WGs and MC Meeting at ISTANBUL, 3

European Network on New Sensing Technologies for Air Pollution
Control and Environmental Sustainability - EuNetAir
COST Action TD1105
WGs and MC Meeting at ISTANBUL, 3-5 December 2014
Action Start date: 01/07/2012 - Action End date: 30/06/2016
Year 3: 1 July 2014 - 30 June 2015 (Ongoing Action)
GAS AND PARTICULATE MONITORS:
ADVANCES AND SETBACKS
John Saffell
WG 4.3
Alphasense Ltd.
COST is supported
by the EU Framework Programme
UK
ESF provides the COST Office
through a European Commission contract
Air Quality sensors: problems and progress
Inorganic gases
• Separating NO2 and O3
• improving ppb linearity
• improving humidity response
Particulates
• PM2.5, PM10, PM1
VOCs
• PIDs: better sensitivity, longer lamp life
• Metal oxides: how low can we go?
2
Good air quality sensor:
Sensitivity
Selectivity
Stability ( T, humidity, time)
and…..low cost!
Inorganic gases: NO2 and O3 (1/2)
The problem
Both gases are strong oxidants, causing lung oxidative stress
WO3 metal oxide is used to measure O3, but thermal decomposition is the
challenge
Graphite electrochemical cells measure both NO2 and O3, so we must scrub O3
in one sensor, while measuring both gases in the second sensor to
measure both NO2 and O3
SnO2 metal oxides measure both NO and NO2
4
Inorganic gases: avoiding NO, while scrubbing O3 (2/2)
The solution
OX-B421 and NO2-B42F
2ppm NO
120
Unfiltered
Sensitivity relative to NO2 (%)
100
80
60
40
20
0
0
200
400
600
800
1000
1200
-20
-40
Time (s)
5
Linearity has been optimised by
modifying the filter structure
NO2-A42F (first filter material) and OX-A421 (improved)
200
180
160
Output (ppb)
140
120
100
80
60
40
20
0
0
20
40
60
80
100
c (ppb)
120
140
160
Humdity dependence for standard design
and new design
(0%, 25%, 0%. 50%, 0%, 75%, 0%, 90%rh)
O3-B1
Humidity Transient Tests at 25, 50, 75 & 90% RH
08/08/2014
O3-B4
200
200
150
150
100
100
50
0
0
5000
10000
15000
20000
Output (nA)
Output (nA)
50
0
0
-50
-50
-100
-100
500
1000
1500
2000
-150
-150
-200
-200
Time (/10s)
Time (s)
7
NO is important for monitoring
combustion and is very reliable
200
100
0
50
NO SNAQ 24 corrected (ppb)
100
50
0
NO SNAQ 24 (ppb)
RMSE = 6.07 ppb
150
y = 0.63 ( 0.01 ) x + -10.21 ( 0.14 )
R2 = 0.92
150
200
(electrochemical vs reference)
0
50
100
150
200
NO reference (ppb)
0
50
100
NO reference (ppb)
Cambridge Heathrow network sensors
(Christoph Huelgin, EMPA)
150
200
VOCs
Real time measurement
PID, Metal Oxides, not selective but affordable
Ion Mobility Spectroscopy (IMS): selective
TDLS: selective, but costly and specific to one or a
few VOCs
VOC generator: 5+3 channel automated
permeation tube/ DMFC system with rh control
PID Lamp life: was 2,000 hours,
now 10,000 hours and 1-2 ppb resolution
Response to 100 ppm Isobutylene
120
Calibrated result normalised to 240 hours / %
110
Normalised to 240 hours
100
90
80
70
60
50
40
30
20
10
0
0
500
1000
1500
2000
2500
3000
3500
4000
4500
Total lifetime burn hours
5000
5500
6000
Metal Oxides: p-type
Sensitivity, LoD: CTO
CTO response to 300 ppb Toluene, 50% rh (Ascending T)
3
normalised to 1 ppm
T max, R/Ro(Tmax)
405°C, 6.8
R/R0
2.5
2
1.5
1
0.5
0
250
