Slides - Indico

Concepts for Laser-Plasma Driven FELs
Andreas R. Maier
CFEL, UHH, LAOLA.
[email protected]
lux.cfel.de
CFEL
SCIENCE
LAOLA. is a collaboration of
LAOLA Collaboration
LAOLA.
LAOLA@PITZ
LAOLA@FLASH
LAOLA@REGAE
self-modulation
contact: Frank Stephan, PITZ
beam-driven (now called: FLASHforward)
contact: Jens Osterhoff, DESY
laser-driven
contact: Andreas Maier, CFEL/UHH
CFEL
SCIENCE
external
injection
triggered
injection
backup slides
my group
2
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
LUX Junior Research group
‣ „laser-plasma driven light source“
‣ 2 PostDocs, 4 PhDs, 3 Master students
‣ lux.cfel.de
operate 200 TW
ANGUS laser system
beamline for laser-plasma
driven undulator radiation
research on
table-top FELs
CFEL
SCIENCE
3
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
Outline
1) FELs in a nutshell
2) Plasma-based FELs
Free-Electron Lasers
... in a nutshell
Free-Electron Lasers
electron
beam
electron
source
CFEL
SCIENCE
beam
optics
x-ray
beam
undulator
6
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
Free-Electron Lasers
electron
beam
electron
source
beam
optics
x-ray
beam
undulator
why is it so cool?
13
O(10
)
‣ high number of photons - order of
‣ coherent (sort of...)
‣ wavelengths from soft to hard x-rays
‣ fs-scale pulse lengths
CFEL
SCIENCE
7
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
Free-Electron Lasers
electron
beam
electron
source
beam
optics
x-ray
beam
undulator
natural time and
length scale of matter
CFEL
SCIENCE
8
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
Undulator Radiation
u
K/
uB
y
x
z
‣ co-moving frame: electrons oscillate,
emit dipole radiation, wavelength
proportional to Lorentz-contracted
undulator period
‣ doppler shift
CFEL
SCIENCE
/
!
u
/
u
2
9
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
Undulator Radiation
K/
u
uB
y
x
z
strength of „electron shaker“
period of „electron shaker“
(could also be a laser)
(could also be a laser)
=
2
u
(1
2
2
+ K /2)
electron beam energy
CFEL
SCIENCE
(powerful tuneability)
10
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
What happens next?
Calvin & Hobbes by Bill Watterson
self-interaction: electrons move in
their self-emitted radiation field causes energy modulation
dW
/ E · v = Ex v x
dt
CFEL
SCIENCE
11
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
What happens next?
Calvin & Hobbes by Bill Watterson
self-interaction: electrons move in
their self-emitted radiation field causes energy modulation
undulator is a
dispersive device
electrons fall back / advance
in phase
CFEL
SCIENCE
transverse coordinate
dW
/ E · v = Ex v x
dt
γ < γr
γr
−λ
γ > γr
0
−λ/2
longitudinal bunch coordinate
12
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
What happens next?
Calvin & Hobbes by Bill Watterson
self-interaction: electrons move in
their self-emitted radiation field causes energy modulation
η × 10−3
4
dW
/ E · v = Ex v x
dt
2
0
−2
4
3
2
1
−2λ
−λ
0
λ
longitudinal bunch coordinate
electrons gather locally
wavefronts add coherently
undulator is a
dispersive device
electrons fall back / advance
in phase
CFEL
SCIENCE
transverse coordinate
n/n0
−4
γ < γr
γr
−λ
γ > γr
0
−λ/2
longitudinal bunch coordinate
13
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
Self-amplifying process...
