9.1-9.3 Quiz (Conic Sections)-KEY 1. Complete the square. y 2 6 y 8 x 25 y 2 6 y ____ 8 x 25 ____ y 2 6 y 9 8 x 25 9 y 32 8 x 16 y 32 8x 2 2. Use Min Lee’s Conjecture I will choose x=3 and x=1 (one unit to the right of the given point and one unit to the left of the given point). Now substitute these x-values into our equation. 2 x 3; y 23 18 x 1 : y 21 2 2 Now, find the slope between the points (3, -18) and (1, -2) 2 18 16 8 m 1 3 2 Next, use y mx b . Substitute your values. You must use the original point (2, -8). Solve for b. 8 8 2 b 8 16 b 8b y 8 x 8 0 8 x 8 Lastly, find the x-intercept of your line: 8 8 x 1 x 1, 0 3. Complete the square. y 2 16 x 16 y 2 16( x 1) 4 p 16 p 4 so you must move 4 units left of vertex directrix : x 3 4. Sketch a diagram to represent the situation. Use: (0, h) (15, 22) (39, 0) 5. 25 y 2 150 y 144 x 2 576 x 3951 25 y 25 y 2 6 y ____ 144 x 2 4 x ____ 3951 ____ ____ 2 6 y 9 144 x 4 x 4 3951 225 576 2 25 y 3 144x 2 3600 2 2, 3 2 6. Sketch a diagram; Note: p = 1. Use y k 4 px h Substituting values we get: y 12 41x 3 2 y 2 2 y 1 4 x 12 y 2 2 y 4 x 13 0 x h 2 y k 2 1 b2 a2 From diagram, we know a=5, b=2 and center = (3, -2). Plug in values. x 32 y 22 1 4 25 7. Sketch a diagram; Note: Vertical Major Axis. Use 8. Standard form of Conics: Ax 2 Bxy Cy 2 Dx Ey F 0 Note: A=-3, B=0, and C=0. Substitute these values into Discriminant: B 2 4 AC 02 4 30 0 Parabola A faster way to arrive at this answer is to notice that only one of the variables is squared (namely, x 2 term ); indeed it’s a parabola when this happens.
© Copyright 2025 ExpyDoc