Math 2433 Section 26013 MW 1-2:30pm GAR 205 Bekki George [email protected] 639 PGH Office Hours: 11:00 - 11:45am MWF or by appointment 17.4 Line Integrals in Different Notation Given a vector function h(x, y) = P(x, y)i + Q(x, y)j and a curve C: r(u) = x(u)i + y(u)j, a ≤ u ≤ b then ∫ C h(r) ⋅dr = ∫ P(x, y) dx + Q(x, y) dy C Example: 1. Find ∫ h(r) i dr C 2 2 3 h(x, y) = x y i + 2xy j r(u) = u i + (1− u )j, 0 ≤ u ≤ 2 given and 2. Evaluate: ∫ (x − 2y)dx + 2x dy along the parabolic path C: y = 2x2 from (0,0) to C (1,2) Exam Review: Popper20 1.Evaluate ∫ y dx + xy dy along the cubic path C from (0,0) to (5,1) along C x = 5y3. 2 4−y 2 2.Convert ∫ ∫ 0 4−x 2 −y 2 0 ∫ x 2 + y 2 dz dx dy into 0 coordinates. u+v x= 2 3.Given of u and v. and y = an integral with spherical u−v 2 , re-write the following integral in terms Ω : 0 ≤ x − y ≤ 2, 1 ≤ x + y ≤ 4 ∫∫ 2xy dx dy 4.Set h(x, y) = ( 2xy + 3x + 2 ) i + ( 2x y − 2y + 1) j and C : r(u) = 2u i + ( u + 2 ) j, 0 ≤ u ≤ 1 Ω 2 2 ∫ C h(r)⋅ dr = 3 2 2
© Copyright 2025 ExpyDoc