§3.5 Implicit Differentiation and Logarithms Page 1/5 Stewart and Clegg, Brief Applied Calculus (Int’l/E) §3.5 Implicit Differentiation and Logarithms 開課班級: 統計系1A 微積分 授課教師: 吳漢銘 (淡江大學 數學系 專任副教授) 教學網站: http://www.hmwu.idv.tw 系級: 1 學號: 姓名: Implicit Differentiation 1.1 The method of implicit differentiation consists of differentiating both sides of the equation with respect to x and then solving the resulting equation for dy/dx . 1.2 When differentiating expressions containing y we must remember that y represents a function of x and so the Chain Rule applies. Ex. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (example1, p179) (a) If x2 + y 2 = 25, find dy/dx. (b) Find an equation of the tangent line to the circle x2 + y 2 = 25 at the point (3, 4). sol: Calculus October 28, 2014 §3.5 Implicit Differentiation and Logarithms Page 2/5 Ex. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (example2, p180) (a) Find dy/dx if x3 + y 3 = 6xy, . (b) Find an equation of the tangent line to the folium of Descartes x3 + y 3 = 6xy at the point (3, 3). sol: 2 2.1 Derivative of the Natural Logarithmic Function d (ln x) = dx 1 x proof: 2.2 d ln u = dx 1 du u dx or d ln g(x) = dx g ′ (x) g(x) Ex. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (example4, p182) If g(t) = 3t − 4 ln t, find g ′ (t). What is the slope of the graph at t = 1. sol: Calculus October 28, 2014 §3.5 Implicit Differentiation and Logarithms Page 3/5 Ex. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (example5, p182) Differentiate y = ln(x3 + 1). sol: Ex. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (example6, Find p182) d ln(x2 + 3ex ). dx sol: Ex. 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (example7, Differentiate f (x) = √ p183) ln x. sol: Calculus October 28, 2014 §3.5 Implicit Differentiation and Logarithms Page 4/5 Ex. 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (example8, p183) Find f ′ (x) if f (x) = ln |x|. sol: 3 The Number e as a Limit 3.1 The Number e as a Limit e = lim (1 + x)1/x x→0 proof: 3.2 e ≈ 2.7182818 3.3 The Power Rule If n is any real number and f (x) = xn , then f ′ (x) = nxn−1 . proof: Calculus October 28, 2014 §3.5 Implicit Differentiation and Logarithms Page 5/5 - Exercises §3.5 3-10 Find dy/dx by implicit differentiation. 5. x3 + x2 y + 4y 2 = 6 8. √ x + y = 1 + x2 y 2 9. ex 2y =x+y 10. y 5 + x2 y 3 = 1 + yex 2 11. If f (x) + x2 [f (x)]3 = 10 and f (1) = 2, find f ′ (1). 18. Use implicit differentiation to find an equation of the tangent line to the curve y 2 (y 2 − 4) = x2 (x2 − 5) at the given point (0, −2). 21-38 Differentiate the function. 25. y = (ln x)5 26. f (x) = ln(x2 + 10) (2t + 1)3 (3t − 1)4 √ 3u + 2 34. G(u) = ln 3u − 2 31. F (t) = ln 35. y = ln(e−x + xe−x ) 37. y = ln(ln x) 40. Find f ′ and f ′′ : f (x) = ln x x2 47. Use the change of base formula loga x = ln x d 1 to show that loga x = . ln a dx x ln a 48. Find the derivative of the logarithmic function. (a) f (x) = log2 (1 − 3x) (b) f (x) = log5 (xex ) Calculus October 28, 2014
© Copyright 2025 ExpyDoc