Teppei KITAHARA - Jodo Home Page

Gauge invariant Barr-Zee type contributions
to fermionic EDMs in the two-Higgs doublet models
北原鉄平 (Teppei Kitahara)
University of Tokyo
Collaborators :
阿部智広 (Tomohiro Abe) [KEK], 久野純治 (Junji Hisano) [Nagoya Univ.],
飛岡幸作 (Kohsaku Tobioka) [Kavli IPMU] Based on
T. Abe, J. Hisano, T.K and K. Tobioka, JHEP 1401 (2014) 106, arXiv:1311.4704
BURI 2014
February 13, 2014, Toyama University
BURI 2014
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
2/21
BURI 2014
Basis of the Universe
with
ー
ary Ideas 2014
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
2/21
http://seriable.com/nbc-network/revolution-nbc-network/
Our Revolutionary Idea
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
3/21
Our Revolutionary Idea
We derive improved Barr-Zee type contributions
→ first make BZ contributions gauge invariant
+
We become able to evaluate theoretical value of EDM
more correctly conceptually and numerically
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
3 /21
Introduction
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
4/21
Electric Dipole Moment (EDM)
What is EDM?
L=
eQ` ¯
a` `
4m`
µ⌫ `F
Magnetic dipole moment term
µ⌫
i ¯
d` `
2
Electric dipole moment term
EDM : d l
Non-relativistic Hamiltonian
H=
~ · ~sˆ
µ` B
Spin-Magnetic field int.
C-even
P-even
T-even
µ⌫ 5 `F
µ⌫
~ · ~sˆ
d` E
Spin-Electric field int.
C-even
P-odd
T-odd
✔ Non-zero EDM violates T and CP symmetry
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
5/21
Electric Dipole Moment (EDM)
Why does one focus on EDM?
✔ Observation of EDM implies NEW CP
violation source
New Physics!!
SM EDM is too small to observe...
Since our Universe experiences Baryogenesis,
new CP violation source is needed in somewhere.
✔ Experiments of EDM are very precise.
We can seek TeV scale physics
indirectly.
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
6/21
The Model
2HDMs with softly-broken Z2 symmetry
Z2 transformation
Higgs potential
✔
CP violation phase
relative phase of VEVS
2i
2
Im m3
5e
Feb 13, 2014 BURI 2014
✔redefine Higgs field
✔stationary condition
Teppei KITAHARA -Univ. of Tokyo
one CP violation
physical phase
5e
2i
7 /21
The Model
•
The Yukawa interaction in this model is classified into the 4 types
Z2 transformation
Flipped type
SM + extra Doublet
SUSY type
Lepton Specific
One can avoid the dangerous FCNC problem
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
8 /21
EDM in 2HDM
•
In 2HDMs, leading EDM contributions come from not one-loop
but two-loop diagrams
[S. M. Barr and A. Zee, Phys. Rev. Lett. 65, 21(1990)]
= H1 , H2 , H3
e
e
1 m3e
⇠
⇠ 10
2
4
(4⇡) v
36
[cm]
↵↵2 me
⇠
⇠ 10
2
2
(4⇡) v
= H1 , H2 , H3
e
e
Barr-Zee diagram
Feb 13, 2014 BURI 2014
27
[e cm]
Because electron Yukawa is
too small, ↵↵2
Yukawa2
cf. SM (4 loop)
Teppei KITAHARA -Univ. of Tokyo
< 10
40
[e cm]
9 /21
Gauge invariance of Barr-Zee diagram
•
Actually, The Barr-Zee contribution to EDM is not gauge invariant
[R. G. Leigh, S. Paban, R. M. Xu, Nucl. Phys. B 352, 45(1991)]
= H1 , H2 , H3
e
e
Barr-Zee diagram
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
10 /21
Gauge invariance of Barr-Zee diagram
•
µ
p 1 Mµ
Actually, The Barr-Zee contribution to EDM is not gauge invariant
6= 0
µ
p1
= H1 , H2 , H3
e
[R. G. Leigh, S. Paban, R. M. Xu, Nucl. Phys. B 352, 45(1991)]
The previous works did not care about the
