高エネルギーでのハドロン全断面積の 普遍的増加とLHCでのpp全断面積の予言 理研仁科センター 猪木慶治 2011年3月9日 京都大学 基研研究会 素粒子物理学の進展2011 Phys.Lett.B670(2009)395 Phys.Rev.D79(2009)096003 +α In collaboration with Muneyuki Ishida 1 Outline of this talk 1. Prediction of σ(pp) at 7TeV, 14TeV (LHC) 2. Test of Universality (Blog2s ) Is B universal between 2 body had. scatt.? Answer :Yes 3. σ(+):parabola as function of logν 4. 高エネルギーのデータを使って B を決める のが普通、parabola左側の共鳴領域のデータ をも使うことができ、B の決定の精度大。 Universality 2 5. それをつかって、LHCにおいて、7TeV, 14TeV での予言。さらに、他のグループで はできないπp、Kpの予言。 6. 最後にGZKエネルギー(E=335TeV)を 含む超高エネルギーでの予言 Auger 観測所との比較が楽しみ。 3 Test of Universality • Increase of tot has been shown to be at most log2 s by Froissart (1961) using Analyticity and Unitarity. • Soft Pomeron fit : Donnachie-Landshoff σtot ~ s0.08 but violates unitarity • COMPETE collab.(PDG) further assumed tot B log s s0 Z 2 for all hadronic scattering to reduce the number of adjustable parameters based on the arguments of CGC(Color Glass Condensate) of QCD. 4 4 Particle Data Group (by COMPETE collab.) The upper side:σ The lower side:ρ-ratio log s s0 σ 2 ) B (Coeff. of Assumed to be universal Theory:Colour Glass Condensate of QCD sug. Not rigorously proved from QCD Test of univ. of B:necessary even empirically. ρ 5 Increasing tot.c.s. • Consider the crossing-even f.s.a. pp pp f f F 2 k with Im F tot 4 • We assume Im F Im R Im FP' P 2 c c log c log 0 1 2 2 M M M M M ' P' at high energies. M : proton mass ν, k : incident proton energy, momentum in the laboratory system 6 F The F * ratio • The ratio = the ratio of the real to imaginary part of F Re F Im F Re R Re FP' Im R Im FP' P c 2c2 log 2 1 ' M M M k tot 4 F 0 subtraction const . 2M 0.5 F 0 7 How to predict σ and ρ for pp at LHC based (as example) on FESR duality? • We searched for simultaneous best fit of σ and ρ up to some energy(e.g.,ISR) in terms of high-energy parameters constrained by FESR. • We then predicted tot and in the LHC regions. 8 • Both tot and Re F data are fitted through two formulas simultaneously with FESR as a constraint. • FESR is used as constraint of P P c0 , c1 , c2 and the fitting is done by three parameters: ' ' c2 , c1 , and c0 giving the least 2 . ci • Therefore, we can determine all the parameters c2 , c1 , c0 , P' , F 0 These predict , at higher energies including LHC energies. 9 LHC ISR(=2100GeV) (a) tot All region LHC (c) : High energy region tot Predictions for and The fit is done for data up to ISR ( s 62.7 GeV ) LHC (b) 2100 GeV (lab) As shown by arrow. 10 Summary of Pred. for and at LHC • Predicted values of tot agree with pp exptl. data at cosmic-ray regions within errors. • It is very important to notice that energy range of predicted is several orders tot of magnitude larger than energy region of the tot , input. • Now let us test the universality of B. 11 Main Topic:Universal Rise of σtot ? • B (coeff. of (log s/s0)2) : Universal for all hadronic scatterings ? • Phenomenologically B is taken to be universal in ー the fit to πp,Kp, pp ,pp,∑p,γp, γγ forward scatt. COMPETE collab. (adopted in Particle Data Group) • Theoretically Colour Glass Condensate of QCD suggests the B universality. Ferreiro,Iancu,Itakura(KEK),McLerran(Head of TH group,RIKEN-BNL)’02 Not rigourously proved yet only from QCD. Test of Universality of B is Necessary even empirically. 