Symmetry Breaking and Topological Defect Formation in Ion Coulomb Crystals Tanja E. Mehlstäubler J. Keller, K. Pyka, H. L. Partner, T. Burgermeister, D.M. Meier, K. Kuhlmann Center for Quantum Engineering and Space Time Research (QUEST) Physikalisch-Technische Bundesanstalt, Braunschweig Ramil Nigmatullin, Alex Retzker, Martin Plenio, Adolfo del Campo, Wojciech Zurek Universität Ulm, Hebrew University Jerusalem, Los Alamos NL ECRYS 2014, Cargese, 12. August 2014 PTB – national metrology institute Braunschweig ~ 2000 employees Founded 1887: by Werner von Siemens and Hermann von Helmholtz Time & Frequency Metrology Single ion as atomic reference Trap Depth ~ 104 K νsec single Yb+-ion 3D-Paul trap Yb+ ion clock: ∆ν/ν = 4 x 10-18 Nobel Prize 2012: Dave Wineland (NIST) “for groundbreaking experimental methods, that allow to manipulate and measure single quantum systems.” (1) priv. comm. E. Peik ~10 nm Multi-ion clocks Now needed: „experimental methods, that allow to manipulate and measure many-body quantum systems.” ? single Yb+-ion Coulomb crystal of Yb+-ions Quantum Metrology ↔ Quantum Simulation & Information Scalable Ion Trap Prototype low micromotion non-magnetic UHV proof 3D laser access Low pass filters N. Herschbach et al., Appl. Phys. B 107, 891 (2012) Pyka et al., Appl. Phys. B (2013), DOI: 10.1007/s00340-013-5580-5 Trap stack with OFHC Cu Foil Experimental Setup • Single-ion resolution • 3D laser access! Coulomb crystals in well-controlled environment 172Yb+ Coulomb crystals ca. 80 ions Phases of Coulomb Crystals (172Yb+) Coulomb crystals: Ekin < Epot With simple Doppler laser cooling: T = 1 mK Symmetry Breaking and Topological Defect Formation in Ion Coulomb Crystals Landa, H., Marcovitch, S., Retzker, A., Plenio, M. B., Reznik, B. “Quantum Coherence of Discrete Kink Solitons in Ion Traps”, PRL 104, 043004 (2010). Del Campo, A., De Chiara, G., Morigi, G., Plenio, M. B., Retzker, A. “Structural Defects in Ion Chains by Quenching the External Potential: The Inhomogeneous Kibble-Zurek Mechanism”, PRL 105, 075701 (2010). Ion Coulomb Crystals 1D 2D 3D Trap Potential Example: linear to zigzag transition Eigenmodes across phase transition Fishman et al., PRB 77, 064111 (2008) Phonon Spectrum Symmetry breaking phase transitions What happens when a system changes from one equilibrium condition to another? • Examples for phase transitions: - water freezes to ice - ferro-magnetism Ø para-magnetism - metal Ø superconductor - early universe Higgs field Nature Physics 7, 2 (2011) doi:10.1038/nphys1874 Symmetry breaking in ion Coulomb crystals Rotational symmetry νt(t) Mirror symmetry defects ? U U Ψ Ψ 1: Fishman et al., PRB 77, 064111 (2008) 2nd order phase transition1 Examples for defects in other systems Griffin, S. M. et al., Phys. Rev. X 2, 041022 (2012) jpl.nasa.gov - ferro-electric domains in solid state systems (manganites) - early universe: appearance of domains? The Kibble-Zurek Mechanism 1976: Tom Kibble postulates the appearance of domains in the early Universe 1985: Wojciech Zurek proposes to test cosmology in super-liquid helium universal theory applicable to all 2nd order phase transitions Chuang et al., Science (1991) Ruutu et al., Nature (1996) Sadler et al., Nature (2006) Weiler et al., Nature (2008) Griffin et al., Phys. Rev. X (2012) liquid crystals super-liquid helium Bose-Einstein condensates superconductors The Kibble-Zurek Mechanism 1976: Tom Kibble postulates the appearance of domains in the early Universe 1985: Wojciech Zurek proposes to test cosmology in super-liquid helium universal theory applicable to all 2nd order phase transitions → test in laser-cooled ion Coulomb crystals! The Kibble-Zurek Mechanism ξ system size test of KZM with defined ν, z del Campo et al., PRL 105, 075701 (2010) Fishman et al., PRB 77, 064111 (2008) The Kibble-Zurek Mechanism Prediction of KZM Power law scaling of defect density: test of KZM with defined ν, z Harmonic Ion Traps – Inhomogeneous Case Inhomogeneous and finite system! Harmonic Ion Traps – Inhomogeneous Case • Ions in harmonic potential: phase transition spreads out from center! • Phase front faster than speed of sound! Del Campo, A., De Chiara, G., Morigi, G., Plenio, M. B., Retzker, A.,PRL 105, 075701 (2010). The Kibble-Zurek Mechanism Prediction: Log [Probability] ion traps - Log [Duration of