Solid State Electrochemical Removal of Pollutants K.K. Hansen Department of Energy Conversion and Storage Technical University of Denmark, DTU e-mail: [email protected] Outline • • • • • Introduction Motivation The idea History/literature Work at DTU – Reduction of NOx – Oxidation of C3H6 • Conclusion/Outlook 2 DTU Energy Conversion, Technical University of Denmark 27-01-14 Sources and main pollutants • Many sources of flue gas and exhaust gas • Major pollutants are: • Particulate matter • sulphur oxides • nitrogen oxides • carbon monoxide • hydrocarbons 3 DTU Energy Conversion, Technical University of Denmark 27-01-14 Motivation • Why are we pursuing this technology? – Competitive (no noble metals, low fuel penalty, space requirements, highly effective) Kilde: Hamamoto, K. 2009 – Expertice in functional ceramics and processing – Expertice in electrochemistry 4 DTU Energy Conversion, Technical University of Denmark 27-01-14 Electrochemical removal of pollutants • Current is used to drive the processes; no extra chemicals! • Cathode 2NO + 4 e2NO + 2 eO2 + 2 e- → N2 + 2 O2→ N2O + O2→ 2 O2- • Anode: C + 2 O2CO + O2C3H6 + 9 O22 O2- → → → → 5 CO2 + 4 eCO2 + 2 e3CO2 + 3H2O + 18 eO2 + 4 e- DTU Energy Conversion, Technical University of Denmark 27-01-14 Power consumption of an electrochemical reactor P =U*I 6 DTU Energy Conversion, Technical University of Denmark 27-01-14 Literature • Low current efficiency on noble metals – Competing reduction of oxygen at cathode • Addition of adsorption layer increases activity and current efficiency – RuO2 on silver; 13% current efficiency (Iwayama et al) – K/Pt/Al2O3 on NiO/Ni; 12% current efficiency (Hamamoto et al) 7 DTU Energy Conversion, Technical University of Denmark 27-01-14 Experimental Setup/Conditions Test set-up Zoom on the sample position Tubular reactor scheme Image of the whole test-set up Electrochemical, Catalytic Activity and Structural Characterization Cells: Electrolyte supported or porous cell stacks (self supported) Temperature range: 300-500 oC Gas compositions: 1000 ppm NO or 1000 ppm C3H6 + 10% O2 Catalytic activity; CLD, MS, GC Electrochemical activity; EIS, CV 8 DTU Energy Conversion, Technical University of Denmark 27-01-14 Ni-electrode (1000 ppm NO, 2% O2, -2.5V) J. Shao, K.K. Hansen, J. Solid State Electrochem., 16 3331 (2012) 9 DTU Energy Conversion, Technical University of Denmark 27-01-14 K/Pt/Al2O3|Ag (0.1% NO, 10% O2, 400 oC) 50 16 Conversion Current effciency 14 40 10 30 8 20 6 Current efficiency / % Conversion / % 12 4 10 2 0 0.50 0.75 1.00 1.25 1.50 0 1.75 -E / V J. Shao, K. Kammer Hansen, J. Electrochem. Soc., 160 H294 (2013) 10 DTU Energy Conversion, Technical University of Denmark 27-01-14 Power consumption (400 oC) • P = U*I – 1.4 l diesel engine, 2500 rpm, 52 kW, 500 ppm NOx – Power consumption: 2 kW • Further reduction of power consumption needed. • Area: – 16.3 m2, 400 cells, (20*20 cm2), length: 0.2 m • Further increase of activity needed 11 DTU Energy Conversion, Technical University of Denmark 27-01-14 Different cell structures LSM|CGO CGO Electrochemical cell LSM|CGO Infiltrated with BaO nano particles 12 12 DTU Energy Conversion, Technical University of Denmark Coated with Ba|Pt|Al2O3 adsorption layer 27-01-14 Ba/Pt/Al2O3|LSM at 450 oC in 0.1% NO, 10% O2 Significantly improved the NOx removal properties above 350 oC DC Square wave J. Shao, K. Kammer Hansen, J. Mater. Chem. A, 1 7137 (2013) 13 13 DTU Energy Conversion, Technical University of Denmark 27-01-14 A Porous cell stack Gas iii 14 DTU Energy Conversion, Technical University of Denmark 27-01-14 SEM of a 5 times Ba-infiltrated