gauge invariance of BZ contributions
e
Barr-Zee diagram
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
10 /21
Gauge invariance of Barr-Zee diagram
•
µ
p 1 Mµ
Actually, The Barr-Zee contribution to EDM is not gauge invariant
6= 0
µ
p1
= H1 , H2 , H3
e
[R. G. Leigh, S. Paban, R. M. Xu, Nucl. Phys. B 352, 45(1991)]
The previous works did not care about the
gauge invariance of BZ contributions
e
Barr-Zee diagram
Feb 13, 2014 BURI 2014
We improved BZ contribution
to be gauge invariant one
Teppei KITAHARA -Univ. of Tokyo
10 /21
[John M. Cornwall, Phys. Rev. D26, 6(1982)]
Pinch Technique
•
Pinch technique is general method which can decompose
gauge fixing parameter ξ independent subamplitudes
T1 (t, ⇠) = Tˆ1 (t) f (t, ⇠)
T2 (t, mi , ⇠) = Tˆ2 (t, mi ) + f (t, ⇠) h(t, mi , ⇠)
T3 (t, s, mi , ⇠) = Tˆ3 (t, s, mi ) + h(t, mi , ⇠)
•
Diagrammatic representation
T2 (t, mi , ⇠)
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
11 /21
[John M. Cornwall, Phys. Rev. D26, 6(1982)]
Pinch Technique
•
Pinch technique is general method which can decompose
gauge fixing parameter ξ independent subamplitudes
T1 (t, ⇠) = Tˆ1 (t) f (t, ⇠)
T2 (t, mi , ⇠) = Tˆ2 (t, mi ) + f (t, ⇠) h(t, mi , ⇠)
T3 (t, s, mi , ⇠) = Tˆ3 (t, s, mi ) + h(t, mi , ⇠)
•
Diagrammatic representation
T2 (t, mi , ⇠)
Feb 13, 2014 BURI 2014
pinch!
Teppei KITAHARA -Univ. of Tokyo
11 /21
[John M. Cornwall, Phys. Rev. D26, 6(1982)]
Pinch Technique
•
Pinch technique is general method which can decompose
gauge fixing parameter ξ independent subamplitudes
T1 (t, ⇠) = Tˆ1 (t) f (t, ⇠)
T2 (t, mi , ⇠) = Tˆ2 (t, mi ) + f (t, ⇠) h(t, mi , ⇠)
T3 (t, s, mi , ⇠) = Tˆ3 (t, s, mi ) + h(t, mi , ⇠)
•
Diagrammatic representation
T2 (t, mi , ⇠)
Feb 13, 2014 BURI 2014
f (t, ⇠)
pinch!
Teppei KITAHARA -Univ. of Tokyo
11 /21
[John M. Cornwall, Phys. Rev. D26, 6(1982)]
p
Pinch Technique
k
q
! Pinch : k+p
gauge 3 point vertex
or gauge propagator
k+q
p-q
gauge-fermion-fermion vertex
kµ
µ
= (6 k+ 6 p
Feb 13, 2014 BURI 2014
m)
(6 p
m)
Teppei KITAHARA -Univ. of Tokyo
12 /21
[John M. Cornwall, Phys. Rev. D26, 6(1982)]
p
Pinch Technique
k
q
! Pinch : k+p
gauge 3 point vertex
or gauge propagator
p-q
k+q
gauge-fermion-fermion vertex
kµ
µ
= (6 k+ 6 p m) (6 p
✓
◆ 1
i
=i
6 k+ 6 p m
Feb 13, 2014 BURI 2014
m)
Equation of mortion
(6 p
m)
Teppei KITAHARA -Univ. of Tokyo
u
¯6p=u
¯m
second term cancel out
12 /21
[John M. Cornwall, Phys. Rev. D26, 6(1982)]
p
Pinch Technique
k
q
! Pinch : k+p
gauge 3 point vertex
or gauge propagator
p-q
k+q
gauge-fermion-fermion vertex
kµ
pinch!
µ
= (6 k+ 6 p m) (6 p
✓
◆ 1
i
=i
6 k+ 6 p m
m)
Equation of mortion
(6 p
m)
u
¯6p=u
¯m
second term cancel out
First term pinch fermion propagator
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
12 /21
Pinch Technique
pinch!
! Pinch :
! In order to obtain gauge invariant BZ type contribution, we
should sum these diagrams
+
Pinch
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
13 /21
All charged
particle run
O(100) two-loop diagrams!
• calculate all gauge invariant Barr-Zee
contributions
• check the gauge invariance analytically
• get analytical formula of improved BZ
contributions
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
14 /21
Results of
electron EDM
@YbF molecule
@ThO molecule
current bound
Recently ACME Collaboration
got new upper bound by ThO
molecule!