108
gain: P/P0
106
saturation
104
exponential gain
lethargy regime
102
100
0
5
10
15
undulator length: z/Lg
20
25
electron
beam
electron
source
CFEL
SCIENCE
beam
optics
x-ray
beam
undulator
14
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
FEL requires high electron beam quality
electron / light interaction
high current
generates strong Efield to start with
η × 10−3
4
2
0
−2
4
3
2
1
−2λ
−λ
0
transverse coordinate
n/n0
−4
λ
longitudinal bunch coordinate
electrons gather locally
dispersion
CFEL
SCIENCE
γ < γr
γr
−λ
γ > γr
0
−λ/2
longitudinal bunch coordinate
15
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
FEL requires high electron beam quality
electron / light interaction
high current
generates strong Efield to start with
η × 10−3
4
2
0
−2
4
3
2
1
−2λ
−λ
0
longitudinal bunch coordinate
electrons gather locally
CFEL
SCIENCE
λ
low energy spread otherwise dispersion
has no net effect
dispersion
transverse coordinate
n/n0
−4
γ < γr
γr
−λ
γ > γr
0
−λ/2
longitudinal bunch coordinate
16
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
FEL requires high electron beam quality
growth rate - competition
of microbunching vs.
diffraction
high current
generates strong Efield to start with
4
η × 10−3
electron / light interaction
2
0
−2
4
3
2
1
−2λ
−λ
0
longitudinal bunch coordinate
electrons gather locally
CFEL
SCIENCE
λ
low energy spread otherwise dispersion
has no net effect
dispersion
transverse coordinate
n/n0
−4
γ < γr
γr
−λ
γ > γr
0
−λ/2
longitudinal bunch coordinate
17
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
RF-driven FELs - a success story
electron
beam
electron
source
beam
optics
x-ray
beam
undulator
the electron source determines
the FEL design
with different source (plasma)
expect a different FEL design
CFEL
SCIENCE
18
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
RF-driven FELs - a success story
electron
beam
electron
source
beam
optics
RF electron gun
determines everything:
‣ diffraction (of radiation)
‣ current
‣ km accelerator for GeV
electrons, i.e. hard xrays
CFEL
SCIENCE
x-ray
beam
undulator
100 m long undulator,
determined by
‣ current,
‣ wakefields (backup slides),
‣ radiation diffraction
19
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
RF-driven FELs - a success story
electron
source
beam
optics
CFEL
SCIENCE
a
m
s
undulator
a
pl
RF electron gun
determines everything:
‣ diffraction (of radiation)
‣ current
‣ km accelerator for GeV
electrons, i.e. hard xrays
L
E
F
n
e
v
i
r
-d
potentially
much higher
m-scale for
GeV
electron
beam
x-ray
beam
100 m long undulator,
determined by
‣ current,
‣ wakefields (backup slides),
‣ radiation diffraction
different
20
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
RF-driven FELs - a success story
electron
source
beam
optics
L
E
F
n
e
v
i
r
-d
pl
a
m
s
undulator
a
electron
beam
x-ray
beam
one should really expect a
completely different FEL design
CFEL
SCIENCE
21
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
first chance to stop the talk...
Calvin & Hobbes by Bill Watterson
What about energy spread?
‣ obvious solution - reduce energy spread
‣ pragmatic solution - live with it!
transverse coordinate
‣ dispersion is a local effect
‣ low energy spread is only required locally
low energy spread otherwise dispersion
has no net effect
γ < γr
γr
−λ
γ > γr
0
−λ/2
longitudinal bunch coordinate
dispersion
CFEL
SCIENCE
23
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
Paradigm break
‣ very active research
‣ new direction: be pragmatic
‣ use currently available beams
and many more on FEL’13: Couprie et
al., Schroeder et al., Campbell et al., ...
CFEL
SCIENCE
24
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
Decompression
chicane
electron
beam
undulator
beam
optics
620
620
600
600
γ
γ
electron
source
x-ray
beam
580
580
−5
0
ζ (µm)
5
−5
0
ζ (µm)
5
A. R. Maier et al., PRX 2, 031019 (2012)
CFEL
SCIENCE
25
Andreas R. Maier | [email protected] | lux.cfel.de | LA3NET Workshop | April 30, 2014 | Page 00
Calvin & Hobbes by Bill Watterson
We gratefully acknowledge the computing time provided on the
supercomputer JUROPA at Jülich Supercomputing Centre (JSC),
under project HHH20.
Thanks
partners
funding contributed by
CFEL
LBNL
WARP code
SCIENCE
group
Brian McNeil
FSP302
BMBF
group
Johannes Bahrdt
group
Florian Grüner
JUROPA
supercomputer