )RU WKLV WR EH PHDQLQJIXO WKH WZR VHWV RI VWDWLVWLFV VKRXOG KDYH WKH VDPH
WDUJHW SDUDPHWHUV IRU WKH FDOHQGDU \HDU 7KH QHFHVVDU\ FRPSDULVRQ VKRXOG EH
FRQGXFWHG ERWK DW WKH PDFUR DQG PLFUR±OHYHOV
314
$ 0áRGDN: Coherence and comparability …
5. Conclusions
&RKHUHQFH DQG FRPSDUDELOLW\ RI GDWD DUH RQH RI WKH NH\ DVSHFWV GHFLGLQJ RQ
WKH TXDOLW\ RI VWDWLVWLFDO RXWSXW 7KHLU UROH LV XQGHUOLQHG LQ PDQ\ RIILFLDO
GRFXPHQWV DQG UHFRPPHQGDWLRQV 7KHUH DUH YDULRXV GLPHQVLRQV RI WKHVH
SUREOHPV DV ZHOO DV WKHLU VRXUFHV DQG W\SRORJLHV ,Q EXVLQHVV VWDWLVWLFV FRKHUHQFH
DQG FRPSDUDELOLW\ KDYH VSHFLILF IRUPDO EDFNJURXQGV DQG GHSHQG RQ TXDOLW\ RI
LQWHJUDWLRQ RI LQIRUPDWLRQ REWDLQHG IURP HQWHUSULVHV XVLQJ GLIIHUHQW GDWD VRXUFHV
7KH PHWKRGRORJLFDO VROXWLRQV GLIIHU EHWZHHQ FRXQWULHV DQG VRPHWLPHV HYHQ
UHJLRQV 0RUHRYHU DQRWKHU LQFRQYHQLHQFHV PDNLQJ GLIILFXOWLHV LQ HVWLPDWLRQ RI
VXIILFLHQW TXDOLW\ FDQ RFFXU HJ GXH WR WKH VFDOH RI LQWHU±FRPSDQ\ WUDQVIHUV LQ
VRPH HFRQRPLF HQWLWLHV DV ZHOO DV D GLVSHUVLRQ RI ORFDO XQLWV RI WKH VDPH
HQWHUSULVH RYHU YDULRXV FRXQWULHV ,Q DQ\ FDVH WKH XVHU RI VWDWLVWLFDO GDWD VKRXOG
REWDLQ SUHFLVH LQIRUPDWLRQ DERXW DOO VXFK GLIIHUHQFHV SUREOHPV DQG WKHLU SUDFWLFDO
FRQVHTXHQFHV +HQFH VRPH LQWHUQDWLRQDO VWDQGDUGV RI TXDOLW\ UHSRUWV ZHUH
HODERUDWHG
7KXV WKH FRQVWUXFWLRQ RI VRPH XQLYHUVDO PHWKRGRORJLFDO VROXWLRQV
JXDUDQWHHLQJ DW OHDVW URXJKO\ LQWHUQDWLRQDO FRKHUHQFH DQG FRPSDUDELOLW\ LV YHU\
GLIILFXOW 7KH RQO\ ZD\ WR WKH LPSURYHPHQW RI WKHVH DVSHFWV RI GDWD TXDOLW\ OHDGV
WKURXJK KDUPRQLVDWLRQ RI VDPSOLQJ IUDPHV VXUYH\ GHVLJQV DQG XVHG WRROV
+RZHYHU WR GR WKLV HIILFLHQWO\ D UHOLDEOH DVVHVVPHQW RI WKH OHYHO RI SUREOHPV
VKRXOG EH SHUIRUPHG 7KH SUHVHQWHG RULJLQDO FRQFHSWV RI DJJUHJDWHG LQGLFHV RI
FRKHUHQFH DQG FRPSDUDELOLW\ FDQ EH D VLJQLILFDQW VXSSRUW LQ UHDOLVDWLRQ RI WKLV
WDVN 2I FRXUVH WKH\ DUH EDVHG WR D ODUJH H[WHQW RQ VXEMHFWLYH DSSUDLVDO RI WKH VL]H
DQG LPSRUWDQFH RI NH\ DVSHFWV +RZHYHU WKH VWDEOH DQG FRPSHWHQW WHDPV RI
H[SHUWV DQG SURIHVVLRQDO XVH RI SUHVHQWHG WRROV VXFK DV HJ EHQFKPDUNLQJ FDQ
HQVXUH UHOLDEOH UHVXOWV RI VXFK UHFRJQLWLRQ ZKLFK FRXOG EH D KLQW KRZ WR
SHUPDQHQWO\ LPSURYH WKH GDWD TXDOLW\ LQ WKH FRQWH[W RI WKH LQYHVWLJDWHG DVSHFWV
STATISTICS IN TRANSITION-new series, Summer 2013
315
REFERENCES
%$5&(//$1 5 The use of benchmarking techniques in the
compilation of the European quarterly national accounts situation and
perspectives :RUNLQJ 3DSHUV DQG 6WXGLHV (XURSHDQ &RPPLVVLRQ (XUR
,QGLFDWRUV 2IILFH IRU 2IILFLDO 3XEOLFDWLRQV RI WKH (XURSHDQ &RPPXQLWLHV
/X[HPERXUJ DYDLODEOH DW KWWSZZZXQLPDQQKHLPGHHG]SGIHXURVWDW.6
'7(1SGI
%(5*'$+/ 0 %/$&. 2 %2:$7(5 5 &+$0%(56 5 '$9,(6 3
'5$3(5 ' (/9(56 ( )8// 6 +2/0(6 ' /81'49,67 3
/81'675g0 6 125'%(5* / 3(55< - 3217 0 35(67:22'
0 5,&+$5'621 , 6.,11(5 &+ 60,7+ 3 81'(5:22' &
:,//,$06 0 Model Quality Report in Business Statistics *HQHUDO
(GLWRUV 3 'DYLHV 3 6PLWK KWWSXVHUVVRHXFVFHGXaGUDSHUEHUJGDKOHWDO
YSGI
%58==21( / 52/, ) 6(53,&2 6 % An extension of the
Jeffreys–Matusita distance to multiclass cases for feature selection ,(((
7UDQVDFWLRQV RQ *HRVFLHQFH DQG 5HPRWH 6HQVLQJ YRO SS ±
&$6&,$12 0 & '( *,25*, 9 2523$//2 ) 6,(672 * Estimation of Structural Business Statistics for Small Firms by Using
Administrative Data 5LYLVWD 'L 6WDWLVWLFD 8IILFLDOH 1R ± ,QVWLWXWR
1D]LRQDOH 'L 6WDWLVWLFD SS ±
&22. / International experience in setting up an economic statistics
compilation programme 5HJLRQDO :RUNVKRS IRU $IULFDQ FRXQWULHV RQ
&RPSLODWLRQ RI %DVLF (FRQRPLF 6WDWLVWLFV MRLQWO\ RUJDQL]HG E\ 8QLWHG 1DWLRQV
6WDWLVWLFV 'LYLVLRQ 816' DQG $IULFDQ &HQWUH IRU 6WDWLVWLFV DW (FRQRPLF
&RPPLVVLRQ IRU $IULFD $&6 8QLWHG 1DWLRQV 'HSDUWPHQW RI (FRQRPLF DQG
6RFLDO $IIDLUV 6WDWLVWLFV 'LYLVLRQ WK ± WK 2FWREHU $GGLV$EDED
(WKLRSLD 'RF 1R (6$67$7$& GRFXPHQW DYDLODEOH LQ WKH ,QWHUQHW
DW WKH ZHEVLWH
KWWSXQVWDWVXQRUJXQVGHFRQRPLFBVWDWLQWO FRRS DQG ZRUNVKRSV
EHVBILOHV$GGLV2FW816' GRFXPHQWV:6%(6(&$
,QWOH[SHULHQFH/HQ &RRNSGI
'$9,(6 3 Assessing the Quality of Business Statistics 2IILFH IRU
1DWLRQDO 6WDWLVWLFV 3URFHHGLQJV IURP WKH 6HFRQG ,QWHUQDWLRQDO &RQIHUHQFH RQ
(VWDEOLVKPHQW 6XUYH\V -XQH WK ± VW %XIIDOR 1HZ <RUN
KWWSZZZDPVWDWRUJPHHWLQJVLFHVSURFHHGLQJV6SGI
316
$ 0áRGDN: Coherence and comparability …
'(67$7,6 National Accounts Quarterly Calculations of Gross
Domestic Product in accordance with ESA 1995 – Methods and Data
Sources. 1HZ YHUVLRQ IROORZLQJ UHYLVLRQ )DFKVHULH 6HULHV 6 6WDWLVWLVFKHV %XQGHVDPW )HGHUDO 6WDWLVWLFDO 2IILFH :LHVEDGHQ *HUPDQ\
KWWSVZZZGHVWDWLVGH(13XEOLFDWLRQV6SHFLDOL]HG1DWLRQDODFFRXQWV4XDUWHUO\
&DOFXODWLRQV*URVV'RPHVWLF3URGXFW$FFRUGDQFHSGI"BBEORE SXEOLFDWLRQ)LOH
(85267$7 ESS Handbook for Quality Reports 6HULHV 0HWKRGRORJLHV
DQG :RUNLQJ SDSHUV 2IILFH IRU 2IILFLDO 3XEOLFDWLRQV RI WKH (XURSHDQ
&RPPXQLWLHV /X[HPERXUJ
(85267$7 Quality Control of Urban Audit Variables 8QLW ' 2IILFH
IRU 2IILFLDO 3XEOLFDWLRQV RI WKH (XURSHDQ &RPPXQLWLHV /X[HPERXUJ $SULO
(85267$7 Handbook "How To Make A Quality Report" 6HULHV
0HWKRGRORJLFDO 'RFXPHQWV :RUNLQJ *URXS $VVHVVPHQW RI TXDOLW\ LQ
VWDWLVWLFV 6L[WK PHHWLQJ /X[HPERXUJ QG ± UG 2FWREHU 'RFXPHQW 1R
'RF (XURVWDW$4XDOLW\+DQGERRN DYDLODEOH DW WKH ZHEVLWH
KWWSDSOLFDWLYRVVHQD\PBGRFXPHQWD\PBELEOLRWHFD'RFXPH
QWR GH VRSRUWH0HWKRGRORJLFDO GRFXPHQWV KDQGERRN KRZ WR PDNH D TXDOLW\ UHSRUW 1$&,21(6 81,'$6SGI (85267$7 European Statistics Code of Practice for the National and
Community Statistical Authorities 6WDWLVWLFDO 2IILFH RI (XURSHDQ 8QLRQ
(XURVWDW /X[HPERXUJ DYDLODEOH DW
KWWSXQVWDWVXQRUJXQVGGQVVGRF9LHZHUDVS["GRF,' *$5&Ë$ /$35(67$ - 0$57Ë1(= 3$1(52 0 Borda Count
Versus Approval Voting: A Fuzzy Approach 3XEOLF &KRLFH ± SS
±
*$7(: . ɋɬɚɬɢɫɬɢɱɟɫɤɨ ɯɚɪɚɤɬɟɪɢɡɚɧɢɟ ɧɚ ɫɬɪɭɤɬɭɪɧɢɢ
ɢɡɦɟɧɢɟɧɢɹ, Ɍɪɭɞɨɜɷ ɧɚ ȼɢɫɲɢɹ ɂɤɨɧɨɦɢɱɟɫɤɢɣ ɂɧɫɬɢɬɭɬ Ʉ Ɇɚɪɤɫ
ɋɨɮɢɹ YRO SS ± LQ 5XVVLDQ
,85&29,&+ / .201,126 1 5(,' $ +(<'(%5(&. 3
3,(55$.,6 < Mutual Learning Platform. Regional Benchmarking
Report. Blueprint for Regional Innovation Benchmarking (XURSHDQ
&RPPLVVLRQ &RPPLWWHH RI WKH 5HJLRQV ,5( ,QQRYDWLRQ 1HWZRUN DYDLODEOH DW
KWWSZZZUWWQUXBILOHVILOHVOLEUDU\SGI
-Ï=()2:6., 7 0à2'$. $ Observation of flows of population in
Polish statistics – problems and challenges >LQ@ ( (OVQHU + 0LFKHO HGV
³$VVLVWDQFH IRU WKH <RXQJHU *HQHUDWLRQ 6WDWLVWLFV DQG 3ODQQLQJ LQ %LJ
$JJORPHUDWLRQV´ ,QVWLWXW IU $QJHZDQGWH 'HPRJUDSKLH ,)$' %HUOLQ SS
±
STATISTICS IN TRANSITION-new series, Summer 2013
317
.$=,1,(& / 6 Ɉ ɦɟɬɨɞɚɯ ɫɜɨɞɧɨɣ ɨɰɟɧɤɢ ɫɬɭɤɬɭɪɧɵɯ ɫɞɜɢɝɨɜ
ȼɟɫɬɧɢɤ ɋɬɚɬɧɫɬɢɤɢ 1R LQ 5XVVLDQ
.g51(5 7 38&+ . Statistics and Science. Coherence of German
Labour Market Statistics 9ROXPH 6WDWLVWLVFKHV %XQGHVDPW )HGHUDO
6WDWLVWLFDO 2IILFH :LHVEDGHQ $YDLODEOH DW
KWWSVZZZGHVWDWLVGH'(3XEOLNDWLRQHQ6WDWLVWLN:LVVHQVFKDIW%DQGB&RK
HUHQFH/DERXU0DUNHWSGI"BBEORE SXEOLFDWLRQ)LOH
/,79$. % Distances and consensus rankings O &\EHUQHWLFV DQG
V\VWHPV DQDO\VLV ^ 7UDQVODWHG IURP .LEHUQHWLND 1R SS ±
-DQXDU\)HEUXDU\ 0$/,1$ $ =(/,$ĝ $ On Building Taxonometric Measures on
Living Conditions 6WDWLVWLFV LQ 7UDQVLWLRQ YRO SS ±
0à2'$. $ D Taxonomic analysis in regional statistics HG E\ ',),1 ±
$GYLVRU\ DQG ,QIRUPDWLRQ &HQWUH :DUV]DZD 3RODQG LQ 3ROLVK
0à2'$. $ E Multilateral normalisations of diagnostic features
6WDWLVWLFV LQ 7UDQVLWLRQ YRO SS ±
0à2'$. $ An Approach to the Problem of Spatial Differentiation of
Multi-feature Objects Using Methods of Game Theory 6WDWLVWLFV LQ
7UDQVLWLRQ 9RO SS ±
2(&' Handbook on Constructing Composite Leading Indicators:
Methodology and User Guide *OREDO ,QYHQWRU\ RI 6WDWLVWLFDO 6WDQGDUGV
2UJDQL]DWLRQ IRU (FRQRPLF &RRSHUDWLRQ DQG 'HYHORSPHQW OLQN
KWWSXQVWDWVXQRUJXQVGLLVV+DQGERRNRQ&RQVWUXFWLQJ&RPSRVLWH
/HDGLQJ,QGLFDWRUV0HWKRGRORJ\DQG8VHU*XLGHDVK[
67$7&$1 Metadata to Support the Survey Life Cycle ,QYLWHG 3DSHU
-RLQW 81(&((XURVWDW2(&' ZRUN VHVVLRQ RQ VWDWLVWLFDO PHWDGDWD 0(7,6
7RSLF LLL 0HWDGDWD DQG WKH 6WDWLVWLFDO &\FOH 6XEPLWWHG E\ 6WDWLVWLFV &DQDGD
IRU WKH &RQIHUHQFH RI (XURSHDQ 6WDWLVWLFLDQV 8QLWHG 1DWLRQV 6WDWLVWLFDO
&RPPLVVLRQ DQG (FRQRPLF &RPPLVVLRQ IRU (XURSH (XURSHDQ &RPPLVVLRQ
6WDWLVWLFDO 2IILFH RI WKH (XURSHDQ &RPPXQLWLHV (XURVWDW 2UJDQLVDWLRQ )RU
(FRQRPLF &RRSHUDWLRQ DQG 'HYHORSPHQW 2(&' 6WDWLVWLFV 'LUHFWRUDWH
*HQHYD UG ± WK $SULO KWWSZZZXQHFHRUJILOHDGPLQ'$0VWDWVGRFXPHQWVHFHFHVJH]L
SHSGI
318
$ 0áRGDN: Coherence and comparability …
'( :$$/ 7 3$11(.2(. - 6&+2/786 6 Handbook of
Statistical Data Editing and Imputation -RKQ :LOH\ 6RQV ,QF +RERNHQ
1HZ -HUVH\
<$1&+(9$ ' ,6.529$ . Reducing the administrative burden for
the business in Bulgaria: Single Entry Point for Reporting Fiscal and
Statistical Information >LQ@ 3URFHHGLQJV IURP %/8((76 &RQIHUHQFH RQ
%XUGHQ DQG 0RWLYDWLRQ LQ 2IILFLDO %XVLQHVV 6XUYH\V 6WDWLVWLFV 1HWKHUODQGV
+HHUOHQ 0DUFK SS ±
=(/,$ĝ $ Some Notes on the Selection of Normalization of Diagnostic
Variables 6WDWLVWLFV LQ 7UDQVLWLRQ YRO SS ±
STATISTICS IN TRANSITION-new series, Summer 2013
319
STATISTICS IN TRANSITION-new series, Summer 2013
Vol. 14, No. 2, pp. 319–328
STATISTICS AS A PROFESSION –
STATISTICIAN AS AN OCCUPATION:
observations and comments from
a panel of experts
Wlodzimierz Okrasa 1, Beata Witek 2
1. Introduction and background
Statisticians rarely devote as much attention to their profession as it does
deserve, including such fundamental questions as what actually constitutes
statistics today - as a discipline in relation to others, primarily to mathematics and
observation-based sciences (theoretically or applied oriented), on one side, and in
researching and teaching, on the other. Especially, given its inherent dynamics
and externally caused transition to new stages of its permanent development, and
what is their – statisticians' – own view of their occupational status, including
who actually should unambiguously be considered statistician. And how s/he
ought to be prepared through education and training system to play this important
role in various domains – in academia and policy making, as well as in private life
and business management. Therefore, any occasion to exchange views on such
dual aspects (disciplinary and occupational status) among experts during scientific
meetings seems to be worth of reporting. One of such meeting took recently place
at the conference on Methods of Assessment of Quality of Teaching held in the
University of Lodz last June (see note on it in this issue below) during which a
discussion panel was organized to address some of the above issues. As the
panel’s organizers, we feel deeply indebted to all its participants for sharing their
thoughts and opinions: Prof. Prof. Czeslaw Domanski, Jozef Dziechciarz,
Miroslaw Krzysko, Marek Rocki, and Janusz Wywial. As a part of our
appreciation of their generosity and of the quality of the panel’s output, their
voices are summarized here, extended a bit by introductory and concluding
remarks, while taking into account the voices of the highly competent audience3,
composed of academic teachers and researchers.
