PRODUKTKATALOG 2016 INHALT Mess- und Prüftechnik in der Fahrzeugentwicklung 7 Softwaretreiber-Übersicht 8 Anwendungsbeispiele 9 Messmodule 19 Datenlogger 60 Zubehör 80 Hochvolt-Messtechnik 90 Kabelinformation 96 Herstellerunabhängige Messdatenerfassung 115 Editionen-Übersicht 116 Messprozesse als integratives Gesamtkonzept 133 IPEengineering Projektmanagement 134 IPEengineering Thermomanagement 135 Prüfstände und Umweltsimulationsanlagen 137 Maßgeschneiderte Lösungen zum Thermomanagement 138 Produkte 139 INNOVATIVE MESSTECHNOLOGIE FÜR DIE AUTOMOBILINDUSTRIE IPETRONIK ist eines der weltweit führenden Unternehmen für mobile Messtechnik, DAQ-Software, Ingenieurdienstleistungen und Prüfstandtechnik in der Automobilindustrie. Strategisch miteinander verbunden, kombiniert IPETRONIK technologische Entwicklung, praktische Anwendung und zuverlässige Datenverarbeitung in einem einzigartigen System. Nur so lassen sich die anspruchsvollen Aufgaben in der Fahrzeugentwicklung und der Industrie umfassend und unter höchsten Präzisionsmaßstäben betrachten und lösen. Darauf vertrauen Automobilbauer und -zulieferer in Europa und weltweit seit beinahe 25 Jahren. Das integrative IPETRONIK Konzept wird von mehr als 180 Mitarbeitern täglich weiterentwickelt und an die Bedürfnisse der Kunden angepasst. Kontinuierliche Entwicklung. Zuverlässige Leistung. Höchste Qualität. 4 HÖCHSTEN QUALITÄTSANSPRÜCHEN VERPFLICHTET Qualität bedeutet für uns Leistungsfähigkeit, individuellen Zuschnitt und Zukunftsfähigkeit. Bis ins kleinste Bauteil, bis in jede einzelne programmierte Code-Zeile hinein. Das ist die Basis unserer Arbeit und die Basis Ihres Erfolgs. Kalibrierlabor IPETRONIK verfügt über ein eigenes Prüflabor, in welchem sämtliche Messmodule und Datenlogger eine Werkskalibrierung erhalten. Alle verwendeten Referenzwerte sind DKD rückführbar. Die Einhaltung der angegebenen Toleranzen wird durch ein Prüfzertifikat bestätigt. Die IPETRONIK Kalibrierung ist zwei Jahre gültig und umfasst wesentlich mehr als nur den Vergleich der gemessenen Werte mit einem Normal. QM Zertifikat Entwickelt, geprüft, zertifiziert. Unsere hohen Qualitätsansprüche erneuern und prüfen wir in einem kontinuierlichen Prozess. Bei IPETRONIK gehen Entwicklung und Qualitätsmanagement Hand in Hand, sodass auch jede Neuentwicklung und Innovation bereits unter strengen Kriterien geschaffen wird. Akkreditierung Leckage Labor Zur Ermittlung von Leckageraten ist unser Labor vom Kraftfahrt-Bundesamt (KBA) für die Prüfung mittels R134a akkreditiert. Gemäß der Richtlinie 2006/40/EG einschließlich VO 706/2007 führen wir die Leckagemessungen an Kfz-Klimaanlagen und ihren Komponenten durch. 5 ▸ Mobile Datenerfassungssysteme für extreme Bedingungen ▸ Für jeden analogen Eingang ▸ Daten-Bus Eingänge (CAN, CCP, XCP, FlexRay, J1939, GM-LAN...) ▸ Diagnose (OBD, KWPonCAN, ...) ▸ Datenspeicherung mit Wireless Option ▸ Software Support für ETAS, VECTOR, dSpace, NI-Tools ▸ High Voltage DAQ Module ▸ Globaler Datenzugang 6 MESS- UND PRÜFTECHNIK IN DER FAHRZEUGENTWICKLUNG IPETRONIK – Systeme zur Datenerfassung aus einer Hand Die Ansprüche an die Automobilindustrie werden immer höher. Energiebilanz, Sicherheitsklassifizierung, Störanfälligkeit entscheiden direkt über Kundenakzeptanz und -nachfrage. Leistungsstarke Messhardware und systematisch konzipierte Datenerfassung bilden bereits in der Entwicklungsphase eines Fahrzeugs den wesentlichen Baustein für einen späteren Verkaufserfolg. So setzt heute nahezu jeder Automobilhersteller weltweit auf Technologie und Dienstleistungen von IPETRONIK. Und das aus gutem Grund: Denn alle Komponenten sind im System konzipiert und folgen durchgängig höchsten Qualitätsstandards. IPETRONIK unterstützt Sie bei der mobilen Datenerfassung auf der Straße, im Gelände, auf der Schiene, zu Wasser und stationär am Prüfstand. Im Dauereinsatz, unter härtesten klimatischen Bedingungen und exakt bis in die allerkleinsten Details. Ein Maximum an Qualität und Zuverlässigkeit und individuell auf Ihre Bedürfnisse zugeschnittene Systemlösungen sind unser Anspruch. Ganzheitliche Mess- und Prüftechnologie für die Automobilentwicklung. Mobil. Individuell zugeschnitten. Und immer einen Schritt voraus. Innovative Messtechnologie ▸ Temperatur ▸ Strom und Spannung ▸ Dehnungsmessstreifen ▸ Druck ▸ Frequenzen und Drehzahlen ▸ Volumenstrom ▸ Protokoll- und Diagnosedaten Entwicklungsleistungen ▸ Antriebsstrangentwicklung ▸ ThermomanagementEntwicklung ▸ Sommer- und Wintererprobung ▸ Klimawindkanal ▸ Flottenerprobung ▸ HV-Messungen ▸ Betriebsfestigkeit ▸ Bremsenentwicklung ▸ Bordnetzentwicklung ▸ Karosserieentwicklung 7 8 IPEmotion IPETRONIK-CAN ■ CAN (CANdb) ■ CAN Protocols ■ IPETRONIK-X INCA DIAdem CANape CANalyzer IPEaddon INCA A2L CANdb ■ CANdia ■ A2L CANdb ■ A2L ■ Notebook · X-LINK · CAN ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ IPETRONIK-LOG ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ CANdb ■ ■ ■ ■ ■ CANdb ■ ■ ■ ■ ■ Flotten-Datenlogger Datenlogger · Onlinemessung (CAN) Datenlogger · Onlinemessung (ETH) Datenlogger Notebook · X-LINK · M-CAN Tunneling Notebook · X-LINK/M-CAN · CAN Treiber/Beschreibungsdatei Notebook · X-LINK · M-CAN · CAN Software Notebook · ES59x · M-CAN · CAN Notebook · M-CAN · CAN SOFTWARE/TREIBER-ÜBERSICHT ■ ■ ANWENDUNGSBEISPIELE Notebook · M-CAN · CAN M-Module MultiDAQ CANpressure MultiDAQ CANpressure IPEcan Pro M-CAN CAN Fahrzeug Notebook · ES59x · M-CAN · CAN M-Module ETAS ES59x M-CAN CAN, ETK Fahrzeug (ECU) 9 ANWENDUNGSBEISPIELE Notebook · X-LINK · CAN Mx-Module Sx-Module IPEcan X-LINK CAN Fahrzeug Notebook · X-LINK · M-CAN · CAN Mx-Module Sx-Module M-Module MultiDAQ X-LINK IPEcan Pro M-CAN CAN Fahrzeug 10 CANpressure ANWENDUNGSBEISPIELE Notebook · X-LINK/M-CAN · CAN X-Module M-Module X-LINK IPEcan Pro M-CAN CAN Fahrzeug Notebook · X-LINK · M-CAN-Tunneling · CAN M-Module X-Module IPEcan X-LINK CAN HV-Module CAN Fahrzeug 11 ANWENDUNGSBEISPIELE Datenlogger Datenlogger Verrechnen, Speichern Systemkonfiguration Konfiguration ETH (LOG2PC) CAN 1, CAN 2, ... CAN x CCP, KWP, XCP, UDS ... Fahrzeug (ECU) Datenlogger · Onlinemessung (ETH) Datenlogger Verrechnen, Speichern Systemkonfiguration Onlinemessung Konfiguration ETH (LOG2PC) Messdaten CAN 1, CAN 2, ... CAN x CCP, KWP, XCP, UDS ... Fahrzeug (ECU) 12 M-Module CANpressure ANWENDUNGSBEISPIELE Datenlogger · Onlinemessung (CAN) Datenlogger M-Module CANpressure Verrechnen, Speichern IPEcan CAN Messdaten (online) CAN 1, CAN 2, ... CAN x CCP, KWP, XCP, UDS ... Fahrzeug (ECU) 13 ANWENDUNGSBEISPIELE IPEconnect - IPEhub2 · Kabelloses Logger Display System WLAN Datenlogger Verrechnen, Speichern Android Tablet & IPEmotion App IPEhub2 CAN 1, CAN 2, ... CAN x CCP, KWP, XCP, UDS Fahrzeug (ECU) Display-System-Beschreibung: Während einer Testfahrt ist es in vielen Fällen nützlich, dem Fahrer die vom Datenlogger aufgenommenen Messdaten in Echtzeit anzuzeigen, um ihm unmittelbar die Möglichkeit zu geben, sich über spezielle Messungen, Ereignisse oder Grenzwertüberschreitungen zu informieren. Die kabellose Display-System-Lösung besteht aus der IPEmotion App, dem IPEhub2 und einem aktuellen IPETRONIK Datenlogger. Mit diesem integrierten System hat der Fahrer Zugang zu bis zu 250 Online-Messkanälen, die in vier verschiedenen Instrumenten in der Android App auf dem Tablet oder Smartphone dargestellt werden können. Systemanforderungen: Software IPEmotion 2015 R3 oder höher IPETRONIK PlugIn LOG V03.56.00 oder höher IPEmotion App V01.13 oder höher IPEhub2 Firmware V01.03 oder höher IPEhub2 Lizenz für IPEconnect Video: https://youtu.be/mJP5O7AYBsU 14 Hardware M-LOG / M-LOG V3 / IPElog FLEETlog2 Interface-Kabel 620-689.015 Interface-Kabel 620-691.015 Android System > 4.0 ANWENDUNGSBEISPIELE IPEhub2 als CAN-Karten-Schnittstelle für IPEmotion WLAN M-Module IPEhub2 CAN2 LAN PC - IPEmotion CAN1 ... Fahrzeug (ECU) Beschreibung: Die Applikation zeigt einen IPEhub2 als 2-Kanal-CAN-Schnittstelle. Der IPEhub2 ist mit einem PC verbunden und ermöglicht eine kabellose Datenübertragung. Eine typische Messapplikation ist die Verwendung an Bau- und Agrarfahrzeugen. Kabelgebundene Lösungen an drehenden Gerätekomponenten oder Stellantrieben sind hier äußerst störend und fehleranfällig. Die WiFi CAN-Karte bietet den Vorteil, dass keine physische Kabelschnittstelle benötigt wird, um Messungen auf dem Computer zu erfassen. Allein die Reichweite der WLAN-Verbindung beschränkt die Entfernung zwischen Computer und Messhardware. WLAN IPEhub2 CAN1 LAN PC - IPEmotion CAN2 M-Module Analogsensor 15 ANWENDUNGSBEISPIELE IPEhub2 · Kabellose Display-Anwendung und CAN Trace-Logging PC - IPEmotion Android Tablet & IPEmotion App LAN WLAN M-Module WLAN IPEhub2 CAN2 ... CAN1 Fahrzeug (ECU) Beschreibung: In der Anwendung als kabelloses Display-Konzept dient der IPEhub2 in Verbindung mit einem Tablet dazu, Fahrern und Test-Ingenieuren die relevanten Messgrößen komfortabel darzustellen. Über IPEmotion wird die Konfiguration der Display-Darstellung und die Messkonfiguration der CAN-Schnittstellen vorgenommen und direkt auf die Messhardware übertragen. Live-Daten werden unmittelbar nach Aufbau der WLAN-Verbindung des IPEhub2 zum Tablet und Start der IPEmotion App angezeigt. Parallel werden die gemessenen Daten auf der internen SD-Karte des IPEhub2 abgelegt und können direkt in IPEmotion importiert und analysiert werden. Die App bietet folgenden Funktionsumfang: • Manuelles oder automatisches Auslösen der Datenspeicherung des IPEhub2 • Hinzufügen von Kommentaren zu den aufgenommenen Daten • Hinzufügen und Modifizieren der Display-Instrumente und Definition eines individuellen Layouts • Speichern neu erstellter Display-Instrumente auf dem IPEhub2 • Multi-Tablet-Funktion zur gleichzeitigen Datenvisualisierung auf mehreren Tablets Video: https://youtu.be/HGBeR4kvrDM 16 ANWENDUNGSBEISPIELE Flotten-Datenlogger GPRS, UMTS, 3G weltweit Internet ETH Messdaten Konfiguration Beschreibungsdateien CANdb A2L Datenlogger 1 Datenlogger 2 Datenlogger n Verrechnen, Speichern Verrechnen, Speichern Verrechnen, Speichern CAN 1, CAN 2, ... CAN x CCP, KWP, XCP, UDS CAN 1, CAN 2, ... CAN 4 CCP, KWP, XCP, UDS CAN 1, CAN 2, ... CAN 12 CCP, KWP, XCP, UDS Messstellenplan FlexRay: FIBEX, AUTOSAR ... Fahrzeug (ECU) ... Fahrzeug (ECU) ... Fahrzeug (ECU) 17 18 ÜBERSICHT DER MODULE Signal Sensor Temperatur Thermoelement Typ J ■ Temperatur Thermoelement Typ K ■ Temperatur Thermoelement Typ N ■ Temperatur Thermoelement Typ R ■ Temperatur Thermoelement Typ S ■ Temperatur Thermoelement Typ T ■ Temperatur RTD Pt100 Spannung +/-2 mV (differenziell) Spannung +/-10 mV Min-Bereich Spannung bis +/-2 V (differenziell) ■ ■ Iso Clamp Connector High Voltage Iso Divider AnalogModule ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Spannung bis +/-50 V Spannung bis +/-100 V HV-Spannung bis +/-1000 V Spannung DMS Voll-, 1/2-, 1/4-Brücke ■ ■ Spannung ICP (IEPE) ■ ■ TEDS-Unterstützung IEEE 1451.4 Class 2 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Frequenz ■ ■ Periodendauer ■ ■ Tastverhältnis ■ ■ Ereignis ■ Drehrichtung Mx-SENS CANpressure SIM-STG M-THERMO2 HV High Voltage Iso DAQ MultiDAQ M-CNT M-SENS X-Bus-Module M-RTD µ-THERMO M-THERMO CAN-Module Sx-STG Module Inkremental ■ Zählung vor/rückw. Inkremental Strom bis +/-20 mA ■ ■ ■ Strom über Stromzange ■ ■ HV-Strom über Stromzange Druck direkt bis 250 bar (abs, rel) ■ ■ ■ ■ ■ ■ 19 Mx-SENS2 4 Fast 4-Channel Analog Measurement Device with Excitation 4 fast analog signal inputs for voltage / IEPE (Integrated Electronics Piezo-Electric) Up to 100 kHz sample rate per channel 10 bipolar voltage measurement ranges TEDS support 4 galvanically isolated sensor excitations, supply voltage selectable Status LED at each input channel Measurement data output to Ethernet using XCPonEthernet, Measurement data output to CAN Real Time Ethernet Synchronization IEEE1588 Complete galvanic isolation (inputs, excitation, CAN, Ethernet, power supply, enclosure) Designed for automotive in-vehicle use Toolless module to module connection General Ranges covering input signals ±0.1 V to ±100 V Input voltage (IN+ ↔ IN-) max. ±100 V, short-time (1 ms) ±200 V Channel sample rates Standard mode High mode 10/ 20/ 50/ 100/ 200/ 500 Hz, 1/ 2/ 5/ 10 kHz 1/ 2/ 5/ 10/ 20/ 50/ 100 kHz Internal sample rate (max. per channel) 100 kHz Total sample rate (max. per module) 400 kHz (Ethernet), 2 kHz (CAN) Voltage supply 9 VDC to 36 VDC (Switch-off for voltage < 6 V) Power consumption, typical 4.2 W Operating temperature range -40 °C ... +105 °C (-40 °F ... +221 °F) Storage temperature range -55 °C ... +105 °C (-67 °F ... +221 °F) Relative humidity 5 ... 95 % IP-Code IP 67 (ISO 20653 - 2013) Dimensions (W x H x D), approx. 