European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 Microwave synthesis of nanooxides and their applications in microwave gas sensing J Rossignol, B. De Fonseca , Pr D. Stuerga , Pr P Pribetich COST is supported by the EU Framework Programme ESF provides the COST Office through a European Commission contract Overview Synthesis of nanopowders Microwave gas sensing 2 Bourgogne 3 GERM Modeling Design of microwave reactors Microwave transduction Microwave field distribution Microwave synthesis Liquid and gas sensing SnO2, TiO2, ZrO2, Fe2O3… Microwaves? Frequency: 300MHz to 300GHz Wave length1mm and 1m (er=1) Our Microwave synthesis The RAMO System Resonant cavity Core heating Circulator Pressure control Milliwattmeter In situ measurements Temperature control Atmosphere control RATES : temperature 5 to 15°C.s-1 pressure 1.2 MPa.min-1 2 kW Generator Waveguide Synthesis of nanopowders The RAMO System Resonant cavity Oxide precursor, hydrochloric acid Circulator Milliwattmeter Initial power 1 kW Microwave heating duration ≤60 s Reaction TiO2 SnO2 µm nm Size BET confirmed by DRX 2 kW Generator SnO2 Tin oxide (IV) by microwave thermohydrolysis (RAMO) : SnCl4 (Aldrich, 99,995%) + HCl (Prolabo, RP NormapurTM) DRX Cassiterit (Fiche JCPDS 41-1445) Microsonde XDE Any trace of Cl SnH O 4 2 6 4Cl One Step SnO2 4 H 3O 4Cl TEM SEM 1 μm HRTEM 10 nm 5 nm WIPO: WO/2009/050344, Method for preparing nanoparticles of complex metal oxide), with exclusive exploited licence to the society Naxagoras Technology. TiO2 Rutile Anatase TiH 2O6 4 4Cl One Step TiO2 4 H 3O 4Cl Difference of surface acidity Effect of adsorption Microwave gas sensing Pollutant gas Incident wave Reflected wave Reflected wave Γ 𝑓 = Incident wave Γ 𝑓 = Re + j Im 1 frequency 1600 frequencies 2 informations a Signature SnO2 , pollutant NH3 Re () 10-4 Variation de la partie imaginaire x 10000 𝝴 25 Im () 10-4 TiO2, pollutant NH3 𝝴 85 2,5 2 300 ppm Variation de la partie imaginaire x 10000 Im () 1,5 1,0 10-4 500 ppm 200 ppm 400 ppm 100 ppm 0,5 -0 0 ppm -0,5 -1,0 -1,5 -3 -2 -1 0 1 2 Re ()Variation de la partie réelle x 10000 -4 10 3 4 5 6 Conclusions and challenges An innovative approach to gas sensing: Microwave synthesis of nano metal oxide Microwave gas sensing Future investigation: Impact of the size, the porosity and the specific surface area of the metal oxide on the reflected coefficient Effect of the temperature and humidity on the sensor’s response Knowledge of the interaction phenomena and modeling of the sensor ‘s response.
© Copyright 2024 ExpyDoc