1
Central Statistical Office of Poland and the University of Cardinal Stefan Wyszynski in Warsaw.
Central Statistical Office of Poland and the University of Cardinal Stefan Wyszynski in Warsaw.
3
Discussants: Prof. Prof. K. Jajuga, S. M. Kot, A. Sokolowski, L. Tomaszewicz, Tadeusz
Gerstenkorn. In addition, A. Kupis-Fijalkowska, PhD, was an invited discussant for presenting the
Eurostat's European Master in Official Statistics (EMOS) initiative.
2
320
W. Okrasa, B. Witek: Statistics as a profession …
While statistics as a profession – meant as a domain of scientific activity,
including education – is primarily an object of methodological reflection,
statistician as an occupation is basically an example of a labour market category
characterized also in sociological terms (status, prestige, ethos, etc.). Although the
former was the main focus of the panel discussion, some occupation-related issues
are worthwhile to be mentioned here too. In the vein of Neyman's saying "[S]tatistics is the servant to all sciences" (cf. Chiang 1), what implies its presence
across all subject matter disciplines, through inter alia necessary involvement of
representatives of those disciplines in applying statistical methods – statisticians
constitute one of the most heterogeneous categories in occupational statistics. For
instance, US Bureau of Labor Statistics counts about 200 specific occupations
under this title, defined as follows: "Statisticians. Develop or apply mathematical
or statistical theory and methods to collect, organize, interpret, and summarize
numerical data to provide usable information. ... Includes mathematical and
survey statisticians. Excludes “Survey Researchers” (US BLS 2010, p. 23) 2. This
is supplemented by definition: "Survey Researchers. Plan, develop, or conduct
surveys. May analyze and interpret the meaning of survey data, determine survey
objectives, or suggest or test question wording. Includes social scientists who
primarily design questionnaires or supervise survey teams. Excludes "Market
Research Analysts and Marketing Specialists" (ibidem, 35). Such a broad
interpretation of the occupation accords with perhaps the most widely accepted
among statisticians answer to the question 'Who is the statistician?' given by
Platek and Särndal about decade ago (2001 3). Starting with considerations of what
can realistically be expected from statisticians in terms of quality products
generated by national statistical agencies, the authors arrived with the following
definition: "[T]he statistician ... is anyone who contributes to the ultimate delivery
of statistics and data to users.", and specify the main categories of this occupation:
"theoretical statistician – survey methodologist – subject matter specialist –
information technologist – and survey manager" (ibidem, p. 3). Keeping in mind
such a broad interpretation of both 'statistics' and 'statistician' we began the panel
discussion with a concern about the quality of the process of creating new
generations of performers in the scene of this profession.
1
“Statisticians in History”, http://www.amstat.org/about/statisticiansinhistory/index.cfm?fuseaction
=biosinfo&BioID=11.
2
US BLS 2010 SOC Definitions U.S. Bureau of Labor Statistics On behalf of the Standard Occupational
Classification Policy Committee (SOCPC), http://www.bls.gov/soc/soc_2010_definitions.pdf.
3
R Platek and C-E Särndal, 2001. Can a Statistician Deliver? Journal of Official Statistics, Vol. 17,
No. 1. pp. 1–20.
STATISTICS IN TRANSITION-new series, Summer 2013
321
2. Scoping panel’s perspective
All the panelists and discussants agreed that there is a tremendous demand for
statisticians and a big need to prepare new cohorts of specialists in the art of using
data for sectors of education, government, and industry in a way readying them to
meet the challenges from the technologically advanced society. It makes this
occupation both an attractive path of carrier for new alumni – along with Tukey’s
view: "[T]he best thing about being a statistician is that you get to play in
everyone else's backyard." 1 – and a highly respected as a job in view of the
general public. For instance, according to a US survey of occupational status,
statistician is ranked fifth out of about two hundred (together with mathematician
and engineer – Kennett, 2011 2).
Much of the panelists' attention revolved around the issue of what? to do and
how?, in order to equip the new generations of statisticians in tools and abilities
assuring the highest standards of professional quality, given the growing
expectation concerning the statisticians' deliverables (in Platek and Särndal's
meaning) on the one hand, and the existing drawbacks on the other. Especially,
the lack of mathematical background among the majority of students as
a consequence of the earlier reform of the high school curriculum, and subsequent
lowering requirements from candidates for studying statistics, being often tough
in the standard-liberal environment. This concerns the whole process of
education, including textbooks and other means and conditions of teaching, which
are summarized here as they emerged in the panelists' presentations:
(i) the means and conditions of teaching statistics;
(ii) the quality of teaching;
(iii) the problem of curriculum;
(iv) professional and occupational aspects of statistics.
3. The means and conditions of teaching statistics
The problem of quality of textbooks for teaching statistics
Because of the great importance and influence of the quality of textbooks on
teaching and students' knowledge, this issue was one of the key ones discussed
during the Panel. The topic was initiated by Prof. M. Krzysko, who referred to the
first Polish textbook on statistics entitled “Outline of statistical methods as
applied to anthropology” by Jan Czekanowski (1913), as an exemplary model.
The speaker also drew attention to the limitations and weaknesses of modern
1
2
American Statistical Association, http://www.amstat.org/careers/whatisstatistics.cfm.
R S Kenneth, Statistics As a Profession.
322
W. Okrasa, B. Witek: Statistics as a profession …
textbooks on statistics: outdated content, excessive focus on descriptive statistics,
presence of elementary errors, unfair reviews allowing authorizing the publication
of low-quality books, collections of tasks that relate to outdated data and obsolete
problems. Concern can be raised by textbooks on statistics in general secondary
schools – it turns out that the textbooks approved by the Ministry of Science and
Higher Education are not necessarily a good basis to start education in this area.
Agreeing with the above, Prof. K. Jajuga stressed that textbooks should be
tailored to different areas of expertise, including consultations with the
appropriate persons about the subject matter related to statistics, for example, with
economists in the econometric issues.
Prof. Cz. Domanski, as the President of the Polish Statistical Association
(PTS), considered creating by PTS (in cooperation with other statisticians) a
suitable consultative team for evaluating textbooks, or finding such a good author
as, for example, Marek Fisz. He recalled that “a statistician seeks the truth” and
one should not accept inappropriate behavior at meetings of a council (those
related to, for example, lowering the number of hours or unacceptable
combination of mathematics with statistics).
Supporting these suggestions, Prof. Okrasa stressed that it would be desirable
in terms of assurance of quality of teaching statistics to set up a PTS’s council or
a team for new textbooks matters. Another valuable idea would be the one of
creating (along other countries, for instance, the United States) up-to-date
textbooks for practitioners, under the name of Best Statistical Practices, that
would keep track of new methods and techniques in the field of applied statistics
and lay particular emphasis on the needs of official statistics. This type of
instructions for daily work of a statistician would help to raise the prestige of both
statisticians and institutions employing them (both public and private ones, such
as think-tanks).
Initiation into the profession - motivation and preparation
Learning statistics should start at earlier stage of education than higher
education, according to the panelists. Elements of statistics should be taught
already in general secondary schools (especially in economic schools), as argued
by Prof. J. Dziechciarz. Referring to the need to elicit emotional motivation to
follow this difficult field of study (mentioned by Prof. Domanski) Prof. M. Rocki
stressed the need to create such attitudes (emotions) even at the level of primary
school (which was also addressed by Prof. J.L. Wywial), pointing at the same
time to economic universities, such as Warsaw School of Economics which
pioneered with some initiatives to this aim, launching programs such as Children's
Economic University and the Academy of Young Economist for students of
STATISTICS IN TRANSITION-new series, Summer 2013
323
primary and general secondary schools. And at the subject contests organized to
enable the dissemination of issues among young people and to test the knowledge
of statistics (e.g. the statistics contest or complement of mathematics or
entrepreneurship contests). A good place to stimulate motivation to study
statistics could be, according to Prof. Domanski, the Polish Statistical
Association, which takes initiatives to “stimulate emotions” and organizes
statistical competitions in several Polish cities.
Learning-teaching conditions
The use of larger amount of current, real-world data stored on CDs and
conducting exercises in computer rooms which require not only passive use of
statistical software, but making conscious choices based on theoretical knowledge
was postulated by Prof. M. Krzysko (seconded by Prof. S.M. Kot). Recalling the
limitations associated with the need to join groups because of financial
constraints, Prof. L. Tomaszewicz stressed the importance of the learning
conditions – which consists also of insufficient length of studies – the worst
candidate can be made a gem would s/he be met with adequate teaching
environment. Noting that the 6-semester bachelor studies do not provide a
complete study program that could educate analysts with good knowledge of
statistics, Prof. Rocki stressed that the sequence of the subjects itself – analysis,
algebra, probability theory, mathematical statistics and econometrics – requires
five semesters, which leaves no room for other subjects enriching the knowledge
of the graduate. Possible solutions are (i) the struggle for a uniform courses
leading to a master’s degree, and (ii) the formulation of the university
qualification framework so as to ensure proper education. In addition, efforts
should be taken for participation in determining the title of the professional – the
proper nomenclature should reflect the knowledge and skills of graduates (e.g.,
along University of Minnesota offering a Master of Statistics degree). Bearing in
mind the regulation defining the duration of studies of “at least” six semesters,
Prof. Domanski shared this view and pointed to the possibility of extending the
studies and encouraged taking the initiative and striving for uniform courses
leading to a master’s degree.
The bottom line: Poor quality of modern textbooks of statistics in Poland
results from the use of out-of-date information, referring to obsolete problems, too
much focus on descriptive statistics and the lack of a fair selection of textbooks,
the consequence of which is the presence of elementary errors in them. In view of
this situation it would be reasonable to appoint a consultative team of experts
charged with responsibility assess and recommend for distribution only the
highest quality textbooks. Providing background and interest in knowledge
324
W. Okrasa, B. Witek: Statistics as a profession …
oriented towards statistics should be preferably taken as early as in primary
school. One should also take steps to extend the duration of the studies, ideally
bringing them to a uniform course (that leads to a master’s degree).
4. The quality of teaching
The quality of university teachers
As a precondition for producing statisticians as good professionals the
availability of quality teachers must be seen, and the Polish educational system
has not worked out the mechanism for preparing people to teach statistics
properly at each level. It was the main concern of Prof. J. Dziechciarz, who
addressed a gap between real-world problems and formal approaches due to the
fact that persons teaching statistics are typically graduated in mathematics and
educated in the area of advanced statistics. This situation causes two kinds of
obstacles:
(i) removing from the curriculum the basics of statistics, mainly tools of
descriptive statistics, (ii) the lack of teaching suited to the subject matter
disciplines, to the specific needs of economics, medicine, social sciences, etc.
In teaching statistics there is a necessity to become familiar with the specific
objectives of a given field (which was emphasized also by Prof. Kot).
