Holomorphic motions and the extension problem Hiroshige Shiga Department of Mathematics Tokyo Institute of Technology 東京工業大学 理学院 数学系 1. Introduction ※ 郿 _ M : ECI A 0 map motion 1 ) ( 2 ) set a : ( mfd complex a of 4 70.1 M : E E x ( p。 4 ( R 0 ( ) w , ・ ) i E Ah 。 1 0 ( , Ej E → E is 4 ) for : M → d is moton morph c normalized ) u 。 、 called is for and ( 3 ) point a h 。 10 morphと if W = cs , → M over base Po 7 0 M : に WE inject h E x 0 → 1 0 morph E 年 for ve に for c Mj E WEE called is if 0 ( P に PEM 、 0 ) = 0 , 0 (p , 1 ) = 1 and 0 ( 13 . i C E で → m 0 ) = g . Results Known 入 ・ lemma 一 V For I ヨ st h ( 1 。 M : 0 、 Mani morph 0 E x ( P u 入 Improved 4 M : for ⇒ 「 0 and E x ) 0 : E i h ヨ 4 1 i Yp I f is donor h : E 0 (p い a . ) : E → E 1 た ⒵ home adf.is , 4 " 1 9 8 , of 6 ) Thurston Sullivan E of P phc motion of も OP 0 p 、 0 (p ( ) . , ) : も → で conformal quasi fz 弐 食 Moreover E → of E x ( neighborhood a M t ( 19 86 ) Royden - ) , 三 of conformal orphic motion Ins ion ex an w , E of quasi is over st E → " Bars E → E × for ) 砦 台 さ 峺 魚 品 m M i 19 8 3 ) , orphic motion an E し 0 1 u , → Up E px 。 。 Cp lemma - M pe 4 E → h = が ・ E ) Sullivan - motion c → , Sad - is can 。 MEL が ・ 4 11 、 私 quasi conformal . M 11 . く 1 ) Kowski Slod △ 4 4 ZE △ i 0 ヨ ⇒ { = 9 ( p Groupe G 0 M : 4 p that G ( E ) た。 orphic motion 。 m △ over E of いい 」 、 suppose し E E X A over . . ヨ if fp E = G : 、 Mob → iso a ( PE M ) st fp of motion c for に い , arrant equiv morph version E → _ h do ( p motion orphic art and E x G is 4 quran , m I = ) ( 19 9 1 . た。1。 → ) w 、 Mdba く E E x } く 1 し → △ : st に 1 E x theorem 's i d = 。 0 しp and . g ⒵) , 0 = 9 し つ 、 ) ( 01 ( し3 2 - ) for ) 2 - 、 ) t MXE Krakmshkd and for .hn G 出 Earle Mob く 4 し a △ : ヨ ) GE ) , E x I た : over x = E → △ Vgt G E △ 、 E 、 Geqwwi → E Geq at hbm 。 5 of E over △ www.tholo.motmofd Question 1 Negative ⇒ Question a ⇒ 2 2 0 0 4 i.e. . Do kkdy Chika condition about a which is た 。 1 。 morph NOT ) " gives . manifold " a necessary ct on which counterexample 月 surface 、 hdomorpL.cm a complex How 、 Riemann ( about dimensional higher a How . is simply connected . c moton simply and over over connected sufficient . Monodromy of a holomorphic motion Po 0 X E , 0 1 X : E EEC 0 , Riemann a : x E → surface closed a i set En of holomorph.cm ( normalized ) X I 。 over Take a a closed finite curve set の ci す u CX ー っ ・ . , Wn passing } CE through and Po 操 ビビー 三 x 。 . E We if for the 兄 that say の any braid by given p ) ban and の for じん and 。 . W 1 2 2 ・ 毖 に → ・ ・ ・ . ・ ( Beck 地 K く 0 : △ Jiang {12-1<1} = 0 K) - Mitra - ・ S 2 . 0 → : ( motion く of → - △ ・ E K ) over a x E ( △ - d K - 1。 morph △ → AB and over Then trial is 12 ) Compact E ho : E × , ・ . の } EE !!! ・ ・ Wn いう mon . trial is 月 ど: W ・ ( X た E 0 of monotony the K 、 , a removable cm 。 く母 of E 、 hdom orphic ) monotony of 0 is trial . 2. Main Results. Thm 0 I 、 X : 4 ⇒ X 0 E x X : if the Moreover Ge , that ←→ of ヨ : X × : whcl x x E d extends is . also true for G & component of EC 's motions → 武E 4 hdomorph.cm Endomorph → principle over is ) c ota motion . holds for Riemann た surfaces do morph . c , PS 4 2 4 ) . E 8 set Cine Oka く Connected is connected 0 trinal closed connected every simply F E motion X is version cd base pt a h 。 1 0 morph c over 1 0 at P。 hdomorph.cm otcn a E of quran CE Suppose ⇒ to monodrama of 県千 1,03 ( E → っ normalised a extended E x E → be can surface Riemann a : 、 Chika 0 X : for E x E → closed a n しの w : 、 if ) wz , は 。 w ; 、 なd 、 motion CX and arg ( 0 ( 。 for a , ) to w 2 h 。 10 a ) = orphic m も for 0 and W 、 0( - 2ms extended n morph 1 。 の = : be can h curve dai Chika 0 condition 's m 。 , 凶 、 , w 、 W 中 Wz 21て 区 of dover X closed for Kw ( )) も た ・ E ヒ に 、 の C X are EE ) ( w 、 キ W 2 ) ⒳ 世 However Thm 区 E ヨ st to . { = X : 0 , a 1 , Riemann 0 , Wo h 。 し 。 -_- , , surface satsties 4 、 have we , morph し* c un } ヨ , ) ( 0 1 but mctm M 3 X : × ) E → と hdoma.pk moton cannot it of 0 E over be X . extended
© Copyright 2024 ExpyDoc