106 mm x 60 mm x 62 mm (4.17 in x 2.36 in x 2.44 in) Weight approx. 500 g (1.10 lb) Cables Measuring input 670-810.xxx M-SENS (TEDS) Cable open Connecting cable ETH (data, power) Power cable terminated Data cable 630-500.xxx 630-501.xxx 630-502.xxx X-LINK Cable System X-LINK Cable PWR Banana-2 X-LINK Cable RJ45 20 Mx-SENS2 4 Voltage / Current input electrically isolated Galvanic isolation input ↔ module power supply input ↔ excitation input ↔ CAN input ↔ input nominal voltage ±100 V ±100 V ±100 V ±100 V pulse voltage ±500 V ±500 V ±500 V ±500 V Measuring ranges Voltage (bipolar) Input resistance ±0.1/ ±0.2/ ±0.5/ ±1/ ±2/ ±5/ ±10/ ±20/ ±50/ ±100 V 5 MΩ Current (bipolar) Input resistance ±20 mA 50 Ω Resolution 22 Bit (oversampling) Accuracy at 25 °C (77 °F) ambient temperature ±0,06 % ±0,30 % Drift at an ambient temperature of: -40 °C … +105 °C (-40 °F to +221 °F) voltage ranges current range ±20 ppm/K Input channel status LED 1. Channel identification for configuration (flashing) 2. Current overload indication (LED on) Offset adjust by broadcast command (Offset adjust also supported during measurement!) - Manual offset adjust - Offset adjust for all channels of a group Hardware filter 12 kHz, filter type 8-pole Butterworth, switchable Software filter cut-off frequency and filter type selectable ICP Mode Piezo electric sensors Nominal current, regulated 4.5 mA ±10 % Measuring range ±0.1/ ±0.2/ ±0.5/ ±1.0/ ±2.0/ ±5.0/ ±10.0 V Cut-off frequency lower upper filter can be switched off, 1 Hz or 200 Hz per software selectable 50 kHz without HW / SW filter Accuracy ±20 % Sensor excitation electrically isolated Selectable output voltage Off/ ±2.5/ ±5/ ±7.5/ ±8,0/ ±10/ ±12.5/ ±15 VDC Output current (short circuit proof) at VOut ±2.5/ ±10.0 V at VOut ±5.0/ ±12.5 V at VOut ±7.5/ ±15.0 V ±25 mA (independed from output voltage) max. ±30 mA max. ±40 mA max. ±60 mA Interfaces Ethernet, CAN Fast Ethernet (100Base-TX) 100 MBit/s data transfer rate according to IEEE 802.3 CAN 2.0B (High Speed) max. 1 MBit/s according to ISO11898-2 Data format 16 Bit (Word) resp. 32 Bit (DWord Float) resolution / format Configuration interface X-LINK Ethernet 21 Mx-SENS2 8 English Fast 8-Channel Analog Measurement Device with Excitation 8 analog signal inputs for voltage / current 8 separate sensor excitations, supply voltage individually selectable (up to ±15 V, ±45 mA) 12 unipolar and 12 bipolar measuring ranges 2 current measuring ranges 10 mV range, e.g. for standby current applications Status LED at each input channel (sensor break indication and configuration aid) Measurement data output to Ethernet using XCPonEthernet, Measurement data output to CAN Complete galvanic isolation (inputs, excitation, CAN, Ethernet, power supply, enclosure) Designed for automotive use Toolless module to module connection (M2 series housing) Measurement ranges Covering input signals r0.01 V to r100 V Input voltage (IN+ ļ IN-) max. r100 V, short-time (1 ms) r200 V Channel sample rates 1/ 2/ 5/ 10/ 20/ 50/ 100/ 200/ 500 Hz 1/ 2/ 5/ 10 kHz (CAN up to 2 kHz) Internal sample rate (max. per channel) 10 kHz Voltage supply 9 VDC to 36 VDC Switch-off for voltage < 6 V Power consumption, typical 4.0 W (all excitations off) Working temperature range -40 °C ... +85 °C (-40 °F ... +185 °F) Storage temperature range -55 °C ... +105 °C (-67 °F ... +221 °F) Relative humidity 5 ... 95 % IP-Code IP 67 (ISO 20653 - 2013) Dimensions W204 mm x H41 mm x D55 mm (W8.03 in x H1.61 in x D2.17 in Weight 690 g (1.52 lb) Cables Measuring input 670-810.xxx M-SENS (TEDS) Cable open Connecting cable ETH (data, power) Power cable terminated Data cable 630-500.xxx 630-501.xxx 630-502.xxx X-LINK Cable System X-LINK Cable PWR Banana-2 X-LINK Cable RJ45 22 Mx-SENS2 8 Voltage input electrically isolated Galvanic isolation input ļ module power supply input ļ excitation input ļ CAN input ļ input nominal voltage r100 V, short-time (1 ms) r200 V r100 V, short-time (1 ms) r200 V r100 V, short-time (1 ms) r200 V r100 V, short-time (1 ms) r200 V Voltage ranges Voltage unipolar ( 0 ... ) Input resistance 0.01/ 0.1/ 0.2/ 0.5/ 1/ 2/ 5/ 10/ 20/ 30/ 50/ 100 V 10 Mȍ Voltage bipolar ( + / - ) Input resistance ±0.01/ ±0.1/ ±0.2/ ±0.5/ ±1/ ±2/ ±5/ ±10/ ±20/ ±30/ ±50/ ±100 V 10 Mȍ Current unipolar ( 0 ... ) / bipolar ( + / - ) Input resistance 0 ... 20 mA, ±20 mA 50 ȍ Signal resolution 16 Bit Accuracy at Tambient = 25 °C (77 °F) ±0.06 % r0,10 % ±0.40 % Drift at an ambient temperature of -40 °C to +85 °C (-40 °F to +185 °F) bipolar voltage ranges unipolar voltage ranges current ranges (bipolar, unipolar) ±40 ppm/K Input channel status LED 1. Channel identification for configuration (LED flashes) 2. Current overload indication (LED on) Offset adjust by broadcast command - manual offset adjust - offset adjust for all channels of a group (Offset adjust also supported during measurement!) Hardware filter, switchable 1200 Hz, filter type 8-pole Butterworth Software filter (DSP), optional cut-off frequency and filter type selectable Aggregate sample rate max. 80 kHz (CAN up to 2 kHz) Sensor excitation electrically isolated Selectable output voltage Off/ ±2.5/ ±5/ ±7.5/ ±8,0/ ±10/ ±12.5/ ±15 VDC Output current (short circuit proof) at Voutput ±2.5/ ±10.0 V at Voutput ±5.0/ ±12.5 V at Voutput ±7.5/ ±15.0 V ±25 mA (independent from output voltage) max. ±30 mA max. ±40 mA max. ±45 mA Accuracy at an ambient temperature of -40 °C / 23 °C / 85 °C (-40 °F / 73 °F / 185 °F) ±0.40 % / ±0.25 % / ±0.40 % Interfaces Ethernet, CAN Fast Ethernet (100Base-TX) 100 MBit/s data transfer rate according to IEEE 802.3 CAN 2.0B (High Speed) Data transfer rate, selectable (data output to CAN Bus in preparation) max. 1 MBit/s according to ISO11898-2 Data format 16 Bit (Word) resp. 32 Bit (DWord Float) resolution / format Configuration interface Ethernet (CAN projected) 23 Sx-STG Fast 8-Channel Multi-Analog Measurement Device with Excitation 8 analog signal inputs for voltage measurements Measurement modes: SENS, STG, ICP, individual for each input 8 separate dual sensor excitations (up to r15 V, up to r45 mA) Offset and target adjust functions, shunt check Internal resistors for bridge completion selectable TEDS support (data output to Ethernet) Measurement data output to Ethernet using XCPonEthernet, Measurement data output to CAN Complete galvanic isolation (signal inputs, excitation, CAN, Ethernet, power supply) Designed for automotive in-vehicle use Toolless module to module connection as option Measurement modes SENS up to r50 V, STG up to r2 V, ICP up to r5 V Input resistance 10 Mȍ (differential), 5 Mȍ (ground related) dual, single Channel sample rates 1/ 2/ 5/ 10/ 20/ 50/ 100/ 200/ 500 Hz 1/ 2/ 5/ 10/ 20/ 40 kHz (CAN up to 2 kHz) Internal sample rate () 40 kHz max. per channel Voltage supply 9 VDC to 36 VDC, Switch-off for voltage < 6 V Power consumption, typical 7.5 W (all excitations off) Working temperature range -40 °C ... +85 °C (-40 °F ... +185 °F) Storage temperature range -55 °C ... +105 °C (-67 °F ... +221 °F) Relative humidity 5 ... 