A step in overcoming problems related to the lack of subject matter specialists
in the profession of a statistician has been made by universities which begun
introducing new field of studies such as “Commercial Analyst” or “Business
Analyst,” taking into account all the elements essential to practicing statistician. It
is worth noting that members of the Polish Accreditation Committee should
conduct the assessment of the quality of education in a way comprising
verification of the competence of all teachers given courses in statistics (not only
of the staff members, being included into so-called the academic minimum).
The quality of students – the recruitment policy
One of the causes of deterioration of quality of students was seen by the
panelists in the student recruitment policy due to the lack of an entry exam that
would make it possible to select those who are predestined to study specific
subjects from those who simply want to study. According to Prof. Rocki, who
addressed this concern, confining the recruitment criteria to the obligatory
‘matura’ examination results in admitting students who are good at graduation
subjects but not necessarily prepared to study the specific subject.
Apart from the selection of candidates, flexibility and multidisciplinarity is
advisable in teaching, whereas a statutory need is to enroll the student on a
STATISTICS IN TRANSITION-new series, Summer 2013
325
particular course of study, which may result in wrong choices and waste of public
money in the course of studying. Prof. Rocki indicated to results of a survey
carried out by the Warsaw School of Economics which showed that in significant
proportion the students entering university do not know what choice to make,
while among those who have made a choice, one third switches to other fields
than the one previously chosen. Therefore, flexibility in studying is necessary, as
well as the waver from the requirement to declare the field of study at an early
stage – this would give the opportunity for a more informed and consciously
made choice of statistics as a main subject of study.
In conclusion: The practical problems are the lack of mechanisms to prepare
for training statisticians, the teaching process not suited to the different subject
matter areas, as well as the lack of mechanisms for selecting candidates for
studies and insufficient flexibility to selecting and changing a field of study.
Therefore, the necessity to take into account the specificity of particular field of
study is stressed, along with including in the curriculum all the key elements and
special tools enabling students to practice statistics. The quality of a student
should be improved by introducing university entrance examination and removing
the need for the selection of the field of study at an early stage of education.
5. The issue of curriculum
Apart from the question of who is to teach statistics, it is important to ask
what? should be included in the curriculum. Prof. Wywial talked about dubious
legitimacy of the profession that requires specialized education in higher
education, in case of the absence of a subject (both I and II degree) that teaches
basics of statistical inference in a reliable way. Computer science and
econometrics were to be such a subject, which was, however, targeted towards
experts in the application of quantitative methods in economics and towards
computer science (which was also addressed by Prof. Rocki).
Another problem arises from sometimes observed attempts to remove from
the curriculum quantitative methods, and statistics in particular, due to
commercial focus on rapid training of graduates (which was also pointed by Prof.
L. Tomaszewicz supported by other panelists). What is important, according to
Prof. K. Jajuga, is also teaching statistics in subjects other than computer science
and econometrics, and especially in these with the reduced number of hours.
Prof. Tomaszewicz stressed that the statistical and econometric core of the fields
of study such as computer science and econometrics should be maintained by
inter-subject actions, even in defining the occupation of a statistician by means of
effects for statistical training, introduced pursuant to the National Qualifications
326
W. Okrasa, B. Witek: Statistics as a profession …
Framework. This would refine the graduate profile, defined differently depending
on a variety of specialties, which cover the most difficult challenges of modern
data analysis. The requirement set out in the description of a graduate profile,
such as “knows basic statistical methods...” is not enough to create a statisticsbased program on this basis, as pointed out by Prof. Rocki.
6. Professional and occupational aspects of statistics
If we assume that there is no single profession of a statistician, we recognize
that there is no single model of education, and that there is a need to adjust
teaching to the type of working areas. An example may be the category of official
statistician invoked by the panel organizer. The occupation of a statistician
working in public statistics institutions has been recognized by Eurostat as
important and specific, and an initiative for the program called EMOS “The
European Masters in Official Statistics” was undertaken. It was initiated by
Eurostat currently conducting a series of meetings with the National Statistical
Institutes. As explained by Ms. A. Kupis-Fijalkowska (assistant of Prof.
Domanski, an expert for Poland and neighboring countries), EMOS project is to
bring to universities, starting from 2014, an additional educational module for the
final year of Master's Degree, which would allow for educating a statistician
prepared to work in the statistical office, or at Eurostat.
A model statistician as seen by mathematical statistics may not be the same as
the official statistician. They both are needed but, according to Prof. Okrasa, one
cannot expect the same qualifications from both of them. It is worth to quote the
conclusions of one of the surveys on what statisticians think about their
profession, presenting desirable skills of a statistician: (1) mathematical basics,
(2) the ability of critical thinking, (3) the ability of active learning, interacting
with representatives of other areas, (4) the ability of active listening
(communication and contact with a user). Moreover, statisticians asked in surveys
why they want to be statisticians generally appreciate independence (higher than
salary), autonomy of their work and high esteem among various types of
employers (generally higher than of other staff), as well as prestige in the society.
When considering questions about the nature of statistics, Prof. Wywial came
to the conclusion that statistics should be considered primarily in terms of
profession (referring to the Polish language dictionaries which define profession
requiring acquired qualifications in higher education institutions as a concept
somewhat different from the term “occupation”). Its subject is the empirical
verification of theories produced in other sciences and support in recognition of
the characteristics of population, which are the target of studies in other
STATISTICS IN TRANSITION-new series, Summer 2013
327
disciplines. A real solution could be the introduction of elite ordered studies and
improvement or maintaining the level of studies on existing subjects, such as
computer science and econometrics as well as economic analysis.
Given the high prestige of the profession of a statistician and the growing
concern about bringing the state-of-the-art statistical knowledge and skills to
official statistics it was suggested (W. Okrasa) to consider launching in Poland a
kind of competition-based scholarship for researchers with proven achievements
(modeled on the National Science Foundation’s program of Senior Research
Fellowship at the US Bureau of Labour Statistics and at the US Bureau of
Census), who would be working on problems being currently of the focus of
official statistics. Such problems are, for example, new modes of conducting
census or administrative registers vs. statistical data collection system, or whether
and how electronic future can provide a threat to statisticians as professionals and
to the institutions of official statistics, given that big data, generated by other
systems of information, are channeled outside of the area remaining under the
control of institutions responsible for public statistics.
In spite of being discussed as essentially country-specific, the above issues
have been actually internationally recognized for decades, just to mention the
presentation by Hartley as the American Statistical Association (ASA) President
(1979 – entitled Statistics As a Science and As a Profession), who tried to solve a
traditional trade-off between professional equipment of mathematical and applied
statisticians. While rejecting claims for 'more mathematics' to assure the quality
solution of a real-world problem – or to blame its insufficiency for criticism
("standard of our papers is low", he quotes) – he pointed to cooperation between
statistician and subject matter specialist as a way to balance between deductive
(formal) and inductive (empirical) components of the statistics as a profession
(science) and as an occupation (in terms used here). He was seconded by one of
his distant successor, J. Stuart Hunter (the ASA President in 1993) who
emphasized in his presidential address that while "a professional in statistics is a
person whose everyday work consisted of making sense of data", there are also
others – "the builders of statistical theory and makers of statistical tools" – who
are "vital to the health of the statistical profession" [italic added] 1.
Avoiding temptation to go beyond the scope of the referred panel's discussion,
one may indicate the numerous and thematically reach sessions devoted to that
issues being vigorously debated at such prominent meetings as the World
Statistics Congress held last August in Hong Kong. It does prove that new
approaches are continuously sought in most of the nations as some titles inform
1
J. S. Hunter, 1994. Statistics As a Profession. Journal of the American Statistical Association
Vol. 89, Issue 425, pages 1–6.
328
W. Okrasa, B. Witek: Statistics as a profession …
about that – let us mention only a few out of several dozen presented over there1,
for instance: Research on the Modes of Statistical Education and Training in
China (Xia Rongpo) – Changing Educational Framework in the Transition to New
Educational Standards at Russian Universities of Life Science and their Impact on
the Teaching of Statistics (Galina Kamyshova and Lyman McDonald, Russia) –
Engaging Students in Statistics Education: situated learning in statistics projects
(Pieternel S. Verhoeven, the Netherlands) – Good Practice in Using Statistics in
Statistics Education Research (Neville Davies and Gemma Parkinson UK) – New
Perspectives: A Statistician and a Statistics Educator Discuss the Lessons Learned
from Cross Disciplinary Sojourns (Jennifer J. Kaplan et al., USA) – Radical
Statistics: Teachers and Students on the Highwire (Bruno de Sousa et al., Portugal
and Spain).
A systematic overview of the problems and approaches discussed on the
global scale – i.e. at meetings like the 59th WSC – would provide the needed
contextualization for those identified as of the key importance during the panel.
1
59th ISI World Statistics Congress in Hong Kong, http://www.isi2013.hk/en/index.php.
329
STATISTICS IN TRANSITION-new series, Summer 2013
STATISTICS IN TRANSITION-new series, Summer 2013
Vol. 14, No. 2, pp. 329±336
REPORT
The Regional Statistics – Current Situation and
Fundamental Challenges 5HJLRQDO VWDWLVWLFV FRQVWLWXWHV DQ LQWHJUDO DQG YHU\ LPSRUWDQW FRPSRQHQW RI
SXEOLF VWDWLVWLFV UHJDUGLQJ LWV RUJDQL]DWLRQDO DQG VXEVWDQWLYH DVSHFWV Basic data
aggregation method UHSUHVHQWV WKH PDLQ FULWHULRQ IRU LWV GLVWLQJXLVKLQJ ZKLFK
IDFLOLWDWHV WKH SRVLWLRQLQJ RI SKHQRPHQD LQ UHJLRQDO VSDFH DQG WR D OHVVHU H[WHQW
WKH DQDO\VLV FRQWHQW
7KH PHWKRG IRU SURYLGLQJ UHJLRQDO VWDWLVWLFV GHILQLWLRQ GHSHQGV RQ WKH DFFHSWHG
LQWHUSUHWDWLRQ RI VWDWLVWLFV LWVHOI ± ZKHWKHU VWDWLVWLFV LV LQWHUSUHWHG DV tabular GDWD
VHWV DV functional ³UHSRUWLQJ´ LQWHUSUHWDWLRQ RU DV WKH branch of science
)ROORZLQJ WDEXODU LQWHUSUHWDWLRQ UHJLRQDO VWDWLVWLFV UHSUHVHQWV GDWD VHWV
UHIHUULQJ WR UHJLRQV DQG IDFLOLWDWLQJ VRFLDO HFRQRPLF DQG HQYLURQPHQWDO
SKHQRPHQD XQGHUVWDQGLQJ LQ GLIIHUHQW V\VWHPV RI WHUULWRULDO XQLWV ,Q WKLV VHQVH
UHJLRQDO VWDWLVWLFV LV XQGHUVWRRG DV GDWD VHWV UHIHUULQJ WR SKHQRPHQD RFFXUULQJ DW
GLIIHUHQW VSDWLDO OHYHOV ZKLFK LV LOOXVWUDWHG E\ SLFWXUH Picture 1. 7KH VFRSH RI ³UHJLRQDO VWDWLVWLFV´ FRQFHSW
5(*,21$/ 67$7,67,&6
5HJLRQDO VWDWLVWLFV LQ WKH
QDUURZHU VHQVH
/RFDO VWDWLVWLFV
6WDWLVWLFV RI PDFURUHJLRQV
JURXSV RI UHJLRQV
6WDWLVWLFV RI PH]]RUHJLRQV
GLVWULFWV
6WDWLVWLFV RI UHJLRQV SURYLQFHV
6WDWLVWLFV RI PLFURUHJLRQV FRPPXQHV
6WDWLVWLFV RI VXEUHJLRQV
6WDWLVWLFV RI FURVVERUGHU
UHJLRQV LQFOXGLQJ
(XURUHJLRQV
&LW\ VWDWLVWLFV
5XUDO DUHDV VWDWLVWLFV
Source: Author’s compilation.
