Quantum criticality in quasi-one dimensional topological nanowires Dmitry Bagrets A. Altland, DB, A. Kamenev, L. Fritz, H. Schmiedt, arXiv: 1402.1738 “New frontiers for Majorana fermions” , Frascati, Italy, 5-6th May Overview • Historical excursus to (disordered) topological matter • Paradigmatic models of 1d AIII and BDI nanowires • Topological Z-index with disorder • Field theory and quantum criticality • Conclusions & outlook IQHE (Class A in 2d) • Two parameter flow Khmelnitskii’84 & Pruisken‘85 Fixed points (g*, n+1/2) with g*~1 (strong coupling limit) ? σxx - average longitudinal conductivity σxy - average topological index quantum critical point 80s Altland-Zirnbauer classification • Symmetries of mesoscopic system Time reversal: U T† Hˆ TU T = Hˆ , U T*U T = ±1 ˆ TU = − Hˆ , U *U = ±1 Particle-hole: UC† H C C C ˆ = − Hˆ Chiral (parity): PHP Altland & Zirnbauer‘ 97 90s 1d Delocalization 90s • Disorder-induced localization D ≤ 2: all electron states are localized (Anderson’58) • Delocalization in quasi-1d geometries (DMPK) 98: AIII quantum wire (Brouwer, Mudry, Simons, Altalnd) 99: D quantum wire (Brouwer, Mudry, Furusaki) 04: AIII, BDI, CII, D, DIII (Gruzberg, Read, Vishveshwara) • Universal interpretation Topological insulators at quantum critical point Classification table of topological insulators & superconductors Kitaev‘ 2009 Ludwig, Ryu, Schnyder, Furusaki‘ 2009 00s Classification table of topological insulators & superconductors Kitaev‘ 2009 Ludwig, Ryu, Schnyder, Furusaki‘ 2009 00s IQHE SQHE Classification table of topological insulators & superconductors Kitaev‘ 2009 Ludwig, Ryu, Schnyder, Furusaki‘ 2009 this talk 00s IQHE SQHE Topological spin-orbit nanowire • 1D spin-orbit-coupled wire in proximity to s-wave superconductor Class BDI or D i ( Δ ± h) ⎞ ⎛ −iu∂ x H ± = ⎜ ⎟ − i ( Δ ± h ) i u ∂ x ⎝ ⎠ Lutchyn, Sau, Das Sarma‘ 2010 Oreg, Refael, von Oppen‘ 2010 Topological spin-orbit nanowire Mourik, Zuo, Frolov, Plissard, Bakkers, Kouwenhoven‘ 2012 p-wave nanowire (Kitaev’s chain) Majoranas j+1 j j-1 N • Model Hamiltonian: L l-1 ( l l+1 ) H = ∑l =1 ⎡ψ l ( µ + tˆ ' )σ 3phψ l + ψ l ( −tσ 3ph + iΔσ 2ph )ψ l +1 + h.c ⎤ ⎣ ⎦ p-wave nanowire (Kitaev’s chain) Majoranas tˆ ' j+1 j j-1 N • Model Hamiltonian: L l-1 ( l l+1 ) H = ∑l =1 ⎡ψ l ( µ + tˆ ' )σ 3phψ l + ψ l ( −tσ 3ph + iΔσ 2ph )ψ l +1 + h.c ⎤ ⎣ ⎦ p-wave nanowire (Kitaev’s chain) Majoranas tˆ, Δ j+1 j j-1 N • Model Hamiltonian: L l-1 ( l l+1 ) H = ∑l =1 ⎡ψ l ( µ + tˆ ' )σ 3phψ l + ψ l ( −tσ 3ph + iΔσ 2ph )ψ l +1 + h.c ⎤ ⎣ ⎦ p-wave nanowire (Kitaev’s chain) Majoranas tˆ, Δ j+1 j j-1 N • Model Hamiltonian: L l-1 l ( l+1 ) H = ∑l =1 ⎡ψ l ( µ + tˆ ' )σ 3phψ l + ψ l ( −tσ 3ph + iΔσ 2ph )ψ l +1 + h.c ⎤ ⎣ ⎦ • Class BDI: Hˆ , σ 1ph = 0, σ 1ph Hˆ T σ 1ph = − Hˆ { } p-wave nanowire (Kitaev’s chain) Majoranas