hBN-caged graphene

hBN-caged graphene
Marcin Mucha-Kruczynski, Xi Chen, John Wallbank, Vladimir Falko
Andre Geim & National Graphene Institute @Manchester
Klaus Ensslin group @ETH
•
•
Lifshitz transition in gapped BLG
Magnetic (Brown-Zak) minibands due to moiré superlattice in
monolayer and bilayer graphene
Bilayer graphene with a gap
Oostinga, et al - Nature Mat 7, 151 (2008)
Zhang, et al - Nature 459, 820 (2009)
1eV

hBN allows for better
quality and larger Ez
T. Ohta et al – Science 313, 951 (2006)
(Rotenberg’s group at Berkeley NL)
u  Ez d
3
1
skew inter-layer
3  3a
~
v


~ 0.1v
3
AB hopping
2 
  p x  ip y  pei
0 v  A
 12 u v3
 ~ 
 

1
0  B 
 v3  2 u v
H 
~


1
0
v  2 u  1 A
 
 
 v
1  
0

1
2 u  B 

McCann, VF ‐ PRL 96, 086805 (2006)
Gapped BLG:
intricate band
features due to
trigonal warping
F
1
2
u
u
p~
v 2
u
v3  1
~ 14meV
v 8
 1 12 ( u1 )2  2 u1 vv3
F
1
2

u
 1 12 ( u1 )2  2 u1 vv3
 F   12 u
Lifshitz transition in metals
• Topology of the Fermi surface changes, DoS diverges
• Cyclotron orbits in magnetic field change circulation
• Magnetic breakdown - field mixes disconnected parts
of Fermi surfaces, at δp~1/λB.
u
p3 ~
v 2
F
1
2
u
 1 12 ( u1 )2  2 u1 vv3
F
1
2
Ilya Lifshitz
1917‐1982
Kharkov/Moscow
u
 1 12 ( u1 )2  2 u1 vv3
 F   12 u
Lifshitz transition,
magnetic breakdown,
and phase transitions
between QHFM states
Varlet, Ihn, Ensslin - ETH
Mucha-Kruczynski, VF

Dirac point generates
a 4-fold degenerate ε=0 Landau level
McClure ‐ PR 104, 666 (1956)
   2n

m
~
0
.
05
m
e

m  0.035me
 0   1 
 ,  
 0 0
v
B




e
p  i  c A, rot A  Bl z
  p x  ip y ;    p x  ip y
descending/raising
operators in LL orbitals
   c n(n  1)
8-fold degenerate ε=0 Landau level, which
splits when inversion symmetry is broken.
McCann, VF ‐ PRL 96, 086805 (2006)
 12 u


v

 3
H 
0
 
 v

v3
v 


1
0
 2 u v
v  12 u  1 

1 
0
1
2 u
0
E [eV ]
u  0.08eV
valley K
valley K '
B [Tesla]
u  0.08eV
6-fold (2 x spin and 3 x orbital)
degenerate LL
at small magnetic fields
valley K
E [eV ]
ν = -3
B [Tesla]
spin polarised
(ferromagnetic) QHE state
ν = -6
unpolarised QHE state
magnetic breakdown
E [eV ]
B [Tesla]
E [eV ]
ν = 0,-1,-2
ferromagnetic
and normal QHE
Landau level crossing
Polarised
ν = -3,-5 QHFM gaps vanish
and ν = -4 undergoes
ferromagnetic transition.
ν = -3,-5
ν =-4,-6
QHE
B [Tesla]
Varlet, Ihn, Ensslin - ETH
Mucha-Kruczynski, VF
Highly oriented hBN-graphene heterostructures
Geim (Manchester)
highly oriented
graphene-BN:
Jarillo-Herrero (MIT)
heterostructure
with new
electronic
properties
highly oriented BLG-hBN heterostructures
Kim (Harvard) & Hone (Columbia)
Due to a separation between layers larger
than distance between atoms within the
layers, moiré perturbation is dominated
by the simplest spatial harmonics
Lopes dos Santos, Peres, Castro Neto - PRL 99, 256802 (2007)
Lopes dos Santos, Peres, Castro Neto - arXiv:1202.1088 (2012)
Bistritzer, MacDonald - PRB 81, 245412 (2010)
Kindermann, Uchoa, Miller - Phys. Rev. B 86, 115415 (2012)


4
  

3a 
ˆ
b0  bG  bBN  1 (1 )R  
0

3
| b0 | b 
 2  2
4a
lattice mismatch
1.8% for G/hBN
misalignment
<20

b0

b1



b2

b5
'

''

b3

b4
Effective low-energy ‘Dirac theory’ for electrons
Phenomenological approach to classify generic
miniband structure caused by a moiré
perturbation.