7KH DXWKRU¶V UHIOHFWLRQV EDVHG RQ KLV SDUWLFLSDWLRQ LQ WKUHH WKHPDWLF VHVVLRQV DW WKH &RQJUHVV RI
3ROLVK 6WDWLVWLFV ± 3R]QDĔ 330
The Regional Statistics …
5HJLRQDO VWDWLVWLFV DOVR UHIHUV WR GDWD VHWV FRYHULQJ DOO RU VRPH VSDWLDO FURVV
VHFWLRQV RI WKH GHVFULEHG SKHQRPHQD $GGLWLRQDOO\ WKHUH DUH QR VXEVWDQWLDO
FRQWUDLQGLFDWLRQV WR LQFOXGH LQWR ORFDO VWDWLVWLFV DV WKH W\SH RI UHJLRQDO VWDWLVWLFV
DOVR WKHVH VWDWLVWLFV ZKLFK FRYHU VPDOOHU WKDQ D GLVWULFW RU FRPPXQH WHUULWRULDO
XQLWV HJ ORFDWLRQV
,Q UHODWLRQ WR functional interpretation regional statistics UHIHUV WR FROOHFWLQJ
DFFXPXODWLQJ DQG XSGDWLQJ VWDWLVWLFDO GDWD WKHLU SURFHVVLQJ SURYLVLRQ DQG
GLVVHPLQDWLRQ LQ GLIIHUHQW VSDWLDO V\VWHPV )LQDOO\ ZLWK UHIHUHQFH WR WKH WKLUG
LQWHUSUHWDWLRQ regional statistics UHSUHVHQWV WKH VFLHQWLILF EUDQFK RI VWDWLVWLFV
ZKLFK GHDOV ZLWK GHWHFWLQJ DQG DQDO\]LQJ FHUWDLQ UHJXODULWLHV RFFXUULQJ LQ PDVV
SURFHVVHV DQG DOVR FKDUDFWHULVWLF IRU SKHQRPHQD VWXGLHG LQ GLIIHUHQW WHUULWRULDO
V\VWHPV
&XUUHQWO\ 5HJLRQDO 6WDWLVWLFV LV IRFXVHG RQ WKH IROORZLQJ WKUHH IXQGDPHQWDO
SUREOHPV
x FXUUHQW VLWXDWLRQ DVVHVVPHQW DQG WKH LGHQWLILFDWLRQ RI EDVLF FKDOOHQJHV SXW
EHIRUH 3ROLVK DQG (XURSHDQ UHJLRQDO VWDWLVWLFV
x GDWD EDVHV DV ZHOO DV UHJLRQDO DQG ORFDO GHYHORSPHQW PRQLWRULQJ
x FLW\ DQG UXUDO DUHDV VWDWLVWLFV
Basic challenges
7KH PDLQ WDVN RI UHJLRQDO VWDWLVWLFV LV WR SURYLGH WKH TXDQWLWDWLYH GHVFULSWLRQ RI
DGPLQLVWUDWLYH DQG IXQFWLRQDO LGHQWLWLHV DW WKH OHYHO RI UHJLRQV ,W UHIHUV WR WKH
FRXQWU\ZLGH VWDWLVWLFV DV WKH KLHUDUFKLFDO V\VWHP RI JHRJUDSKLFDO DQG
LQIUDVWUXFWXUDO HFRQRPLF GHPRJUDSKLF DQG VRFLDO UHODWLRQV
7KH VHFRQG LPSRUWDQW SUREOHP LV WKH DVVHVVPHQW RI LQIRUPDWLRQ FRYHUDJH
QHFHVVDU\ IRU WKH VWDWH DQG ORFDO VHOIJRYHUQPHQW IXQFWLRQLQJ LQ PDUNHW HFRQRP\
DIWHU 7KH V\VWHP RI UHJLRQDO VWDWLVWLFV VKRXOG FRQVLGHU SRVVLELOLWLHV IRU
LQIRUPDWLRQ V\VWHPV FRQVWUXFWLRQ ZKLFK H[WHQG RXWVLGH DGPLQLVWUDWLYH GLYLVLRQV
EDVHG RQ 1876 ,W PDLQO\ UHIHUV WR LQIRUPDWLRQ SURYLVLRQ IRU VSHFLDO DWWHQWLRQ
DUHDV VXFK DV HFRQRPLF ]RQHV HWKQLF JURXSV HQYLURQPHQWDO DGYDQWDJHV DUHDV DW
ULVN RI IORRGLQJ HWF RU JRDO RULHQWHG DUHDV HJ JHQHUDWLQJ FURVVERUGHU VWDWLVWLFV
LQFOXGLQJ (XURUHJLRQDO RQH PHWURSROLWDQ VWDWLVWLFV HWF
7KH GHYHORSPHQW RI VWDWLVWLFDO UHVHDUFK PHWKRGRORJ\ LQ FURVVUHJLRQDO
VHFWLRQV DW WKH EHJLQQLQJ RI WKH VW FHQWXU\ FRYHULQJ SUREOHPV ZKLFK RFFXUUHG LQ
WKH SURFHVV RI SUHSDUDWLRQ IRU $JULFXOWXUDO &HQVXV DQG 1DWLRQDO &HQVXV
UHSUHVHQW WKH WKLUG FKDOOHQJH RI 5HJLRQDO 6WDWLVWLFV ,W PDLQO\ UHIHUV WR
FRQFOXVLRQV UHVXOWLQJ IURP WKH DVVHVVPHQW RI VWDWLVWLFDO LQIRUPDWLRQ TXDOLW\
REWDLQHG EDVHG RQ WUDGLWLRQDO FHQVXVHV DQG UHSUHVHQWDWLYH UHVHDUFK ZLWKRXW XVLQJ
DOWHUQDWLYH GDWD VRXUFHV FROOHFWHG E\ VWDWH DGPLQLVWUDWLRQ
STATISTICS IN TRANSITION-new series, Summer 2013
331
,QWHJUDWLRQ RI VRXUFHV DQG VSHFLDO VDPSOH VXUYH\V DSSO\LQJ V\QHUJ\ HIIHFW DV
ZHOO DV SUREOHPV UHIHUULQJ WR UHJLRQDO GDWD TXDOLW\ DQG WKH FULWHULD RI DVVHVVLQJ WKH
VWDWLVWLFDO VXUYH\ UHVXOWV DUH DOVR FRQVLGHUHG YHU\ LPSRUWDQW SUREOHPV
&KDOOHQJHV IRU 5HJLRQDO 6WDWLVWLFV DW WKH EDFNJURXQG RI WKH GHEDWH IRFXVHG RQ
FRKHVLRQ SROLF\ DUH UHJDUGHG DV WKH QH[W SUREOHP RI WKLV W\SH RI 6WDWLVWLFV 7KH
DGRSWLRQ RI WKH /LVERQ 7UHDW\ KDV FKDQJHG WKH VFRSH RI FRKHVLRQ SROLF\ ZKHUH
DSDUW IURP VRFLDO DQG HFRQRPLF SUREOHPV D VLJQLILFDQW VSDWLDO GLPHQVLRQ KDV DOVR
DSSHDUHG ,Q RUGHU WR VSHFLI\ GXH REMHFWLYHV LQ RUGHU WR SHUIRUP ERWK PRQLWRULQJ
DQG HYDOXDWLRQ RI WKLV SROLF\ LW LV QHFHVVDU\ WR SXW PRUH HPSKDVLV RQ WKH UROH RI
SXEOLF VWDWLVWLFV DV WKH VRXUFH RI LQGLVSHQVDEOH GDWD 7KH RUJDQL]DWLRQ RI VWDWLVWLFV
LQ 3RODQG NHHSV DGMXVWLQJ WR WKH FKDQJLQJ GHPDQG RI GDWD UHFLSLHQWV ,QWHJUDWHG
RSHUDWLRQV RI QXPHURXV SXEOLF VWDWLVWLFV SURYLVLRQ XQLWV DUH IXQGDPHQWDO IRU
HIIHFWLYH LQIRUPDWLRQ VHUYLFH RI GDWDEDVH XVHUV 7KHVH FKDQJHV UHVXOW LQ WKH
HVWDEOLVKPHQW RI 5HJLRQDO 6XUYH\V &HQWUHV ZKLFK IRFXV QRW RQO\ RQ LQLWLDWLQJ
UHJLRQDO VXUYH\V EXW PDLQO\ RQ LPPHGLDWH UHVSRQVH WR WKH UHSRUWHG LQIRUPDWLRQ
GHPDQG HVSHFLDOO\ SUHVHQWHG E\ WHUULWRULDO VHOIJRYHUQPHQW XQLWV 7KH RQJRLQJ
LPSURYHPHQW RI SXEOLFO\ DYDLODEOH GDWDEDVHV VXFK DV HJ /RFDO 'DWD %DQN
/'% PXVW DOVR EH UHPHPEHUHG
6LJQLILFDQW PHWKRGRORJLFDO HIIRUWV LQ UHJLRQDO VWDWLVWLFV KDYH EHHQ XQGHUWDNHQ
,Q WKH FRQWH[W RI VWUDWHJLF DVVXPSWLRQV RI LPSOHPHQWDWLRQ PRQLWRULQJ LQ OLQH ZLWK
WKH FDUULHG RXW GHYHORSPHQW SROLF\ WKH SUHSDUDWLRQ RI QHZ UXUDO FRPPXQHV
W\SRORJ\ FRQVWLWXWHV DQ LPSRUWDQW LQLWLDWLYH WKH UHDOLVDWLRQ RI ZKLFK XQGHUJRHV LWV
ILQDO SKDVH
3XEOLVKLQJ DFWLYLWLHV UHSUHVHQW DQ LPSRUWDQW FRPSRQHQW RI LQIRUPDWLRQ DQG
VWDWLVWLFDO GDWD GLVVHPLQDWLRQ $PRQJ QXPHURXV UHJLRQDO SXEOLFDWLRQV Rural areas
in Poland LV ZRUWK PHQWLRQLQJ $GGLWLRQDOO\ Statistical Vade Mecum of Local
Government ZLOO EH LVVXHG IRU WKH VHFRQG WLPH VLQFH LW UHFHLYHG YHU\ JRRG
UHYLHZV IURP WKH WDUJHW JURXS
&KDOOHQJHV SXW EHIRUH 5HJLRQDO 6WDWLVWLFV DUH GHWHUPLQHG QRW RQO\ E\ VRFLR
HFRQRPLF RU SROLWLFDO WUDQVIRUPDWLRQV EXW WKH\ DOVR UHVXOW IURP QHZ WHFKQLFDO
FDSDFLWLHV 6XJJHVWLRQV RI VROXWLRQ LQ PDQ\ WKHPDWLF DUHDV PD\ EHFRPH
VLJQLILFDQWO\ HQULFKHG E\ WKH FRRSHUDWLRQ EHWZHHQ DFDGHPLF FLUFOHV DQG VWDWLVWLFV
SUDFWLWLRQHUV ± LW PDLQO\ UHIHUV WR WKH SUREOHPV RI PHWKRGRORJLFDO QDWXUH EHWWHU
VSHFLILFDWLRQ RI LQIRUPDWLRQ QHHGV W\SLFDO IRU SDUWLFXODU JURXSV RI UHFLSLHQWV DQG
7KH SUHVHQWDWLRQ E\ -DQ 3DUDG\V] 3R]QDĔ 8QLYHUVLW\ RI (FRQRPLFV ± 5HJLRQDO 6WDWLVWLFV &HQWUH Regional statistics: state, problems and towards of development, PDWHULDOV RI WKH &RQJUHVV RI
3ROLVK 6WDWLVWLFV 3R]QDĔ 332
The Regional Statistics …
DOVR EURDGO\ XQGHUVWRRG DQDO\WLFDO ZRUN ZKLFK SUREDEO\ FRQVWLWXWHV WKH PRVW
GLIILFXOW LVVXH Database and indicator systems of regional and local development monitoring
7KH FRQGLWLRQ IRU HVWDEOLVKLQJ DGHTXDWH VHWV RI VXVWDLQDEOH GHYHORSPHQW
LQGLFDWRUV UHIHUULQJ WR D JLYHQ FRXQWU\ SURYLQFHV GLVWULFWV DQG FRPPXQHV LV
QHFHVVDU\ WR VXEVWDQWLDWH WKLV GHYHORSPHQW FRQFHSW SURYLGLQJ OHJDO DQG VWUDWHJLF
VXEVWDQFH E\ GHILQLQJ TXDOLWLHV REMHFWLYHV DQG SULQFLSOHV RI VXVWDLQDEOH
GHYHORSPHQW ,QGLFDWRUV UHSUHVHQW EDVLF WRROV IRU VXVWDLQDEOH GHYHORSPHQW
PRQLWRULQJ ZKLFK LQ PHDVXUDEOH ZD\ XQYHLOV WKH FRUH FRQFHSW RI VXFK
GHYHORSPHQW 7KHUHIRUH WKH HVWDEOLVKPHQW RI LQGLFDWRUEDVHG PRQLWRULQJ V\VWHP
IRU VXVWDLQDEOH GHYHORSPHQW LV H[SHFWHG WR SURYLGH SRVVLEO\ WKH PRVW SUHFLVH DQG
XQDPELJXRXV DQVZHU WR WKH IROORZLQJ WZR FUXFLDO TXHVWLRQV
x ZKDW VXVWDLQDEOH GHYHORSPHQW PHDQV LQ DQ LQGLFDWRURULHQWHG VHQVH
x ZKDW VXEVWDQWLDO UHVXOWV LOOXVWUDWH WKLV SURFHVV DQG LWV SURJUHVV LQ ERWK
VSDWLDO DQG WHPSRUDO V\VWHP
7KH FRQFHSW RI PRQLWRULQJ WXUQV RXW FUXFLDO DW WKLV SRLQW VLQFH LW FRPELQHV
VXVWDLQDEOH GHYHORSPHQW PHDVXUHPHQW ZLWK OLIH TXDOLW\ PHDVXUHPHQW DW WKH ORFDO
OHYHO ZLWKLQ WKH IUDPHZRUN RI VSHFLILF DQG FRQVWDQWO\ GHYHORSLQJ ³VWDWLVWLFDO´
LQLWLDWLYH RI WKH ORFDO JRYHUQPHQW VHFWRU XQGHU WKH QDPH RI /RFDO *RYHUQPHQW
$QDO\VLV 6\VWHP 6$6 $W WKH WKLUG VWDJH RI WKLV V\VWHP GHYHORSPHQW LH VLQFH
DSDUW IURP WKH REMHFWLYH DOUHDG\ EHLQJ FDUULHG RXW SXEOLF VHUYLFHV TXDOLW\
UHVHDUFK D QHZ JRDO VLJQLILFDQWO\ H[WHQGLQJ WKH VFRSH RI 6$6 ZDV GHILQHG ±
WKH VWUHQJWKHQLQJ RI LQGLFDWRU PRQLWRULQJ V\VWHPV IRU ORFDO GHYHORSPHQW
SROLFLHVVWUDWHJLHV E\ PHDQV RI WZR DGGLWLRQDO LQGLFDWRU PRGXOHV FRQVWUXFWLRQ
VXVWDLQDEOH GHYHORSPHQW DQG LQKDELWDQWV¶ OLIH TXDOLW\ 7KH PRGXOH RI VXVWDLQDEOH
GHYHORSPHQW LQGLFDWRUV IRU WKH SXUSRVHV RI WKH V\VWHP FDQ EH GLVWLQJXLVKHG DW WKH
EDFNJURXQG RI RWKHU LQGLFDWRU V\VWHPV E\ WKH SRVVLELOLW\ RI FDOFXODWLQJ
VXVWDLQDEOH GHYHORSPHQW V\QWKHWLF PHDVXUHV IRU GRPDLQV DQG RUGHUV :LWKLQ WKH
PRGXOH IRXU DQDO\VLV OHYHOV RI VXVWDLQDEOH GHYHORSPHQW LQGLFDWRUV DUH SRVVLEOH WR
FDUU\ RXW DQG DGMXVW WR WKH PRQLWRULQJ QHHGV RI ORFDO VWUDWHJLHV LPSOHPHQWDWLRQ