[ACME Collaboration,
Science 17 Vol.343 no.6168 (2014)]
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
15 /21
Parameter as a benchmark
tan
1
=
3
= O(10),
=
4
2
=
5
sin 2 = 0.5,
= 0.25
tan
v2
=
v1
✔ Vacuum stability is safe
✔ EW precisions are safe @ M > 200GeV
✔ Lightest neutral scalar mass ⇠ 126GeV
✔ not unnatural parameter region
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
16 /21
Gauge-inv. Barr-Zee vs. Ordinary Barr-Zee
We found that the difference between gauge-invariant and
ordinary (= not gauge invariant) Barr-Zee contribution to
electron EDM is about 5 - 8 %
Di↵erence between de (gauge-inv. BZ) and de (ordinary BZ)
tanβ = 10
Type II
[T.Abe, J.Hisano, T.K, K.Tobioka, (2013)]
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
17 /21
Gauge-inv. Barr-Zee vs. Ordinary Barr-Zee
Weisfound
that
difference between
gauge-invariant
andof
This
not so
bigthe
improvement
from the
numerical point
ordinary
(= notwe
gauge
invariant)
contribution
to
view.
However,
would
like to Barr-Zee
emphasize
that our result
EDM invariant,
is about 5 - which
8 % must be satisfied
is electron
now gauge
Di↵erence between de (gauge-inv. BZ) and de (ordinary BZ)
when we discuss observables.
tanβ = 10
Type II
[T.Abe, J.Hisano, T.K, K.Tobioka, (2013)]
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
17 /21
Electron
EDM
● Contour Plot of
eEDM [e・cm]
Current exp.
bound (90% CL)
Heavy Higgs mass
ThO
Future Prospects
Fr
YbF, WN
[T.Abe, J.Hisano, T.K, K.Tobioka, (2013)]
Electron EDM
● eEDM vs Heavy Higgs scale
[T.Abe, J.Hisano, T.K, K.Tobioka, (2013)]
tanβ = 10
Current exp. bound (90% CL)
tanβ = 10
Exclude
ThO
Future Prospects
Fr
Future Prospects
YbF, WN
Heavy Higgs mass
● Type X
Type II, Type Y
Feb 13, 2014 BURI 2014
Heavy Higgs mass
Type I
Teppei KITAHARA -Univ. of Tokyo
19 /21
Electron EDM
● eEDM vs Heavy Higgs scale
[T.Abe, J.Hisano, T.K, K.Tobioka, (2013)]
tanβ = 10
Current exp. bound (90% CL)
tanβ = 10
Exclude
ThO
Future Prospects
Fr
Future Prospects
YbF, WN
Heavy Higgs mass
2 TeV
● Type X
Type II, Type Y
Feb 13, 2014 BURI 2014
Heavy Higgs mass
20 TeV
Type I
Teppei KITAHARA -Univ. of Tokyo
19 /21
Summary
•
New
2HDMs with Z2 symmetry have one new phase, and
are constrained by the electron/neutron EDM
10
An analytical formulae of full gauge-inv.
Barr Zee contribution is first derived
by Using Pinch Technique
D @%D
•
8
6
4
2
tanβ = 10
0
200
+
New
•
600
800
MH + @GeVD
1000
Type II
In Type II, X, Y 2HDMs, the future
expeRIments of electron/neutron
EDM are expected to reach O(10)
TeV new Heavy scalars
Feb 13, 2014 BURI 2014
400
Type II
Teppei KITAHARA -Univ. of Tokyo
tanβ = 10
20 TeV
20 /21
Discussions
•
EDM vs Electroweak Baryogenesis at the same
parameter region
[G. C. Dorsch, S. J. Huber and J. M. No, JHEP 1310, 029 (2013)]
EWBG prefers low tanβ region
Is there a tension between
EWBG and EDM?
Teppei Kitahara
arXiv:1311.4704
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
21 /21
Backup
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
/21
neutron EDM
•
The neutron EDM is obtained by QCD sum rule as follows
assume PQ mechanism
dn = 0.79dd
C
0.20du + e(0.59dC
+
0.30d
d
u)
(QCD sum rules)
[J. Hisano, J. Y. Lee, N. Nagata, Phys. Rev. D85, 114044(2012)]
current bound
@Ultra cold neutron
Future prospects can
improve to 2 orders
of magnitude
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
35 /21
Neutron
EDM
● Contour Plot of
nEDM [e・cm]
Current exp.
