042 Change of Variables: ⌠ ⌡ x 2x - 1 dx u = 2x - 1 → x = 1 u +1 → dx = 2 du 2 u + 1 1/2 1 ⌠ ⌡ 2 u • 2 du 1 3/2 1/2 = 4⌠ ⌡ (u + u ) du 1 2 2 = 4 5 u5/2 + 3 u3/2 + C 1 1 = 10 u5/2 + 6 u3/2 + C 1 1 = 10 (2x - 1)5/2 + 6 (2x - 1)3/2 + C 5 x ⌠ ⌡ 2x - 1 dx 1 1 1 u = 2x - 1 → x = 2(u + 1) → dx = 2 du When x = 1, u = 1 When x = 5, u = 9 9 1 u+1 1 ⌠ ⌡ 2 • u1/2 • 2 • du 1 9 1 = 4⌠ ⌡ u-1/2(u + 1) du 1 9 1 1/2 -1/2 = 4⌠ ⌡ (u + u ) du 1 9 1 2 = 4 3 u3/2 + 2u1/2 1 1 2 = 4 (18 + 6) - 3 + 2 1 2 = 4 24 - 2 - 3 1 64 =4 • 3 16 = 3 Alternate Choice 5 x ⌠ ⌡ 2x - 1 dx 1 1 u = 2x - 1 → u2 = 2x - 1 → x = 2 (u2 + 1) → dx = u du When x = 1, u = 1 When x = 5, u = 3 3 -1 1 2 ⌠ ⌡ u • 2 (u + 1) u du 1 3 1 2 = 2⌠ ⌡ (u + 1) du 1 1 1 = 2 3 u3 3 + u 1 1 1 = 2(9 + 3) - (3 1 1 = 2 11 - 3 1 32 =2 • 3 16 = 3 + 1) AP Calculus BC 1 Assignment 042 Monday, November 24, 2014 Hour 1. ∫x x + 2 dx 2. ∫x 2 x + 1 dx 3. ∫x 4. ∫ (x + 1) 2 1 − x dx 2 − x dx Name 5. ∫ 4 6. ∫ 0 2 7. ∫ 0 x2 −1 dx 2x − 1 1 dx 2x + 1 x 1 + 2x dx 2 2 8. ∫ (x − 1) 1 2 − x dx AP Calculus BC 1 Assignment 042 Monday, November 24, 2014 Hour 1. ∫x Ewell-Key x + 2 dx u=x+2 x=u-2 ∫ (u − 2) 2. Name ∫x dx = du ∫ (u u du = 3/ 2 ) 2 4 2 4 − 2u 1 / 2 du = 5 u5/2 - 3 u3/2 + C = 5 (x + 2)5/2 - 3 (x + 2)3/2 + C 2 x + 1 dx 1 1 1 x = (2 u - 2 ) dx = 2 du 1 5/2 1 3/2 1 1 1 3 / 2 1 1/ 2 1 = = u -6 u +C u − u ⋅ du u − u du 10 ∫ 2 2 2 ∫ 4 4 u = 2x + 1 1 1 = 10 (2x + 1)5/2 - 6 (2x + 1)3/2 + C 3. ∫x 2 1 − x dx u=1-x x=1-u ∫ − (1 − 2u + u 2 2 )u 1/ 2 dx = -du du = ∫ (− u 4 5/ 2 ) 2 4 2 + 2u 3 / 2 − u 1/ 2 du = -7 u7/2 + 5 u5/2 - 3 u3/2 + C 2 = -7 (1 - x)7/2 + 5 (1 - x)5/2 - 3 (1 - x)3/2 + C 4. ∫ (x + 1) u=2-x 2 − x dx x=2-u ∫ − (3 − u )u 1/ 2 du = dx = -du ∫ (u 3/ 2 ) 2 2 − 3u 1 / 2 du = 5 u5/2 - 2u3/2 + C = 5 (2 - x)5/2 - 2(2 - x)3/2 + C 5. x2 −1 ∫ dx 2x − 1 u2 +1 u 4 + 2u 2 + 1 u 4 + 2u 2 − 3 → dx = u du → x2 = → x2 – 1 = 2 4 4 11 2 u 4 + 2u 2 − 3 du = u 5 + u 3 − 3u + C 45 3 2 x − 1 → u2 = 2x – 1 → x = u= 1 u 4 + 2u 2 − 3 1 u du = ∫ ∫4⋅ u 4 ( ) (2 x − 1)2 2(2 x − 1) 1 1 1 2 5/ 2 3/ 2 1/ 2 ( ) 2 x − 1 + − 3 + C = 2 x − 1 + ( 2 x − 1 ) − 3 ( 2 x − 1 ) + C 4 5 3 4 5 3 = or u +1 1 u 2 + 2u + 1 u 2 + 2u − 3 2 2 → dx = du → x = →x –1= u = 2x – 1 → 2x = u + 1 → x = 2 2 4 4 1 1 1 1 2 4 u 2 + 2u − 3 u −1 / 2 ⋅ du = ∫ u 3 / 2 + 2u 1 / 2 − 3u −1 / 2 du = u 5 / 2 + u 3 / 2 − 6u 1 / 2 + C ∫ 4 2 8 8 5 3 ( ) ( ) (2 x − 1)2 2(2 x − 1) 1 1 2 4 5/ 2 3/ 2 1/ 2 2x − 1 + − 3 + C = (2 x − 1) + (2 x − 1) − 6(2 x − 1) + C = 4 5 3 8 5 3 4 6. 1 ∫ dx 2x + 1 0 1 u = 2x + 1 du = 2 dx 4 1 ⌡(2x 2⌠ n = -2 1 + 1)-1/2 2dx = 2 • 2(2x + 1)1/2 0 2 7. x ∫ | 4 =3-1= 2 0 dx 1 + 2x2 0 u = 1 + 2x2 du = 4x dx 2 1 ⌡(1 4⌠ 1 + 2x2)-1/2 4x dx = 2 (1 + 2x2) 1/2 0 | 2 0 3 1 =2 -2 = 1 2 8. ∫ (x − 1) 2 − x dx 1 . u=2-x 0 . x=2-u 0 dx = -du When x = 1, u = 1. When x = 2, u = 0 | 2 2 ⌠(u - 1)u1/2 du = ⌡ ⌠(u3/2 - u1/2) du = 5 u5/2 - 3 u3/2 ⌡ 1 1 0 1 4 = 15
© Copyright 2025 ExpyDoc