95 % IP-Code IP 54 (ISO 20653 - 2013) Dimensions (W x H x D) 75 mm x 119 mm x 185 mm, (2.95 in x 4.69 in x 7.28 in) Weight 1430 g (3.15 lb) Cables Measuring input Lemo 2B 10-pin Lemo 1B 7-pin 600-747.xxx 670-850.xxx STG 2B 10p. Cable open DMS/STG Cable open Connecting cable ETH (data, power) Power cable terminated Data cable 630-500.xxx 630-501.xxx 630-502.xxx X-LINK Cable System X-LINK Cable PWR Banana-2 X-LINK Cable RJ45 24 Sx-STG Measurement input general Resolution (SAR ADC) 16 Bit Pre-filter (HF) Cut-off frequency fc Type Accuracy 17 kHz RC 2-pole 25 % Hardware filter Cut-off frequency fc Type Accuracy 4800 Hz, can be switched off Butterworth 8-pole 10 % Software filter (DSP) Cut-off frequency fc, selectable Type, selectable Accuracy 1.0/ 1.25/ 1.667/ 2.5/ 5.0/ 6.667/ 10/ 12.5/ 16.67/ 25/ 50/ 66.67/ 100/ 125/ 166.7/ 250/ 500/ 667 Hz 1.0/ 1.25/ 1.667/ 2.5/ 5.0/ 6.667/ 10/ 12.5/ 16.67 kHz Butterworth, Bessel, Elliptic 8-pole 0.05 % Wire break detection for sensor excitation Galvanic isolation input ļ module power supply excitation ļ module power supply input ļ input nominal voltage r100 V, short-time (1 ms) r200 V r100 V, short-time (1 ms) r200 V r100 V, short-time (1 ms) r200 V Input female connectors 7-pin (SIM-DMS compatible) 10-pin (TEDS) EGG 1B 307 EGG 2B 310 SENS Mode Voltages up to r50 V Measuring ranges unipolar / bipolar Accuracy @ Ta = 25 °C 0.01 / 0.02 / 0.05 / 0.1 / 0.2 / 0.5 / 1 / 2 / 5/ 10/ 20/ 50 V 0,075 % corresponding to the absolute value of the range selected 30 ppm/K Drift Sensor excitation Output voltage, selectable Bipolar Uniploar Accuracy @ Ta = 25 °C Drift Output current Offset adjust (also during measurement) 2-wire connection r0.5/ r1.25/ r2.5/ r5/ r10/ r12/ r15 V 0.5/ 1.25/ 2.5/ 5/ 10/ 12/ 15 V 0.5 % 30 ppm/K 45 mA, short-circuit proof, (software controlled) manual adjust with channel multiple selection 25 Sx-STG STG Mode Differential voltages up to r2 V Measuring ranges Range 1 Accuracy @ Ta = 25 °C r2 ... r62 mV r0.10 % + 15 μV Drift Range 2 Accuracy @ Ta = 25 °C 30 ppm/K r64 ... r998 mV r0.075 % + 7 μV Drift Range 3 Accuracy @ Ta = 25 °C 30 ppm/K r1000 ... r2000 mV r0.05 % + 7 μV Drift adjustable in 2 mV steps corresponding to the absolute value of the range configured adjustable in 2 mV steps corresponding to the absolute value of the range configured adjustable in 2 mV steps corresponding to the absolute value of the range configured 30 ppm/K Special functions Bridge adjust Shunt check (in preparation) Shunt resistor simulation Resistors for bridge completion zero adjust resp. target value adjust by hardware on all 4 arms of the bridge, on command also during the measurement executable 5 ... 200 kȍ, (depending on excitation voltage) 120, 350, 1000 ȍ software selectable Sensor excitation Output voltage, selectable Accuracy @ Ta = 25 °C Drift Output current 4-wire-/ 6-wire connection r0.5/ r1.25/ r2.5/ r5 V 0.1 % 30 ppm/K 45 mA, short-circuit proof, (software controlled) ICP Mode Piezo electric sensors Nominal current, regulated Measuring range Cut-off frequency, Accuracy lower upper Off-load voltage 4,5 mA r10 % r0.1/ r0.2/ r0.5/ r1.0/ r2.0/ r5.0 V filter can be switched off, r20 % 0.1 Hz 16000 Hz 24 V Interfaces Ethernet, CAN Fast Ethernet (100Base-TX) 100 MBit/s data transfer rate according to IEEE 802.3 CAN 2.0B (High Speed) Data transfer rate, selectable max. 1 MBit/s according to ISO11898-2 Data format 16 Bit (Word) resp. 32 Bit (DWord Float) resolution / format Configuration interface 26 Ethernet 27 M-UNI2 8-Channel Multi Input for K-Type Thermocouples and Voltage 8 analog measuring inputs for: - K-Type thermocouples (NiCr/NiAl) - Voltage up to ±30 V Cold junction compensation per channel Separate 24 Bit ADC for each channel Status LED at each input channel (sensor break indication and configuration aid) Measurement data output to CAN Complete galvanic isolation (inputs, CAN, power supply, enclosure) Designed for engine compartment applications Toolless module to module connection Measurement ranges -60 to 1370 °C (-76 to 2498 °F), ±30 V Input voltage max. ±50 V (indefinitely), ±200 V (short-time, t < 2 ms) Channel sample rates 1/ 2/ 5/ 10/ min 1/ 2/ 5/ 10/ 20/ 50/ 100 Hz Voltage supply 6 VDC to 36 VDC Power consumption, typical 1.1 W Working temperature range -40 ... +125 °C (-40 ... +257 °F) Storage temperature range -55 ... +150 °C (-67 ... +302 °F) Relative humidity 5 ... 95 % IP-Code IP 67 (ISO 20653 - 2013) Dimensions W106 mm x H30 mm x D57.5 mm (W4.17 in x H1.18 in x D2.26 in) Weight 305 g (0.67 lb) Cables 28 Measuring input 620-644.xxx Mc-THERMO VIN CL Cable open Connecting cable M-CAN (data, power) Power cable terminated Data cable terminated 620-560.xxx 620-561.xxx 620-502.xxx M-CAN Cable (CAN, PWR) M-CAN Cable PWR Banana-2 M-CAN Cable D-Sub /S M-UNI2 Measuring input general Galvanic isolation input ↔ module power supply input ↔ CAN input ↔ input nominal voltage ±100 V ±100 V ±100 V ADC resolution 24 Bit Align of the AD converter unit at processing each measuring value Input channel status LED 1. Identify the respective channel in configuration mode pulse voltage ±500 V ±500 V ±500 V (LED flashes) 2. Identify sensor break in measuring mode (LED lights continuously) Aggregate sampling rate max. 800 Hz Temperature mode -60 to 1370 °C (-76 to 2498 °F) Sensor type K-Type thermocouple (Ni10Cr/NiAl) Resolution 16 Bit Linearization of sensor characteristic line numerical, interpolated, resolution 15 Bit Cold junction compensation each input with PT100 (RTD) for the reference temperature Accuracy at ambient temperature Ta = 25 °C (77 °F) and measured temperature -60 °C to 1000 °C (-76 °F to 1832 °F) 1000 °C to 1370 °C (1832 °F to 2498 °F) ±0.035 % of full temperature range ±0.035 % of full temperature range ±2 Kelvin Drift at ambient temperature range: -40 °C to +125 °C (-40 ... +257 °F) ±40 ppm/K Input resistance, approx. 