Question Bank 5. CONTINUITY AND DIFFERRENTIABILITY ONE MARK QUESTIONS 1. Find the derivative of cos( x 2 ) with respect to x. Sol: let y cos( x2 ) dy d sin( x 2 ) ( x 2 ) 2 x sin( x 2 ) dx dx 2. Find the derivative of e x e x e x e x e x with respect to x. 2 Sol : 3 4 5 let y e x e x e x e x e x 2 3 4 5 2 3 4 5 dy e x 2 xe x 3x 2e x 4 x3e x 5x 4e x dx 3. Find the derivative of log(logx) with respect to x. Sol : y log(log x) dy 1 d 1 (log x) dx log x dx x log x 4. Find the derivative of cos(sinx) with respect to x. Sol : y cos(sin x) dy d sin(sin x) (sin x) cos x sin(sin x) dx dx 5. Find the derivative of sec(tan x ) with respect to x Sol : y sec(tan x ) sec tan x tan tan x sec2 ( x ) dy d sec tan x tan tan x (tan x ) dx dx 2 x 6. Find the derivative of the function cos( x ) with respect to x. Sol : y cos x dy sin dx x dxd x sin x 2 x 1 7. If y 3e2 x 2e3 x find Sol : dy dx y 3e2 x 2e3 x dy d 2x d 3x 3 e 2 e 6e2 x 6e3 x 6(e2 x e3 x ) dx dx dx 8. Find the derivative of 5cosx – 3sinx with respect to x. Sol : y 5cos x 3sin x dy 5sin x 3cos x dx 9. The function f ( x) Sol : f ( x) 1 is a quotient function. The function f(x) is not defined at x = 5 because x 5 f (5) 1 1 is not defined. Therefore f(x) is continuous for all values of x except x = 5. 55 0 10. Find Sol : 1 is not continuous at x = 5. Justify the statement. x 5 dy if x y dx x y d d x y dx dx d d ( x) ( y ) 0 dx dx dy 1 dx 11. If y tan(2 x 3) find Sol : dy dx y tan(2 x 3) dy d sec2 (2 x 3) 2 x 3 2sec2 (2 x 3) dx dx 12. Find the derivative of f given by f ( x) tan 1 x assuming it exists. Sol : y tan 1 x dy 1 dx 1 x 2 2 13. Prove that the function f ( x) x n is continuous at x = n, where n is a positive integer. f ( x) x n , n N . Sol : Here, f(x) is a polynomial function and D f R lim f ( x) lim x n nn f (n). x n x n Therefore f(x) is continuous at n N . 14. Find the derivative of esin Sol : y esin 1 1 x with respect to x. x 1 dy esin x sin 1 x d 1 e sin x dx dx 1 x2 15. Find Sol : dy , if x at 2 , y 2at . dx x at 2 , y 2at dx 2at , dt dy 2a dt dy dy dt 2a 1 dx dx 2at t dt TWO MARK QUESTIONS: 1. Examine whether the function f given by f ( x) x 2 is continuous at x = 0. Sol : f ( x) x 2 at x = 0; f (0) 0 . Then lim f ( x) lim x 2 0 x 0 x 0 lim f ( x) 0 f (0) . x 0 f is continuous at x = 0. 2. Discuss the continuity of the function f defined by f ( x) Sol : 1 , x 0. x 1 1 x c x c Fix any non zero real number c, we have lim f ( x) lim x c 3 1 Also, since for c 0 , f (c) , we have lim f ( x) f (c) and hence, f is continuous at every x c c point in the domain of f. Thus f is continuous function. 3. Find the derivative of the function y Sol : y ex with respect to x. sin x ex sin x dy dx sin x d x d e e x sin x dx dx 2 sin x x dy e x sin x e x cos x e sin x cos x dx sin 2 x sin 2 x 4. Discuss the continuity of the function f given by f ( x) x3 x 2 1 Sol : Clearly f is defined at every real number c and its value at c is c3 c2 1 . We also know that lim f ( x) lim x3 x 2 1 c3 c 2 1 x c x c Thus lim f ( x) f (c) , and hence f is continuous at every real number. This means f is a x c continuous function. 