How Important Are Sectoral Shocks? Enghin Atalay February, 2014 Motivation and Question Motivation I Most analyses of business cycles (especially since Kydland and Prescott): Fluctuations are caused by economy-wide shocks to technology, preferences, etc... I These shocks may be built up from events at individual …rms (Gabaix ’11) or industries (Long and Plosser ’83 and successors). Question I What fraction of aggregate output ‡uctuations come from industry-speci…c shocks? Method and Main Result Method I I Construct a multi-industry general equilibrium model. I Shocks to productivity and preferences, each with an industry-speci…c and aggregate component. I Each industry produces using capital, labor, and intermediate inputs. Estimate, via MLE: I Compare model’s predictions on the evolution of industries’ output, output prices, and intermediate input usage. I Infer magnitude of industry-speci…c and aggregate shocks, elasticities of substitution in preferences and production. Main result: Industry-speci…c shocks are important; they represent more than 60% of aggregate volatility. Related Literature and Contribution Related Literature: Multi-industry real business cycle models: Long and Plosser (’83), Horvath (’98, ’00), Dupor (’99), Foerster, Sarte, and Watson (’11), Acemo¼ glu et al. (’12, ’13) To the Long and Plosser literature (especially relative to Foerster, Sarte, Watson), I make 2 contributions: 1. Estimate a more general sectoral production function. I I Accommodates empirical input usage patterns. Data: St. Dev. of the growth of these cost shares = 2-3%. I Foerster et al.: Intermediate input cost shares are constant. 2. Smaller advances: a. Allow for shocks to preferences. b. Allow for durability of consumption goods. c. Apply a dataset that spans the entire economy. d. Examine data from other countries. Outline 1. Introduce the multi-industry general equilibrium model. 2. Describe the dataset and a pattern in the data. 3. Present the empirical results. 4. Sensitivity analysis. 5. How are the parameters identi…ed? 1. Model Model: Preferences There representative consumer has preferences over consumption CtJ & labor supply LSt . ( ! 1 N X X t U= Dt;Agg DtJ J t=0 2 log 4 J =1 N X (DtJ J) 1 "D (CtJ ) "D 1 "D J =1 Preferences are such that: CtJ = DtJ Dt;Agg Durable goods? Derivation ! " "D 1 3 D 5 J PtJ Pt "LS LS "LS + 1 t "D 1 Pt "LS +1 "LS 9 = ; Model: Production I The production technology is a CES function of capital/labor and intermediate inputs: QtJ = AtJ At;Agg VtJ = KtJ J I I J (1 J) 1 "Q (VtJ ) BtJ Bt;Agg LtJ 1 J "Q 1 "Q 1 + 1 "Q J (MtJ ) "Q 1 "Q "Q "Q 1 J The intermediate input bundle of sector J is a CES aggregate of the purchases from the other sectors: h i MtJ = C Mt;1!J ; Mt;2!J ; :::Mt;N !J ; "M ; M I !J The investment input bundle of sector J is a CES aggregate of the purchases from the other sectors: h i X Kt+1;J = (1 ) K +C X ; X ; :::X ; " ; K tJ t;1!J t;2!J t;N !J X I !J Model: Market Clearing I Goods market clearing conditions (one for each I 2 f1; :::; Ng): X X QtI = CtI + Xt;I !J + Mt;I !J |{z} |{z} output consumption | J {z } | J {z } investment purchases I Labor market clearing condition: X LtJ LSt = J intermediate input purchases Model: Evolution of Exogeneous Variables I I I The industry-speci…c components of productivity and preference shocks: log At+1;J = Ind ;A log AtJ + Ind ;A Ind ;A !tJ (factor-neutral prod.) log Bt+1;J = Ind ;B log BtJ + Ind ;B Ind ;B !tJ (labor-aug. prod.) log Dt+1;J = Ind ;D log DtJ + Ind ;D Ind ;D !tJ (preferences) And the aggregate components: log At+1;Agg = Agg ;A log At;Agg + Agg ;A !tAgg ;A log Bt+1;Agg = Agg ;B log Bt;Agg + Agg ;B !tAgg ;B log Dt+1;Agg = Agg ;D log Dt;Agg + Agg ;D !tAgg ;D !s are i.i.d. standard normal random variables. How are the parameters identi…ed? (much more, later on) I The goal of the model is to uncover the "s, s, and s. Compare data on industries’a) sales, b) output prices, c) intermediate input purchases to their model-predicted counterparts. I Five main ideas: 1. Relationship between an industry’s output and its output prices ) "D . 