bound (90% CL)
Future Prospects
Parameter
Two Heavy Higgs
Mass
MH+
Lightest Higgs
Mass 126 GeV
5
sin 2 = 0.5
[T.Abe, J.Hisano, T.K, K.Tobioka, (2013)]
Parameter
Neutron EDM
5
sin 2 = 0.5
Two Heavy Higgs
Mass
MH+
Lightest Higgs
Mass = 126 GeV
● nEDM vs Heavy Higgs scale
Current exp. bound (90% CL)
Exclude
Future Prospects
tanβ = 10
[T.Abe, J.Hisano, T.K, K.Tobioka, (2013)]
● In Type I and Type X, neutron EDM is too small
● Type Y
Type II
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
37 /21
Parameter
Neutron EDM
5
sin 2 = 0.5
Two Heavy Higgs
Mass
MH+
Lightest Higgs
Mass = 126 GeV
● nEDM vs Heavy Higgs scale
Current exp. bound (90% CL)
Exclude
Future Prospects
tanβ = 10
5 TeV
[T.Abe, J.Hisano, T.K, K.Tobioka, (2013)]
● In Type I and Type X, neutron EDM is too small
● Type Y
Type II
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
37 /21
Barr-Zee diagram
•
In Barr-Zee diagrams calculation, we separated
them into HVV effective couplings part and
other part
Generalize
At first, we consider
HVV effective couplings
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
13 /21
Tensor structure of effective coupling
on-shell photon
off-shell vector
general tensor structure
µ
p1 µ⌫
Feb 13, 2014 BURI 2014
gauge symmetry
=0
(Ward-Takahashi identity)
Teppei KITAHARA -Univ. of Tokyo
14 /21
Tensor structure of effective coupling
on-shell photon
off-shell vector
If HVV effective vertex
is gauge invariant
µ
p1 µ⌫
Barr-Zee diagram
is gauge invariant
µ
p 1 Mµ
=0
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
=0
15 /21
Effective coupling -W loop-
•
We explicitly calculate W loop contribution, and
result is as follows
on-shell photon
All set of W loop
off-shell vector
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
16 /21
Effective coupling -W loop-
•
We explicitly calculate W loop contribution, and
result is as follows
on-shell photon
All set of W loop
off-shell vector
gauge invariant term gauge non-invariant term
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
/21
Effective coupling -W loop-
•
We explicitly calculate W loop contribution, and
result is as follows
on-shell photon
All set of W loop
off-shell vector
gauge non-invariant term
These terms drop when all external lines are on-shell.
However, in this situation (external lines are off-shell),
these term do not drop.
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
/21
Effective coupling -W loopWe can transform pinch term into effective coupling form
on-shell photon
off-shell vector
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
22 /21
Effective coupling -W loopWe can transform pinch term into effective coupling form
on-shell photon
off-shell vector
Feb 13, 2014 BURI 2014
second term cancel out
Teppei KITAHARA -Univ. of Tokyo
22 /21
Effective coupling -W loopWe can transform pinch term into effective coupling form
on-shell photon
off-shell vector
Feb 13, 2014 BURI 2014
last two terms does not
contribute to dipole operator
Teppei KITAHARA -Univ. of Tokyo
22 /21
Effective coupling -W loopWe can transform pinch term into effective coupling form
on-shell photon
off-shell vector
last two terms does not
contribute to dipole operator
We checked analytically and found that
these sum become gauge invariant
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
22 /21
Some demands to parameter region
•
Before we calculate EDMs, we should consider the
following some demands to parameter region
demands to parameter region
•
•
•
Vacuum Stability of Higgs potential
Electroweak Precessions
Higgs mass = 126 GeV
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
26 /21
Vacuum stability
•
The stability condition of the Higgs potential at treelevel (one demand that EW vacuum becomes global
minimum)
Tree-level stability condition
[N. G. Deshpande and E. Ma, Phys. Rev. D 18 (1978) 2574]
[A. W. El Kaffas, W. Khater, O. M. Ogreid and P. Osland, Nucl. Phys. B 775, 45 (2007)]
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
27 /21
Electroweak precision / ρ (T) parameter
•
⇢⌘
The custodial SU(2) symmetry is broken in the CP
violation 2HDM at the tree level, and ρ(T)
parameter might deviate from 1 at one-loop level
m2W
m2Z cos2 ✓w
WW
↵EM T =
⇧
[A. Pomarol and R. Vega, Nucl. Phys. B 413, 3 (1994)]
=1+
(0)
m2W
⇢ ' 1 + ↵EM T
2
2
m
m
⇧ (0)
H
H±
/
m2Z
m2W
ZZ
@BSM effect
@ not mH >> VEVs
experimental bound Texp. = 0.05 ± 0.12 (1
Theρ(T) parameter depends on the quadratic mass splitting among
particles in the same isospin multiplet.
