• Reflected wave from a horizontal layer • Reflected wave from a dipping layer • Refracted wave from a horizontal layer • Refracted wave from a dipping layer • Diffracted waves • • • • • Hydrogeological studies of acquifers Engineering geology Shallow faults Mapping Quaternary deposits Ground investigation for pipe and sewerage tunnel detection • • • • • Depth of groundwater level Depth and location of hardrock Elastic medium parameters Permafrost Glaciology • Refracted Waves • Mainly horizontal Wave propagation • Only refracted waves are used. (Lower layer must have higher velocity than upper layer) • Distribution of velocity as well as the depth and orientation of interfaces between layers • • • • Reflected Waves (“Echo lot principal”) Mainly vertical wave propagation Complete seismic recording is used Distribution of the velocity variation Direct wave Reflected wave Refracted wave Receivers Source Receivers Direct wave t t = 1---x v x o x x x x v = x--t v Velocity of direct wave is derived from the distance and travel time Reflection: Horizontal reflector x A B x o 4S2=4h2+x2=t2v2 s h a C h s v t2=(4h2+x2)/v2 Reflection: Horizontal reflector for x=0: t2v2=4h2 t(x=0)=t0=2h/v t0 or h=t0v/2 h t2v2=4h2+x2 t2= x2/v2+t02 Reflection: horizontal reflector t2v2 = 4h2+x2 t2v2 - x2 = 4h2 h t2v2 - x2 =1 4h2 4h2 Hyperbola x>>h Þ t= x v Moveout 1 Difference in travel time t(x1 ) und t(x2 ): 2 x22- x12 t 2- t 1 » 2v2t0 Normal Moveout 1 0 0 Difference in traveltime t 0 und t(x): 1 x12 DT=t1- t0 » 2v2t0 t2v2=4h2+x2- 4hxcos(90+Q) X=-2hsinQ t2v2=4h2+x2+4hxsin(Q) Hyperbola: DTdip [x+2hsin(Q)] 2 t2v2 =1 [2hcos(Q)]2 - [2hcos(Q)]2 -x x h Q h x 90+Q DTdip= tx-t-x = 2xsinQ v sin ic v1 v1 = Û sin ic = sin 90 v 2 v2 Propagation of seismic waves Headwave (Roth et al., 1998) Direct wave Reflected wave Refracted wave h TSG = TSA + TAB + TBG = 2TSA + TAB ( x - 2h tan ic ) h =2 + v1 cos ic v2 x 2h cos ic = + v2 v1 Refraction: horizontal reflector t 1 ----v1 1 ----v2 2 2 x 2h v 2 – v1 t = -----+ -------------------v1 v 2 v2 ti x xcross x t = -----t + v2 i x h v1 v2 v2 + v1 xcros = 2h -----------v 2 – v1 x sin(q c + a ) 2 z a cosq c td = + v1 v1 For small slopes (a < 100): x sin(q c - a ) 2 zb cosq c + v1 v1 vd + vu v2 » 2 tu = x sin(q c + a ) 2 z a cosq c td = + v1 v1 For small slopes (a < 100): x sin(q c - a ) 2 zb cosq c + v1 v1 vd + vu v2 » 2 tu = Every point on a wavefront can be considered as a secondary source of spherical waves Surface V=1.6 km/s 800 m Reflection: tr» t0+dt h t0=2h/v Reflection /Diffraction dt =x2/(4vh) Diffraction: td» t0+2dt Receivers Receivers Source x Direct wave Refracted wave layer 2/3 Reflected wave layer 1/2 Reflected wave layer 2/3 Refracted wave layer 1/2 t
© Copyright 2025 ExpyDoc