2. Relationship between an industry’s intermediate input prices and its cost shares ) "Q . 3. Some cross-industry-correlation in activity is due to input-output linkages, more so the larger are J and IJ . 4. More cross-industry correlation in sales) Aggregate shocks are important. 5. More cross-industry correlation in intermediate input purchases (if "Q 6= 1) ) Aggregate shocks are important. 2. Data I use two main data sources I BEA: 1992 Input/Output Table & Capital Flows Table. Show Tables I Dale Jorgenson: Annual data on industries’production, input/output prices, & inputs, from 1960 to 2005. 1. YtJ = sales PtJ QtJ 2. PtJ = output price 3. 4. 5. share MtJ mat PtJ tJ = = = M tJ intermediate inputs cost share Q tJ price of intermediate input bundle mat PtJ PtJ mat P tJ P tJ I make three adjustments, to align the model and the data. 1. Use growth rates of each linearly de-trend each variable. mat . 2. Subtract o¤ changes in overall price level from YtJ , PtJ , PtJ 3. Trim top/bottom 0:5% of each variable. Call z the transformed version of variable Z . ytI ptI mtIshare ptImat tI SD ytI 1 0.610* 0.107* 0.451* -0.516* 0.072 ptI 1 -0.010 0.745* -0.841* 0.048 mtIshare ptImat 1 0.244* 0.212* 0.025 1 -0.265* 0.027 I make three adjustments, to align the model and the data. 1. Use growth rates of each linearly de-trend each variable. mat . 2. Subtract o¤ changes in overall price level from YtJ , PtJ , PtJ 3. Trim top/bottom 0:5% of each variable. Call z the transformed version of variable Z . ytI ptI mtIshare ptImat tI SD ytI 1 0.610* 0.107* 0.451* -0.516* 0.072 ptI 1 -0.010 0.745* -0.841* 0.048 mtIshare ptImat 1 0.244* 0.212* 0.025 1 -0.265* 0.027 .06 75 71 -.05 Tobac c o 0 ∆π .05 .1 -.06 s hare .03 Lumber C h emic a ls 72 97 92 77 95 04 87 93 88 84 68 0005 99 94 98 666362 69 81 64 65 6173 76 02 03 89 67 96 91 85 01 90 86 82 70 -.03 -.03 Tex tile Mills R ubber& Pla s tic s 78 79 Metal Mining C o mmun ic . -.05 ∆m -.01 Paper 74 Petroleum R efining s hare Apparel 83 80 Oil/Gas Ex trac tion Publis hing Trans por tation 0 .01 Elec tric U tilities ∆m .03 Why is "Q identi…ed to be less than 1? -.06 -.03 0 ∆π .03 .06 .06 Tex tile Mills s hare .03 Lumber C h emic a ls 72 97 92 77 95 04 87 93 88 84 68 0005 99 94 69 98 666362 81 64 65 6173 76 02 03 89 67 96 91 85 01 90 86 82 70 -.03 R ubber& Pla s tic s 78 79 Metal Mining C o mmun ic . -.03 ∆m -.01 Paper 74 Petroleum R efining s hare Apparel 83 80 Oil/Gas Ex trac tion Publis hing Trans por tation 0 .01 Elec tric U tilities ∆m .03 Why is "Q identi…ed to be less than 1? 75 -.05 0 ∆π .05 -.06 -.05 71 Tobac c o .1 -.06 -.03 0 ∆π .03 First-order condition on intermediate input purchases) share = log log MtJ share mtJ = (1 J + (1 "Q ) "Q ) log tJ + ("Q tJ + ("Q 1) log (AtJ At;Agg ) 1) ( atJ + Takeaways: Positive correlation) "Q < 1. Positive correlation between a and at;Agg ) : .06 3. Estimation and Results I apply a mix of moment matching and MLE I Production function and consumption shares are inferred using data from ’92. I I I These parameters are informative only about the steady-state allocation/prices. K Data from IO Table and Capital Flows Table ) M I !J , I !J . Data used to infer J (capital intensity), J (intermediate input intensity), J (preference for good J): Industry 1. Agriculture 2. Metal Mining ... 32. Wholesale & Retail Trade 33. Finance, Insurance, R.E. 34. Personal & Bus. Services sK sL sM 19.3% 20.5% ... 13.0% 42.5% 11.0% 23.7% 21.8% ... 48.1% 23.5% 53.7% 57.0% 57.7% ... 38.9% 34.0% 35.4% Consum. Share 2.2% 0.1% ... 