270
290
310
330
350
370
390
410
430
450
430
450
Te mp (°C)
CTO response to 1 ppm Benzene, 50% rh (Ascending T)
2.5
2.25
2
1.75
1.5
1.25
1
0.75
0.5
250
360°C, 1.2
2
380°C, 1.5
1.75
R/R0
R/R0
CTO response to 4 ppm Methanol, 50% rh (Ascending T)
1.5
1.25
1
0.75
270
290
310
330
350
370
390
410
430
0.5
250
450
270
290
310
330
Te mp (°C)
350
370
390
410
Te mp (°C)
CTO response to 1 ppm CH2O, 50% rh (Ascending T)
3
CTO response to 750 ppb Acetone, 50% rh (Ascending T)
400°C, 2.0
2
1.5
5
1
4
0.5
3
0
250
R/R0
R/R0
2.5
270
290
310
330
350
370
390
410
430
415°C, 3.7
2
450
1
Te mp (°C)
0
250
CTO response to 500 ppb Ethylacetate, 50% rh (Ascending T)
270
290
310
330
350
370
390
410
430
450
430
450
4
3.5
3
2.5
2
1.5
1
0.5
0
250
CTO response to 750 ppb Acetone, 0% rh (Ascending T)
5
425°C, 4.0
4
R
/R
0
R/R0
Te mp (°C)
3
370°C, 5.6
2
1
270
290
310
330
350
Te mp (°C)
370
390
410
430
450
0
250
270
290
310
330
350
Te mp (°C)
370
390
410
Metal Oxides: n-type
WO3 response to 300 ppb Toluene, 50% rh (Ascending T)
1.5
1.4
R/R0
Sensitivity, LoD: WO3
1.3
390°C, 2.0
1.2
1.1
normalised to 1 ppm
1
250
270
290
310
330
350
370
390
410
430
450
430
450
Te mp (°C)
WO3 response to 4 ppm Methanol, 50% rh (Ascending T)
1.5
340°C, 1.05
1.4
1.5
1.4
1.3
R/R0
R/R0
WO3 response to 1 ppm Benzene, 50% rh (Ascending T)
1.2
1.3
370°C, 1.4
1.2
1.1
1.1
1
250
270
290
310
330
350
370
390
410
430
1
250
450
Te mp (°C)
270
290
310
330
350
370
390
410
Te mp (°C)
WO3 response to 1 ppm CH2O, 50% rh (Ascending T)
380°C, 1.3
1.5
WO3 response to 750 ppb Acetone, 50% rh (Ascending T)
1.3
1.2
R/R0
R/R0
1.4
1.1
1
250
270
290
310
330
350
370
390
410
430
450
Te mp (°C)
1.6
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
250
340°C, 1.4
270
290
310
330
WO3 response to 500 ppb Ethylacetate, 50% rh (Ascending T)
370°C, 2.0
1.4
R/R0
R/R0
1.5
370
390
410
430
450
430
450
WO3 response to 750 ppb Acetone, 0% rh (Ascending T)
1.7
1.6
350
Te mp (°C)
1.3
1.2
1.1
1
250
270
290
310
330
350
Temp (°C)
370
390
410
430
450
1.6
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
250
360°C, 1.2?
270
290
310
330
350
Te mp (°C)
370
390
410
Particulates
• Well-known health dangers
• Urban air and IAQ problem
• PM10? Now PM2.5 and soon Ultrafines
<300nm (PN, not PM?)
TEM Images –
Aggregated nanoparticles
15 nm
Aggregate
15 nm Aggregate
30 nm
Aggregates
20nm
Optical Particle Counter
OPC-N2: PM1, PM2.5, PM10
-0.38 to 17 µm
-Particle size histogram each second
-PM calculated every second
-Aerodynamic flow, fan control for
clean optics in dirty environments
Operated at Heathrow for 22 months
70g weight, 130mA/5V, €325
Other measurements: size speciated PM
Particle
count
Size bin
(0.4 – 15 µm)
time
Comparison with reference
instruments (Paul Kaye,
Paul Williams)
Size speciated PM: inlet calibration
Dominated by small aerosol sizes
Urban air and IAQ motes
• Boxes? Motes?
• Wired, wireless, solar powered
• Modular to adapt tp specific IAQ, urban,
rural and nuisance odour networks
Fixed Site Motes 2010-2014
City-wide network
in Cambridge 2010
High density network at
Heathrow airport 2011-2013
FP7 project to detect bomb factories:
14 gas/ VOC sensors 2011-2013
Indoor motes