High-Performance Chemical Sensors Using Novel Two-Dimensional Materials Liang Chen Advisor: Prof. Chongwu Zhou Motivation Why Choosing 2D Materials? Smog is one kind of air pollution that is highly harmful to humans. It was once a big problem around Los Angeles Advantages: • Small dimension • High surface-to-volume ratio • Semiconducting areas in the 1950s. And now Beijing! Scientists has discovered that smog is mostly caused by the emission of NOx gases from cars. In this sense, an efficient gas sensor is desired to monitor these toxic gases. (a) (c) A. K. Geim, I. V. Grigorieva, Van der Waals heterostructures. Nature, 2013, 499, 419-425 (e) (b) (c) 0.27 nm 2 nm E 19-21cm A1g WSe2 2g 360 380 400 420 19-21cm E A1g 2g 2 nm 80 0.5 40 380 400 420 Back-gated Field Effect Transistors Si 1.0 60 (a) 0.5 40 (c) Raman shift (cm ) 2.28 20 2.2 2.1 2.28 0 2.3 2.2 -1 Raman shift (cm ) 2.0 1.9 1.8 1.7 Photon energy (eV) 5 μm 1 μm 1.9 1.8 1.7 (d) 40 V 30 V 20 V 10 V 0V -10 V -20 V 2.27 2.1 2.0 Photon energy (eV) 50 V 2.5 2.0 20 2.27 5 mm 0 2.3 MoS2 (b) MoS2 (c) -1 Si 1.0 60 360 80 IDS (mA) -1 Normalized PL Intensity (a.u.) 0.27 nm (f) 532 nm Intensity (a.u.) (e) -1 10 mm 10 mm (d) (f) 532 nm Intensity (a.u.) (b) (a) 10 mm Normalized PL Intensity (a.u.) MoS2(d) Chemical Vapor Deposition (CVD) Sensing Devices 10 mm 1.5 1.0 0.5 1.6 VBG 0.0 0V 1V 2V 3V 4V 5V 0.8 0.4 0.0 0 10 mm VDS 1.2 IDS (mA) Optical, AFM, Raman 2D MoS2 and WSe2 Synthesis (a) (b) Transitional Metal Dichalcogenides (TMDCs): • Semiconductor with tunable bandgap • Direct bandgap at monolayer 1 2 3 4 5 Schottky Contacts Before NO exposure 10 5 0.0 5 -20 0 VBG (V) 20 0 40 (d) 1 0 3003 400 4 DS 1 ppm 5 ppm 10 ppm 50 ppm 200 ppm 500 ppm 2 nm In 500 ppm NH3 0.2 -20 0 VBG (V) 20 40 -60 360 1600 0.1 0 200 1 300 2 400 3 500 NH3 concentration (ppm) V (V) 60 4 DS Subthreshold voltage shifts upon gas exposure 5 90 40 20 120 0 Before 1 ppm 5 ppm 10 ppm 50 ppm 200 ppm 500 ppm 50 380 DS 0.3 100 200 300 400 0 60 40 20 40 60 400 0 0 1000 10 30 60 90 120 Time (min) 3 4 420 0.1 Si 0.0 5 0 VDS (V) 0.5 MoS2 VBG = 0V 2Vacuum 3 4 1 ec e φAu 2.28 20 0 2.3 (b) 2.2 SB1 SB2 2.1 SB 5 VDS (V) EC EF 2.27 Au 500 -1100 NH3 2 40 In 500 ppm NH3 0.2 Eg Raman shift (cm ) 800 0 1 1.0 (a) VBG =30 V NO2 concentration (ppb) (d) (f) 400 80 0.0 20 Before NH3 exposure IDS (mA) In 400 ppb NO2 Mechanism 100 80 Time (min) 1200 0 0.0 100 30 100 -10 NH3 Before 20 ppb 40 ppb 100 ppb 200 ppb 400 ppb -40 2000 10 0 -20 (c) (d) Before NH3 exposure 20 (b) (e) (f) 60 -80 NO2 0 5 30 VDS=5V -40 1 200 2 (b) 0.3 Vth(V) IDS (mA) 2 0100 NO2 concentration (ppb) V (V) 4 Before exposure 3 0.0 IDS (mA) (b) 0.3 2g 0 G/G0 (%) 0.27 nm 15 NO2 -40 In 400 ppb NO2 0.6 G/G0 (%) 0.1 IDS (mA) 0.2 Before exposure 20 ppb 40 ppb 100 ppb 200 ppb 400 ppb (a) (c) Before NO2 exposure 20 Vth (V) IDS (mA) 0.3 VDS=5V 25(a) 0.9 G/G0 (%) (c) G/G0 (%) NO2 and (a) 0.4 532 nm NH3 Sensingand Sensing 19-21cm-1 A1g E I (mA) Normalized PL Intensity (a.u.) (e) Intensity (a.u.) (d) 0 10 mm (f) 0.3 2 0.6 -20 VBG (V) VDS (V) (e) 0.9 -40 EV MoS2 NO2d- 2.0 1.9 NH3d’+ E1.8 C Photon energyE (eV) EF g EV 0 100 200 300 400 500 NH3 concentration (ppm) Real time sensing results Au MoS2 Schottky barrier modulation after gas absorption Conclusion We have successfully synthesized two-dimensional atomic layers of TMDC materials using CVD method, which facilitates the future large scale fabrication of high density gas sensing arrays. High performance NO 2 and NH3 gas sensors using Schottky contacted 2D materials were demonstrated. Results show that the detection limits can be down to 20 ppb for NO2 and 1 ppm for NH3, which are superior to most of the other gas sensors. 1. Bilu Liu,† Liang Chen,† Gang Liu, Ahmad N. Abbas, Mohammad Fathi, and Chongwu Zhou*, High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS2 Transistors. ACS Nano, 2014, 5, 5304-5314. 2. Liang Chen, † Bilu Liu, † Ahmad N. Abbas, Yuqiang Ma, Xin Fang, Yihang Liu, Chongwu Zhou*, Screw-Dislocation-Driven Growth of Two-Dimensional Few-Layer and Pyramid-like WSe2 by Sulfur-Assisted Chemical Vapor Deposition. ACS Nano, 2014, Accepted. [email protected] Nanolab.usc.edu 1.7
© Copyright 2024 ExpyDoc