11.1% 16.6% 22.3% I apply a mix of moment matching and MLE I Production function and consumption shares are inferred using data from ’92 (from previous slide). I Other parameters ( , I Estimate other parameters (elasticities of substitution & dynamics of productivity and preference shocks), via MLE. I I I I "LS ) taken from previous papers. ytI (output) ptI (output prices) mtIshare (intermediate input cost shares) Assume I K, mtIshare is measured with error. Measurement error has both a industry-speci…c and aggregate component. MLE Estimates Speci…cation "D (preference) "Q (between M and K -L) "M (among intermediate inputs) "X (among investment inputs) (industry factor-neutral) B ;Ind (industry labor-aug.) D ;Ind (industry preference) A;Agg (agg. factor-neutral) B ;Agg (agg. labor-aug.) D ;Agg (agg. preference) A;Ind Log Likelihood Robustness Checks (1) 0.654 0.046 0.034 2.870 0.046 0.110 0.062 0.010 0.040 0.001 6743.0 (2) 1 0.020 1 1 0.042 0.110 0.103 0.008 0.040 0.000 6397.6 (3) 0.587 1 0.128 2.313 0.034 0.000 0.061 0.010 0.001 0.050 -94288.6 (4) 1 1 1 1 0.034 0.000 0.105 0.007 0.015 0.021 -94677.1 MLE Estimates Speci…cation "D (preference) "Q (between M and K -L) "M (among intermediate inputs) "X (among investment inputs) (industry factor-neutral) B ;Ind (industry labor-aug.) D ;Ind (industry preference) A;Agg (agg. factor-neutral) B ;Agg (agg. labor-aug.) D ;Agg (agg. preference) A;Ind Log Likelihood Robustness Checks (1) 0.654 0.046 0.034 2.870 0.046 0.110 0.062 0.010 0.040 0.001 6743.0 (2) 1 0.020 1 1 0.042 0.110 0.103 0.008 0.040 0.000 6397.6 (3) 0.587 1 0.128 2.313 0.034 0.000 0.061 0.010 0.001 0.050 -94288.6 (4) 1 1 1 1 0.034 0.000 0.105 0.007 0.015 0.021 -94677.1 MLE Estimates Speci…cation "D (preference) "Q (between M and K -L) "M (among intermediate inputs) "X (among investment inputs) (industry factor-neutral) B ;Ind (industry labor-aug.) D ;Ind (industry preference) A;Agg (agg. factor-neutral) B ;Agg (agg. labor-aug.) D ;Agg (agg. preference) A;Ind Log Likelihood Robustness Checks (1) 0.654 0.046 0.034 2.870 0.046 0.110 0.062 0.010 0.040 0.001 6743.0 (2) 1 0.020 1 1 0.042 0.110 0.103 0.008 0.040 0.000 6397.6 (3) 0.587 1 0.128 2.313 0.034 0.000 0.061 0.010 0.001 0.050 -94288.6 (4) 1 1 1 1 0.034 0.000 0.105 0.007 0.015 0.021 -94677.1 Industry-speci…c shocks account for 60% of aggregate output volatility Speci…cation Aggregate Shocks Aggregate, Factor-Neutral Prod. Aggregate, Labor-Augmenting Prod. Aggregate, Demand Industry-Speci…c Shocks Industry, Factor-Neutral Prod. Industry, Labor-Augmenting Prod. Industry, Demand Which Elasticities are Restricted to 1? (1) 36.9 10.0 26.9 0.0 63.1 21.3 40.2 1.7 None (2) 41.4 11.8 29.7 0.0 58.6 17.9 36.5 4.1 "D "M "X (3) 56.6 36.2 0.1 20.3 43.4 37.8 0.0 5.6 (4) 52.0 28.4 18.7 4.8 48.0 35.5 0.0 12.5 "Q All 4. Robustness Checks Robustness Checks I The plan for the next few slides: Sensitivity to... a. ... the sample period. b. ... the parameterization of the stochastic processes. I If you like, we could also talk about: Sensitivity to... c. ... how industries are de…ned. d. ... the country. e. ... the treatment of trends. f. ... assumptions on measurement error in intermediate input purchases. g. ... the period length. h. ... the calibration of the steady state parameters. i. ... the trimming of outlier observations. j. ... the choice of shocks to include. Robust to Time Period? Period "Q (btw. M and K -L) Log Likelihood Aggregate Shocks Factor-Neutral Labor-Augmenting Demand Ind.