Steel coating application for engine block bores by Plasma Transferred Wire Arc spraying process (PTWA) J.M.BORDES – [email protected] Coatings ‐ Corrosion specialist (product/process) Some sweets against turbulent years… Peugeot 508 RXH Citroën C4 Picasso Peugeot 4008 Peugeot 2008 Ligne DS Scooter Métropolis Just for fun, remember in 2013, Pikes Peak! • • • • 19.9 km hill climb 1436 m altitude difference 156 corners record: 9'46''164 208 T16 V6 biturbo 3.2 l 875 ch for 875 kg 0 to 100 km/h: 1''8 new record: 8’13’’878 140 km/h mean Outline Introduction Thermal spraying in engine block bores PTWA process PTWA coatings applied to PSA bores Conclusions CO2 emissions reducing global reduction of emissions in automobile field objectives of CAFE are to decrease CO2 emissions decrease of polluting emissions as NOx CAFE: Corporate Average Fuel Economy Solutions against emissions Solutions like…. Car weight reduction (downsizing), Combustion improvement, Hybridisation & Electrification of vehicles (mild/full hybrid, plug‐in, stop and start…) Powertrain friction reduction Solutions against emissions Overview of relevant friction fields and ways of reducing their intensity Daimler AG, Stuttgart Sliding Surface technologies For Al engine blocks Overview Although the development of Al sliding surfaces for gazoline engines has progressed considerably (ALUSIL® introduced extensively in engine production), for diesel engines, cylinder liners made of grey cast iron still represent the norm for applications. (ALUSIL® : hyper eutectic Al‐17%Si alloy) KS Demands to a thermal Coating Function high hardness and wear resistance, high deformation resistance tribological benefit, defined porosity, high bond strength Production saved process of process sequence, short cycle time and high machining property Economics costs benefit compared with conventional liner technology Target substitution of Liner materials (Cast Iron, AlSi, Nikasil) materials by thermal PTWA‐coating Benefits of thermal spray coatings Decreasing weight : ‐2,3Kg on V6 block and ‐3,9Kg on V8 block Benefits of thermal spray coatings Augmentation de cylindrée en conservant l’architecture existante. Chemise 2/4mm – Revêtement 150/200µm Benefits of thermal spray coatings Downsizing : Reduction of design length by dispense of cast iron liner (per cylinder ~ 2 x 3mm at GI against 2 x 0,1 mm at Thermal spray Coatings design length benefit DV6 block : IF de 8,3mm Coated block : IF de 7,0mm Benefits of thermal spray coatings Amélioration de la tenue thermomécanique : conductivité thermique augmentée (absence de lames d’air, épaisseurs d’acier plus faibles), passages d'eau aux inter‐fûts plus efficaces A l’IF (178 ‐> 166°C) sur un carter DV6TED4 Carter cylindres BMW 328i Moteur 2.0L essence turbo injection directe Thermal spray coating morphology SEM views of steel splat on aluminum substrate Thermal spray coating morphology With nitrogen jet from the nozzle With air jet from the nozzle SEM views of steel PTWA splats on aluminum substrate Processes of thermal spray aluminum based cylinder blocks are coated inside bores with a ferrous coating by thermal spray (Iron/C) thermal spray process applied to bore coating: RotaPlasma (Sulzer Metco) PTWA (Plasma Transferred Wire Arc, Flame Spray Industries, Ford) LDS (Lichtbogen Draht Spritzen, DaimlerChrysler) TWAS HVOF Industrialized rotary TS processes Sulzer‐Metco Rotaplasma plasma + powder Flame Spray Industries GTV PTWA plasma + wire Daimler Chrysler LDS arc + 2 wires Industrialized rotary TS processes Rotaplasma Sulzer‐Metco PTWA GTV LDS Daimler Chrysler Industrialized rotary TS processes V8 5.4L FORD MUSTANG SHELBY GT500 MRP + 1 wire/plasma FORD, NISSAN, (PORSCHE) Others : thermal spray repair of engine blocks • Land Rover 3.5L / 4.2L V8 diesel engines (AlSi engine blocks with cast in grey cast iron liners), • Monolithic BMW 4.4 l diesel engines (hypereutectic AlSi engine), • Ford Puma 2.4 l, monolithic 4 cylinder cast iron block • CATERPILLAR, 10 PTWA devices in Franklin plant, Indiana (USA) V6 3.8L ‐ NISSAN GT‐R Moteur Nbre de cylindres Année d'introduction Véhicules Puissance (kW) LUPO FSI 1,4L SWISS AUTO Biland SUTER Racing BUGATTI W16 V10 Racing V8 Racing 4 2 1 16 10 8 V4 Motorcycle Racing V10 TDI R5 EA 115 THIELERT L4 V12 4 10 5 4 12 2000 2000 2002 2003 1999 2004 2007 2004 2002 2003 2006 2007 LUPO de VW Go-Kart Racing Go-Kart Racing BUGATTI Exclusive FORMULE 1 FORMULE 1 et 2000 NASCAR (DC) Moto GRAND PRIX TOUAREG, PHAETON VW TOUAREG, Van T5 VW Small Aircraft LMP1 Le Mans 77 20 20 > 700 > 550 > 450 > 600 > 150 230 130 100 > 600 MO T S D E UR IE S EL M O TE U R ES SE N C E Industrialized rotary TS processes Grit blasting + Plasma powders VAG (VW, BUGATTI) V10 Tdi 5.0L in Touareg and Phaeton R5 Tdi in Touareg/Transporter, 0,8L Tdi 2ccyl inside the « Up » (hybrid) Others : V6 boat engine, 3 Ccyl of JetSki Industrialized rotary TS processes Water Jet + 2 wires arc DAIMLER, BMW BMW 328i (2.0L) Z4 sDrive28i V8 6.3L (M156 in AMG VHLs), V6 3.0L diesel (ML 350 BlueTEC ), and 4 Cyl. in A45 (AMG, 2017) Others : 2 LDS bores in R1200GS Industrialized rotary TS processes Sulzer‐Metco Flame Spray Industries ‐ GTV Daimler Chrysler Rotaplasma PTWA LDS porosity (1‐2%) oxides (10‐15%) hardness (430 HV0.3) porosity (1‐2%) oxides (20‐40%) hardness (600 HV0.1) porosity (2‐10%) oxides (1‐2%) hardness (400 HV0.3) Steps of bore coating The preparation of an aluminum engine block is divided in 4 steps : 1. 