5. Verify Rolle’s theorem for the function y x 2 2 , a = -2 and b = 2 Sol : The function y x 2 2 is continuous in [- 2 , 2] and differentiable in (-2, 2). Also f (2) f (2) 6 and hence the value of f ( x) at -2 and 2 coincide. Rolle’s theorem states that there is a point c (2, 2) , where f | (c) 0 . Since f | ( x) 2 x , we get c = 0. Thus at c = 0, we have f | (c) 0 and c 0 (2, 2) . 6. If f and g be two real functions continuous at real number c. Then show that f + g is continuous at x = c. Sol : The continuity of f + g at x = c, clearly it is defined at x = c we have lim f g x lim f ( x) g ( x) x c x c lim f ( x) lim g ( x) f (c) g (c) f g (c) x c x c Hence f + g is continuous at x = c. 4 7. Find dy if, x a cos , y a sin . dx Sol : x a cos , y a sin dx a sin d dy a cos d dy dy d a cos cot dx dx a sin d 8. Discuss the continuity of the function f given by f ( x) | x | at x = 0. Sol : x, if x<0 By definition f ( x) x, if x 0 Clearly the function is defined at x = 0 and f(0) = 0. Let hand limit of f at x = 0 is lim f ( x) lim( x) 0 x 0 x 0 Right hand limit of f at x = 0 is lim f ( x) lim x 0 . x 0 x 0 Thus the left hand limit, right hand limit and the value of the function coincide at x = 0.Hence, f is continuous at x = 0. 9. Find the derivative of the function Sol : y sin(ax b) with respect to x. cos(cx d ) sin(ax b) cos(cx d ) dy dx cos(cx d ) d d sin(ax b) sin(ax b) cos(cx d ) dx dx 2 cos (cx d ) dy a cos(cx d ) cos(ax b) c sin(ax b)sin(cx d ) dx cos 2 (cx d ) 10. Discuss the continuity of sine function. Sol : f ( x) sin x is defined for every real number. Let c be a real number. Put x = c + h. If x c we know that h 0 . Therefore lim f ( x) limsin x x c x c 5 limsin(c h) lim sin c.cosh cos c.sinh h0 h0 limsin c.cosh limcos c.sinh sin c 0 sin c f (c) h0 h0 Thus lim f ( x) f (c) x c Therefore f is a continuous function. 11. Differentiate xsin x x 0 with respect to x. Sol : y xsin x Taking log on both sides log y log xsin x log y sin x log x 1 dy d d sin x (log x) (sin x) log x y dx dx dx 1 dy sin x cos x log x y dx x dy sin x y cos x log x dx x dy sin x xsin x cos x log x dx x 12. Differentiate the function sin tan 1 e x with respect to x. Sol : y sin tan 1 e x dy d cos tan 1 e x tan 1 e x dx dx 1 x x dy cos tan e e dx 1 e2 x 13. If x 2at 2 , y at 4 find Sol : dy dx x 2at 2 , y at 4 dx 4at , dt dy 4at 3 dt 6 dy dy dt 4at 3 t2 dx dx 4at dt 14. If xy e x y , prove that Sol : dy y ( x 1) dx x( y 1) xy e x y Differentiating both sides with respect to x. d d x y ( xy ) e dx dx x dy dy y e x y 1 dx dx x dy dy y e x y e x y dx dx x dy x y dy e e x y y dx dx e x e dy dx x y x y y dy e x y y xy y y ( x 1) dx x e x y x xy x( y 1) 15. If y cos x cos 2 x cos3x find Sol : dy dx y cos x cos 2 x cos3x Taking log on both sides, we get log y log(cos x cos 2 x cos3x) log y log cos x log cos 2 x log cos3x 1 dy sin x 2sin 2 x 3sin 3x y dx cos x cos 2 x cos 3x dy cos x cos 2 x cos3x tan x 2 tan 2 x 3tan 3x dx 16. If x y a prove