Undulators to Free Electron Lasers

Undulators to
Free Electron Lasers
David Attwood
University of California, Berkeley
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
1
Undulator radiation from a small electron beam radiating
into a narrow forward cone is very bright
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
2
Undulator radiation
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
3
Spatially coherent undulator radiation
Courtesy of Kris Rosfjord, UCB
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
4
Undulators, FELs and coherence
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
5
Desirable qualities of short pulse FELS
•  Photon energy (SXR/EUV vs. hard x-rays)
•  High photon flux (photons/pulse)
•  Short pulses (asec/fsec)
•  True phase control (spatial and temporal coherence)
•  Broad tunability
•  Polarization control
•  Repetition rate
•  Synchronization
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
6
Young’s double slit experiment: spatial coherence and the
persistence of fringes
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
7
Young’s double slit experiment: spatial coherence and the
persistence of fringes
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
8
Young’s double slit experiment with random emitters:
Young did not have a laser
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
9
Young’s double slit experiment with phase coherent emitters
(some lasers, or properly seeded FELs)
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
10
The bunching advantage of FELs
In an undulator with random, uncorrelated electron positions within
the bunch, only the radiated self-fields E add constructively.
•  Coherence is somewhat limited
•  Power radiated is proportional to Ne (total # electrons)
If the radiated fields, or a seed wave, is strong enough to initiate FEL
lasing, the electrons form waves of “microbunches” within which the
electron positions are well correlated. Now radiated fields from all
these electrons are in phase. The resultant electric field scales with Ne,
and intensity with Ne2
•  Essentially full spatial coherence
•  Power radiated is proportional to Ne2, a gain approaching 109.
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
11
FEL Physics
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
12
Equations of motion for the stronger electric field FEL
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
13
Undulators and FELs
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
14
Undulators and FELs
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
15
Undulators and FELs
“SASE” FEL – no seed (several separate “waves” of electrons possible with uncorrelated phase.) Less peak power, broader spectrum.
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
16
Seeded FEL
Seeded FEL. Initial bunching driven by phase coherent seed laser pulse. Improved pulse structure and spectrum.
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
17
Electron axial positions are affected by interaction with the
electromagnetic wave, resulting in microbunching on a wavelength scale
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
18
Relativistic electron interacting with an electromagnetic
wave of wavelength λ, as it traverses a periodic magnet (λu)
•  Deviations from zero-field path
•  Note the “slip” effect
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
19
Electron energies and subsequent axis crossings are affected by
the amplitude and relative phase of the co-propagating field
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
20
FEL Microbunching
Courtesy of Sven Reiche, UCLA, now SLS
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
21
Gain and saturation in an FEL
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
22
The coherence properties of Free Electron Lasers
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
23
FEL Lasing
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
24
Stanford’s LCLS Free Electron Laser
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
25
26
LCLS
780 eV (1.6 nm)
300 fsec
¼ nC
N = 13 × 113 = 1500
(of 33)
Δτcoh = 0.55 fsec
(165 nm @ 300 nm/fsec)
λ/Δλ = 100
78% energy in a single TEM00 mode
ϕ-space = 1.2 diffr. Ltd.
27
Nanostructures fabricated for characterizing beam
properties of FELs and for imaging experiments
Coherence Measurements
FEL coherence characterization using Young’s
double pinhole, double slit, triple slits,
nonredundant arrays, etc. These structures
were made using thick Au where great
attention was paid to overall film stress.
with LCLS SXR Team
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
URA Holography
Two dimensional uniformly redundant array
used as the reference for holography
experiments at FLASH and ALS. The right
hand picture is a SEM of a newly fabricated
URA pattern with features down to 20 nm.
with Stefano Marchesini
ILSW_Attwood_Lec3_March2014.pptx
28
Measuring the SASE spectrum at LCLS
Courtesy of D. Zhu, J. Hastings, W. Feng, (SLAC); APL 101, 034103 (July 2012)
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
29
Reduced LCLS spectra, thus longer coherence length, with
“self-seeding”
J. Amann, et al.,
Nature Photonics 6, 693 (Oct 2012)
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
30
The Linac Coherent Light Source (LCLS),
an X-Ray FEL at Stanford
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
31
Free Electron Lasers
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
32
Probing matter on the scale of nanometers
and femtoseconds
Science and Technology of Future Light Sources (Argonne, Brookhaven, LBNL and SLAC: Four lab report to
DOE/Office of Science, Dec. 2008)
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
33
Coherent x-ray diffractive imaging with the FLASH
free-electron laser (FEL) in Hamburg, Germany
25 fs diffraction pattern
1 micron
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
Chapman et al, Nature Phys 2 839 (2006)
ILSW_Attwood_Lec3_March2014.pptx
34
(LCLS, lasing April 2009,
1st day; saturated lasing
2009; publ. Sept. 2010)
35
Nature 466, 56 (1 July 2010)
LCLS
800 eV to 2 keV
1018 W/cm2
80 fs e– bunch
20-40 fs photons
1s binding energy is 870 eV in neutral Ne
Hollow core (no 1s e–s), or Ne+10
36
1.8 keV (0.69 nm)
70 fsec
7 µmD KB spot
Photosystem 1
Membrane protein
(36) complex nanocrystal
in 4 µmD H2O jet @ 30
Hz. Each blown away
Reconstruction results
similar to a larger crystal
at 12.4 keV.
37
Single noncrystalline
Meme virus
1.8 keV (0.69 nm)
70 fsec
2D to 32 nm period
Need identical
particles at molecular
level for 3D
38
FEL References
•  J.M.J. Madey, Stimulated Emission of Bremsstrahlung in a Periodic Magnetic
Field, J. Appl. Physics 42, 1906 (1971).
•  R. Bonifacio, C. Pellegrini and L. Narducci, Collective Instabilities and HighGain Regime in a Free Electron Laser, Optics Commun. 50, 373 (1984).
•  J.B. Murphy and C. Pellegrini, Introduction to the Physics of Free Electron Lasers,
Handbook of Free Electron Lasers (North Holland, 1990).
•  C. Pellegrini and S. Reiche, The Development of X-Ray Free-Electron Lasers,
IEEE J.S.T.Q.E. 10, 1393 (2004).
•  V. Avazyan et al., Generation of GW Radiation Pulses from a VUV Free-Electron
Laser Operating the Femtosecond Regime, Phys. Rev. Lett. 88, 104802 (2002); W.
Ackermann et al., Operation of a Free-Electron Laser from the Extreme
Ultraviolet to the Water Window, Nature Photonics 1, 336 (2007).
•  Linac Coherent Light Source (LCLS) Design Study Report, SLAC-R-521 (April
1998); M. Cornacchia, Design Study Group Leader.
•  P. Emma et al., First Lasing and Operation of an Ångstrom-Wavelength FreeElectron Laser, Nature Photonics 4, 641 (2010).
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
39
Archived internet lectures available
at www.youtube.com
UC Berkeley
www.coe.berkeley.edu/AST/sxr2009
www.coe.berkeley.edu/AST/srms
www.youtube.com
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
40
FEL Physics: the “slip condition”
Professor David Attwood / UC Berkeley / Iranian Light Source Workshop / March 3-4, 2014
ILSW_Attwood_Lec3_March2014.pptx
41