-Speci…c Shocks Factor-Neutral Labor-Augmenting Demand 1960-2005 0.046 1 6743 -94677 36.9 52.0 10.0 28.4 26.9 18.7 0.0 4.8 63.1 48.0 21.3 35.5 40.2 0.0 1.7 12.5 1960-1982 0.055 1 3146 -48566 39.8 67.8 11.5 34.0 27.8 33.8 0.5 0.0 60.2 32.2 22.2 26.6 37.1 0.0 0.9 5.6 1983-2005 0.063 1 3544 -35526 30.4 27.8 5.5 1.6 24.9 23.3 0.0 3.0 69.6 72.2 24.0 45.4 43.7 0.0 2.0 26.8 Robust to Assumptions on the Stochastic Processes? Reminder: The shock processes, in the benchmark speci…cation, look like Z 2 fA; B; Dg: log Zt+1;J = log Zt+1;Agg = Period "Q Log Likelihood Aggregate Middle Nest Industry Ind ;Z Agg ;Z log ZtJ + Ind ;Z log Zt;Agg + Benchmark 0.046 6743 36.9 1 -94677 52.0 63.1 48.0 Ind ;Z !tJ Agg ;Z Di¤erent s, s !tAgg ;Z Di¤. s, s + Middle Nest Robust to Assumptions on the Stochastic Processes? Now the shock processes are sector-speci…c S 2 fprimary inputs, durable goods, non-durable goods, servicesg: log Zt+1;J = log Zt+1;Agg = Period "Q Log Likelihood Aggregate Middle Nest Industry S Ind ;Z S Agg ;Z Ind ;Z S Ind ;Z !tJ Agg ;Z S log Zt;Agg + Agg ;Z !t log ZtJ + Benchmark Di¤erent s, s 0.046 6743 36.9 1 -94677 52.0 0.027 7200 38.2 1 -94416 49.5 63.1 48.0 61.8 50.5 Di¤. s, s + Middle Nest Robust to Assumptions on the Stochastic Processes? And, I add a "middle nest" stochastic processes S 2 fprimary inputs, durable goods, non-durable goods, servicesg: log Zt+1;J = log Zt+1;Agg = log Zt+1;S = Period "Q Log Likelihood Aggregate Middle Nest Industry S Ind ;Z S Agg ;Z S Mid ;Z Ind ;Z S Ind ;Z !tJ Agg ;Z S log Zt;Agg + Agg ;Z !t Mid ;Z S log ZtS + Mid ;Z !tS log ZtJ + Benchmark Di¤erent s, s 0.046 6743 36.9 1 -94677 52.0 0.027 7200 38.2 1 -94416 49.5 63.1 48.0 61.8 50.5 Di¤. s, s + Middle Nest 0.075 1 7203 -79671 28.2 53.2 6.0 4.9 65.7 41.9 5. How Are the Parameters Identi…ed? How are the parameters identi…ed? I Four results: 1. Relationship between an industry’s sales prices and its sales ) "D . 2. Relationship between an industry’s intermediate input prices and cost shares ) "Q . 3. More cross-industry correlation in sales) Aggregate shocks are important. 4. More cross-industry correlation in intermediate input purchases (if "Q 6= 1)) Aggregate shocks are important. I Two tacks: 1. A numerical example, varying parameters around the MLE estimates. 2. A worked-out example, using a simpli…ed version of the model. Go to Simple Example .01 ∆ y, ∆ p) .005 Cov( 0 Covariance .015 .02 Varying "D , holding all other parameters …xed .3 .5 .7 Goods are Complements .9 εD 1.1 1.3 1.5 Goods are Substitutes Varying "Q , holding all other parameters …xed ) ,∆ p mat ) -.00015 0.05 0.10 0.15 0 s hare s hare ) 0 SD( ∆ m -.0003 Covariance ∆m Cov( .1 .3 .5 Inputs are Complements .7 .9 εQ 1.1 1.3 1.5 Inputs are Substitutes Standard Deviation mat .00015 .0003 SD( ∆ p Working through a simple example I Assume: 1. no capital ( J = 0) 2. consumption goods are not durable 3. productivity and preferences are not persistent 4. consumption shares are identical ( J = 1 N) 5. intermediate input intensities are identical ( 6. "M = 0, I M I !J = J = ) 1 N From Assumptions (1)-(3) : I The model can be solved period by period (drop t subscripts). I The parameters we care about (the "s, s) are identi…ed from the covariance matrix of the observed variables (the PPJ s, YPJ s, and MJshare s). Working through a simple example Reminder, the production function for an industry: QJ = AJ AAgg 2 4(1 1 ) "Q (BJ BAgg LJ ) "Q 1 "Q + 1 "Q 1 min MI !J N I "Q 1 "Q 3 "Q "Q 1 5 Taking …rst-order conditions, with respect to MtJ , the equilibrium intermediate input share satis…es: PJmat = @QJ PJ ) ... ) @MJ MJshare = (AJ AAgg )"Q 1 PJmat PJ 1 "Q (1) How are the parameters identi…ed? The cost minimization condition of each industry also implies that: PJ = = AJ AJ 1 AAgg " (1 1 "Q ) W BJ BAgg 1 "Q ) W BJ BAgg 2 1 4(1 AAgg PJmat + 1 "Q N X PI + I =1 N Solving this system of equations to get PJ s, then writing out log PJmat PJ 1 X log N I AI AJ (1 ) log BI BJ !1 # "Q P Jmat PJ : (2) Plug (2) into (1): log MJshare = log + ("Q 1) log AAgg ("Q 1) (1 1 1 "Q ) log BJ 3 5 1 1 "Q From the last slide: log MJshare = log + ("Q 1) log AAgg ("Q 1) (1 ) log BJ (3) Also: log log YJ P PJ P = = 1 X log N I 1 X N 1 AI AJ (1 1 I + log "D (1 1 1 ) log BI BJ [log AI + log AAgg ] "LS [log DI + log