Step 1: Specify the maximum model to be considered. From Kleinbaum, Kupper, Muller, Nizam: applied Regression Analysis and Multivariable Methods. Duxbury, CA, USA Dummy variables, quadratic terms, cubic terms, interaction tems, etc. 1 2 Step 2: Specify a criterion for selection a model 何謂重要?以p-value或R2決定 1 R-square 2 r1 < r2 β1 > β2 P-value 3 4 Step 3: Specify a strategy for selecting variables. Use p-value to select: forward backward Stepwise Modified methods: Chunkwise, Hierarchical Selection of Significant Factors Use R2 to select: R-square, Mallow’s Cp (KKM, pages 391-392, 411) 5 Step 3: Specify a strategy for selecting variables. Use p-value to select significant independent variables: forward backward Stepwise Forward selection Compute p-value of simple linear regression for each X’s One by one include variable with p-value<.05 Into model Entry prob=0.05 or less 7 8 Backward selection Stepwise selection Same as forward selection Only double check p-value once again, when X’s enter into model Entry prob=0.05 or more Removal prob=0.05 or less Put all of X’s into model One by one delete any X’s with p-value>.05 Removal prob=0.05 or less 9 10 Related factors for TMD Model 1 Variable Use this strategy hierarchically age group ≦25 yrs 26-34 ≧35 yrs level junior senior stress No Yes CHQ ≦2 ≧3 smoking No Yes drinking No Yes betel quid chewing No Yes * p<0.05 Odds Ratio 95% CI Model 2 pvalue Odds Ratio 95% CI Model 3 pvalue Odds Ratio 95% CI Model 4 pvalue Odds Ratio 95% CI pvalue 1.00 1.17 2.83 (0.64, 2.12) (1.36, 6.04) * 1.00 1.16 3.02 (0.62, 2.17) (1.42, 6.67) * 1.00 1.18 2.85 (0.64, 2.16) (1.36, 6.15) * 1.00 1.18 3.09 (0.63, 2.23) (1.43, 6.90) * 1.00 1.15 (0.65, 2.03) 1.00 1.19 (0.66, 2.16) 1.00 1.27 (0.71, 2.29) 1.00 1.31 (0.71, 2.42) 1.00 4.48 (1.75, 13.25) * 1.00 4.02 (1.52, 12.24) * 1.00 3.24 1.00 4.56 (1.77, 13.56) * 1.00 1.01 1.00 1.54 **<.0001 1.00 3.31 (1.93, 5.78) ** (0.60, 2.01) 1.00 1.22 (0.65, 2.30) (0.57, 1.80) 1.00 0.89 (0.49, 1.62) (0.77, 3.14) 1.00 1.53 (0.74, 3.21) (1.90, 5.61) ** 1.00 1.10 1.00 3.97 (1.49, 12.23) * Limitation: ORs did not dramatically change! Step 4 Conduct the specified analysis. 14 Step 5 Evaluate the reliability of the model chosen Lee, et al., Journal of Oral Rehabilitation (2007) 34, 79-87 15 Regression Diagnostics (KKM 212-253) Criteria for goodness of fit (Rosner pages 487-491, 519-530) e = Y − Yˆ i i i residuals, i=1,2,……,n Standardized Residuals Studentized Residuals (STUDENT) Jackknife Residuals (RSTUDENT) From Kleinbaum, Kupper, Muller, Nizam: applied Regression Analysis and Multivariable Methods. Duxbury, CA, USA 17 From Kleinbaum, Kupper, Muller, Nizam: applied Regression Analysis and Multivariable Methods. Duxbury, CA, USA 18 KKM Page 225 First, graphical presentation (Rosner 520-529 or KKM 225) From Kleinbaum, Kupper, Muller, Nizam: applied Regression Analysis and Multivariable Methods. Duxbury, CA, USA 20 Second, check normal distribution of residuals (KKM 227) check the normality of Studentized Residuals or Jackknife Residuals From Kleinbaum, Kupper, Muller, Nizam: applied Regression Analysis and Multivariable Methods. Duxbury, CA, USA n<50 use Shapiro-Wilks’s test n>=50 use Kolmogorov-Smirnov test p-value>=0.05 indicate normally distributed 21 Third, check independence (KKM 227) 22 Fifth, check outliers (KKM 229-232) compute Durbin-Watson autocorrelation when DW close to 0 and p-value>=0.05 indicate independence Forth, check homogeneity (KKM 227) compute the absolute value of Studentized Residuals or Jackknife Residuals, and check the Spearman rank correlation with all X’s. Correlations close to zeros and nonsignificant indicate homogeneity. From Kleinbaum, Kupper, Muller, Nizam: applied Regression Analysis and Multivariable Methods. Duxbury, CA, USA From Kleinbaum, Kupper, Muller, Nizam: applied Regression Analysis and Multivariable Methods. Duxbury, CA, USA 23 use Jackknife residuals or studentized residuals > t(n-k-2),α/(2n) use Leverage > 2×(k+1)/n use Cook’s D > 1 From Kleinbaum, Kupper, Muller, Nizam: applied Regression Analysis and Multivariable Methods. Duxbury, CA, USA 24 Violation of assumptions collinearity independence linearity homogeneity normality outlier β's, CIs, p-values CIs, p-values β's, CIs, p-values CIs, p-values CIs, p-values β's, CIs, p-values Transformation KKM, pages 251-252 Rosner, pages 489-490 25 26 Any questions? 引用圖文出處: Rosner: Fundamentals of Biostatistics, 6th. Wadsworth Publishing Company. KKM: Kleinbaum, Kupper, Muller, Nizam: applied Regression Analysis and Multivariable Methods. Duxbury, CA, USA 27
© Copyright 2025 ExpyDoc