12 Particle Data Group (by COMPETE collab.) The upper side:σ The lower side:ρ-ratio log s s0 2 ) B (Coeff. of Assumed to be universal Theory:Colour Glass Condensate of QCD sug. Not rigorously proved from QCD Test of univ. of B:necessary even empirically. 13 • We attempt to obtain B values for pp( p p), p, Kp scatterings through search for simultaneous best fit to experimental tot and ratios . 14 New Attempt for p, Kp • In near future, totpp will be measured at LHC energy. So, Bpp will be determined with good accuracy. pp : s 1.8TeV p • On the other hand, tot have been measured only up to k=610 GeV. So, one might doubt to obtain B for p (as well as Kp), B p BKp with reasonable accuracy. p : s 26.4GeV Kp : s 24.1GeV • We attack this problem in a new light. 15 Practical Approach for search of B Tot. cross sec.= Non-Reggeon comp. + Reggeon(P’) comp. • Non-Reg. comp. shows shape of parabola as a fn. of logν with a min. • Inf. of low-energy res. gives inf. on P’ term. Subtracting this P’ term from σtot(+), we can obtain the dash-dotted line(parabola). Fig.1 pp, pp σtot (mb) Fig.1 pp, pp 100 100 • We have good data for large values of log ν compared with LHS, so (ISR, SPS, Tevatron)data is most important for det. 50 of c2(pp)(or Bpp) with good 40 accuracy. Non-Regge Tevatron √s = 1.8 TeV ● SPS ● ● ● √ s = 0.9 TeV ISR 50 ● 40 comp.(parabola) 1 ● √ s = 60 GeV 16 10 102 103 104 105 106 log ν(GeV) 16 σtot (mb) 60 Fig.2 πp Fig.2 πp 55 5050 • σtot measured only up to √ s = 26.4 GeV (cf. with pp, -pp). 4040 • So, estimated Bπp Resonances 45 ↓ s 35 highest energy √ s = 26.4 GeV ● 3030 Non-Regge 25 comp(parabola) kL = 610 GeV may have large uncertainty. 1 10 102 103 logν(GeV) • The πp has many res. at low energies, however. So, inf. on LHS of parabola obtained by subtracting P’ term from σtot(+) is very helpful to obtain accurate value of B(πp). (res. with k < 10GeV). •( Kp : similar to πp ) . 17 Fitting high-energy data -pp , pp Scattering σtot Ecm Tevatron σtot = Bpp (log s/s0)2 + Z (+ ρ trajectory) in high-energies. parabola of log s Ecm=1.8TeV SPS ー pp ISR Forー pp scatterings We have data in TeV. Ecm<0.9TeV Ecm<63GeV CDF D0 Bpp = 0.273(19) mb estimated accurately. pp Fitted energy region Depends the data with the highest energy. (CDF 18 D0) πp , Kp Scatterings No Data πp π+p No Data K-p K+p • No Data in TeV Estimated Bπp , BKp have large uncertainties. 