Ramp] Experiment: non adiabatic radial quenches Radial trap frequencies exp. details in Pyka et al., Nat. Comm 4, 2291 (2013) Examples of kink creation Demonstration of stable defects in Coulomb crystals! Localized (Odd) Defect Extended Defect Collision limited lifetime: ca. 1.6 s νt1/νt2 = 1.3 Understanding kink dynamics – short time scales • Kink losses at short time scales – simulations! Simulations for different friction parameters - Kibble-Zurek filled symbols: created empty symbols: surviving Friction independent kink creation rate → underdamped regime! ν = ½; z = 1 Scaling of defect density with quench time excluded by simulations • Theory(1): 8/3 º 2.67 • Experiment: 2.7 ± 0.3 Pyka et al., Nat. Com. 4, 2291 (2013) BS Ulm et al., Nat. Com. 4, 2290 (2013) Mainz G. Nikoghosyan et al., „Universality in the dynamics of second-order phase transitions”, arXiv:1311.1543 (2013) (1) del Campo et al., PRL 105, 075701 (2010) Kink Dynamics Stability of topological defects Peierls-Nabarro Potentials: Partner et al., New J. Phys. 15, 103013 (2013) Motion of Kinks - Simulations PN potential / kB mK odd kink x / µm quench PN potential / kB mK extended kink x / µm Motion of Kinks - Experiment motion of localized kink motion of extended kink Influence of Mass Defects Mass defects Spatial distribution of kinks two kinks – kink interaction! Mass defects The Peierls-Nabarro Potential: Radial (ponderomotive) trapping potential: extended kink: two kinks: odd kink: Partner et al., New J. Phys. 15, 103013 (2013) Deterministic Control of Kinks with Mass Defects & Electric Fields Combine Kink Oscillation & Mass Defect Thermally activated Oscillation of Kink Kink = higher charge density credit: R. Nigmatullin Oscillation and stabilization by mass defects II: Electric Fields and Mass Defects creating kink & anti-kink without a quench time E-field ramp II: E-field Creating Kink & Anti-Kink E-field ramp time Partner et al., New J. Phys. 15, 103013 (2013) Outlook - Applications Outlook – quantum information • Soliton physics with laser cooled ions defects behave like quasi-particles Long coherence times of localized internal modes: Landa et al., PRL (2010) Trapping of 2D & 3D kinks: Tobias Schätz, Uni Freiburg Mielenz et al., PRL (2013) Outlook – quantum information • Soliton physics with laser cooled ions defects behave like quasi-particles Long coherence times of localized internal modes: Landa et al., PRL (2010) Trapping of 2D & 3D kinks: Tobias Schätz, Uni Freiburg Mielenz et al., PRL (2013) Outlook – quantum information • Soliton physics with laser cooled ions defects behave like quasi-particles Entanglement generation using kink solitons: Landa et al., arXiv:1308.2943(2013) Trapping of 2D & 3D kinks: Mielenz et al., PRL (2013) Long coherence times of localized internal modes: Landa et al., PRL (2010) Outlook – Friction / Frenkel-Kontorova • tribology with ion Coulomb crystals • observing Aubry transition Peyrard and Aubry, J. Phys. C 16, 1593 (1983) Pruttivarasin et al., N. J. Phys. 13, 075012 (2011) Benassi et al., Nat. Commun. 2, 236 (2011) Outlook – heat transport • investigation of heat transport Ø optical frequency standard • quantum thermodynamics Bermudez, A., Bruderer, M. & Plenio, M. B. PRL (2013) Coulomb crystal with impurities (In+ / Yb+) γ = 194 MHz 115In+ 1P 1 159 nm γ = 360 kHz 3P 1 230.5 nm 3P 0 172Yb+ γ = 0.8 Hz Crystal modes 236.5 nm 1S , 0 411 nm F = 9/2 Spectroscopy of internal DOFs / spin of ions • Sideband spectroscopy + Ground state preparation • Coherent laser-atom interaction: Jaynes-Cummings Hamiltonian: Spectroscopy of internal DOFs / spin of ions 5 x 10-16 → Keep length between cavity mirrors constant to < 0.05 fm ! Spectroscopy of internal DOFs / spin of ions • Sideband spectroscopy + Ground state preparation • Coherent laser-atom interaction: First observed Rabi-flops: T ~ 50 µK T ~ 1 mK Bermudez, A., Bruderer, M. & Plenio, M. B. PRL (2013) The experimentalist team: T.E.M. Kristijan Jonas Keller Karsten Pyka Tobias Burgermeister Kuhlmann Keshav Thirumalai Heather Partner David Meier In cooperation with: visiting scientists: Funding: E. Peik, P. O. Schmidt L. Yi, S. Ignatovich European Network „Ion Traps for Tomorrow's Applications“ DPG bilateral grant with RFBR EMRP JRP„Optical Clocks with Trapped Ions“ www.quantummetrology.de
© Copyright 2024 ExpyDoc