If mass splitting is small, or heavy Higgs mass scale is large, theρ(T)
parameter is small.
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
28 /21
)
Higgs mass = 126 GeV
•
2HDM with CP violation have physical scalar
bosons as 3 neutral Higgs and 1 charged Higgs
1 neutral Higgs is light
3 neutral
Higgs
mh1 ' v sin
2
p
2
2 neutral Higgs
and 1 charged Higgs are
1 charged
Higgs
same mass scale
M
where
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
29 /21
Higgs mass = 126 GeV
We require the mass of lightest neutral scalar to be
126 GeV, then parameter λ2 is uniquely determined
0.270
λ2 Plot
0.265
demand h1 = 126.0 GeV
mh1 ' v sin
l2
0.260
2
p
2
0.255
0.250
0.245
200
Feb 13, 2014 BURI 2014
400
600
M @GeVD
Teppei KITAHARA -Univ. of Tokyo
800
1000
30 /21
QCD correction from Four Fermi Operator
[J. Hisano, K. Tsumura, M. J. S. Yang, Phys. Lett. B713, 473(2012)]
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
/21
gg -> bb H/A, H/A -> tautau search
Type II
[CMS PAS HIG 12 050]
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
/21
Flavor
constraint
Type I
Type II
Type Y
Type X
[F. Mahmoudi and O. Stal,
Phys.Rev. D81 (2010) 035016]
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
/21
electron EDM
tanB = 3
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
/21
electron EDM
tanB = 50
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
/21
2. ¥ 10-27
1. ¥ 10-27
dêe @cmD
2. ¥ 10-27
dêe @cmD
4. ¥ 10-27
0
-27
-2. ¥ 10
-4. ¥ 10-27
- p2
0
-1. ¥ 10-27
-2. ¥ 10-27
- p4
0
f
p
4
M_H+ = 150 GeV
Feb 13, 2014 BURI 2014
p
2
- p2
- p4
0
f
p
4
p
2
M_H+ = 380 GeV
Teppei KITAHARA -Univ. of Tokyo
/21
Higgs mass
Neutral Higgs Mass
1000
mh @GeVD
800
600
400
h3
h1
200
0
0
Feb 13, 2014 BURI 2014
h2
200
400
600
MH+ @GeVD
Teppei KITAHARA -Univ. of Tokyo
800
1000
/21
Top couplings
Axial coupling
Vector coupling
1.0
h1
0.6
0.4
h2 h3
0.2
0
200
400
600
MH+ @GeVD
800
h2
0.06
»gtthA »êSM
»gtthV »êSM
0.8
0.0
0.07
0.05
0.04
0.03
0.02
h1
0.01
1000
0.00
0
200
絶対値
Feb 13, 2014 BURI 2014
h3
Teppei KITAHARA -Univ. of Tokyo
400
600
MH+ @GeVD
800
1000
絶対値
/21
Bottom couplings
Axial coupling
Vector coupling
7
h2
5
h3
»gbbhA »êSM
»gbbhV »êSM
6
4
3
2
0
0
200
400
600
MH+ @GeVD
Feb 13, 2014 BURI 2014
h2
6
5
3
h1
1
800
1000
h3
4
2
h1
1
7
0
0
200
Teppei KITAHARA -Univ. of Tokyo
400
600
MH+ @GeVD
800
1000
/21
WWh couplings
1.0
h1
»gWWh»êSM
0.8
0.6
0.4
0.2
h3
0.0
0
Feb 13, 2014 BURI 2014
200
400
600
MH+ @GeVD
Teppei KITAHARA -Univ. of Tokyo
h2
800
1000
/21
geehA êSM * gtthV êSM
1.0
h2
0.5
0.0
-0.5
h1
-1.0
h3
-1.5
0
200
400
600
MH+ @GeVD
Feb 13, 2014 BURI 2014
800
geehV êSM * gtthA êSM
Some couplings
1000
h3
0.4
0.2
h1
0.0
-0.2
h2
-0.4
0
200
Teppei KITAHARA -Univ. of Tokyo
400
600
MH+ @GeVD
800
1000
/21
Electroweak precision / ρ (T) parameter
-0.02
-0.04
-0.04
experimental bound
Texp. = 0.05 ± 0.12 (1 )
Feb 13, 2014 BURI 2014
Teppei KITAHARA -Univ. of Tokyo
11 /21