Hmoire
graphene sublattice
graphene valley
inversion symmetric
inversion asymmetric
eliminated
by a gauge
transformation
inversion symmetric
inversion asymmetric
inv-asymm (honeycomb)
~
gap  24vb | u1u
0
gap
 u0u~1 | 1
~| u~ | vb
Wallbank, Patel, Mucha-Kruczynski, Geim, VF - PRB 87, 245408 (2013)
Chen, Wallbank, Patel, Mucha-Kruczyński, McCann, VF - PRB 89, 075401 (2014)
vb
Brown, PR 133, A1038 (1964); Zak, PR 134, A1602 & A1607 (1964)
  0 , 0 
p
q
h
e
Magnetic minibands at
rational values of magnetic
field flux per super-cell
‘Magnetic lattice’ with a q2 times bigger supercell
and q2 times smaller Brillouin minizone.
Each state in this Brillouin minizone is q times degenerate.
Branded as ‘Hofstadter butterfly’ spectrum.
‘Magnetic lattice’
with a 9 times bigger
supercell


GqM  { R , R  qm1a1  qm2 a2 }  GM
Generations of Dirac electrons in Zak’s
magnetic minibands in moiré superlattices
Magnetic minibands at
H Dirac
  0 - gapped Dirac electrons
p
q

 
e
 vmDP (k  c A)    12 u z
1
2
0
Chen, Wallbank, Patel, Mucha-Kruczyński, McCann, VF - PRB 89, 075401 (2014)
 / 0
Quantum Hall ferromagnetism in moiré superlattices
capacitance spectroscopy
Yu, Gorbachev, Tu, Kretinin, Cao, Jalil, Withers, Ponomarenko, Chen, Piot, Potemski, Elias, Watanabe,
Taniguchi, Grigorieva, Novoselov, VF, Geim, Mishchenko (2014)
n0
n' 0
SU 4
n' 0
B1/1
B
N 0
N ' 0
N ' 0
B1/1
B
D
N 0
Ec
ν=0, νL=0
D
B1/1
B
ν=0, νL=1
B1/1
B
Reverse
Stoner
transition
n0
~ Ec
ν=-1, νL=0
ν=-1, νL=0
ν=-1, νL=-1
B1/1
B
Highly oriented hBN-caged
bilayer graphene
BLG-hBN heterostructures
Substrate affecting one layer
produces inversion non-symmetric
moiré superlattice potential.
For encapsulated BLG, different
misalignment between BLG and
top/bottom hBN layers has the
same effect (low-energy electronic
properties are determined by the
moiré pattern due to the better
aligned hBN layer.
Mucha‐Kruczynski, Wallbank, VF ‐ PRB 88, 205418 (2013)
BLG-hBN heterostructures
Mucha‐Kruczynski, Wallbank, VF ‐ PRB 88, 205418 (2013)
BLG-hBN heterostructures
Inversion symmetry is
broken because moire
perturbation is applied
only to one layer:
this promotes gaps at
the 1st miniband edge.
gap at the 1st
miniband edge
(VB)
overlapping minibands (VB)
Mucha‐Kruczynski, Wallbank, VF ‐ PRB 88, 205418 (2013)
Zak’s minibands in BLG-hBN heterostructures
BLG K
sublattice B BLG K’
sublattice A’
Chen, Mucha‐Kruczynski, Wallbank, VF (2014)
BLG K’
Zoom in to 0th and 1st LL
MLG K
Zoom in to 0th LL only
BLG K’
hBN-caged graphene
Marcin Mucha-Kruczynski, Xi Chen, John Wallbank, Vladimir Falko
Andre Geim & National Graphene Institute @Manchester
Klaus Ensslin group @ETH
•
•
Lifshitz transition in gapped BLG
Magnetic (Brown-Zak) minibands due to moiré superlattice in
monolayer and bilayer graphene