CEE 6150: Digital Image Processing W. Philpot, Cornell University FFT 1 Frequency Domain Operations Spatial frequencies, Frequency domain filters Fourier Transform, Fast Fourier Transform (FTT) Fourier Transform A f(x) 0 x f(x) = A0 + A1 sin (2ax) d where a = /d A0+A1 A0 A1 A A0-A1 A0 + A1 d/2 0 d k x 0 1/d A0 + A1 A0 7/d 7/d 9/d 5/d 7/d 7/d 9/d 7/d 7/d 9/d A1 A1 3 0 d/2 d x k 0 1/d 3/d f(x) = A0 + A1 [sin (ax) + 1/3 sin (3ax) +1/5 sin (5ax)] A0 A0 A0 - A1 5/d f(x)=A0+A1[sin(ax)+1/3sin(3ax)] A0 A0 - A1 3/d 0 d/2 d x A1 0 1/d A1 3 3/d A1 5 5/d k CEE 6150: Digital Image Processing W. Philpot, Cornell University FFT 2 The next term in the Fourier Series is: ( ) [ ( or, more generally ) ( ( ) ) ( ∑ ) ( ( )] ) n = 1, 3, 5, . . . Bn = A1/n ky y kx 1 d x 3 5d 5 Image 7 /d /d /d y /d kN = 0.5 cycles / sample ky0 Fourier Transform 5d 1 /d kx 2 /d d Image x d/4 Fourier Transform kN = 0.5 cycles/sample high frequency FOVy kN y sy kox low frequency sx FOVx kN kmax Image koy x Fourier Transform CEE 6150: Digital Image Processing W. Philpot, Cornell University FFT 3 kN y kNx kmax < kNx ~ kNy The sampling interval defines the Nyquist frequency -- the high frequency limit of the imaging system: kNx = 1/(2sx) kNy = 1/(2sy) The edge of the Fourier transform image represents the Nyquist frequency. The highest frequency is along the diagonal: kN m ax kN x 2 kN y 2 The low frequency "resolution" limit is related to the image FOV: kox = 1/(FOVx) koy = 1/(FOVy) collimated Source image light (transparency) source FT Lens FT Plane (filter position) Inverse FT Lens For a similar, intuitive description of the Fourier Transform, see: http://sharp.bu.edu/~slehar/fourier/fourier.html Final (filtered) image CEE 6150: Digital Image Processing W. Philpot, Cornell University FFT 4 CEE 6150: Digital Image Processing W. Philpot, Cornell University FFT Optical FT: random square/circular apertures 5 CEE 6150: Digital Image Processing W. Philpot, Cornell University FFT Optical FT: arrays of square/circular apertures 6 CEE 6150: Digital Image Processing W. Philpot, Cornell University Digital FFT: wave spectra Optical FT: airphoto subsets FFT 7 CEE 6150: Digital Image Processing W. Philpot, Cornell University FFT 8 CEE 6150: Digital Image Processing W. Philpot, Cornell University Digital FFT: Ideal filter and ringing FFT 9 CEE 6150: Digital Image Processing W. Philpot, Cornell University FFT 10
© Copyright 2025 ExpyDoc