tˆ, Δ j+1 j j-1 N • Model Hamiltonian: L l-1 l ( l+1 ) H = ∑l =1 ⎡ψ l ( µ + tˆ ' )σ 3phψ l + ψ l ( −tσ 3ph + iΔσ 2ph )ψ l +1 + h.c ⎤ ⎣ ⎦ • Class BDI: Hˆ , σ 1ph = 0, σ 1ph Hˆ T σ 1ph = − Hˆ { } p-wave nanowire (Kitaev’s chain) Majoranas tˆ, Δ j+1 j j-1 N • Model Hamiltonian: L l-1 l ( l+1 ) H = ∑l =1 ⎡ψ l ( µ + tˆ ' )σ 3phψ l + ψ l ( −tσ 3ph + iΔσ 2ph )ψ l +1 + h.c ⎤ ⎣ ⎦ • Class BDI: Hˆ , σ 1ph = 0, σ 1ph Hˆ T σ 1ph = − Hˆ { } p-wave nanowire (Kitaev’s chain) tˆ, Δ j+1 j j-1 N • Model Hamiltonian: L l-1 l ( l+1 ) H = ∑l =1 ⎡ψ l ( µ + tˆ ' )σ 3phψ l + ψ l ( −tσ 3ph + iΔσ 2ph )ψ l +1 + h.c ⎤ ⎣ ⎦ • Class BDI: Hˆ , σ 1ph = 0, σ 1ph Hˆ T σ 1ph = − Hˆ { } p-wave nanowire (Kitaev’s chain) lattice constant • Long-wave limit: 1 m= 2, ta u = Δa ⎛ µ + p 2 2m ⎞ −iup ⎟ ψ p H = ∑ψ p ⎜ 2 ⎜ ⎟ iu p − µ + p 2 m ( ) p ⎝ ⎠ • Class BDI: Hˆ , σ 1ph = 0, σ 1ph Hˆ T σ 1ph = − Hˆ { } µ µ3 µ2 µ1 Topological Z-index n=0 +π n=1 n=2 n=3 dk n = −i ∫ tr(Qk−1∂ k Qk ) 2π −π Chiral basis: 0 tI 1 tdeik n= ∫ µ + teik 2π i — ⎛ H k = ⎜ T ⎝ Qk Qk ⎞ ⎟ ⎠ Im(eik) Re(eik) bI Disordered p-wave nanowire Majoranas j+1 j j-1 N • Inter-chain random hopping: L H V = ∑ l =1ψ l Vˆ3,lσ 3phψ l , l-1 l l+1 Vˆ3,ijlVˆ3,i l' j ' = ( w2 N ) (δ ii 'δ jj ' + δ ij 'δ ji ' ) RMT approach Disordered p-wave nanowire Majoranas j+1 j j-1 N • Inter-chain random hopping: L H V = ∑ l =1ψ l Vˆ3,lσ 3phψ l , l-1 l l+1 Vˆ3,ijlVˆ3,i l' j ' = ( w2 N ) (δ ii 'δ jj ' + δ ij 'δ ji ' ) RMT approach µ µ3 µ2 µ1 Phase diagram of tI-wire n=0 ? n=1 n=2 Disorder n=3 0 tI bI w tAI AI Phase-transition points quantum critical lines Winding number in k-space obviously does not work (: How to define Z-index of a random chain? Scattering matrix • Landauer-Büttiker approach to e/h transport !r t'" ˆ S =# $ t r ' % & • DMPK decomposition Lyapunov exponents "U # " th(λ / 2) 1/ ch(λ / 2) # " U ' # ˆ S =$ % $ 1/ ch(λ / 2) − th(λ / 2) % $ % V V ' ' (' (' ( λ=diag(λ1, ... λ4N), λ‘s can have either sign! Bound states Ψ= rTrSΨ det (1 − rˆT rˆS ) = 0 Majorana = 1/2 ( Andreev bound state at E=EF) Scattering approach Fulga, Hassler, Akhmerov, Beenakker‘ 2011 symmetry class D topological phase Z2 DIII Z2 x S = −S T spin-rotation sym. chiral symmetry reflection matrix topological number AIII Z Z S = ST x x S = S* p-h symmetry time-reversal sym. BDI x S 2 = −1 x r=r yes, x * Z S = Σ y S *Σ y S = ΣyST Σy x S2 = 1 r = r * = −r T r = r * = r T sgn Det r sgn Pf r CII ν (r ) r = r+ ν (r ) v = number of negative (w.r.t trivial insulator) eigenvalues r = r + = Σ y rT Σ y 1 2 ν (r ) Parity current {P, Hˆ } = 0 • Quest for the field theory? - one needs „sources“ ξ=ξ1– ξ0 iP(ξ 1 −ξ 0 ) iPξ 0 iPξ 1 ˆ ˆ ˆ H 01 → e H 01e = H 01e Axial flux ξ=ξ1– ξ0 is attached to a link 0 1 2 Parity current {P, Hˆ } = 0 • SUSY partition function Z (θ ,ϕ ) = Axial gauge field fermions (ξ->θ) det ⎡⎣i 0+ − H F (θ ) ⎤⎦ det ⎡⎣i 0+ − H B ( −iϕ ) ⎤⎦ bosons (ξ->-i!) dis Dyson symmetry classes: Nazarov’94; Rejaei’ 96 Frahm & Brouwer’ 96 BdG classes (CI,DIII): Lamacraft, Simons, Zirnbauer‘2004 Parity current Conserved current, a ‘‘counter‘‘ position is irrelevant! {P, Hˆ } = 0 • SUSY partition function Z (θ ,ϕ ) = Axial gauge field fermions (ξ->θ) det ⎡⎣i 0+ − H F (θ ) ⎤⎦ det ⎡⎣i 0+ − H B ( −iϕ ) ⎤⎦ • Axial current of P-symmetry J P (ϕ ) = ∂θ Z (θ , ϕ ) θ =− iϕ bosons (ξ->-i!) dis Parity current • P-current is a ‘CGF’ of Lyapunov exponents i J P (ϕ ) = 2 2N ⎛ ϕ − λn ⎞ th ⎜ ∑ ⎟ 2 ⎝ ⎠ n =1 dis Parity current • P-current is a ‘CGF’ of Lyapunov exponents i J P (ϕ ) = 2 2N ⎛ ϕ − λn ⎞ th ⎜ ∑ ⎟ 2 ⎝ ⎠ n =1 dis • (Thermal) conductance g = −4i∂ϕ J (0) = ∑ ch −2 ( λn 2 )= tr ( tˆ+tˆ ) n R. Landauer’57, M. Büttiker‘88 Parity current • P-current is a ‘CGF’ of Lyapunov exponents i J P (ϕ ) = 2 2N ⎛ ϕ − λn ⎞ th ⎜ ∑ ⎟ 2 ⎝ ⎠ n =1 dis • Topological index 1 1 χ = iJ P (0) = ∑ th ( λn 2 )= tr ( rˆP ) 2 n 2 Fulga, Hassler, Akhmerov, Beenakker‘ 2011 Parity current • P-current is a ‘CGF’ of Lyapunov exponents i J P (ϕ ) = 2 2N ⎛ ϕ − λn ⎞ th ⎜ ∑ ⎟ 2 ⎝ ⎠ n =1 dis • Density of λ‘s 1 π Re J p (ϕ − iπ ) = ∑ δ (ϕ − λ ) n n Cf. Nazarov‘ 94 dis Field theory (NLσM) • SUSY partition function twisted boundary conditions T ( L) Z L (θ ,ϕ ) = ∫ 1 DT exp ( − S [T ]) , T ( L) = diag ( eϕ , eiθ ) BF Supermatrix field T lives in a symmetric space • Class AIII wire: T ∈ GL(1 |1) - group manifold • BDI p-wave wire: T ∈ GL(2 | 2) / OSp(2|2) - coset Field theory (NLσM) • SUSY partition function twisted boundary conditions T ( L) Z L (θ ,ϕ ) = ∫ DT exp ( − S [T ]) , 1 T ( L) = diag ( eϕ , eiθ ) BF Supermatrix field T lives in a symmetric space • Class AIII wire: T ∈ GL(1 |1) - group manifold • BDI p-wave wire: T ∈ GL(2 | 2) / OSp(2|2) • Action coset $ ξ% % −1 −1 S [T ] = ∫ dx ' str ( ∂ xT ∂ xT ) + χ%str (T ∂ xT )( π1(TF)=Z )4 * 0 L bare localization length SCBA topological index Q. M. on the GL(1|1), class AIII Grassmann field • Parametrization • Action $ e y1 T = UTzU , Tz = & ( −1 metric on the group ξ%L ⎡ % $0 , U = exp ' &σ eiy0 ) bf ( ρ% 0 ') gauge field L ⎤ 2 2 2 ⎛ y1 − iy0 ⎞ S [ z ] = ∫ ⎢dy0 + dy1 + 4sinh ⎜ d σ d ρ − i χ%∫ ⎡⎣dy0 + idy1 ⎤⎦ ⎟ ⎥ 4 0 ⎣ ⎝ 2 ⎠ ⎦ 0 • Berezinian J ( y ) = sdet depends only on radial variables 1/ 2 det g B 1 −2 " y1 − iy0 # = sinh $ (g) = % det g F 2 & 2 ' “Schrödinger” equation • Imaginary time Schrödinger eq. ξ%∂ x Ψ ( y, x ) = „vector“ poitential 1 (∂α − iAα ) J ( y )(∂α − iAα ) Ψ ( y, x ) , A = χ%(1, i ) J ( y) length becomes imaginary time ! • Spectral decomposition Ψ ( y, L ) = 1 + initial conditions dl1 ∑ ∫ ( 2π ) P Ψ ( y ) e l0 = Z +1/ 2 2 l l − ε l L / ξ% , Pl = 4π ( l0 + il1 ) −1 • Eigenfunctions & spectrum 2 2 $ y1 + iy0 % ilα yα Ψ l ( y ) = sinh ) * e , ε l = ( l0 − χ%) + ( l1 − i χ%) ( 2 + Solution can be found via Sutherland transformation Flow diagram L ξ%= 14 , 12 ,1,2,...,32 Universal description of the Z-topological chiral wires: two parameter scaling & L ' 1 χ ( L) = n − erf * %(,l ± ( n − χ%))- + ∑ 4 l∈Z +1/ 2,± . ξ / - „running“ topological index ξ% −( l − χ%) L / ξ% g ( L) = e ∑ Class AIII π L l∈Z +1/ 2 - (thermal) conductance 2 Phase diagram and criticality Critical conductance g ( L ) ~ Localization length ξ -2 % % % ( χ ) = ξ χ − n − 1/ 2 ξ%L - critical exponent ν=2 Lyapunov exponents (AIII) L ξ%= 1, 4,16,32 drift • Density of λ‘s: −π 2n 2ξ%/ L 2 % % n e 2ξ π %L + 2 χ% sh nξ ρ (λ ) = + ∑ (−) cos π n λ ξ 2 L π n L n ( ( )) Lyapunov exponents (AIII) L ξ%= 1, 4,16,32 delocalization • Density of λ‘s: −π 2n 2ξ%/ L 2 % % n e 2ξ π %L + 2 χ% sh nξ ρ (λ ) = + ∑ (−) cos π n λ ξ 2 L π n L n ( ( )) NLσM vs. T-matrix χ=3/2 • SCBA topological index −1 2 Σ + = w (i 0 − H 0 − Σ+ ) Half-integer index defines critical lines in (µ,w)-plane χ%= − 2i tr G+ Pˆ ∂ k H ( ) NLσM vs. T-matrix χ=3/2 • SCBA topological index −1 2 Σ + = w (i 0 − H 0 − Σ+ ) Half-integer index defines critical lines in (µ,w)-plane χ%= − 2i tr G+ Pˆ ∂ k H ( ) M.-T. Rieder, P.Brouwer, I. Adagideli‘ 2013 wn 1/ 2 = t ( N ( 2n + 1) ) NLσM vs. T-matrix χ=3/2 • T-matrix approach #ψ l +1 $ # − H1,−l1H 0,l %ψ &=% 1 ' l ( ' − H1,−l1H1,+l $ # ψ l $ &% & ψ 0 l − 1 ' ( ( L T = ∏ Tl ⇒ exp( Lλ j ) l =0 Z-index = # (negative Lyapunov exponents) NLσM vs. T-matrix χ=3/2 • T-matrix approach #ψ l +1 $ # − H1,−l1H 0,l %ψ &=% 1 ' l ( ' − H1,−l1H1,+l $ # ψ l $ &% & ψ 0 l − 1 ' ( ( L T = ∏ Tl ⇒ exp( Lλ j ) l =0 Z-index = # (negative Lyapunov exponents) Conclusions • Classes AIII, BDI & CII described by a unified way - physical response is probed by a chiral gauge flux - structurally identical SUSY actions with top. θ-term - similar flow of the universal pair (g,χ) & phase portraits • Extension to Z2 topological wires D and DIII ? - σ-model manifold is disconnected ( O(N) group ) - one need to introduce kinks in the path integral - what is the relation to the DMPK approach (?) Acknowledgment Alexander Altland Univ. zu Köln Lars Fritz Utrecht University Alex Kamenev Univ. of Minnesota Hanno Schmiedt Univ. zu Köln Bipartite disordered chain (AIII) t1 N • Class AIII Hamiltonian: l-1 l t2 j+1 j j-1 l+1 L H = ∑l =1ψ l ⎡⎣(t1 + t2 ) + (t1 − t2 ) P ⎦⎤ ψ l +1 + h.c Pψ l , j = ( −)lψ l , j ⇒ Hˆ , P = 0 { } Parity operator P = σ 3AB Bipartite disordered chain (AIII) t1 N • Bond disorder L l-1 H V = ∑l =1ψ l ,iVˆl ψ l +1, j , ij Vˆl Vˆ ij * ( ) i' j' l' l t2 l+1 = ( w2 N ) δii 'δ jj 'δ ll ' j+1 j j-1 Bipartite disordered chain (AIII) j+1 j j-1 N • Bond disorder L l-1 H V = ∑l =1ψ l ,iVˆl ψ l +1, j , ij Vˆl Vˆ ij * ( ) i' j' l' l l+1 = ( w2 N ) δii 'δ jj 'δ ll '
© Copyright 2024 ExpyDoc