7KH V\VWHP DOVR RIIHUV OLIH TXDOLW\ VXUYH\ WR ORFDO JRYHUQPHQWV LQFOXGLQJ WKH
VXUYH\ PHWKRGRORJ\ DQG WKH UHSRUW VWUXFWXUH 7KLV V\VWHP PRGXOH OLVWV DOWRJHWKHU
7KH SUHVHQWDWLRQ E\ 'RPLQLND 5RJDOLĔVND &HQWUDO 6WDWLVWLFDO 2IILFH Challenges for regional
statistics at the background of debate focused on cohesion policy PDWHULDOV RI WKH &RQJUHVV RI
3ROLVK 6WDWLVWLFV 3R]QDĔ STATISTICS IN TRANSITION-new series, Summer 2013
333
RYHU VXVWDLQDEOH GHYHORSPHQW LQGLFDWRUV DQG D UHODWLYHO\ EDODQFHG GLYLVLRQ RI
LQGLFDWRU VHW LQWR WKUHH RUGHUV VRFLDO HFRQRPLF DQG HQYLURQPHQWDOVSDWLDO RUGHU
,W LV VXSSRUWHG E\ WKH 5HJLRQDO 'DWD %DQN 5'% RI &HQWUDO 6WDWLVWLFDO 2IILFH
&62 &KDQJHV LQ 5'% UHSUHVHQW RQH RI WKH PDMRU PDQLIHVWDWLRQV IHDWXULQJ
LPSURYHPHQWV LQ WKH SXEOLFDOO\ DYDLODEOH GDWDEDVH 7KHVH FKDQJHV PDLQO\ UHIHU WR
x WKH DYDLODELOLW\ RI VHOHFWHG TXDOLWLHV DOVR IRU WKH OHYHO RI VWDWLVWLFDO ORFDWLRQV
x WKH H[WHQVLRQ RI VKRUWWHUP GDWD VFRSH
x VLJQLILFDQW LPSURYHPHQWV LQ LQWHUIDFH IXQFWLRQLQJ
x UHFRJQLWLRQ RI 5'% UHVRXUFHV DV DQ LPSRUWDQW VRXUFH RI LQIRUPDWLRQ DERXW
VXVWDLQDEOH GHYHORSPHQW LPSOHPHQWDWLRQ DW ORFDO DQG UHJLRQDO OHYHO
$ XQLYHUVDO PRGXOH ZDV FRQVWUXFWHG ZLWKLQ WKH IUDPHZRUN RI 5'% ZKLFK
IDFLOLWDWHV VXVWDLQDEOH GHYHORSPHQW PRQLWRULQJ DW WKH ORZHU OHYHO WKDQ WKH QDWLRQDO
RQH 6XVWDLQDEOH GHYHORSPHQW LQGLFDWRUV GHYHORSHG E\ (XURVWDW EHFDPH WKH SRLQW
RI UHIHUHQFH IRU WKLV PRGXOH FRQVWUXFWLRQ 7KH PRGXOH SUHSDUHG ZLWKLQ 5'% GRHV
QRW SUHVHQW WKH VHW IRU WKH SXUSRVHV RI D VXEVWDQWLYH GHYHORSPHQW VWUDWHJ\
PRQLWRULQJ DW HLWKHU ORFDO RU UHJLRQDO OHYHO EXW LW RIIHUV D EDVLF VHW RI LQGLFDWRUV
ZKLFK PD\ EHFRPH WKH EDFNJURXQG IRU VXVWDLQDEOH GHYHORSPHQW DQDO\VHV DW WKH
ORZHU WKDQ QDWLRQDO OHYHO 7KH HVWDEOLVKHG PRGXOH LV VXSSRVHG WR FRQVWLWXWH D W\SH
RI D ³FRUH´ IDFLOLWDWLQJ WKH DVVHVVPHQW DQG FRPSDULVRQ RI SDUWLFXODU WHUULWRULDO VHOI
JRYHUQPHQW XQLWV
6XFK PRGXOH KDV WR EH FRPSRVHG RI LQGLFDWRUV ZKLFK DUH FRYHUHG E\
VWDWLVWLFDO GDWD DQG WKHVH GDWD DUH FRPSDUDEOH IRU DOO WHUULWRULDO VHOIJRYHUQPHQW
XQLWV $SDUW IURP WKDW GXH WR WKH VSHFLILF QDWXUH RI SDUWLFXODU XQLWV WKH PRGXOH
PD\ EH VXSSOHPHQWHG E\ LQGLFDWRUV FUXFLDO IURP WKH SHUVSHFWLYH RI D JLYHQ
WHUULWRULDO XQLW 7KH PRGXOH VKRXOG EH H[WHQGHG E\ WKH VRFDOOHG OHDGLQJ JURXSV LQ
D JLYHQ DUHD ± VHOIJRYHUQPHQW VHFWRU HQWUHSUHQHXUV DQG VRFLDO RUJDQL]DWLRQV
UHSUHVHQWDWLYHV 7KH SUHSDUHG PRGXOH FRQVLVWV RI WRSLFV ZKLFK DUH HVVHQWLDO IRU
VXVWDLQDEOH GHYHORSPHQW PRQLWRULQJ DW UHJLRQDO DQG ORFDO OHYHO (DFK WRSLF LV
GLYLGHG LQWR VXEWRSLFV XQGHU ZKLFK VXEVWDQWLYH LQGLFDWRUV ZHUH OLVWHG 7KH SUHVHQWDWLRQ E\ 7DGHXV] %RU\V :URFáDZ 8QLYHUVLW\ RI (FRQRPLFV DQG 7RPDV] 3RGNDĔVNL
7KH $VVRFLDWLRQ RI 3ROLVK &LWLHV Monitoring regional and local development PDWHULDOV RI WKH
&RQJUHVV RI 3ROLVK 6WDWLVWLFV 3R]QDĔ 7KH SUHVHQWDWLRQ E\ %DUWRV] %DUWQLF]DN :URFáDZ 8QLYHUVLW\ RI (FRQRPLFV ± 0RGXOH RI
VXVWDLQDEOH GHYHORSPHQW LQGLFDWRUV LQ 5HJLRQDO 'DWD %DQN PDWHULDOV RI WKH &RQJUHVV RI 3ROLVK
6WDWLVWLFV 3R]QDĔ 334
The Regional Statistics …
The statistics of cities and rural areas
3UDFWLFDO DSSOLFDWLRQ RI Geographic Information System (GIS) LV RI FUXFLDO
VLJQLILFDQFH LQ FLW\ DQG UXUDO DUHDV VWDWLVWLFV DV DQ LQIRUPDWLRQ V\VWHP XVHIXO IRU
HQWHULQJ FROOHFWLQJ SURFHVVLQJ DQG WKH YLVXDOLVDWLRQ RI JHRJUDSKLFDO GDWD VLQFH
RQH RI LWV PDQ\ IXQFWLRQV LV WR SURYLGH VXSSRUW IRU WKH GHFLVLRQPDNLQJ SURFHVVHV
*,6 LV WKH UHVXOW RI VHYHUDO GHFDGHV RI RQJRLQJ PHWKRGRORJLFDO FKDQJHV LQ
JHRJUDSK\ DQG REYLRXVO\ DOVR WKH UDSLG GHYHORSPHQW RI FRPSXWHU WHFKQRORJ\
LQIOXHQFLQJ GDWDEDVH LQIRUPDWLRQ VHWV PDQDJHPHQW PHWKRGV 7KH HVWDEOLVKPHQW
RI *,6 LV WKH HIIHFW RI FRPELQLQJ HIIRUWV FDUULHG RXW LQ GLIIHUHQW ILHOGV JHRJUDSK\
FDUWRJUDSK\ JHRGHV\ FRPSXWHU WHFKQRORJ\ HOHFWURQLFV DQG VWDWLVWLFV
*,6 LV DSSOLHG DPRQJ RWKHUV LQ FRQVWUXFWLQJ VSDWLDO LQIRUPDWLRQ VHWV
UHFRUGV UHJLVWHUV DQG DOVR LQ WKHLU SURFHVVLQJ DQG DQDO\VLV $QRWKHU DSSOLFDWLRQ
JURXS LV UHODWHG WR LQIRUPDWLRQ SURFHVVLQJ DERXW WKH GLVWULEXWLRQ RI DOO W\SHV RI
SKHQRPHQD HVSHFLDOO\ WKHVH IHDWXULQJ H[WHQVLYH YDULDELOLW\ LQ WLPH 7KLV JURXS RI
DSSOLFDWLRQV DOVR FRYHUV *,6 XVDJH IRU VWDWLVWLFDO GDWD DQDO\VLV DQG SUHVHQWDWLRQ
VXFK DV HJ FULPH WKUHDW GLVHDVHV RFFXUUHQFH ODQG XVH VWUXFWXUH *,6 PD\ DOVR
SUHVHQW D YHU\ XVHIXO WRRO IRU SURFHVVLQJ GDWD DERXW WHFKQLFDO LQIUDVWUXFWXUH RI D
JLYHQ DUHD LH ZDWHU JDV HQHUJ\ VXSSO\ V\VWHP QHWZRUN FRPPXQLFDWLRQ OLQHV
6XFK GDWD UHTXLUH IUHTXHQW PRGLILFDWLRQV $GGLWLRQDOO\ WKHLU JUHDW DFFXUDF\ DQG
WLPHOLQHVV LV LQGLVSHQVDEOH
*,6 ZDV XVHG IRU WKH SXUSRVHV RI SXEOLF VWDWLVWLFV LQ WKH FRXUVH RI WZR
FHQVXVHV $JULFXOWXUDO &HQVXV $& ± IURP 6HSWHPEHU XQWLO 2FWREHU
DQG 1DWLRQDO &HQVXV RI 3RSXODWLRQ DQG +RXVLQJ 1&3+ ± IURP $SULO XQWLO -XQH ,Q WKH SURFHVV RI WKHVH FHQVXVHV PRGHUQ DQG FKHDSHU
WKDQ EHIRUH VROXWLRQV RI GDWD FROOHFWLQJ IURP GDWD KROGHUV FRPLQJ IURP LQIRUPDWLRQ V\VWHPV LQFOXGLQJ DGPLQLVWUDWLRQ RQHV DQG HOHFWURQLF
FRPPXQLFDWLRQ WRROV ZHUH DOVR H[WHQVLYHO\ XVHG ZKLFK FRPSOHWHO\ HOLPLQDWHG
SDSHU IRUPV 7KLV DOORZHG IRU VPDOOHU EXUGHQ RQ UHVSRQGHQWV DQG IRU FXWWLQJ
FHQVXV PDWHULDOV SULQWLQJ FRVWV 7KH IROORZLQJ GDWD FROOHFWLQJ FKDQQHOV ZHUH
DSSOLHG LQ WKH DERYH FHQVXVHV DGPLQLVWUDWLRQ VRXUFHV WKH ,QWHUQHW &$,, ±
&RPSXWHU $VVLVWHG ,QWHUQHW ,QWHUYLHZ RQOLQH VHOIHQXPHUDWLRQ WHOHSKRQH
LQWHUYLHZ &$7, ± &RPSXWHU $VVLVWHG 7HOHSKRQH ,QWHUYLHZ E\ DQ HQXPHUDWRU
&$3, ± &RPSXWHU $VVLVWHG 3HUVRQDO ,QWHUYLHZ HTXLSSHG ZLWK D SRUWDEOH KDQG
KHOG WHUPLQDO
7R VXSSRUW WKH FHQVXV D &RPSXWHUEDVHG &HQVXV 6\VWHP &&6 ZDV
LQWURGXFHG ZKLFK LQWHJUDWHG GLIIHUHQW WHFKQRORJLHV IURP DSSOLFDWLRQV LQVWDOOHG RQ
STATISTICS IN TRANSITION-new series, Summer 2013
335
PRELOH WHUPLQDOV WKURXJK DSSOLFDWLRQV PDQDJLQJ DQG VXSSRUWLQJ SKRQH LQWHUYLHZV
WR VSHFLDOL]HG GDWDEDVH GDWD ZDUHKRXVHV DQG DQDO\WLFDOUHSRUWLQJ WRROV
$GGLWLRQDOO\ &&6 SURYLGHG VROXWLRQV HQVXULQJ KLJK OHYHO RI GDWD SURFHVVLQJ
VHFXULW\ GXH RUJDQL]DWLRQDO SURFHGXUHV ZHUH LPSOHPHQWHG ZKLFK REOLJHG FHQVXV
SDUWLFLSDQWV WR PDLQWDLQ VWDWLVWLFDO VHFUHF\ DQG SURWHFW SHUVRQDO GDWD
7KH LQQRYDWLRQ LQWURGXFHG LQ WKH FRXUVH RI ERWK FHQVXVHV ZDV WKH DSSOLFDWLRQ
RI *,6 WHFKQRORJ\ DW HYHU\ VWDJH 'LJLWDO PDSV FRQVWLWXWHG HVVHQWLDO WRROV IRU
FHQVXV HQXPHUDWRUV UHJDUGLQJ VSDWLDO RULHQWDWLRQ VDPSOLQJ IUDPH YHULILFDWLRQ
HWF IRU FRPPXQDO OHDGHUV SURYLQFLDO DQG FHQWUDO GLVSDWFKHUV ZKR FRXOG SHUIRUP
UHPRWH YHULILFDWLRQ RI FHQVXV DGYDQFHPHQW DV ZHOO DV WKH URXWH RU WKH FXUUHQW
ORFDWLRQ RI WKH FHQVXV HQXPHUDWRU *,6 DSSOLFDWLRQV ZHUH XVLQJ PDWHULDOV REWDLQHG
E\ 3=*L. [National Geodetic and Cartographic Resources] RUWRSKRWPDSV
ERUGHUV RI SURYLQFHV GLVWULFWV DQG FRPPXQHV QDPHV RI ORFDWLRQV ERUGHUV RI
VWDWLVWLFDO UHJLRQV DQG FHQVXV HQXPHUDWLRQ DUHDV DQG DOVR VWDWLVWLFDO DGGUHVV SRLQWV
SUHSDUHG E\ WKH RIILFLDO VWDWLVWLFV VHUYLFHV DV ZHOO DV UHJLVWHUHG SDUFHOV OD\HU
$5L05 [Agriculture Restructuring and Modernization Agency] URDGV DQG
VWUHHWV *,6 UHSUHVHQWV DQ HIIHFWLYH DQG DWWUDFWLYH WRRO IRU VWDWLVWLFDO GDWD SUHVHQWDWLRQ
DQG DQDO\VLV $OO VWDWLVWLFDO GDWD UHIHU LQ D VHQVH WR JHRJUDSKLF VSDFH DQG
WKHUHIRUH VSDWLDO DVSHFW VKRXOG DOVR EH FRQVLGHUHG LQ WKHLU DQDO\VLV 7\SLFDO
LQIRUPDWLRQ SXEOLVKHG LQ WDEXODU IRUP ZLWKRXW SUHVHQWLQJ LW LQ WKH IRUP RI PDSV
GRHV QRW DOORZ IRU QRWLFLQJ QXPHURXV LQWHUGHSHQGHQFLHV 7KHUHIRUH VWDWLVWLFV
XVHV PRUH DQG PRUH RIWHQ *,6 VRIWZDUH ZKLFK IDFLOLWDWHV VWDWLVWLFDO GDWD
YLVXDOL]DWLRQ E\ PHDQV RI PDSV DQG DOVR DGYDQFHG VSDWLDO DQDO\VHV RI WKHVH GDWD 7KH DSSOLFDWLRQ RI GDWD IURP DGPLQLVWUDWLRQ VRXUFHV LQ FLW\ VWDWLVWLFV VXSSRUWHG
E\ *,6 WRROV UHSUHVHQWV D YHU\ LPSRUWDQW GLUHFWLRQ LQ WKH GHYHORSPHQW RI 5HJLRQDO
6WDWLVWLFV 7KH JURZLQJ GHPDQG IRU GHWDLOHG DQG DOVR FRPSOH[ LQIRUPDWLRQ DERXW