2.6 MΩ (sensor break detection active) 4.1 MΩ (sensor break detection inactive) Sensor break detection activated per software on command Hardware filter 2.5 Hz, filter type single pole RC low-pass Voltage mode ±30 V Resolution 16 Bit Accuracy at 25 °C (77 °F) ambient temperature ±0.1 % of total voltage range (±60 mV) Drift at ambient temperature range: -40 °C to +125 °C (-40 ... +257 °F) ±50 ppm/K Input resistance, approx. 4.1 MΩ @ 25 °C (77 °F) ambient temperature 3.6 MΩ @ 85 °C (185 °F) ambient temperature 1.2 MΩ @ 125 °C (257 °F) ambient temperature Hardware filter 330 Hz, filter type single pole RC low-pass CAN output Selectable data transfer rate (bit rate) up to 1 MBit/s according to ISO11898-2 CAN message data format (signal) Resolution (Format) Sign 8 Bit (Byte) and 16 Bit (Word) selectable signed, unsigned Configuration interface CAN 29 M-THERMO2 u 8-Channel Universal Thermocouple Inputs 8 Universal thermocouple inputs supporting type J, K, N, R, S, T Cold junction compensation for each channel Separate ADC for each channel Status LED at each input channel (sensor break indication and configuration aid) Measurement data output to CAN Complete galvanic isolation (inputs, CAN, power supply, enclosure) Designed for automotive use Toolless module to module connection Measurement ranges -60 to 1760 °C (-76 to 3200 °F) depends on sensor type selection Input voltage max. ±50 V (indefinitely), ±200 V (short-time, t < 2 ms) Channel sample rates 1/ 2/ 5/ 10/ min 1/ 2/ 5/ 10/ 20/ 50/ 100 Hz Voltage supply 9 VDC to 36 VDC Switch-off for voltage < 6 V Power consumption, typical 1.1 W Working temperature range -40 °C ... +125 °C (-40 °F ... +257 °F) Storage temperature range -40 °C ... +150 °C (-40 °F ... +302 °F) Relative humidity 5 ... 95 % IP-Code IP 67 (ISO 20653 - 2013) Dimensions W106 x H30 x D57.5 mm (W4.17 x H1.18 x D2.26 in) Weight 305 g (0.67 lb) Cables Measuring input 600-888.xxx TH-MIN Cable open Connecting cable M-CAN (data, power) Power cable terminated Data cable terminated 620-560.xxx 620-561.xxx 620-502.xxx M-CAN Cable (CAN, PWR) M-CAN Cable PWR Banana-2 M-CAN Cable D-Sub /S 30 M-THERMO2 u Thermocouple measurement input Type J, K, N, R, S, T Galvanic isolation input ↔ module power supply input ↔ CAN input ↔ input nominal voltage ±100 V ±100 V ±100 V pulse voltage ±500 V ±500 V ±500 V Measurement ranges Type J Fe/CuNi -50 °C to 1000 °C -58 °F to 1832 °F Type K NiCr/NiAl -60 °C to 1370 °C -76 °F to 2498 °F Type N NiCrSi/NiSi -50 °C to 1300 °C -58 °F to 2372 °F Type R Pt13Rh/Pt -50 °C to 1760 °C -58 °F to 3200 °F Type S Pt10Rh/Pt -50 °C to 1760 °C -58 °F to 3200 °F Type T Cu/CuNi -200 °C to 200 °C -328 °F to 392 °F Resolution 16 Bit Linearization of sensor characteristic line numerical, interpolated Cold junction compensation each input with RTD (Pt100) for the reference temperature Accuracy at ambient temperature Ta = 25 °C (77 °F) and measured temperature Lower range to 1000 °C (-76 °F to 1832 °F) 1000 °C to 1370 °C (1832 °F to 2498 °F) ±0.025 % of full temperature range ±0.025 % of full temperature range ±2 Kelvin Drift at ambient temperature range: -40 °C to +125 °C (-40 ... +257 °F) ±10 ppm/K Input resistance, approx. 2.6 MΩ (sensor break detection active) 4.1 MΩ (sensor break detection inactive) Align of the AD converter unit at processing each measuring value Sensor break detection activated per software on command Input channel status LED 1. Identify the respective channel in configuration mode (LED flashes) 2. Identify sensor break in measuring mode (LED lights continuously) Hardware filter 10 Hz, filter type single pole RC low-pass Aggregate sampling rate max. 800 Hz Miniature thermocouple connectors color female connector material gray gold plated CAN output Selectable data transfer rate (bit rate) up to 1 MBit/s according to ISO11898-2 CAN message data format (signal) Resolution (Format) Sign 8 Bit (Byte) and 16 Bit (Word) selectable signed, unsigned Configuration interface CAN 31 M-THERMO2 K8 8-Channel Temperature Measurement for K-Type Thermocouples 8 Thermocouple measurement inputs type K (NiCr/NiAl) Cold junction compensation per channel Separate ADC for each channel Status LED at each input channel (sensor break indication and configuration aid) Measurement data output to CAN Complete galvanic isolation (inputs, CAN, power supply, enclosure) Designed for engine compartment applications Toolless module to module connection Measurement range -60 °C to 1370 °C (-76 °F to 2498 °F) Input voltage max. ±50 V (indefinitely), ±200 V (short-time, t < 2 ms) Channel sample rates 1/ 2/ 5/ 10/ min 1/ 2/ 5/ 10/ 20/ 50/ 100 Hz Voltage supply 6 VDC to 36 VDC Power consumption, typical 1.1 W Working temperature range -40 ... +125 °C (-40 ... +257 °F) Storage temperature range -55 ... +150 °C (-67 ... +302 °F) Relative humidity 5 ... 95 % IP-Code IP 67 (ISO 20653 - 2013) Dimensions W106 mm x H30 mm x D57.5 mm (W4.17 in x H1.18 in x D2.26 in) Weight 315 g (0.69 lb) Cables Measuring input 600-888.xxx TH-MIN Cable open Connecting cable M-CAN (data, power) Power cable terminated Data cable terminated 620-560.xxx 620-561.xxx 620-502.xxx M-CAN Cable (CAN, PWR) M-CAN Cable PWR Banana-2 M-CAN Cable D-Sub /S 32 M-THERMO2 K8 Thermocouple measurement input Galvanic isolation input ↔ module power supply input ↔ CAN input ↔ input nominal voltage ±100 V ±100 V ±100 V Measuring range Type K (Ni10Cr/NiAl) -60 to 1370 °C (-76 to 2498 °F) Resolution 16 Bit Linearization of sensor characteristic line numerical, interpolated, resolution 15 Bit Cold junction compensation each input with PT100 (RTD) for the reference temperature Typical accuracy at 25 °C (77 °F) ambient temperature ±0.025 % of full temperature range Accuracy at ambient temperature Ta = 25 °C (77 °F) and measured temperature -60 °C to 1000 °C (-76 °F to 1832 °F) 1000 °C to 1370 °C (1832 °F to 2498 °F) pulse voltage ±500 V ±500 V ±500 V ±0.035 % of full temperature range ±0.035 % of full temperature range ±2 K Kelvin Drift at ambient temperature range: -40 °C to +125 °C (-40 ... +257 °F) ±40 ppm/K Input resistance, approx. 