TD1105 Queens WG1 Rossignol

European Network on New Sensing Technologies for Air Pollution
Control and Environmental Sustainability - EuNetAir
COST Action TD1105
Microwave synthesis of nanooxides and their
applications in microwave gas sensing
J Rossignol, B. De Fonseca , Pr D. Stuerga , Pr P Pribetich
COST is supported
by the EU Framework Programme
ESF provides the COST Office
through a European Commission contract
Overview
Synthesis of nanopowders
Microwave gas sensing
2
Bourgogne
3
GERM
Modeling
Design of microwave reactors
Microwave transduction
Microwave field distribution
Microwave synthesis
Liquid and gas sensing
SnO2,
TiO2,
ZrO2,
Fe2O3…
Microwaves?
Frequency: 300MHz to 300GHz
Wave length1mm and 1m (er=1)
Our Microwave synthesis
The RAMO System
Resonant
cavity
Core heating
Circulator
Pressure control
Milliwattmeter
In situ
measurements
Temperature control
Atmosphere control
RATES :
temperature 5 to 15°C.s-1
pressure 1.2 MPa.min-1
2 kW
Generator
Waveguide
Synthesis of nanopowders
The RAMO System
Resonant
cavity
Oxide precursor, hydrochloric acid
Circulator
Milliwattmeter
Initial power 1 kW
Microwave heating duration ≤60 s
Reaction TiO2 SnO2
µm
nm
Size BET confirmed by DRX
2 kW
Generator
SnO2
Tin oxide (IV) by microwave thermohydrolysis (RAMO) :
SnCl4 (Aldrich, 99,995%) + HCl (Prolabo, RP NormapurTM)
DRX  Cassiterit (Fiche JCPDS 41-1445)
Microsonde XDE  Any trace of Cl
SnH O  
4
2
6
 4Cl  One
Step
 SnO2  4 H 3O   4Cl 
TEM
SEM
1 μm
HRTEM
10 nm
5 nm
WIPO: WO/2009/050344, Method for preparing nanoparticles of complex metal oxide),
with exclusive exploited licence to the society Naxagoras Technology.
TiO2
Rutile
Anatase
TiH 2O6 4   4Cl  One
Step

TiO2  4 H 3O  4Cl 
Difference of
surface acidity
Effect of adsorption
Microwave gas sensing
Pollutant gas
Incident wave
Reflected wave
Reflected wave
Γ 𝑓 =
Incident wave
Γ 𝑓 =
Re + j Im
1 frequency
1600 frequencies
2 informations
a Signature
SnO2 , pollutant NH3
Re ()
10-4
Variation de la partie
imaginaire x 10000
𝝴  25
Im ()
10-4
TiO2, pollutant NH3
𝝴  85
2,5
2
300 ppm
Variation de la partie
imaginaire x 10000
Im () 1,5
1,0
10-4
500 ppm
200 ppm
400 ppm
100 ppm
0,5
-0
0 ppm
-0,5
-1,0
-1,5
-3
-2
-1
0
1
2
Re ()Variation de la partie
réelle x 10000
-4
10
3
4
5
6
Conclusions and challenges
An innovative approach to gas sensing:
 Microwave synthesis of nano metal oxide
 Microwave gas sensing
Future investigation:
 Impact of the size, the porosity and the specific surface area of the metal oxide
on the reflected coefficient 
 Effect of the temperature and humidity on the sensor’s response
 Knowledge of the interaction phenomena and modeling of the sensor ‘s
response.