FLWLHV DQG SUREOHPV ZLWK PHHWLQJ WKHP UHVXOW LQ WKH IDFW WKDW SXEOLF VWDWLVWLFV NHHSV
ORRNLQJ IRU QHZ VRXUFHV RI WKHLU DFTXLVLWLRQ 7KH VWXG\ RI LQIRUPDWLRQRULHQWHG
GHPDQG DOVR LQGLFDWHV WKH QHHG IRU DQDO\]LQJ FLWLHV SHUFHLYHG LQ FHUWDLQ VHSDUDWLRQ
IURP DGPLQLVWUDWLYH ERUGHUV IXQFWLRQDO DUHD ZLGHU XUEDQ ]RQH LQWHUQDO XUEDQ
]RQHV 7KH QHHG IRU D GLIIHUHQW SHUVSHFWLYH LQ UHODWLRQ WR D ³FLW\´ DOVR UHVXOWV
7KH SUHVHQWDWLRQ E\ -DQXV] '\JDV]HZLF] 0DJGDOHQD -DF]XU.QDSHN DQG $PHOLD :DUG]LĔVND
6KDULI &HQWUDO 6WDWLVWLFDO 2IILFH 7ZR FHQVXVHV $& DQG 1&3+ DQG *,6 LQ SXEOLF
VWDWLVWLFV PDWHULDOV RI WKH &RQJUHVV RI 3ROLVK 6WDWLVWLFV 3R]QDĔ 7KH SUHVHQWDWLRQ E\ 3DZHá &KOHELFNL (65, 3RODQG $UF*,6 DV VWURQJO\ WRRO RI VWDWLVWLFDO GDWD
YLVXDOL]DWLRQ DQG VSDWLDO DQDO\VH PDWHULDOV RI WKH &RQJUHVV RI 3ROLVK 6WDWLVWLFV 3R]QDĔ 336
The Regional Statistics …
IURP VXFK VWUDWHJLF GRFXPHQWV DV 1DWLRQDO 5HJLRQDO 'HYHORSPHQW 6WUDWHJ\
1DWLRQDO 6SDWLDO 'HYHORSPHQW &RQFHSW DQG WKH (XURSHDQ &RPPLVVLRQ SURMHFWV
IRFXVHG RQ XUEDQ GHYHORSPHQW VXSSRUW 7KHVH UHDVRQV EHFDPH WKH OHDGLQJ
LQVSLUDWLRQ WR H[WHQG WKH DSSOLFDWLRQ RI GDWD LQFOXGHG LQ DGPLQLVWUDWLYH VRXUFHV DV
VXSSOHPHQWDU\ IRU VWDWLVWLFDO VXUYH\V
3UHSDUHG E\
7DGHXV] %RU\V
:URFáDZ 8QLYHUVLW\ RI (FRQRPLFV
STATISTICS IN TRANSITION-new series, Summer 2013
337
STATISTICS IN TRANSITION-new series, Summer 2013
Vol. 14, No. 2, pp. 337–340
REPORT
The 22nd Didactic Conference on Teaching Quality
Evaluation Methods,
10-11 June 2013, àyGĨ 3RODQG
7KH QG HGLWLRQ RI 3ROLVK QDWLRQZLGH Didactic Conference ZDV WLWOHG
Teaching Quality Evaluation Methods 0HWRG\ RFHQ\ MDNRĞFL QDXF]DQLD DQG
ZDV KHOG LQ àyGĨ IURP WK WR WK -XQH 7KH &RQIHUHQFH ZDV RUJDQL]HG E\
WKH Institute of Statistics and Demography RI WKH 8QLYHUVLW\ RI àyGĨ ZLWK WKH
FRRSHUDWLRQ RI WKH Institute of Econometrics RI WKH 8QLYHUVLW\ RI àyGĨ XQGHU WKH
KRQRUDU\ DXVSLFHV RI WKH 3UHVLGHQW RI WKH &LW\ RI àyGĨ 0V +DQQD
Zdanowska The City of àyGĨ Office DQG StatSoft Polska Sp. z o.o. ZHUH
RIILFLDO SDUWQHUV RI WKH 'LGDFWLF &RQIHUHQFH Prof. &]HVáDZ 'RPDĔVNL KHOG
WKH IXQFWLRQ RI WKH &KDLUPDQ RI WKH 6FLHQWLILF DQG 2UJDQL]LQJ &RPPLWWHHV
Aleksandra Kupis-)LMDáNRZVND 06F ZDV WKH ILUVW VHFUHWDU\ RI ERWK
&RPPLWWHHV DQG $QQD 0DMG]LĔVND 06F ZDV WKH VHFRQG VHFUHWDU\ RI WKH
2UJDQL]LQJ &RPPLWWHH
7KH 'LGDFWLF &RQIHUHQFH 2UJDQL]HUV DLPHG WR SURYLGH DQ RSSRUWXQLW\ IRU
DFDGHPLF WHDFKHUV DQG WXWRUV HVSHFLDOO\ LQ ILHOGV VXFK DV PDWKHPDWLFV VWDWLVWLFV
HFRQRPHWULFV ILQDQFH HFRQRP\ DQG QDWLRQDO DFFRXQWV GHPRJUDSK\ DQG
GHPRPHWU\ WR SUHVHQW WKHLU WHDFKLQJ SUREOHPV DQG UHIOHFWLRQV DV ZHOO DV DQDO\]H
DQG GLVFXVV UHFHQW VFLHQWLILF REVHUYDWLRQV LQ WKLV DUHD 7KH HGLWLRQ RI WKH
&RQIHUHQFH ZDV IRFXVHG RQ WKH 7HDFKLQJ 4XDOLW\ DQG PHWKRGV RI LWV HYDOXDWLRQ
7KH &RQIHUHQFH ZDV RSHQHG E\ WKH &KDLUPDQ RI WKH 6FLHQWLILF &RPPLWWHH
Prof. 'RPDĔVNL 2Q WKH 2SHQLQJ VHVVLRQ WKH QH[W VSHDNHUV ZHUH UHVSHFWLYHO\
Prof. =RILD :\VRNLĔVND 3UR5HFWRU LQ &KDUJH RI ,QWHUQDWLRQDO $IIDLUV ZKR ZDV
WKH UHSUHVHQWDWLYH RI WKH 5HFWRU RI WKH 8QLYHUVLW\ RI àyGĨ Prof. :áRG]LPLHU]
Nykiel DQG Prof. JDQXV] ĝZLHUNRFNL, 3UR'HDQ IRU ,QWHUQDWLRQDO &RRSHUDWLRQ
DQG &RXUVH RI 6WXGLHV RI ,QWHUQDWLRQDO (FRQRPLF 5HODWLRQV (FRQRPLFV ZKR ZDV
UHSUHVHQWLQJ WKH 'HDQ RI 7KH )DFXOW\ RI (FRQRPLFV DQG 6RFLRORJ\ RI WKH
8QLYHUVLW\ RI àyGĨ Prof. 3DZHá 6WDURVWD DQG WKH 3UR'HDQ IRU 5HVHDUFK
Prof. Agnieszka Rossa
%ULHIO\ WKH NH\ VWDWLVWLFV RI WKH 2013 Didactic Conference ORRN DV IROORZV
SDUWLFLSDQWV DOWRJHWKHU LQFOXGLQJ WKH 6HQDWRU RI WKH 5HSXEOLF RI 3RODQG DQG WKH
3UHVLGHQW RI 3ROLVK $FFUHGLWDWLRQ &RPPLWWHH Prof. Marek Rocki WKH
UHSUHVHQWDWLYH RI WKH &HQWUDO 6WDWLVWLFDO 2IILFH RI 3RODQG Prof. :áRG]LPLHU]
Okrasa DFDGHPLF WHDFKHUV VFLHQWLVWV DQG 3K' VWXGHQWV UHSUHVHQWLQJ 3ROLVK
338
The 22nd Didactic Conference …
XQLYHUVLWLHV DQG SUDFWLWLRQHUV SOHQDU\ VHVVLRQV ZLWK SUHVHQWHG SDSHUV
-XELOHH VHVVLRQ DQG 'LVFXVVLRQ 3DQHO
7KH ILUVW VHVVLRQ ZDV RUJDQL]HG WR FHOHEUDWH 7KH ,QWHUQDWLRQDO <HDU RI
6WDWLVWLFV DQG ZDV OHG E\ Prof. Okrasa &DUGLQDO 6WHIDQ :\V]\ĔVNL 8QLYHUVLW\ LQ
:DUVDZ &HQWUDO 6WDWLVWLFDO 2IILFH RI 3RODQG ,W ZDV VWDUWHG E\ Prof. Rocki
6HQDWRU RI WKH 5HSXEOLF RI 3RODQG 3ROLVK $FFUHGLWDWLRQ &RPPLWWHH :DUVDZ
6FKRRO RI (FRQRPLFV ZKR VSRNH DERXW The Condition of Statisticians Education
in Reports of the Polish Accreditation Committee 7KH VHFRQG VSHHFK Statistics –
Science About Information Ensuring the Quality of Teaching ZDV JLYHQ E\
Prof. 'RPDĔVNL 8QLYHUVLW\ RI àyGĨ
7KHVH WZR PHQWLRQHG DERYH SUHVHQWDWLRQV IRUPHG D VROLG LQWURGXFWLRQ WR WKH
QH[W SDUW RI WKH &RQIHUHQFH ZKLFK ZDV D Discussion Panel Statistics as
a Profession – Statistician as an Occupation, SUHSDUHG DQG PRGHUDWHG E\
Prof. Okrasa 7KH IROORZLQJ H[SHUWV ZHUH LQYLWHG E\ WKH 2UJDQL]HUV WR WDNH SDUW
LQ LW E\ DOSKDEHWLFDO RUGHU Prof. 'RPDĔVNL 8QLYHUVLW\ RI àyGĨ, Prof. Józef
Dziechciarz :URFODZ 8QLYHUVLW\ RI (FRQRPLFV Prof. 0LURVáDZ .U]\ĞNR
$GDP 0LFNLHZLF] 8QLYHUVLW\ LQ 3R]QDĔ Prof. M. Rocki 6HQDWRU RI WKH
5HSXEOLF RI 3RODQG 3ROLVK $FFUHGLWDWLRQ &RPPLWWHH :DUVDZ 6FKRRO RI
(FRQRPLFV Prof. -DQXV] :\ZLDá 8QLYHUVLW\ RI (FRQRPLFV LQ .DWRZLFH 7KLV
HYHQW ZDV RSHQ IRU HYHU\RQH WKHUHIRUH DOVR RWKHU SURPLQHQW VWDWLVWLFLDQV DV ZHOO
DV OHVV H[SHULHQFHG RQHV DQG PDQ\ UHSUHVHQWDWLYHV RI RWKHU WHDFKLQJ ILHOGV IRU
H[DPSOH GHPRJUDSK\ RU HFRQRPHWULFV SDUWLFLSDWHG LQ WKH GLVFXVVLRQ >7KH
GHWDLOHG LQIRUPDWLRQ DERXW WKLV SDQHO DV ZHOO DV LPSRUWDQW FRQFOXVLRQV DQG IXUWKHU
UHFRPPHQGDWLRQV FDQ EH IRXQG LQ WKLV Statistics in Transition - new series LVVXH
E\ the panel organizer@
7KH VHFRQG SOHQDU\ VHVVLRQ ZDV OHG E\ Prof. Rocki 6HQDWRU RI WKH 5HSXEOLF
RI 3RODQG 3ROLVK $FFUHGLWDWLRQ &RPPLWWHH :DUVDZ 6FKRRO RI (FRQRPLFV DQG
WKH IROORZLQJ SDSHUV ZHUH SUHVHQWHG Quality measurement in the EU concept of
the entrepreneurial university E\ Prof Dziechciarz :URFODZ 8QLYHUVLW\ RI
(FRQRPLFV The Interplay Between Entrepreneurship Education and Students’
Entrepreneurial Intentions LQYHVWLJDWHG E\ -DFHN %LDáHN DQG Agnieszka
Kurczewska 8QLYHUVLW\ RI àyGĨ DQG Methods for Assessing the Quality of
Teaching – Quantitative Methods for Economics and Business E\ Grzegorz
.RĔF]DN DQG Jolanta Bernais 8QLYHUVLW\ RI (FRQRPLFV LQ .DWRZLFH
7KH WKLUG VHVVLRQ ZDV FKDLUHG E\ Prof. .U]\ĞNR $GDP 0LFNLHZLF]
8QLYHUVLW\ LQ 3R]QDĔ DQG SDSHUV ZHUH GLVFXVVHG KHUH Analysis of the Results
of the Compensatory Courses in Mathematics Realised in the Affiliate Branch of
the Warsaw University of Technology in Plock E\ Izabela Józefczyk Romuald
0DáHFNL DQG Roman Rumianowski :DUVDZ 8QLYHUVLW\ RI 7HFKQRORJ\ $IILOLDWH
%UDQFK LQ 3ORFN Evaluation of Quality of Teaching at the Example of the
Faculty of Economics of the West Pomeranian University of Technology in
Szczecin E\ ,ZRQD %ąN DQG Katarzyna Wawrzyniak :HVW 3RPHUDQLDQ
8QLYHUVLW\ RI 7HFKQRORJ\ LQ 6]F]HFLQ DQG Modernization of mathematics courses
STATISTICS IN TRANSITION-new series, Summer 2013
339
in departments of economics, by supplementary remarks about elements of
complex analysis E\ Janusz Kupczun 8QLYHUVLW\ RI àyGĨ
7KH QH[W VHVVLRQ RI WKH &RQIHUHQFH ZDV D VSHFLDO -XELOHH RQH DQG ZDV OHG E\
Prof. Rossa ,W ZDV RUJDQL]HG E\ WKH Institute of Statistics and Demography RI
8QLYHUVLW\ RI àyGĨ ZLWK FRRSHUDWLRQ RI WKH Polish Statistical Association. 7KLV
VHVVLRQ WRRN SODFH WR FHOHEUDWH WKH WK DQQLYHUVDU\ RI Prof. 'RPDĔVNL¶V VFLHQWLILF
DQG DFDGHPLF ZRUN Prof. 'RPDĔVNL LV WKH DXWKRU RU FRDXWKRU RI DOPRVW UHVHDUFK SDSHUV DQG ERRNV LQ WKH ILHOG RI PDWKHPDWLFDO VWDWLVWLFV ILQDQFLDO
VWDWLVWLFV DQG ULVN WKHRU\ +H DOVR DFWHG DV VXSHUYLVRU RI QXPHURXV 3K'
GLVVHUWDWLRQV DQG LV UHFRJQL]HG DV D JUHDW WHDFKHU RI PDQ\ JHQHUDWLRQV RI VWXGHQWV
Prof. 'RPDĔVNL ZDV DZDUGHG VHYHUDO SUHVWLJLRXV SUL]HV Prof. Jerzy T.