that dy y dx x 7 Sol : x y a Differentiate w.r.t x we get 1 2 x 1 dy 0 2 y dx 1 dy 1 2 y dx 2 x dy y dx x 17. Find the derivative of sin x cos x sin x cos x Sol : y sin x cos x with respect to x. (sin x cos x ) Taking log on both sides log y log(sin x cos x)(sin xcos x ) log y (sin x cos x)log(sin x cos x) Differentiate w.r.t x 1 dy d d sin x cos x log(sin x cos x) (sin x cos x) log(sin x cos x) y dx dx dx 1 dy cos x sin x (sin x cos x) (cos x sin x) log(sin x cos x) y dx sin x cos x dy (sin x cos x ) sin x cos x cos x sin x 1 log(sin x cos x) dx 18. If y sin 1 x Sol : x y sin 1 x find dy dx x Taking logarithm on both sides log y log sin 1 x x log y x log sin 1 x 1 dy d d x log sin 1 x ( x) log sin 1 x y dx dx dx 1 dy x log sin 1 x 1 2 y dx sin x 1 x 8 dy x y log sin 1 x 1 2 dx sin x 1 x 19. If y sin loge x prove that Sol : = sin x 1 1 y2 dy dx x y sin loge x cos log e x dy d cos log e x log e x dx dx x 1 sin(log e x 1 y2 dy dx x x 2 THREE MARK QUESTIONS: 1 x2 dy 1. If y cos 1 0 < x < 1 Find 2 dx 1 x Sol : 1 x2 y cos 1 2 1 x Put x tan 1 tan 2 1 y cos 1 cos cos 2 2 1 tan y 2 2 tan 1 x Differentiate w.r. t x dy 1 dx 1 x 2 2. If x3 x2 y xy 2 y 3 81 . Find Sol : dy dx x3 x2 y xy 2 y 3 81 Differentiate w.r. t x 3x 2 x 2 x 2 dy dy dy 2 xy x 2 y y 2 3 y 2 0 dx dx dx 2 xy 3 y 2 3x dy dx 2 2 xy y 2 9 x x log sin 1 x 1 2 sin x 1 x 3x 2 2 xy y 2 dy 2 dx x 2 xy 3 y 2 x 3 x 2 4 3. Diffentiate y Sol : y 3x 2 4 x 5 w.r. t x. x 3 x 2 4 3x 2 4 x 5 Taking logarithm on both sides, we have log y 1 log x 3 log x 2 4 log 3x 2 4 x 5 2 Differentiating on both sides w.r.t x, we get 1 dy 1 1 2x 6x 4 2 2 y dx 2 x 3 x 4 3x 4 x 5 dy y 1 2x 6x 4 2 2 dx 2 x 3 x 4 3x 4 x 5 dy 1 dx 2 x 3 x 2 4 1 2x 6x 4 2 2 3x 4 x 5 x 3 x 4 3x 4 x 5 2 4. Find dy 2x if y sin 1 2 dx 1 x Sol : 2x y sin 1 2 1 x Put x tan 2 tan y sin 1 2 1 tan 1 sin sin 2 y 2 2 tan 1 x Differentiating w.r.t x, we get dy 2 dx 1 x 2 5. Differentiate the function log x cos x with respect to x. 10 y log x Sol : cos x Taking logarithm on both sides log y log log x cos x log y cos x log log x Differentiating w.r. t. x on both sides, we get 1 dy d d cos x log log x cos x log log x y dx dx dx 1 dy cos x sin x log log x y dx x log x cos x dy cos x cos x y sin x log log x log x sin x log log x dx x log x x log x 6. Find dy if y x x y dx Sol : yx xy Taking logarithm on both sides log y x log x y x log y y log x Differentiating with respect to x, on both sides, we get x d d d d (log y) log y ( x) y (log x) log x ( y) dx dx dx dx x dy y dy log y log x y dx x dx x y log x dy y x log y y x dx dy y y x log y dx x x y log x 7. Differentiate sin 2 x with respect to ecos x Sol : let u sin 2 x and v ecos x Differentiate w.r.t x 11 du 2sin x cos x dx and dv sin xecos x dx du du dx 2sin x cos x 2 cos x cos x cos x dv dv sin xe e dx sin x 8. Differentiate tan 1 with respect to x. 1 cos x Sol : sin x y tan 1 1 cos x x x x 2sin cos sin 2 2 tan 1 2 tan 1 tan x y tan 1 x x 2 2 cos 2 cos 2 2 y x 2 Differentiating w.r.t x on both sides dy 1 dx 2 9. Verify mean value theorem if f ( x) x3 5x 2 3x in the interval [a, b] where a = 1 and b = 3. Find c (1,3) for which f | (c) 0 . Sol: Given f ( x) x3 5x 2 3x x [1,3] which is a polynomial function. Since a polynomial function is continuous and derivable at all x R (1) f(x) is continuous on [1,3] (2) f(x) is derivable on (1, 3) Therefore condition of mean value theorem satisfied on [1,3]. Hence, at least one real c (1,3) 3 2 f (3) f (1) 3 5(3) 3(3) 1 5(1) 3(1) f (c ) 3 1 2 | f | (c ) 20 10 2 f | ( x) 3x 2 10 x 3 ; f | (c) 3c2 10c 3 10 3c2 10c 7 0 3c2 7c 3c 7 0 ; 12 c(3c 7) (3c 7) 0 c = 1 (1,3) c 7 (1,3) . 3 Hence the mean theorem satisfied for given function in the given interval. 10. If y cos1 x find Sol : d2y in terms of y alone. dx 2 y cos1 x x cos y Differentiating w.r.t y, we get dx sin y dy dy cos ecy dx Again differentiating w.r. t x , we get d2y dy cos ecy cot y 2 dx dx d2y cos ec 2 y cot y 2 dx 11. Find the derivative of log x Sol : y log x log x with respect to x. log x Taking logarithm on both sides log y log log x log x log y log x log log x Differentiating w.r. t x on both sides 1 dy d d log x log log x log log x log x y dx dx dx 1 dy log x log log x y dx x log x x 1 log log x log log x dy log x 1 y log x dx x x x x 13 12. Find Sol : dy if y cos x3 .sin 2 x5 dx y cos x3 sin 2 x5 Differentiating w.r.t x on both sides sin x dxd cos x dy d cos x3 sin 2 x5 dx dx 2 5 3 dy cos x3 2sin x5 cos x5 5 x 4 sin x5 sin x3 3x 2 dx dy 10 x 4 sin x5 cos x5 cos x3 3x 2 sin x5 sin x3 dx 13. Verify Rolle’s theorem for the function f ( x) x 2 2 x 8 , x [4, 2] . Sol : Given f ( x) x 2 2 x 8 , x [4, 2] . Since a polynomial function is continuous and derivable on R. (1) f(x) is continuous on [-4,2] (2) f(x) is derivable on [-4,2]. Also f (4) (4)2 2(4) 8 0 and f (2) 22 2 2 8 0 f (4) f (2) . This means that all the conditions of Rolle’s theorem are satisfied by f(x) in [-4,2]. Therefore there exist at least one real number c (4, 2) such that f | (c) 0 . f ( x) x 2 2 x 8 f | ( x ) 2 x 2 f | (c) 0 2c 2 0 c 1 (4, 2) Rolle’s theorem is verified with c = - 1 14. If x asin Sol : 1 x asin xa and y acos t 1 t 1 1 sin t 2 1 t then prove that y acos ya 1 dy y dx x t 1 cos 1 t 2 Differentiating w.r.t “t” we get 1 1 sin t dx d 1 a2 log a sin 1 t dt dx 2 1 1 sin t 2 dx a log a dt 2 1 t2 1 cos 1 t dy d 1 a2 log a cos 1 t dt dx 2 1 cos1 t 2 dy a log a dt 2 1 t2 14 1 1 dy a 2 cos t log a 1 2 dy dt a sin t 2 1 t 1 1 1 sin t dx dx log a a cos t a2 dt 2 1 t2 dy y dx x 15. Find the derivative of x x 2sin x with respect to x. Sol : let y x x 2sin x = u – v Where u x x and v 2sin x Taking log on both sides log u log x x and log v log 2sin x log u x log x and log v sin x log 2 Differentiate with respect to x we get 1 du d d x log x x log x u dx dx dx and 1 dv cos x log 2 v dx du x u 1.log x x x 1 log x dx x and dv v cos x log 2 2sin x cos x log 2 dx y u v dy du dv x x 1 log x 2sin x cos x log 2 dx dx dx dy tan dx 2 16. If x a( sin ) and y a(1 cos ) prove that Sol : x a( sin ) y a(1 cos ) Differentiating w.r.t x on both sides dx a(1 cos ) d dy