DAgg ] "LS + 1 AI BI )) log + (1 ) log AJ BJ DJ + (1 ) log DI + log BI + log BAgg + + (1 "Q ) + (1 (4) (5) From the last slide: log MJshare = log + ("Q 1) log AAgg ("Q 1) (1 Sensitivity of MJshare to shocks is U-shaped in "Q . Also: 1 X AI PJ = log log + (1 ) log P N AJ I log YJ P = 1 X N 1 (1 1 I + log "D (1 1 1 BI BJ [log AI + log AAgg ] "LS [log DI + log DAgg ] "LS + 1 AI BI )) log + (1 ) log AJ BJ DJ + (1 ) log DI + log BI + log BAgg + + (1 "Q ) ) log BJ (3) (4) (5) From the last slide: log MJshare = log + ("Q 1) log AAgg ("Q 1) (1 Sensitivity of MJshare to shocks is U-shaped in "Q . Also: 1 X AI PJ = log log + (1 ) log P N AJ I ) log BJ (3) BI BJ (4) Relative price of industry J is inversely related to AJ and BJ . log YJ P = 1 X N 1 (1 1 I + log "D (1 1 1 [log AI + log AAgg ] "LS [log DI + log DAgg ] "LS + 1 AI BI )) log + (1 ) log AJ BJ DJ + (1 ) log DI + log BI + log BAgg + + (1 "Q ) (5) How are the parameters identi…ed? Cov log PJmat PJ ; log MJshare = (1 )2 (1 "Q ) 2 B ;Ind Result 1. Slope of the relationship between intermediate input prices and cost shares ) "Q . How are the parameters identi…ed? PJ P PJ YJ log ; log P P Var Cov log = + (1 )2 "D (1 )) 2 A;Ind = (1 2 B ;Ind 2 A;Ind + (1 )2 2 B ;Ind Combining these two equations: E log PPI log YPI E log PPI 2 Cov log PPI ; log YPI Var log PPI 1 Result 2. Regression coe¢ cient of sales on prices ) "D "D (1 ). How are the parameters identi…ed? Cov log YI YJ ; log P P = 1 (1 + h 2 A;Ind Cov log MIshare ; log MJshare = ("Q Result 4. Co-movement of Industry-speci…c. MIshare 2 "LS "LS + 1 )2 + 1I =J (1 YI P 2 A;Agg + 1 2 B ;Agg Result 3. Co-movement of 2 "Q ) + (1 1)2 2 D ;Agg 2 D ;Ind )2 2 A;Agg + (1 2 B ;Ind i + 1I =J ("Q )Aggregate vs. Industry-speci…c. (if "Q 6= 1))Aggregate vs. "D (1 ))2 1)2 2 B ;Ind How are the parameters identi…ed? Cov log YI YJ ; log P P = 1 (1 + h 2 A;Ind Cov log MIshare ; log MJshare = ("Q Result 4. Co-movement of Industry-speci…c. MIshare 2 "LS "LS + 1 )2 + 1I =J (1 YI P 2 A;Agg + 1 2 B ;Agg Result 3. Co-movement of 2 "Q ) + (1 1)2 2 D ;Agg 2 D ;Ind )2 2 A;Agg + (1 2 B ;Ind i + 1I =J ("Q )Aggregate vs. Industry-speci…c. (if "Q 6= 1))Aggregate vs. "D (1 ))2 1)2 2 B ;Ind How are the parameters identi…ed? Cov log YI YJ ; log P P = 1 (1 + h 2 A;Ind Cov log MIshare ; log MJshare = ("Q Result 4. Co-movement of Industry-speci…c. MIshare 2 "LS "LS + 1 )2 + 1I =J (1 YI P 2 A;Agg + 1 2 B ;Agg Result 3. Co-movement of 2 "Q ) + (1 1)2 2 D ;Agg 2 D ;Ind )2 2 A;Agg + (1 2 B ;Ind i + 1I =J ("Q )Aggregate vs. Industry-speci…c. (if "Q 6= 1))Aggregate vs. "D (1 ))2 1)2 2 B ;Ind How are the parameters identi…ed? Cov log YI YJ ; log P P = 1 (1 "Q ) 1 2 2 A;Agg + 2 "LS 2 + D ;Agg "LS + 1 h + 1I =J (1 )2 D2 ;Ind + (1 2 B ;Agg 2 A;Ind + (1 )2 2 B ;Ind i "D (1 Result 5. Covariance of YPI s) Volatility of industry-speci…c and aggregate preference shocks. ))2 How are the parameters identi…ed? Cov log PI PJ ; log P P = 1I =J h 2 A;Ind + (1 )2 2 B ;Ind Result 6. Volatility of industry-speci…c prices ) industry-speci…c productivity shocks i Appendix Slides Robust to Period Length? Period Length "Q (between M and K -L) Log Likelihood Aggregate Shocks Factor-Neutral Prod. Labor-Augmenting Prod. Demand Industry-Speci…c Shocks Factor-Neutral Prod. Labor-Augmenting Prod. Demand Go Back , Robustness, Table of Contents 1 year 0.046 1 6743.0 -94677.1 36.9 52.0 10.0 28.4 26.9 18.7 0.0 4.8 63.1 48.0 21.3 35.5 40.2 0.0 1.7 12.5 2 years 0.031 1 2486.8 -20266.3 44.2 55.0 12.8 26.7 31.4 28.1 0.0 0.2 55.8 45.0 19.9 35.2 34.6 0.0 1.2 9.8 Robust to Calibration of Period Length "Q (between M and K -L) Log Likelihood Aggregate Shocks Factor-Neutral Prod. Labor-Augmenting Prod. Demand Industry-Speci…c Shocks Factor-Neutral Prod. Labor-Augmenting Prod. Demand Go Back , Robustness, Table of Contents J, J, J, and Original (1992) 0.046 1 6743.0 -94677.1 36.9 52.0 10.0 28.4 26.9 18.7 0.0 4.8 63.1 48.0 21.3 35.5 40.2 0.0 1.7 12.5 M I !J ? Alternative (1972) 0.056 1 5368.2 -96087.4 25.4 63.4 9.7 0.0 15.7 9.1 0.0 54.4 74.6 36.6 16.7 3.5 23.8 0.0 34.0 33.0 Robust to Cut-o¤? Cuto¤ "Q (btw. M and K -L) Log Likelihood Aggregate Shocks Factor-Neutral Labor-Augmenting Demand Ind.