Kowaleski DQG Prof. $OLQD -ĊGU]HMF]DN 8QLYHUVLW\ RI àyGĨ SUHSDUHG Scientific
Curriculum Vitae of 3URIHVVRU &]HVáDZ 'RPDĔVNL 7KH $XWKRUV WKRURXJKO\
GHVFULEHG WKH ELRJUDSKLFDO SURILOH LQFOXGLQJ VFLHQWLILF SXEOLFDWLRQV DQG DFDGHPLF
DFKLHYHPHQWV RI WKH -XELODULDQ $OVR Prof. -ĊGU]HMF]DN SUHVHQWHG WKH 6HVVLRQ¶V
3DUWLFLSDQWV ZLWK D YLGHR ZLWK WKH LQWHUYLHZ RI Prof. 'RPDĔVNL DQG
Prof. Walenty Ostasiewicz DERXW 6WDWLVWLFV JLYHQ WR WKH 5HSRUWHU RI WKH 3ROLVK
7HOHYLVLRQ 0RQLND :áRGDUF]\N
2Q WKH VHFRQG GD\ RI WKH QG 'LGDFWLF &RQIHUHQFH VHVVLRQV KDG SODFH
5HVSHFWLYHO\ WKH IRXUWK SOHQDU\ VHVVLRQ DQG WKH ILUVW RQH RQ WKH WK -XQH ZDV
FKDLUHG E\ Prof. $QGU]HM 6RNRáRZVNL &UDFRZ 8QLYHUVLW\ RI (FRQRPLFV 7KH
IROORZLQJ SDSHUV ZHUH SUHVHQWHG Didactics and Changes in the Student
Community – A Review E\ Lilianna Jarmakowska-Kostrzanowska 8QLYHUVLW\
RI àyGĨ Selected Statistical Analysis Methods in Assessment of the Learning
Outcomes in the Example of the Descriptive Statistics Exam Results E\
0DáJRU]DWD 0LV]WDO 8QLYHUVLW\ RI àyGĨ DQG Implementation of Continuous
Quality Improvement Method in Higher Education SUHSDUHG E\ (OĪELHWD
Zalewska 8QLYHUVLW\ RI àyGĨ
7KH VL[WK SOHQDU\ VHVVLRQ ZKLFK ZDV OHG E\ Prof. Kowaleski 8QLYHUVLW\ RI
àyGĨ ZDV GHYRWHG WR WKH WHDFKLQJ RI GHPRJUDSK\ DQG LWV HYDOXDWLRQ DW WKH KLJKHU
HGXFDWLRQ OHYHO 'XULQJ WKLV VHVVLRQ WKH IROORZLQJ SDSHUV ZHUH GLVFXVVHG Methods
of Evaluation in Teaching Demography and Related Subjects ± D SUHVHQWDWLRQ
GHOLYHUHG E\ $QQD 0DMG]LĔVND RQ EHKDOI RI LWV $XWKRU Milena Lange
8QLYHUVLW\ RI àyGĨ DQG Essence of Teaching Demography in the Context of
Trends and Country's Development Strategy SUHSDUHG DQG SUHVHQWHG E\ Anna
0DMG]LĔVND DQG Anna Wierzbicka 8QLYHUVLW\ RI àyGĨ
7KH QG HGLWLRQ RI WKH Didactic Conference Teaching Quality Evaluation
Methods ZDV FORVHG E\ WKH 9LFH&KDLUPDQ RI WKH Institute of Statistics and
Demography RI WKH 8QLYHUVLW\ RI àyGĨ DQG WKH &KDLUPDQ RI WKH àyGĨ %UDQFK RI
WKH 3ROLVK 6WDWLVWLFDO $VVRFLDWLRQ Prof. -ĊGU]HMF]DN 2Q EHKDOI RI WKH 6FLHQWLILF
DQG 2UJDQL]LQJ &RPPLWWHHV Prof. -ĊGU]HMF]DN VXPPDUL]HG WKH &RQIHUHQFH DV
YHU\ HIIHFWLYH 7KH LPSRUWDQFH RI WKH KLJK TXDOLW\ HGXFDWLRQ DQG WKH SUREOHP RI
LWV UHOLDEOH DVVHVVPHQW ZHUH HPSKDVL]HG $OVR LQ WKH FRQWH[W RI WKH 'LVFXVVLRQ
340
The 22nd Didactic Conference …
3DQHO OHG E\ Prof. Okrasa WKH UROH RI 6WDWLVWLFDO /LWHUDF\ LQ WKH PRGHUQ VRFLHWLHV
DQG WKH QHHG RI SRSXODUL]LQJ SURIHVVLRQ RI VWDWLVWLFLDQ ZHUH PHQWLRQHG
7KH SXEOLFDWLRQ HQWLWOHG Acta Universitatis Lodziensis, Folia Oeconomica.
0HWRG\ RFHQ\ MDNRĞFL QDXF]DQLD (Methods of Assessment of the Quality of
Teaching) LV WKH SXEOLVKLQJ RXWSXW RI WKH 'LGDFWLF &RQIHUHQFH ,W ZDV
HGLWHG E\ AOLQD -ĊGU]HMF]DN DQG Aleksandra Kupis-)LMDáNRZVND SULQWHG E\
WKH àyGĨ 8QLYHUVLW\ 3UHVV
7KH QH[W URXQG RI WKH PHHWLQJ VHULHV NQRZQ DV WKH 'LGDFWLF &RQIHUHQFH ZLOO
EH GHYRWHG WR Academic teacher and new educational challenges. ,W LV SODQQHG
RQ June 9th-10th, 2014 DOVR LQ àyGĨ) - details will be given in a separate
announcement
3UHSDUHG E\
$OHNVDQGUD .XSLV)LMDáNRZVND
8QLYHUVLW\ RI àyGĨ
STATISTICS IN TRANSITION-new series, Summer 2013
341
STATISTICS IN TRANSITION-new series, Summer 2013
Vol. 14, No. 2, pp. 341–342
REPORT
Summer School of Baltic-Nordic-Ukrainian Network
on Survey Statistics 2013
7KH 6XPPHU 6FKRRO RI %DOWLF1RUGLF8NUDLQLDQ 1HWZRUN RQ 6XUYH\ 6WDWLVWLFV
ZDV RUJDQLVHG LQ 0LQVN %HODUXV RQ -XQH ± ,W ZDV WKH VHYHQWHHQWK
DQQXDO HYHQW RUJDQLVHG E\ WKH %DOWLF1RUGLF8NUDLQLDQ 1HWZRUN RQ 6XUYH\
6WDWLVWLFV KWWSVZLNLKHOVLQNLILGLVSOD\%18 7KH REMHFWLYHV RI WKH VXPPHU
VFKRRO ZHUH WR SUHVHQW UHFHQW DFKLHYHPHQWV DQG UHVXOWV OHDUQ IURP WHDFKHUV DQG
FROOHDJXHV GLVFXVV WKH IXWXUH VKDUH RSLQLRQV DQG H[SHULHQFH DQG VWUHQJWKHQ
FRQWDFWV EHWZHHQ VXUYH\ VWDWLVWLFLDQV
7KHUH ZHUH SDUWLFLSDQWV IURP VHYHQ FRXQWULHV ± %HODUXV (VWRQLD )LQODQG
/DWYLD /LWKXDQLD 6ZHGHQ DQG 8NUDLQH 7KH DXGLHQFH RI WKH ZRUNVKRS ZDV
GLYHUVH ± FRQVLVWLQJ RI XQGHUJUDGXDWH VWXGHQWV UHVHDUFK VWXGHQWV XQLYHUVLW\
WHDFKHUV DQG SUDFWLVLQJ VWDWLVWLFLDQV
7KHUH ZHUH IRXU PDLQ OHFWXUHUV
6HSSR /DDNVRQHQ 8QLYHUVLW\ RI +HOVLQNL )LQODQG WZR OHFWXUHV HQWLWOHG
³1RQUHVSRQVH DGMXVWPHQW LQ VXUYH\V´
5LVWR /HKWRQHQ 8QLYHUVLW\ RI +HOVLQNL )LQODQG WZR OHFWXUHV HQWLWOHG
³$QDO\VLV RI FRPSOH[ VXUYH\ GDWD DQ RYHUYLHZ´
$OHNVDQGUDV 3OLNXVDV 9LOQLXV 8QLYHUVLW\ /LWKXDQLD WZR OHFWXUHV
HQWLWOHG ³&DOLEUDWLRQ´
,PEL 7UDDW 8QLYHUVLW\ RI 7DUWX (VWRQLD WZR OHFWXUHV HQWLWOHG ³0DLQ
SULQFLSOHV RI VXUYH\ VDPSOLQJ´
7KHUH ZHUH ILYH VSHFLDO LQYLWHG OHFWXUHUV
1DWDOOLD %RNXQ %HODUXVLDQ 6WDWH (FRQRPLF 8QLYHUVLW\ %HODUXV WKH
OHFWXUH ³0XOWLYDULDWH VDPSOH PDLQ SULQFLSOHV GHVLJQ HVWLPDWLRQ´
2NVDQD +RQFKDU 1DWLRQDO $FDGHP\ 6WDWLVWLFV $FFRXQWLQJ DQG $XGLW
8NUDLQH WKH OHFWXUH ³6DPSOH VXUYH\V LQ 2IILFLDO 6WDWLVWLFV XQGHUVWDQGLQJ
TXDOLW\´
'DQXWH .UDSDYLFNDLWH 9LOQLXV *HGLPLQDV 7HFKQLFDO 8QLYHUVLW\
/LWKXDQLD WKH OHFWXUH ³6RIWZDUH IRU VXUYH\ VDPSOLQJ DQG DQDO\VLV´
*XQQDU .XOOGRUII 8QLYHUVLW\ RI 8PHn 6ZHGHQ WKH OHFWXUH ³7KH
6WDWLVWLFDO 6FLHQFH ,V ,QWHUQDWLRQDO ± $QG 6XUYH\ 6WDWLVWLFV ,V &RRO DQG
+RW´
342
Summer School of Baltic …
0ƗUWLƼã /LEHUWV &HQWUDO 6WDWLVWLFDO %XUHDX RI /DWYLD WKH OHFWXUH ³7KH
FKRLFH RI D VDPSOLQJ GHVLJQ UHJDUGLQJ VXUYH\ FRVW HIILFLHQF\´
7KH ILUVW GD\ RI WKH VXPPHU VFKRRO ZDV GHYRWHG WR OHFWXUHV LQ 5XVVLDQ 7KH
OHFWXUHV LQ 5XVVLDQ ZHUH JLYHQ E\ 'DQXWH .UDSDYLFNDLWH $OHNVDQGUDV 3OLNXVDV
(OHQD =DSDWULQD DQG 9LFWRU /HYNHYLFK 7KHUH ZHUH DGGLWLRQDOO\ WKLUWHHQ
SDUWLFLSDQWV IURP %HODUXV WDNLQJ SDUW GXULQJ WKH ILUVW GD\ RI WKH VXPPHU VFKRRO
1LQHWHHQ SUHVHQWDWLRQV RI FRQWULEXWHG SDSHUV GHYRWHG WR VXUYH\ VWDWLVWLFV ZHUH
SUHVHQWHG E\ WKH VXPPHU VFKRRO SDUWLFLSDQWV DQG GLVFXVVHG E\ LQYLWHG GLVFXVVDQWV
7KH PRVW RI WKH PDWHULDOV SUHVHQWHG GXULQJ WKH VXPPHU VFKRRO LV DYDLODEOH DW WKH
VXPPHU VFKRRO ZHEVLWH KWWSQLUEVHXE\%DOWLF1RUGLF&RQIHUHQFH0DLQ 3DJHKWPO
7KH VSRQVRUV RI WKH ZRUNVKRS ZHUH WKH 1RUGSOXV 3URJUDPPH RI WKH 1RUGLF
&RXQFLO RI 0LQLVWHUV DQG WKH ,QWHUQDWLRQDO $VVRFLDWLRQ RI 6XUYH\ 6WDWLVWLFLDQV
7KH QH[W DQQXDO HYHQW RUJDQLVHG E\ WKH QHWZRUN ZLOO EH WKH ZRUNVKRS LQ 7DOOLQQ
(VWRQLD LQ $XJXVW 3UHSDUHG E\
0ƗUWLƼã /LEHUWV
8QLYHUVLW\ RI /DWYLD
STATISTICS IN TRANSITION-new series, Summer 2013
343
STATISTICS IN TRANSITION-new series, Summer 2013
Vol. 14, No. 2, pp. 343–348
THE INTERNATIONAL YEAR OF STATISTICS (IYS)
STATISTICS 2013 7KH \HDU LV FHOHEUDWHG DV WKH ,QWHUQDWLRQDO <HDU RI 6WDWLVWLFV $PHULFDQ
6WDWLVWLFDO $VVRFLDWLRQ ,QVWLWXWH RI 0DWKHPDWLFDO 6WDWLVWLFV ,QWHUQDWLRQDO
%LRPHWULF 6RFLHW\ WKH ,QWHUQDWLRQDO 6WDWLVWLFDO ,QVWLWXWH WKH %HUQRXOOL 6RFLHW\
DQG WKH 5R\DO 6WDWLVWLFDO 6RFLHW\ DUH WKH IRXQGLQJ 2UJDQL]DWLRQV 1DWLRQDO DQG
LQWHUQDWLRQDO RUJDQL]DWLRQV IURP FRXQWULHV IURP DOO RYHU WKH ZRUOG DUH
LQYROYHG LQ WKH FHOHEUDWLRQ RI WKH ,<6 $PRQJ WKHP DUH SURIHVVLRQDO VWDWLVWLFDO
DVVRFLDWLRQV VFKRROV XQLYHUVLWLHV EXVLQHVV LQVWLWXWLRQV UHVHDUFK LQVWLWXWHV DQG
VWDWLVWLFDO RIILFHV
2UJDQL]DWLRQV SDUWLFLSDWLQJ LQ WKH FHOHEUDWLRQ RI WKH ,QWHUQDWLRQDO <HDU RI
6WDWLVWLFV DUH FRQWULEXWLQJ WR WKH SURPRWLRQ RI WKH LPSRUWDQFH RI VWDWLVWLFV E\
RUJDQL]LQJ FRQIHUHQFHV VHPLQDUV DQG RWKHU HGXFDWLRQDO DFWLYLWLHV DLPHG DW ERWK
WKH UHSUHVHQWDWLYHV RI WKH VFLHQWLILF EXVLQHVV DQG PHGLD FRPPXQLW\ DV ZHOO DV DW
SXEOLF UHSUHVHQWDWLYHV ZKR DUH XVHUV RI VWDWLVWLFV JRYHUQPHQW GDWD XVHUV DQG
SROLF\ PDNHUV HPSOR\HUV DQG VWXGHQWV
7KH ,QWHUQDWLRQDO <HDU RI 6WDWLVWLFV LV FHOHEUDWHG E\ D QXPEHU RI 3ROLVK
