AE 483 Automatic Control Systems II Fall 2014 Wednesdays, 9:40-12:30, Room#128 Assoc.Prof.Dr. Ilkay Yavrucuk Office No: 102 Email: [email protected] Website: http://www.ae.metu.edu.tr/~ae483/ Course Description: This course aims to give the fundamentals of control theory and applications beyond classical control. Course topics are more advanced than those of typical undergraduate level control courses, however they serve as a transition to more advanced topics in control engineering. Topics in this course include state feedback controller design, MIMO systems, concepts of observability, controllability, observer design, an introduction to Lyapunov`s stability analysis, optimal control and LQR controller design. Aerospace systems will be used as examples throughout the course and in homework and projects. Possibly, lab sessions will provide a medium for hands-on application. At the end of the course students should be able to tackle the controller design of complex systems with more confidence. Text Book: No real texbook References: K.Ogata,”Modern Control Engineering,” 3rd or 4th Edition, Prentice Hall N.S. Nise,”Control Systems Engineering,” 3rd Edition, Wiley, 2000 R.C.Dorf, “Modern Control Systems,” Prentice Hall, 2004 A.E. Bryson, Y.Ho, “Applied Optimal Control: Optimization, Estimation, and Control,” Hemisphere Pub., 1981 G. Strang, ”Linear Algebra and its Applications,” Brooks, Cole, 1988 R.C.Nelson, “Flight Stability and Automatic Control,” McGrawHill, 2nd Edition, 1997 Course Topics: 1. Introduction and Review a. Review on Linear Algebra b. Eigenvalues, Eigenvectors c. Decomposition, Canonical Forms 2. State Feedback Controller and Observer Design a. Observability, Controllability b. State Feedback Controller Design c. State Observer Design d. The Integral Controller e. Model Following Controller f. Applications in Aerospace Engineering 3. Linear Quadratic Regulator (LQR) Design a. The Optimal Controller Problem b. The Optimization Problem c. Derivation of the Algebraic Riccati Equation d. LQR Controller Design e. Applications in Aerospace Engineering 4. Lyapunov Stability Analysis a. Stability in Nonlinear Systems b. Lyapunov Stability Proof Grading (+/-5%): 1 Midterm (12. Nov, 17:45) (30%) , 1 Group Project with Presentation (20%), 1 Final (35%), ~3HWs (%15), Lab Sessions (possibly) Some homework problems and lab sessions might require the use of computer tools like Matlab or Simulink. It is essential that you get familiar and know how to use these tools.
© Copyright 2024 ExpyDoc