a(0 sin ) a sin d dy dy d a sin dx dx a (1 cos ) d dy dx 2a sin 2 cos 2a cos 2 2 2 sin 2 tan 2 cos 2 17. If a function f(x) is differentiable at x = c , prove that it is continuous at x = c. 15 Sol : Since f is differentiable at c, we have lim x c But for x c , we have f ( x) f (c) f ( x ) f (c ) f | (c ) xc f ( x ) f (c ) . x c xc f ( x ) f (c ) Therefore lim[ f ( x) f (c)] lim . x c x c x c xc Or f ( x ) f (c ) lim f ( x) lim f (c) lim x c lim x c x c x c x c xc f | (c) . 0 = 0 lim f ( x) f (c) . Hence f is continuous at x = c. x c FIVE MARK QUESTIONS 1. If y 3cos log x 4sin log x prove that x 2 y2 xy1 y 0 . Sol : y 3cos log x 4sin log x Differentiating w.r.t x on both sides y1 3sin log x x 4cos log x x xy1 3sin log x 4cos log x Again differentiating on both sides we get xy2 1 y1 3cos log x x 4sin log x x x2 y2 xy1 3cos log x 4sin log x x 2 y2 xy1 y x2 y2 xy1 y 0 2. If y 3e2 x 2e3 x prove that Sol : d2y dy 5 6y 0 2 dx dx y 3e2 x 2e3 x dy 6e2 x 6e3 x 6 e2 x e3 x dx d2y 2 12e2 x 18e3 x 6 2e2 x 3e3 x dx 16 Hence d2y dy 5 6 y 6(2e3 x 3e3 x) 30 e2 x e3 x 6 3e2 x 2e3 x 2 dx dx d2y dy 5 6 y 12e3 x 18e3 x 30e2 x 30e3 x 18e2 x 12e3 x 0 2 dx dx 3. If y tan 1 x Sol : 2 y tan 1 x 2 prove that x 2 1 y2 2 x x 2 1 y1 2 . 2 Differentiating w.r.t on both sides y1 2 tan 1 x 1 x2 1 x 2 y1 2 tan 1 x Again differentiating w.r.t x on both sides 1 x y 2 2 2 xy1 2 1 x2 On cross multiplication, we get 1 x 2 2 y2 2 x 1 x 2 y1 2 4. If y Aemx Benx , Show that Sol : d2y dy m n mny 0 . 2 dx dx y Aemx Benx Differentiating w.r.t x on both sides dy Amemx Bnenx Again differentiate w.r.t x on both sides dx d2y Am2emx Bn2enx 2 dx d2y dy m n mny m2 Aemx n2 Benx m n Amemx Bnenx mny Hence 2 dx dx m2 Aemx n2 Benx Am2emx Bmnenx Amnemx n2 Benx mny Bmnenx Amnemx mny mn Aemx Benx mny mny mny 0 17 y Aemx Benx 5. If y sin 1 x prove that 1 x 2 Sol : 2 0 ddxy x dy dx 2 y sin 1 x Differentiate w.r.t x, we get dy 1 dx 1 x2 1 x2 On cross multiplication dy 1 dx Again Differentiate w.r.t x, we get 1 x2 d2y 2 x dy 0 2 dx 2 1 x 2 dx Taking Lcm and simplifying, we get 1 x2 d2y dy x 0 2 dx dx 6. If y cos1 x prove that 1 x 2 y2 xy1 0 Sol : y sin 1 x Differentiate w.r.t x, we get dy 1 dx 1 x2 On cross multiplication 1 x 2 y1 1 Again Differentiate w.r.t x, we get 1 x 2 y2 2x 2 1 x2 y1 0 Taking Lcm and simplifying, we get 1 x 2 y2 xy1 0 7. If y 5cos x 3sin x , prove that Sol : d2y y0 dx 2 y 5cos x 3sin x Differentiating w.r.t x , on both sides 18 dy 5sin x 3cos x dx Again differentiating w.r.t x we get d2y 5cos x 3sin x 5cos x 3sin x dx 2 d2y y dx 2 d2y y0 dx 2 d 2 y dy 8. If e x 1 1 , prove that dx 2 dx 2 y Sol : e y x 1 1 Differentiate w.r.t x on both sides ey d d x 1 x 1 e y 0 dx dx e y x 1 e y dy 0 dx dy 1 dx x 1 Again differentiate w.r.t x , we get d2y 1 2 2 dx x 1 d 2 y dy dx 2 dx 2 9. If y 500e7 x 600e7 x then show that Sol : d2y 49 y dx 2 y 500e7 x 600e7 x Differentiate w.r.t x dy 500 7e7 x 600 7e7 x dx Again differentiate w.r.t x d2y 500 49e7 x 600 49e7 x dx 2 d2y 49 500e7 x 600e7 x dx 2 d2y 49 y dx 2 19
© Copyright 2024 ExpyDoc