cell stack 15 DTU Energy Conversion, Technical University of Denmark 27-01-14 The use of a storage compound NO + O2 Anodic polarization BaO LSM15 Ba(NO3)2 LSM15 N2 BaO O216 LSM15 DTU Energy Conversion, Technical University of Denmark Cathodic polarization 27-01-14 Non-impregnated LSM15-CGO10 cell stack Polarisation at 400 oC in 1000 ppm NO +10% O2 NOx concentration 2000 1800 1600 Conc. [ppm] 1400 1200 -3V -5V -7V -9V 1000 800 600 400 200 0 0 17 100 200 300 400 Time [min] DTU Energy Conversion, Technical University of Denmark 500 600 700 800 27-01-14 BaO impregnated LSM15-CGO10 cell stack NOx concentration -5V -7V -9V -7V -5V -3V -3V Conc. [ppm] 2000 Polarisation at 400 oC in 1000 ppm NO +10% O2 1500 1000 500 0 0 200 400 600 Time [min] 800 1000 N2 concentration 700 -9V 600 Conc. [ppm] Polarisation NOx conversion Current efficiency [%] [%] -3V (a) 0 0 -5V (a) 15 6 -7V (a) 41 9 -9V (a) 61 8 -7V (b) 49 11 -5V (b) 21 9 -3V (b) 2 2 -7V 500 -5V 400 -5V -3V 300 -3V 200 100 0 0 18 -7V DTU Energy Conversion, Technical University of Denmark 200 400 600 Time [min] 800 1000 27-01-14 Infiltration of O-2 conductor: CGO10 1000 ppm C3H6 , 10% O2 , O.C.V 0.12 CGO10-Tr 0.11 CGO10-water 2.7 % w/w loading (1 step) backbone rC3H6 (mol(s*g)) 0.10 • 30 h polarization 0.09 it is possible to observe an increase of reaction rate after 30 hrs of test; 0.08 • 0.07 0.05 CGO10 infiltration improve the reaction rate towards propene oxidation 48.7 % 0.06 the as measured at OCV; 37.2 % 0.04 26.4 % 0.03 350 400 450 Rate enhancement ratio (ρ) 500 Temperature (°C) 1.22 backbone CGO10-Tr 1.20 T= CGO10-water 1.18 backbone CGO10-Tr CGO10-water 1.26 450ºC 1.23 T= 350ºC 1.16 1.20 1.14 1.17 1.10 1.08 r/r0 r/r0 1.12 1.06 1.14 1.11 1.04 1.08 1.02 1.00 1.05 0.98 200 400 600 800 1000 1.02 applied voltage (mV/cell) 19 DTU Energy Conversion, Technical University of Denmark 200 400 600 800 applied voltage (mV/cell) 1000 27-01-14 Activity of electrodes with Co substitution 3 % Co at the B-site (La0.85Sr0.15)0.99Co0.03Mn0.97O3-δ Doping with Co on B-site gives much higher electrochemical activity and reduces the polarisation resistance. 400 oC, 0.1 % NO + 10 % O2 in Ar 300 oC, 0.1% NO + 10% O2 in Ar 0.003 LSM/CGO LSMCo/CGO 6000 2 cm ] 8000 0.002 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 Z' [ cm2] Temp Imax(LSCoM)/Imax(LSM) 300 °C 28 400°C 9 20 DTU Energy Conversion, Technical University of Denmark 0.001 -2 LSM/CGO LSCoM/CGO 2000 I [A cm ] -Z'' [ 4000 0.000 -0.001 -0.002 -0.003 -5 -4 -3 -2 -1 0 1 2 3 E [V] 27-01-14 4 5 Mg + Fe infiltration 21 DTU Energy Conversion, Technical University of Denmark 27-01-14 Catalytic Activity of La0.65Sr0.35MnO3+ 100 NO to N2 NO to NO2 Conversion / % 80 C3H6 to CO2 60 40 20 0 150 200 250 300 350 400 450 500 o T/ C 22 DTU Energy Conversion, Technical University of Denmark 27-01-14 Formation of NO2 100 +propene 3x10 -6 Calculated 75 2x10 -6 50 S Amount NO2 formed / % -propene 1x10 -6 25 0 100 200 300 400 500 0 600 o T/ C 23 DTU Energy Conversion, Technical University of Denmark 27-01-14 NO2 reduction 73.8% 27.4% 38.4% 7.4% 24 DTU Energy Conversion, Technical University of Denmark 27-01-14 Conclusions • NOx removal down to 300 oC • CE at 400 oC: 15 %, with a silver based electrode • Oxidation of propene shown possible 25 DTU Energy Conversion, Technical University of Denmark 27-01-14 The group Kent Kammer Hansen Frederik Berg Nygaard Kjeld Bøhm Andersen Rebecka Werchmeister Marie Lund Traulsen 26 Anja Zarah Friedberg Janet Bentzen Jing Shao Davide Ippolito DTU Energy Conversion, Technical University of Denmark Cristine Grings Schmidt 27-01-14
© Copyright 2024 ExpyDoc