19 Test of Universality of B • Highest energy of Experimetnal data: ー pp : Ecm = 0.9TeV SPS; 1.8TeV Tevatron π-p : Ecm < 26.4GeV Kp : Ecm < 24.1GeV No data in TeV B : large errors. Bpp = 0.273(19) mb Bπp = 0.411(73) mb Bpp =? Bπp =? BKp ? BKp = 0.535(190) mb No definite conclusion • It is impossible to test of Universality of B only by using data in high-energy regions. • We attack this problem using duality constraint from 20 FESR(1): a kind of P’ sum rule Kinematics • ν: Laboratory energy of the incident particle s =Ecm2 = 2Mν+M2+m2 ~ 2Mν M : proton mass of the target. Crossing transf. ν ー ν m : mass of the incident particle m=mπ , mK , M for πp; Kp;pp; pp k = (ν2 – m2)1/2 : Laboratory momentum ~ ν • Forward scattering amplitudes fap(ν): a = p,π+,K+ Im fap (ν) = (k / 4 π) σtotap : optical theorem • Crossing relation for forward amplitudes: f π-p(-ν) = fπ+p(ν)* , fK-p(-ν) = fK+p(ν)* pp pp f f 21 Kinematics • Crossing-even amplitudes : F(+)(ーν)=F(+)(ν)* F f ap f ap 2 average of π-p, π+p; K-p, K+p; pp, pp Im F(+)asymp(ν) = βP’ /m (ν/m)α (0) +(ν/m2)[ c0+c1log ν/m +c2(log ν/m)2] ’ βP’ term : P’trajecctory (f2(1275) ): α (0) ~ 0.5 c0,c1,c2 terms : corresponds to Z + B (log s/s0)2 P’ P 0 ' : Regge Theory c2 is directly related with B . (s~2M ν) • Crossing-odd amplitudes : F(-)(ーν)= ーF(-)(ν)* F f ap f ap 2 Im F(-)asymp(ν) = βV /m (ν/m)αV(0) ρ-trajecctory:αV(0) ~0.5 βP’ , βV is Negligible to σtot( = 4π/k Im F(ν) ) in high energies.22 FESR(1) Duality • Remind that the P’ sum rule in the introd.. 1 2 dk k d Im F 散乱長と 結合定数 asymp 2 2 2 0 0 k N N N N1 , N N2 ( N2 N1 ) • Take two N’s(FESR1) • Taking their difference, we obtain N N 1 2 2 2 d k tot k d Im Fasymp 2 2 N1 N1 LHS is estimated from Low-energy exp.data. RHS is calculable from The low-energy ext. of Im Fasymp. pp has open(meson) ch. below pp ,and div. above th. • If we choose N1 to be fairly larger than m we have no difficulty. ( K p : similar) No such effects in p . 23 FESR(1) corresponds to n = -1 K.IGI.,PRL,9(1962)76 • The following sum rule has to hold under the assumption that there is no sing.with vac.q.n. except for Pomeron(P). 1 M N f2 N a dk k tot tot 0 M 0.0015 -0.012 2.22 1 Evid.that this sum rule not hold pred. of P' 0.5 the P' traj. with and the f meson was discovered on the P' VIP: The first paper which predicts high-energy from low-energy ( FESR1) Moment sum rule において、n=-1 とおくと P’ sum rule に reduce. 24 Average of Im F 1 4 k tot k in low-energy regions should coincide with the low-energy extension of the asymptotic formula Im Fasymp . • This relation is used as a constraint between high-energy parameters: P' , c2 , c1 c0 . Very Important Point 25 Choice of N1 for πp Scattering • Many resonances in π-p & π+p • The smaller N1 is taken, the more accurate c2 (and Bπp) obtained. Various values of N1 Δ(1232) N(1520) N(1650,75,80) • We take various N1 corresponding to peak and dip positions of resonances. (except for k=N1=0.475GeV) Δ(1905,10,20) For each N1, Δ(1700) FESR is derived. Fitting is performed. The results checked. 