LQVWLWXWLRQV VXFK DV
Professional Societies
x 7KH 6FLHQWLILF &OXE RI 4XDQWLWDWLYH 0HWKRGV )DFXOW\ RI 0DQDJHPHQW
8QLYHUVLW\ RI *GDQVN
x *$866 6FLHQWLILF DVVRFLDWLRQ RI PDWKHPDWLFDO VWDWLVWLFV ,QVWLWXWH RI
0DWKHPDWLFV DQG &RPSXWHU 6FLHQFH :URFODZ 8QLYHUVLW\ RI 7HFKQRORJ\
7H[W DXWKRUL]HG E\ 3URI -DQXV] :LWNRZVNL 3UHVLGHQW RI WKH &HQWUDO 6WDWLVWLFDO 2IILFH RI 3RODQG
DQG &KDLUPDQ RI WKH 2UJDQL]LQJ &RPPLWWHH RI WKH ,<6 &RQIHUHQFH
344
The International Year of…
x
x
x
3ROLVK 0DWKHPDWLFDO 6RFLHW\ :URFODZ %UDQFK
3ROLVK 6WDWLVWLFDO $VVRFLDWLRQ
6WDWLVWLFDO )RUXP 3ROLVK )LUVW 6WDWLVWLFDO )RUXP
Colleges and Universities
x &ROOHJLXP ,QYLVLEOH :DUVDZ
x &URVV1DWLRQDO 6WXGLHV ,QWHUGLVFLSOLQDU\ 5HVHDUFK DQG 7UDLQLQJ 3URJUDP
&216,57
x 0DULD &XULH6NáRGRZVND 8QLYHUVLW\ )DFXOW\ RI 0DWKHPDWLFV 3K\VLFV
DQG &RPSXWHU 6FLHQFH /XEOLQ
x 1LFRODXV &RSHUQLFXV 8QLYHUVLW\ )DFXOW\ RI 0DWKHPDWLFV DQG &RPSXWHU
6FLHQFH 7RUXQ
x 8QLYHUVLW\ RI (FRQRPLFV 3R]QDQ 'HSDUWPHQW RI 6WDWLVWLFV ³(VWLPDWRU´
6WXGHQW 6FLHQWLILF $VVRFLDWLRQ
x 8QLYHUVLW\ RI /RG] 'HSDUWPHQW RI 6WDWLVWLFDO 0HWKRGV 6.1 6),
x 8QLYHUVLW\ RI /RG] ,QVWLWXWH RI 6WDWLVWLFV DQG 'HPRJUDSK\ 'HSDUWPHQW
RI 6WDWLVWLFDO 0HWKRGV
x 8QLYHUVLW\ RI 0DQDJHPHQW DQG $GPLQLVWUDWLRQ =DPRVF
x :DUVDZ 0DQDJHPHQW $FDGHP\
Business
x $%(,36
x 'DWD ,QWHOOLJHQFH 3RODQG
Government
x &HQWUDO 6WDWLVWLFDO 2IILFH RI 3RODQG :DUVDZ
Research Institutes and Journals
x ,QVWLWXWH RI &DWKROLF &KXUFK 6WDWLVWLFV :DUVDZ
x 6FLHQWLILF )RXQGDWLRQ 6PDUWHU3RODQGSO
7KLV LQLWLDWLYH ZKLFK LV VXSSRUWHG E\ RYHU RUJDQL]DWLRQV DURXQG WKH
ZRUOG DQG DERXW LQVWLWXWLRQV LQ 3RODQG LQYROYHV QXPHURXV HYHQWV DLPHG LQ
SDUWLFXODU DW
x ,QFUHDVLQJ SXEOLF DZDUHQHVV RI WKH LPSDFW RI VWDWLVWLFV RQ DOO DVSHFWV RI
VRFLDO OLIH LQFOXGLQJ LQFUHDVLQJ UHFRJQLWLRQ RI WKH FRQWULEXWLRQ RI
VWDWLVWLFV WR LPSURYH WKH TXDOLW\ RI OLIH DQG DGYDQFHPHQW RI WKH JOREDO
FRPPXQLW\
x 'HYHORSLQJ WKH SURIHVVLRQ RI D VWDWLVWLFLDQ HVSHFLDOO\ DPRQJ \RXQJ SRSOH
x 3URPRWLQJ FUHDWLYLW\ DQG GHYHORSPHQW LQ VWDWLVWLFV DQG VFLHQFH RI
SUREDELOLW\
STATISTICS IN TRANSITION-new series, Summer 2013
345
2QH RI VXFK HYHQWV LV WKH VFLHQWLILF FRQIHUHQFH ³6WDWLVWLFV ± .QRZOHGJH ±
'HYHORSPHQW´ RUJDQL]HG LQ /RG] RQ 2FWREHU E\ WKH &HQWUDO 6WDWLVWLFDO
2IILFH 6WDWLVWLFDO 2IILFH LQ /RG] WKH 3ROLVK 6WDWLVWLFDO $VVRFLDWLRQ DQG WKH
,QVWLWXWH RI 6WDWLVWLFV DQG 'HPRJUDSK\ RI 8QLYHUVLW\ RI /RG] ,W LV WKH FXOPLQDWLRQ
RI \HDUORQJ DFWLYLW\ RI WKH 3ROLVK 3URJUDPPH &RPPLWWHH RI WKH ,QWHUQDWLRQDO
<HDU RI 6WDWLVWLFV XQGHU WKH OHDGHUVKLS RI -DQXV] :LWNRZVNL WKH 3UHVLGHQW RI WKH
&HQWUDO 6WDWLVWLFDO 2IILFH 7KH 3URJUDPPH &RPPLWWHH ZKLFK EURXJKW WRJHWKHU
GLVWLQJXLVKHG UHSUHVHQWDWLYHV RI WKH 3ROLVK VFLHQFH KDV VHW LWVHOI WKH IROORZLQJ
WDVNV DPRQJ RWKHU WKLQJV L WR LQLWLDWH DQG SRSXODUL]H UHVHDUFK SURMHFWV
XQGHUWDNHQ RQ WKH RFFDVLRQ RI WKH ,<6 LL WR LQLWLDWH DQG UHYLHZ SXEOLFDWLRQV
DVVRFLDWHG ZLWK WKH FHOHEUDWLRQ RI WKH ,<6 LLL WR PRQLWRU WKH FHOHEUDWLRQ RI WKH
,<6 DQG WR SRSXODUL]H LWV SXUSRVHV LQ WKH PHGLD LY WR DFWLYHO\ SDUWLFLSDWH LQ WKH
SUHSDUDWLRQ RI WKH VFLHQWLILF FRQIHUHQFH ³6WDWLVWLFV ± .QRZOHGJH ± 'HYHORSPHQW´ ZKLFK LV WKH KLJKOLJKW RI WKH FHOHEUDWLRQ RI WKH ,QWHUQDWLRQDO <HDU RI 6WDWLVWLFV LQ
3RODQG
$V PHQWLRQHG DERYH WKH 3URJUDPPH &RPPLWWHH RI WKH ,QWHUQDWLRQDO <HDU RI
6WDWLVWLFV LQFOXGHV SURPLQHQW VRFLDO VFLHQWLVWV IURP DOO RYHU 3RODQG WKH
&KDLUSHUVRQ -DQXV] :LWNRZVNL WKH 3UHVLGHQW RI WKH &HQWUDO 6WDWLVWLFDO 2IILFH
'HSXW\ &KDLUSHUVRQV DQG 9LFH3UHVLGHQWV RI WKH &HQWUDO 6WDWLVWLFDO 2IILFH +DOLQD
'PRFKRZVND 3K' DQG *UDĪ\QD 0DUFLQLDN 3K' $GYLVRUV WR WKH 3UHVLGHQW RI
WKH &62 3URI 7DGHXV] :DOF]DN 3URI :áRG]LPLHU] 2NUDVD DQG %RKGDQ
:\ĪQLNLHZLF] 3K' DV ZHOO DV GLUHFWRUV RI 6WDWLVWLFDO 2IILFHV DQG 'HSDUWPHQWV RI
WKH &HQWUDO 6WDWLVWLFDO 2IILFH 3URI -HU]\ $XNV]WRO *GDQVN 0DUHN &LHUSLDá
:RODQ 3K' 5]HV]RZ 3LRWU 5 &PHOD 3K' àRG] .U]\V]WRI 0DUNRZVNL 3K'
/XEOLQ DQG 5HQDWD %LHODN $QDO\VHV DQG &RPSUHKHQVLYH 6WXGLHV 'HSDUWPHQW
0LURVáDZ %áDĪHM 0DFURHFRQRPLF 6WXGLHV DQG )LQDQFH 6WDWLVWLFV 'HSDUWPHQW
.DWDU]\QD &LFKRĔVND 'HSXW\ 'LUHFWRU 2IILFH RI WKH 3UHVLGHQW DQG WKH RWKHU
HPSOR\HHV RI 6WDWLVWLFDO 2IILFHV 3URI 3URI $QGU]HM 0áRGDN 6WDWLVWLFDO 2IILFH LQ
3R]QDQ -DFHN :HVRáRZVNL 0HWKRGRORJ\ 6WDQGDUGV DQG 5HJLVWHUV 'HSDUWPHQW
RI &62 .D]LPLHU] .UXV]ND 3K' 6WDWLVWLFDO 2IILFH LQ 3R]QDQ DQG WKH OHDGLQJ
DFDGHPLFV 3URI 3URI &]HVáDZ 'RPDĔVNL 3UHVLGHQW RI WKH 3ROLVK 6WDWLVWLFDO
$VVRFLDWLRQ 8QLYHULVW\ RI /RG] (OĪELHWD *RáDWD 8QLYHUVLW\ RI (FRQRPLFV
3R]QDQ $GDP -DNXERZVNL 1LFRODXV &RSHUQLFXV 8QLYHUVLW\ 7RUXQ -DQ .RUGRV
:DUVDZ 0DQDJHPHQW $FDGHP\ 0LHF]\VáDZ - .UyO 8QLYHUVLW\ RI 5]HV]RZ
)UDQFLV]HN .XELF]HN $/0$0(5 8QLYHUVLW\ 7RPDV] 3DQHN :DUVDZ 6FKRRO
RI (FRQRPLFV =RILD 5XVQDN :URFODZ 8QLYHUVLW\ RI (FRQRPLFV $QGU]HM
6RNRáRZVNL &UDFRZ 8QLYHUVLW\ RI (FRQRPLFV 0LURVáDZ 6]UHGHU 8QLYHUVLW\ RI
*GDQVN :DOGHPDU 7DUF]\ĔVNL 6]F]HFLQ 8QLYHUVLW\ *UDĪ\QD 7U]SLRW
8QLYHUVLW\ RI (FRQRPLFV LQ .DWRZLFH $JDWD =DJyURZVND 2SROH 8QLYHUVLW\
.U]\V]WRI =DJyUVNL .R]PLQVNL 8QLYHUVLW\ 5RPDQ =P\ĞORQ\ 8QLYHUVLW\ RI
=LHORQD *yUD
346
The International Year of…
7KH WZRGD\ PHHWLQJ RI SURPLQHQW UHSUHVHQWDWLYHV RI VRFLDO VFLHQFH IURP
DFURVV 3RODQG LQFOXGHV D QXPEHU RI LQWHUHVWLQJ VHVVLRQV OLVWHG EHORZ
The Scientific Conference Statistics – Knowledge – Development
CONFERENCE PROGRAMME
Agenda:
16.10.2013 - GD\ SUHFHGLQJ WKH FRQIHUHQFH
$UULYDO RI WKH SDUWLFLSDQWV DW WKH KRWHO LQ WKH DIWHUQRRQ
17.10.2013 - &RQIHUHQFH GD\ &RQIHUHQFH RSHQLQJ
3OHQDU\ VHVVLRQ , Statistics in the face of global challenges
2UJDQL]HU DQG &KDLUSHUVRQ 0LURVáDZ 6]UHGHU 8QLYHUVLW\ RI
*GDQVN
3OHQDU\ VHVVLRQ ,, Statistics friendly to all
2UJDQL]HU DQG &KDLUSHUVRQ &]HVáDZ 'RPDĔVNL 8QLYHUVLW\ RI
/RG]
3OHQDU\ VHVVLRQ ,,, Quality in statistics
2UJDQL]HU DQG &KDLUSHUVRQ -DQ .RUGRV :DUVDZ 0DQDJHPHQW
$FDGHP\
18.10.2013 - &RQIHUHQFH GD\ 3OHQDU\ VHVVLRQ ,9 Statistics in socio-economic practice
2UJDQL]HU $QGU]HM 6RNRáRZVNL &UDFRZ 8QLYHUVLW\ RI (FRQRPLFV
9 Social statistics; &KDLUSHUVRQ -DQXV] :LWNRZVNL &HQWUDO
6WDWLVWLFDO 2IILFH
9 Economic statistics; &KDLUSHUVRQ $QGU]HM 6RNRáRZVNL
&UDFRZ 8QLYHUVLW\ RI (FRQRPLFV
3OHQDU\ VHVVLRQ 9 Methodology of statistical surveys in theory
and practice
2UJDQL]HU DQG &KDLUSHUVRQ (OĪELHWD *RáDWD 3R]QDQ 8QLYHUVLW\ RI
(FRQRPLFV
9 Poster session; &KDLUSHUVRQ (OĪELHWD *RáDWD 3R]QDQ
8QLYHUVLW\ RI (FRQRPLFV
9 Mathematical
aspects
of
statistical
research
methodology; &KDLUSHUVRQ (OĪELHWD *RáDWD 3R]QDQ
8QLYHUVLW\ RI (FRQRPLFV
STATISTICS IN TRANSITION-new series, Summer 2013
9
347
Representative surveys versus alternative sources of
information; &KDLUSHUVRQ (XJHQLXV] *DWQDU 1%3
&ORVLQJ RI WKH FRQIHUHQFH
'XULQJ WKH FRQIHUHQFH DQ H[KLELWLRQ Statistics of the Lodz Region ZLOO EH
SUHVHQWHG 6WDWLVWLFDO 2IILFH LQ /RG] 7KH -R]HI 3LOVXGVNL 5HJLRQDO DQG 0XQLFLSDO
3XEOLF /LEUDU\ LQ /RG] $ UHYLHZHG PRQRJUDSK FRQWDLQLQJ WKH FRQIHUHQFH SDSHUV
LV DOVR SODQQHG WR EH UHOHDVHG
7KH FRQIHUHQFH LV KHOG XQGHU WKH SDWURQDJH RI 0V +DQQD =GDQRZVND 0D\RU
RI WKH &LW\ RI /RG] WKH 0LQLVWU\ RI 6FLHQFH DQG +LJKHU (GXFDWLRQ 3ROLVK
$FDGHP\ RI 6FLHQFHV DQG WKH 1DWLRQDO %DQN RI 3RODQG 7KH SDUWQHUV RI WKH
SURMHFW DUH WKH &LW\ RI /RG] 2IILFH WKH FRQIHUHQFH UHFHLYHG IXQGLQJ XQGHU WKH
SURMHFW ³&RRSHUDWLRQ ZLWK KLJKHU HGXFDWLRQ LQVWLWXWLRQV´ WR SURPRWH WKH FLW\ DV D
FHQWUH RI VFLHQFH DQG 7KH -R]HI 3LOVXGVNL 5HJLRQDO DQG 0XQLFLSDO 3XEOLF /LEUDU\
LQ /RG] 793 /RG] DQG 5DGLR /RG] DUH PHGLD SDUWQHUV RI WKH FRQIHUHQFH