-Speci…c Shocks Factor-Neutral Labor-Augmenting Demand Go Back , 0.25% 0.049 1 6493 -19032 34.6 46.1 8.5 39.5 26.2 3.2 0.0 3.3 65.4 53.9 21.9 39.6 41.1 0.0 2.4 14.3 Robustness, Table of Contents 0.5% 0.046 1 6743 -94677 36.9 52.0 10.0 28.4 26.9 18.7 0.0 4.8 63.1 48.0 21.3 35.5 40.2 0.0 1.7 12.5 1.0% 0.043 1 6980 -11496 35.4 55.2 6.1 39.4 29.3 6.5 0.0 9.3 64.6 44.8 22.0 32.8 40.5 0.0 2.0 12.0 Robust to Industry Classi…cation? Industry Classi…cation "Q (between M and K -L) Log Likelihood Aggregate Shocks Factor-Neutral Prod. Labor-Augmenting Prod. Demand Industry-Speci…c Shocks Factor-Neutral Prod. Labor-Augmenting Prod. Demand Go Back , Robustness, Table of Contents Original: 34 industries 0.046 1 6743.0 -94677.1 36.9 52.0 10.0 28.4 26.9 18.7 0.0 4.8 63.1 48.0 21.3 35.5 40.2 0.0 1.7 12.5 Coarse: 8 industries 0.020 1 1975.3 -8106.8 29.3 35.2 0.0 20.7 28.9 5.5 0.5 9.1 70.7 64.8 38.9 46.1 33.8 11.4 1.0 7.3 Robust to Country? (1) Country "Q (btw. M and K -L) Log Likelihood Aggregate Shocks Factor-Neutral Labor-Augmenting Demand Ind.-Speci…c Shocks Factor-Neutral Labor-Augmenting Demand Go Back , Denmark 0.036 1 2415 -52262 4.5 10.6 3.6 0.0 0.0 0.0 0.8 10.6 95.5 89.4 18.7 16.3 29.9 42.5 46.9 30.6 Robustness, Table of Contents Netherlands 0.148 1 3814 -12633 27.0 41.1 14.4 39.5 12.3 0.0 0.3 1.6 73.0 58.9 13.8 9.3 22.4 33.5 36.8 16.2 Spain 0.042 1 2183 -11458 5.0 42.0 5.0 33.9 0.0 0.9 0.0 7.2 95.0 58.0 10.5 7.3 25.0 21.5 59.5 29.3 Robust to Country? (2) Country "Q (btw. M and K -L) Log Likelihood Aggregate Shocks Factor-Neutral Labor-Augmenting Demand Ind.-Speci…c Shocks Factor-Neutral Labor-Augmenting Demand Go Back , France 0.118 1 1716 -10578 44.4 7.7 44.4 0.0 0.0 6.6 0.0 1.1 55.6 92.3 5.1 6.0 14.4 18.8 36.1 67.5 Robustness, Table of Contents Italy 0.068 1 2568 -27190 91.6 34.4 67.6 0.0 22.7 11.5 1.3 22.9 8.4 65.6 1.5 7.3 3.5 25.1 3.4 33.3 Japan 0.027 1 1766 -17110 37.3 8.2 1.3 4.0 35.9 0.1 0.1 4.1 62.7 91.8 3.8 7.8 9.5 14.9 49.3 69.1 Robust to Country? (3) 60 Why does "Q 6= 1 lead to higher estimates for some countries, and lower estimates for others? 0 Denmark -20 Netherlands USA Spain 1 1.2 1.4 Ratio of Correlations: Sales vs. Intermediate Input Cost Shares Go Back , France 20 Japan -40 Free - Restricted: Importance of Sectoral Shocks 40 Italy Robustness, Table of Contents 1.6 How to deal with trends in the data? I In the benchmark speci…cation, I linearly de-trend each data series. I Two concerns: 1. De-trending removes potentially useful variation. 2. Parameter estimates may be sensitive to the de-trending procedure (Canova ’13). I Ways to address these concerns: 1. Try di¤erent de-trending procedures (next slide). 2. Include trends, permanent shocks, and stationary shocks in the model. Robust to De-trending Procedure? De-trending Procedure "Q (btw. M and K -L) Log Likelihood Aggregate Shocks Factor-Neutral Labor-Augmenting Demand Ind.-Speci…c Shocks Factor-Neutral Labor-Augmenting Demand Go Back , Linear 0.046 6743 36.9 10.0 26.9 0.0 63.1 21.3 40.2 1.7 Robustness, Table of Contents 1 -94677 52.0 28.4 18.7 4.8 48.0 35.5 0.0 12.5 Linear + Break at 1983 0.050 1 6887 -83620 36.8 52.1 9.1 28.6 27.7 18.7 0.0 4.8 63.1 47.9 21.3 35.9 40.6 0.0 1.2 12.0 HP Filter 0.039 8230 23.5 10.1 13.4 0.0 76.4 27.4 48.5 0.6 1 -45668 60.7 0.0 52.4 8.3 39.3 33.6 0.0 5.7 Robust to Measurement Error? = M ;Agg = "Q (between M and K -L) Log Likelihood Aggregate Shocks Factor-Neutral Prod. Labor-Augmenting Prod. Demand Industry-Speci…c Shocks Factor-Neutral Prod. Labor-Augmenting Prod. Demand