2.6 MΩ (sensor break detection active) 4.1 MΩ (sensor break detection inactive) Align of the AD converter unit at processing each measuring value Sensor break detection activated per software on command Input channel status LED 1. Identify the respective channel in configuration mode (LED flashes) 2. Identify sensor break in measuring mode (LED lights continuously) Hardware filter 10 Hz, filter type single pole RC low-pass Aggregate sampling rate max. 800 Hz Input female connectors color per DIN IEC 584 color per ANSI MC 96.1 Miniature thermocouple connector green yellow CAN output Selectable data transfer rate (bit rate) up to 1 MBit/s according to ISO11898-2 CAN message data format (signal) Resolution (Format) Sign 8 Bit (Byte) and 16 Bit (Word) selectable signed, unsigned Configuration interface CAN 31 M-RTD2 4-Channel RTD Temperature Input 4 measurement inputs for RTD Measurement data output to CAN Complete galvanic isolation (inputs, excitation, CAN, power supply, enclosure) Designed for engine compartment applications Toolless module to module connection Measurement range -50 °C to 450 °C (-58 °F to 842 °F) Input voltage (PT_IN+ ļ PT_IN-) max. r100 V (indefinitely), r200 V (short-time, t < 2 ms) Channel sample rates 1/ 2/ 5/ 10/ min 1/ 2/ 5/ 10/ 20/ 50/ 100 Hz Offset adjust by broadcast command - manual offset adjust - offset adjust for all channels of a group (Offset adjust also supported during measurement.) Voltage supply 9 to 36 VDC Switch-off for voltage < 6 V Power consumption, typical 2.5 W Working temperature range -40 ... +125 °C (-40 ... +257 °F) Storage temperature range -40 ... +150 °C (-40 ... +302 °F) Relative humidity 5 ... 95 % IP-Code IP 67 (ISO 20653 - 2013) Dimensions W106 mm x H43 mm x D60 mm (W4.17 in x H1.69 in x D2.36 in) Weight 410 g (0.90 lb) Cables Measuring input 670-937.xxx 620-657.xxx PT100/RTD 0S Cable open M-RTD 1S 4-pin Cable open Connecting cable M-CAN (data, power) Power cable terminated Data cable terminated 620-560.xxx 620-561.xxx 620-502.xxx M-CAN Cable (CAN, PWR) M-CAN Cable PWR Banana-2 M-CAN Cable D-Sub /S 34 M-RTD2 Measuring input for RTDs Galvanic isolation input ļ module power supply input ļ excitation input ļ CAN input ļ input nominal voltage r100 V r100 V r100 V r100 V Measuring range PT -50 to 450 °C (-58 to 842 °F) Supported RTDs RTD100 (PT100) AD converter resolution (ADC SAR) 16 Bit Accuracy at ambient temperature Ta = 25 °C (77 °F) Ta = -40 °C ... 85 °C (-40 °F ... 185 °F) Ta = -40 °C ... 125 °C (-40 °F ... 257 °F) ±0.10 K ±0.60 K ±1.25 K Hardware filter, switchable 150 Hz, filter type 8-pole Butterworth Software filter (DSP), selectable cut-off frequency and filter type selectable Internal sample rate 1 kHz pulse voltage r500 V r500 V r500 V r500 V (0.02 % of measuring range) (0.12 % of measuring range) (0.25 % of measuring range) Current output PT Inverse voltage (I_OUT+ ļ I_OUT-) max. r20 V Closed loop controlled curent (short-circuit-proof) 1 mA Female connectors Version M-CAN Lemo (IPETRONIK standard) Version CAN Lemo System connector EGA 0B 309 EGG 0B 305 Input connector ERA 0S 304 ERA 1S 304 CAN output Selectable data transfer rate (bit rate) up to 1 MBit/s according to ISO11898-2 CAN message data format (signal) Resolution (Format) Sign 8 Bit (Byte) and 16 Bit (Word) selectable signed, unsigned Configuration interface CAN 35 M-SENS2 4-Channel Analog Input with Sensor Excitation 4 measurement inputs for voltage / current 4 separate sensor excitations, supply voltage individually selectable (up to 15 V, 60 mA) 12 unipolar and 12 bipolar measuring ranges TEDS support (optional) Measurement data output to CAN Complete galvanic isolation (signal inputs, excitation, CAN, power supply, enclosure) Designed for engine compartment applications Toolless module to module connection Measurement ranges Covering input signals 0.1 V to 100 V Input voltage (IN+ ļ IN-) max. r100 V (indefinitely), r200 V (short-time, t < 2 ms) Channel sample rates 1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz Voltage supply 9 VDC to 36 VDC Switch-off for voltage < 6 V Power consumption, typical 3.0 W Working temperature range -40 ... +125 °C (-40 ... +257 °F) Storage temperature range -55 ... +150 °C (-67 ... +302 °F) Relative humidity 5 ... 95 % IP-Code IP 67 (ISO 20653 - 2013) Dimensions W106 mm x H43 mm x D60 mm (W4.17 in x H1.69 in x D2.36 in) Weight 420 g (0.93 lb) Cables Measuring input 670-807.xxx SENS Cable open (Lemo 1B 6-pin) Connecting cable M-CAN (data, power) Power cable terminated Data cable terminated 620-560.xxx 620-561.xxx 620-502.xxx M-CAN Cable (CAN, PWR) M-CAN Cable PWR Banana-2 M-CAN Cable D-Sub /S 36 M-SENS2 Voltage input electricllay isolated Galvanic isolation input ļ module power supply input ļ excitation input ļ CAN input ļ input nominal voltage r100 V r100 V r100 V r100 V pulse voltage r500 V r500 V r500 V r500 V Voltage ranges Voltage unipolar ( 0 ... ) 0.1/ 0.2/ 0.5/ 1/ 2/ 5/ 10/ 20/ 30/ 50/ 60/ 100 V Accuracy at 25 °C (77 °F) ambient temperature ±0.13 % Voltage bipolar ( + / - ) 0.1/ 0.2/ 0.5/ 1/ 2/ 5/ 10/ 20/ 30/ 50/ 60/ 100 V Accuracy at 25 °C (77 °F) ambient temperature ±0.05 % Input resistance 10 0ȍ Current ranges Current unipolar ( 0 ... ) / bipolar ( + / - ) 0 ... 20 mA, ±20 mA Accuracy at 25 °C (77 °F) ambient temperature ±0.30 % Input resistance 50 ȍ General input specifications Drift at an ambient temperature of -40 °C to +85 °C (-40 °F to +185 °F) +85 °C to +105 °C (+185 °F to +221 °F) +105 °C to +125 °C (+221 °F to +257 °F) ±40 ppm/K ±80 ppm/K ±120 ppm/K Signal resolution 16 Bit Offset adjust by broadcast command (Offset adjust also supported during measurement!) - manual offset adjust - offset adjust for all channels of a group Hardware filter, switchable 250 Hz, filter type 8-pole Butterworth Software filter (DSP), optional cut-off frequency and filter type selectable Internal channel sample rate 4 kHz Aggregate sample rate max. 8 kHz TEDS support, optional IEEE-1451.4 Class 2 (PlugIn IPETRONIK-X) Sensor excitation electricllay isolated Selectable output voltage Off/ 2.5/ 5/ 7.5/ 10/ 12.5/ 15 VDC Max. output current 60 mA (short circuit proof and overload protected) Accuracy at an ambient temperature of 23 °C (73 °F) / 85 °C (185 °F) / 120 °C (248 °F) ±0.20 % / ±0.40 % / ±0.60 % Hardware connectors Input female connectors Version M-CAN Lemo (IPETRONIK standard) System