26 N1 dependence of the result N1(GeV) 10 7 5 4 3.02 2.035 1.476 c2(10-5) 142(21) 136(19) 132(18) 129(17) 124(16) 117(15) 116(14) χtot2 149.05 149.35 149.65 149.93 150.44 151.25 151.38 N1(GeV) 0.9958 0.818 0.723 (0.475) 0.281 No SR c2(10-5) 116(14) 121(13) 126(13) (140(13)) 121(12) 164(29) χtot2 151.30 150.51 149.90 150.39 147.78 148.61 • # of Data points : 162. • best-fitted c2 : very stable. • We choose N1=0.818GeV as a representative. • Compared with the fit by 6 param fit with No use of FESR(No SR) 27 Result of the fit to σtotπp No FESR Fitted region FESR integral Fitted region π-p FESR used π+p much improved c2=(164±29)・10-5 Bπp=0.411±0.073mb c2=(121±13)・10-5 Bπp=0.304±0.034mb 28 Result of the fit to σtot No FESR FESR used Fitted region FESR integral Fitted region c2=(266±95)・10-4 BKp=0.535±0.190mb large uncertainty Kp c2=(176±49)・10-4 BKp=0.354±0.099mb much improved 29 ー pp,pp Result of the fit to σtot No FESR FESR used FESR integral Fitted region large Fitted region large c2=(491±34)・10-4 c2=(504±26)・10-4 Bpp=0.273±0.019mb Bpp=0.280±0.015mb Improvement is not remarkable in this case. 30 Test of the Universal Rise • σtot = B (log s/s0)2 + Z B (mb) πp B(mb) 0.304±0.034 0.411±0.073 Kp 0.354±0.099 0.535±0.190 pp 0.273±0.019 0.280±0.015 FESR used Bπp= Bpp= BKp within 1σ Universality suggested. No FESR Bπp ≠? Bpp =? BKp No definite conclusion in this case. 31 Concluding Remarks • In order to test the universal rise of σtot , we have analyzed π±p;K±p; pp,pp independently. • Rich information of low-energy scattering data constrain, through FESR(1), the high-energy parameters B to fit experimental σtot and ρ ratios. • The values of B are estimated individually for three processes. 32 • We obtain Bπp= Bpp= BKp. Universality of B suggested. Kp πp pp Use of FESR is essential to lead to this conclusion. • Universality of B suggests gluon scatt. gives dominant cont. at very high energies( flav. ind. ). • It is also interesting to note that Z for p, Kp, pp pp approx. satisfy ratio 2:2:3 predicted by quark model. 33 Our results Bpp 0.283(15) mb predicts ppLHC 96.0 1.4 mb at 7TeV LHC pp 108.0(1.9) mb at 14TeV GZK pp 176.6 4.5 mb at 335TeV Our Conclusions at 7TeV, 14TeV will be tested by LHC TOTEM. 34 • Finally, let us compare our pred. at 14TeV with other pred. pp ref. tot mb Ishida-Igi (this work) 108.0 1.9 106.3 5.1sys 2.4stat Igi-Ishida (2005) 107.3 1.2 Block-Halzen (2005) 115.5 1.2 4.1 COMPETE (2002) 125 25 Landshoff (2007) • Pred. in various models have a wide range. • The LHC(TOTEM) will select correct one. 35 Very Important Point Ishida-Igi’approach gives predictions not only for pp but also for πp, Kp scatterings, although experiments are not so easy in the very near future. 36 Predictions for pp up to ultra-high energies including GZK From Resonances Cosmic rays GZK ν=6×1010GeV Tevatron SPS LHC Ecm=7, 14TeV Non-Regge comp. (parabola) Fitted energy region 37 Concluding Remarks の続き • この図からわかるように、入射陽子が宇宙背景 輻射の光子と衝突してエネルギーを失うGZKエ ネルギー(335TeV)でも、我々の予言の誤差は驚 くほど小さくなっている。 • Bの値は最高エネルギーのデータポイントの値に 比較的強く依存する。 GZK の値の予言のため pp にも、 LHCでの測定は大変重要。 • また、LHCの測定で、CDF,D0のどちらが正しい かも決まる。 38 Appendices: FESR(1) 0 0 0 Define F F R F We obtain () ( ) P' Re F () M Born項+ 2P 1 2 2 0 N 0 Im F k2 d dk tot k 2P N 0 d P 0.5 Im R 2 k M M ' FESR 1 39 FESR(2) M Im F 0 1 d 4 N 0 k tot k dk 2 Im R d Im FP' d N 0 N 0 FESR(2) • Dolen-Horn-Schmid : (nth)-moment sum rule において、 • n=1とおくと、FESR(2) • n= -1とおくと、FESR(1)=P’ sum rule(1962) 40
© Copyright 2025 ExpyDoc