Go Back , Robustness, Table of Contents M ;Ind 0:2% 0:2% 0.046 6743.0 36.9 10.0 26.9 0.0 63.1 21.3 40.2 1.7 0:1% 0:1% 0.045 6493.3 35.8 10.6 25.1 0.0 64.2 21.6 41.0 1.7 0:4% 0:2% 0.046 6758.0 37.6 10.2 27.4 0.0 62.4 21.4 39.3 1.7 0:2% 0:4% 0.047 6748.1 31.1 8.5 22.6 0.0 68.9 23.4 43.6 1.8 Other Estimates of "D and "Q I "Q (between intermediate inputs and capital/labor) I I I Bruno (’84): 0.3 Rotemberg and Woodford (’96): 0.7 "D (preference elasticity) I I Go Back Ngai and Pissarides (’07), and Acemo¼ glu and Guerrieri (’08): <1. Not appropriate: Broda and Weinstein (’06) or Foster, Haltiwanger, and Syverson (’08): 1. Robust to Choice of "LS ? "Q (between M and K -L) Log Likelihood Aggregate Shocks Factor-Neutral Prod. Labor-Augmenting Prod. Demand Industry-Speci…c Shocks Factor-Neutral Prod. Labor-Augmenting Prod. Demand Go Back , Robustness, Table of Contents "LS = 1 0.046 1 6743.0 -94677.1 36.9 52.0 10.0 28.4 26.9 18.7 0.0 4.8 63.1 48.0 21.3 35.5 40.2 0.0 1.7 12.5 "LS = 2 0.046 1 6735.3 -16209.9 32.6 38.8 20.3 6.3 23.7 31.4 8.9 1.1 67.4 61.2 19.9 45.3 34.6 0.0 1.2 15.9 Robust to Choice of Shocks? I Alter the capital accumulation condition of each industry to: Kt+1;J = (1 + I tJ K) t;Agg KtJ h C Xt;1!J ; Xt;2!J ; :::Xt;N !J ; "X ; X I !J i In one-sector analyses, shocks to the s explain a substantial fraction of output variation (Fisher ’06, Justiniano, Primiceri, and Tambalotti ’10) Go Back , Robustness, Table of Contents Robust to Inclusion of Investment Shocks? Benchmark "Q (btw. M and K -L) Log Likelihood Aggregate Shocks Factor-Neutral Labor-Augmenting Demand Investment Ind.-Speci…c Shocks Factor-Neutral Labor-Augmenting Demand Investment Go Back , 0.046 6743 36.9 10.0 26.9 0.0 1 -94677 52.0 28.4 18.7 4.8 63.1 21.3 40.2 1.7 48.0 35.5 0.0 12.5 Robustness, Table of Contents Investment Shocks 0.052 1 6766 -94629 37.1 68.7 12.4 8.3 24.7 0.0 0.0 0.0 0.0 60.5 62.9 31.3 15.9 10.0 23.0 2.0 1.5 0.0 22.4 19.3 Robust to Choice of Shocks? Benchmark "Q (btw. M and K -L) Log Likelihood Aggregate Shocks Factor-Neutral Labor-Augmenting Demand Investment Ind.-Speci…c Shocks Factor-Neutral Labor-Augmenting Demand Investment Go Back , 0.046 6743 36.9 10.0 26.9 0.0 1 -94677 52.0 28.4 18.7 4.8 63.1 21.3 40.2 1.7 48.0 35.5 0.0 12.5 Robustness, Table of Contents Investment Shocks 0.052 1 6766 -94629 37.1 68.7 12.4 8.3 24.7 0.0 0.0 0.0 0.0 60.5 62.9 31.3 15.9 10.0 23.0 2.0 1.5 0.0 22.4 19.3 No LaborAug. Shocks 0.754 1 -88401 -94677 69.5 48.3 43.2 48.3 26.3 0.0 30.5 6.9 51.7 38.4 23.5 13.2 Why do the results change so drastically when I set B = 0? I Reminder, from the simple example: Cov log MIshare ; log MJshare = ("Q 1)2 + 1I =J ("Q 2 A;Agg 1)2 2 B ;Ind I When B2 ;Ind = 0, only common, factor-neutral productivity shocks can explain volatile intermediate input cost shares. I Because the movements in intermediate input cost shares are so uncorrelated, the likelihood drops substantially. Go Back , Robustness, Table of Contents Destination Industry There are substantial ‡ows of intermediate inputs, across industries 2% 4% 8% 16% 32% Primary+ Cons truc ti on Manufacturing Originating Industry Go Back T rans port Servic es + Utilities Destination Industry A small number of industries produce most of the investment goods 2% 4% 8% 16% 32% Primary+ Cons truc ti on Manufacturing Originating Industry Go Back T rans port Servic es + Utilities Model: Preferences (With Durable Goods) Preferences are described by: U= 1 X t=0 2 log 4 t ( N X Dt;Agg (DtJ N X DtJ J =1 J) 1 "D ( CJ J ! CtJ ) J =1 "D 1 "D ! " "D 1 3 D 5 "LS LS "LS + 1 t Here, CtJ is the stock of the durable good J, is a durable. The stock evolves according to: CtJ = Ct Go Back 1;J (1 CJ ) ~tJ +C "LS +1 "LS 9 = ; Model: Preferences (With Durable Goods) Name Construction Lumber and Wood Products Furniture and Fixtures Stone, Clay, and Glass Products