connector EGA 0B 309 Input connector EGG 1B 306 CAN output 2.0 B, electricllay isolated Selectable data transfer rate (bit rate) up to 1 MBit/s according to ISO11898-2 CAN message data format (signal) Resolution (Format) Sign 8 Bit (Byte) and 16 Bit (Word) selectable signed, unsigned Configuration interface CAN 37 M-CNT2 4-Channel Universal Counter with Sensor Excitation 4 signal inputs with adjustable ON and OFF thresholds Measurement modes: frequency from period duration, period duration, pulse duration, pause duration, duty cycle, event counter, detection of rotating direction (mode frequency and event counter) 4 separate sensor excitations, supply voltage individually selectable (up to 15 V, 60 mA) Status LED at each input channel indicates signal processing Measurement data output to CAN Complete galvanic isolation (signal inputs, excitation, CAN, power supply) Designed for engine compartment applications Toolless module to module connection Measurement ranges (frequency, period duration) 0.03 Hz to 200 kHz, 1 μs to 200 s Input voltage (IN+ ļ IN-) max. r100 V (indefinitely), r200 V (short-time, t < 2 ms) Channel sample rates 1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000/ 5000 Hz Voltage supply 9 VDC to 36 VDC, Switch-off for voltage < 6 V Power consumption, typical 2.0 W Working temperature range -40 ... +125 °C (-40 ... +257 °F) Storage temperature range -55 ... +150 °C (-67 ... +302 °F) Relative humidity 5 ... 95 % IP-Code IP 67 (ISO 20653 - 2013) Dimensions W106 mm x H43 mm x D60 mm (W4.17 in x H1.69 in x D2.36 in) Weight 420 g (0.93 lb) Cables Measuring input 670-858.xxx CNT/FRQ-IN Cable open Connecting cable M-CAN (data, power) Power cable terminated Data cable terminated 620-560.xxx 620-561.xxx 620-502.xxx M-CAN Cable (CAN, PWR) M-CAN Cable PWR Banana-2 M-CAN Cable D-Sub /S 38 M-CNT2 Voltage input electricllay isolated Galvanic isolation input ļ module power supply input ļ excitation input ļ CAN input ļ input nominal voltage r100 V r100 V r100 V r100 V pulse voltage r500 V r500 V r500 V r500 V Adjustable trigger thresholds Quantization at range r4 V Accuracy at 25 °C / -40 ... +125 °C 0.025 V 3%/8% Quantization at range r40 V Accuracy at 25 °C / -40 ... +125 °C 0.2 V 3%/8% Signal modes Online calculated by DSP Frequency (min. / max. signal frequency) 0.03 Hz / max. 200 kHz Duty cycle (range) min. signal frequency max. signal frequency (at 1 % accuracy) 0.01 % ... 99.99 % 0.03 Hz 10 kHz @ 1 % duty cycle (worst case) 500 kHz @ 50 % duty cycle (best case) 10 kHz @ 99 % duty cycle (worst case) 1 μ or 1/100 fC Filter (higher value) (Reduced accuracy at higher signal frequency and / or worst case duty cycle.) Resolution Period duration, Pulse duration, Pause duration min. / max. duration, resolution Event counter 1 μs / 200 s, 1 μ or 1/100 fC Filter (higher value) Reset functions: without reset, reset by time, overflow, Up/down counting with detection of rotating direction General input specifications Internal time base Accuracy at 25 °C (77 °F) Drift at -40 < T < 85 °C (-40 < T < 185 °F) Drift at 85 < T < 105 °C (185 < T < 221 °F) Drift at 105 < T < 125 °C (221 < T < 257 °F) 0.01 % (100 ppm) r1.5 ppm/K r2.5 ppm/K r5.0 ppm/K Hardware filter, adjustable Attenuation Variance at 25 °C / -40 ... +125 °C Off, 1 Hz ... 30 kHz, filter type 5-pole Bessel ±1.5 dB / ±3.0 dB DC compensation Attenuation Variance at 25 °C / -40 ... +125 °C 0.8 Hz (lower cut-off frequency (- 3 dB) ±1.0 dB / ±2.0 dB Aggregate sampling rate max. 5 kHz (without restriction) 4x 2 kHz (max. 2 CAN IDs used) 4x 5 kHz (max. 1 CAN ID used @ 1 MBit/s data rate) 2x 5 kHz (max. 1 CAN ID used @ 500 kBit/s data rate) (depends on number of CAN IDS and bit rate) Sensor excitation electricllay isolated Selectable output voltage Off/ 2.5/ 5/ 7.5/ 10/ 12.5/ 15 VDC Max. output current 60 mA (short circuit proof and overload protected) Accuracy at an ambient temperature of 23 °C (73 °F) / 85 °C (185 °F) / 120 °C (248 °F) ±5.0 % / ±6.0 % / ±7.0 % CAN output CAN 2.0 B, electricllay isolated Selectable data transfer rate (bit rate) up to 1 MBit/s according to ISO11898-2 CAN message data format (signal) Resolution (Format) Sign 8 Bit (Byte) and 16 Bit (Word) selectable signed, unsigned Configuration interface CAN 39 M-THERMO K16 16-Channel Temperature Measurement for Thermocouples Type K 16 measurement inputs for thermocouples type K (NiCr/NiAl) 4 RTDs (PT100) for the reference temperature (cold junction compensation) Status LED at each input channel (sensor break indication and configuration aid) Measurement data output to CAN Complete galvanic isolation (inputs, CAN, power supply, enclosure) Designed for engine compartment applications Toolless module to module connection Measurement range -60 °C to 1370 °C (-76 °F to 2498 °F) Input voltage max. ±50 V Channel sample rates 1/ 2/ 5/ 10/ 20 Hz Voltage supply 9 VDC to 36 VDC Switch-off for voltage < 6 V Power consumption, typical 1.2 W Working temperature range -40 °C ... +125 °C (-40 °F ... +257 °F) Storage temperature range -55 °C ... +150 °C (-67 °F ... +302 °F) IP-Code IP 67 (ISO 20653 - 2013) Dimensions W204 mm x H41 mm x D55 mm (W8.03 in x H1.61 in x D2.17 in) Weight 630 g (1.39 lb) Cables Measuring input 600-888.xxx TH-MIN Cable open Connecting cable M-CAN (data, power) Power cable terminated Data cable terminated 620-560.xxx 620-561.xxx 620-502.xxx M-CAN Cable (CAN, PWR) M-CAN Cable PWR Banana-2 M-CAN Cable D-Sub /S 40 M-THERMO K16 Voltage input Galvanic isolation input ↔ module power supply input ↔ CAN input ↔ input ±100 V, short-time (1 ms) ±200 V ±100 V, short-time (1 ms) ±200 V ±100 V, short-time (1 ms) ±200 V Measuring range type K (Ni10Cr/NiAl) -60 °C to 1370 °C (-76 °F to 2498 °F) AD converter resolution 16 Bit Linearization look-up table resolution ≥ 13 Bit / better than 0.174 °C (0.31 °F) Cold junction compensation 4 PT100 (RTD) to measure the reference temperature Typical accuracy at 25 °C (77 °F) ambient temperature ±0.025 % of full temperature range Accuracy at ambient temperature Ta = 25 °C (77 °F) and measured temperature -60 °C to 1000 °C (-76 °F to 1832 °F) 1000 °C to 1370 °C (1832 °F to 2498 °F) ±0.035 % of full temperature range ±0.035 % of full temperature range ±2 K Kelvin Drift over ambient temperature: -40 °C to +85 °C +85 °C to +120 °C ±20 ppm/K ±30 ppm/K Input resistance approx. 