2. 3. 4. Machining : dimension Activation : bonding Spraying : coating Honing : smooth J.M.BORDES, PSA Peugeot Citroën Surface activation bonding strentgh > 30 MPa homogeneity and reproducibility of the surface profile mechanical roughening high pressure water jet grit blasting Surface activation choice grit blasting cost cycling time per bore high compression strength very used low qualification level for staff large activated area with simultaneous cleaning low qualification level for staff other possible applications : cleaning, cutting, etc. very aggressive for soft materials non homogenous surface get long cycling time drying step necessary to avoid corrosion very homogenous activation profile control and modification very high bonding strength of the coating long cycling time tool cost tool wear control to preserve the profile water jet mechanical roughening inclusion of corundum particles at the surface cleaning after process decrease of the corundum average size all along the process PSA‐LERMPS and PTWA process why PTWA ? Ford collaboration. Ford with Flame Spray Industries have always developed the PTWA process with an industrialization: it’s a grown process with Ford Shelby and Nissan GT‐R cars Process available at GTV company (Germany) Rotaplasma has a high industrial maturity but is expensive No other processes available in the market grit blasting choice, why ? high series considered, not only competition and high‐end Lot of solutions tested (available or not in the market) cost reduced Surface activation examples Pas et Profondeur variables Plusieurs profils à contre dépouilles Surface activation Grenaillage « Sablage » Usinage mécanique « droit » Usinage mécanique « contre dépouilles » Autres (promoteurs d’adhérence, couples) Surface activation 360° rotary grit blasting device to keep particle impact at 90° to the surface RotaBlast system of Sulzer‐Metco motor for motion corundum out corundum in rotary deviation air nozzle PTWA process plasma gases pass around the cathode a high voltage discharge is applied between the cathode and the nozzle leading to plasma creation due to the small nozzle exit and the high pressure inside, the plasma is elongated and forced to be transferred outside from the torch to the wire extremity (new anode) the wire tip is melted. Because of the high pressure plasma gases and the atomizing gas blowing, atomized particles are generated and accelerated a constant current maintains the plasma from the cathode to the wire which is itself in movement then the gun head, mounted to a rotating spindle, can rotate Pictures captured from a high speed movie of wire melting of PTWA process Some PTWA Coating characteristics XRD pattern The steel phase is found as the two oxides FeO (Wustite) and Fe3O4 (Magnetite) ones. They work as a self lubricating material, similar to the graphite lamellas in grey cast iron. Wuestite has a cubic closed packed structure, due to its crystallographic shearplane it acts as a low shear strength, lubricious oxide. 31 After honing, friction tests Cameron Plint load applied load segment frequency used bore + coating sample friction coefficient temperature lubricant temperature load, frequency After honing, friction tests load segment displacement sensor comparative test: cast iron liner PTWA coating coated bore piece lubricant container After honing, friction tests Essais Cameron Plint 3 fontes de référence testées avec 2 types d’huiles moteur : MA4FE (5W30) et MA6 (0W30) Gains PTWA ‐20 à ‐30% du frottement avec le PTWA (zone < 100°C) Référence : chemise fonte DV6 série (moteur 1.6L Hdi) Segmentation/rodage série 34 After honing, friction tests SPC machine friction mean effective pressure engine speed After honing, friction tests ‐10% ‐25% Essais Banc Monocylindre Caractérisation des chemises fontes et PTWA Etude en cours : rodage/segmentation/conso d’huile 36 After honing, friction tests FMEP (friction mean effective pressure ): according to the honing finishing and the lubricant used, PTWA coating can induce a real decrease of the friction mean effective pressure (≈25%) For further application, all the system has to be adapted: the surface finishing of the PTWA coating the lubricant the segment coating material etc. Conclusions In the last 10 years, friction losses improvement was the most efficient way to optimize the CO2 emissions, working on geometry, surface and oil Different processes permit to manufacture coatings in engine block bores. For PSA application, the PTWA process with grit‐blasting surface activation leads to a reliable bonding strength. First friction tests are promising for gazoline and diesel engine applications. CO2 potential : ‐3% (diesel) and ‐2,5% (gasoline) Pour une production cible de 1 500 blocs cylindres /jour : Investissement >5 M€ Augmentation du PRF / bloc : ≤ 8% Nécessité d’une production « de masse » après une cible niche Merci pour votre attention Nous remercions également MOV’EO Pour toute question Produit/Process, contact : [email protected] 39
© Copyright 2024 ExpyDoc