Primary Metals Fabricated Metal Products Non-Electrical Machinery Electrical Machinery Motor Vehicles Other Transportation Equipment Instruments Miscellaneous Manufacturing Go Back Depreciation Rate 2.1% 11.8% 11.8% 16.5% 16.5% 16.5% 16.5% 17.0% 35.3% 16.5% 16.7% 16.2% Industries in input-output relationships co-move more strongly Correlation of Growth Rates Between I and J -.25 0 .25 .5 .75 Oil E xtrac tion, Gas Utilities Oil E xtrac tion, Refining W hol es ale/Retail, Cons truc tion Non-E lec . Mac hinery, Non-Metallic Mining Autos , Ships /A irplanes 0 .05 .1 .15 Frac tion of J 's expenditures from I .2 Equilibrium De…nition For a given set of initial conditions, a perfectly competitive equilibrium consists of shock vectors n o1 Ind ;A Agg ;A Ind ;B Agg ;B Ind ;D Agg ;D !tJ ,!t , !tJ ,!t , !tJ ,!t , price vectors 1 t=0 mat , P inv , and quantity vectors Wt ; PtJ , PtJ tJ t=0 1 S Lt ; CtJ , QtJ , MtJ , LtJ , XtJ t=0 such that: 1. The representative consumer chooses CtJ and LSt to maximize expected utility. 2. Each industry chooses LtJ , XtJ , and MtJ to maximize expected pro…ts. 3. The capital stocks, durable goods stocks evolve as described in other slides. 4. The demand and productivity stochastic processes evolve as described in other slides. 5. The labor market and N goods markets clear. Write the Lagrangian of the social planner: ( ! X X t L = E0 Dt;Agg J DtJ t J 2" X log 4 ( + X J + X J DtJ ) J 1 "D (CtJ ) "D 1 "D J inv PtJ [XtJ + (1 " PtJ QtJ # K )KtJ CtJ XtJ "D "D 1 3 5 X "LS LtJ J Kt+1;J ] X I Mt;J !I #) Take …rst-order conditions with respect to CtJ : ! X 1 PtJ = Dt;Agg (DtJ J ) "D (CtJ ) J DtJ J X I (DtI I) 1 "D (CtI ) ! "LS +1 "D 1 "D ! 1 1 "D Re-arrange: "D CtJ = (PtJ ) " X ( I " DtJ J DtI ) 1 "D Dt;Agg (CtI ) J Note also that: "D CtI = (PtI ) " (CtI ) "D 1 "D "D 1 "D N X K X K 1 "D I DtI Dt;Agg K DtK ) "D (CtK ) "D 1 "D !#"D (6) "D 1 "D " 1 ( "D Dt;Agg DtK ) "D (CtK ) DtI I I " 1 ( K =1 = (PtI ) " DtI I # X # N X K K =1 "D X K #1 "D ( DtK !#"D !#"D K DtK I DtI ) 1 "D 1 (7) CtJ Plugging Equation (7) into Equation (6): " !#"D X = (PtJ ) "D Dt;Agg I DtJ J X 1 "D (PtI ) I DtI I = Dt;Agg J DtJ (PtJ ) ! "D 1 " Dt;Agg DtJ J X DtK K I X I P K I DtI (PtI )1 K DtK De…ning the aggregate price level as: Pt X I We get that: CtJ = Dt;Agg Go Back K DtI (PtI )1 D K tK J DtJ (PtJ ) P I "D "D ! 1 1 "D (Pt )"D 1 . !#1 "D ! "D 1 Conclusion I Main result: Industry-speci…c shocks are important (account for 53 ths of aggregate volatility) I I I Other studies on the sources of business cycles: I I I I Positive correlation between intermediate inputs and intermediate input prices ) "Q is small. Movements in intermediate input cost shares are uncorrelated ) industry-speci…c shocks are important. monetary policy shocks news about future economic activity uncertainty about future productivity Possible avenue for future work: Re-examine these sources of variation with the understanding that they may come from the micro level. Table of Contents Introduction Simple Example, Part 1 Industry De…nitions Challenges Simple Example, Part 2 Time Period Method and Main Result Simple Example, Part 3 Related Literature Proposition, without Y J Outline Robustness, Table of Contents Intermediate Input Meas. Error Preferences Structure of Shocks, 1 Period Length Production and Market Clearing Structure of Shocks, 2 Value of "LS Exogeneous Processes Comparative Statics, "D Investment-Speci…c Shocks Data Sources Comparative Statics, "Q Other Estimates of "D and "Q . A relationship in the data Calibrate Steady State to 1972 IO and Capital Flows Tables . Estimation Methodology Input Relationships and Correlations Durable Goods MLE Estimates Equilibrium De…nition Proposition, with Y J Variance Decompositions Di¤erent Treatment of Trends. Conclusion Other Countries P Extent of Winsorization P
© Copyright 2025 ExpyDoc