1 MΩ with activated sensor break detection approx. 10 MΩ with inactivated sensor break detection Align of the AD converter before processing each measuring value Sensor break detection activated per software on command Input channel status LED 1. Channel identification for configuration (LED flashes) 2. Current overload indication (LED on) Hardware filter 1.0 Hz, filter type single pole RC low-pass Aggregate sampling rate max. 320 Hz Input female connectors color per DIN IEC 584 color per ANSI MC 96.1 Miniature thermocouple connector green yellow CAN output Selectable data transfer rate (bit rate) up to 1 MBit/s according to ISO11898-2 CAN message data format (signal) Resolution (Format) Sign 8 Bit (Byte) and 16 Bit (Word) selectable signed, unsigned Configuration interface CAN 41 M-SENS 8 8-Channel Analog Input with Sensor Excitation 8 measurement inputs for voltage / current 8 separate sensor excitations, supply voltage individually selectable (up to ±15 V, ±45 mA) 11 unipolar and 11 bipolar measuring ranges 2 current measuring ranges Status LED at each input channel (sensor break indication and configuration aid) Measurement data output to CAN Complete galvanic isolation (signal inputs, excitation, CAN, power supply, enclosure) Designed for engine compartment applications Toolless module to module connection Measurement ranges Covering input signals 0.1 V to 100 V Input voltage (IN+ ļ,1-) max. r100 V, short-time (1 ms) r200 V Channel sample rates 1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz Voltage supply 12, 24, 36 VDC automotive power supply systems Switch-off for voltage < 6 V Power consumption, typical 3.5 W Working temperature range -40 °C ... +125 °C (-40 °F ... +257 °F) Storage temperature range -55 °C ... +150 °C (-67 °F ... +302 °F) Relative humidity 5 ... 95 % IP-Code IP 67 (ISO 20653 - 2013) Dimensions W204 mm x H41 mm x D55 mm (W8.03 in x H1.61 in x D2.17 in) Weight 695 g (1.53 lb) Cables Measuring input 670-807.xxx SENS Cable open (Lemo 1B 6-pin) Connecting cable M-CAN (data, power) Power cable terminated Data cable terminated 620-560.xxx 620-561.xxx 620-502.xxx M-CAN Cable (CAN, PWR) M-CAN Cable PWR Banana-2 M-CAN Cable D-Sub /S 42 M-SENS 8 Voltage input electricllay isolated Galvanic isolation input ļ module power supply input ļ excitation input ļ CAN input ļ input nominal voltage r100 V, short-time (1 ms) r200 V r100 V, short-time (1 ms) r200 V r100 V, short-time (1 ms) r200 V r100 V, short-time (1 ms) r200 V Voltage ranges Voltage unipolar ( 0 ... ) Input resistance 0.1/ 0.2/ 0.5/ 1/ 2/ 5/ 10/ 20/ 30/ 50/ 100 V 10 Mȍ Voltage bipolar ( + / - ) Input resistance ±0.1/ ±0.2/ ±0.5/ ±1/ ±2/ ±5/ ±10/ ±20/ ±30/ ±50/ ±100 V 10 Mȍ Current unipolar ( 0 ... ) / bipolar ( + / - ) Input resistance 0 ... 20 mA, ±20 mA 50 ȍ Signal resolution 16 Bit Accuracy at Tambient = 25 °C (77 °F) ±0.10 % r0,15 % ±0.50 % Drift at an ambient temperature of -40 °C to +85 °C (-40 °F to +185 °F) +85 °C to +105 °C (+185 °F to +221 °F) +105 °C to +125 °C (+221 °F to +257 °F) bipolar voltage ranges unipolar voltage ranges current ranges (bipolar, unipolar) ±40 ppm ±80 ppm ±250 ppm Input channel status LED 1. Channel identification for configuration (LED flashes) 2. Current overload indication (LED on) Offset adjust by broadcast command - manual offset adjust - offset adjust for all channels of a group (Offset adjust also supported during measurement!) Hardware filter, switchable 150 Hz, filter type 8-pole Butterworth Software filter (DSP), optional cut-off frequency and filter type selectable Aggregate sample rate max. 16 kHz (1 MBit/s data rate, no other devices) Sensor excitation electricllay isolated Selectable output voltage Off/ ±2.5/ ±5/ ±7.5/ ±8,0/ ±10/ ±12.5/ ±15 VDC Output current (short circuit proof) at Voutput ±2.5/ ±10.0 V at Voutput ±5.0/ ±12.5 V at Voutput ±7.5/ ±15.0 V ±25 mA (independent from output voltage) max. ±30 mA max. ±40 mA max. ±45 mA Derating (decrease of total output power) -1.25 %/K for Tambient 85 °C Accuracy at an ambient temperature of -40 °C / 23 °C / 85 °C / 120 °C (-40 °F / 73 °F / 185 °F / 248 °F) ±0.50 % / ±0.30 % / ±0.50 % / ±0.70 % Hardware connectors Standard ODU System connector EGA 0B 309 EGA 0B 309 Input connector EGG 1B 307 Series F, Size 1, 5-pin CAN output 2.0 B, electricllay isolated Selectable data transfer rate (bit rate) up to 1 MBit/s according to ISO11898-2 CAN message data format (signal) Resolution (Format) Sign 8 Bit (Byte) and 16 Bit (Word) selectable signed, unsigned Configuration interface CAN 43 M-SENS 8plus 8-Channel Analog Input with Sensor Excitation 8 measurement inputs for voltage / current 8 separate sensor excitations, supply voltage individually selectable (up to ±15 V, ±45 mA) 12 unipolar and 12 bipolar measuring ranges 2 current measuring ranges 10 mV range, e.g. for stanby current applications Status LED at each input channel (sensor break indication and configuration aid) Measurement data output to CAN Complete galvanic isolation (inputs, excitation, CAN, power supply, enclosure) Designed for engine compartment applications Toolless module to module connection Measurement ranges Covering input signals 0.01 V to 100 V Input voltage (IN+ ļ,1-) max. r100 V, short-time (1 ms) r200 V Channel sample rates 1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz Voltage supply 12, 24, 36 VDC automotive power supply systems Switch-off for voltage < 6 V Power consumption, typical 3.5 W Working temperature range -40 °C ... +125 °C (-40 °F ... +257 °F) Storage temperature range -55 °C ... +150 °C (-67 °F ... +302 °F) Relative humidity 5 ... 95 % IP-Code IP 67 (ISO 20653 - 2013) Dimensions W204 mm x H41 mm x D55 mm (W8.03 in x H1.61 in x D2.17 in) Weight 695 g (1.53 lb) Cables Measuring input 670-807.xxx SENS Cable open (Lemo 1B 6-pin) Connecting cable M-CAN (data, power) Power cable terminated Data cable terminated 620-560.xxx 620-561.xxx 620-502.xxx M-CAN Cable (CAN, PWR) M-CAN Cable PWR Banana-2 M-CAN Cable D-Sub /S 44 M-SENS 8plus Voltage input electricllay isolated Galvanic isolation input ļ module power supply input ļ excitation input ļ CAN input ļ input nominal voltage r100 V, short-time (1 ms) r200 V r100 V, short-time (1 ms) r200 V r100 V, short-time (1 ms) r200 V r100 V, short-time (1 ms) r200 V Voltage ranges Voltage unipolar ( 0 ... ) Input resistance 0.01/ 0.1/ 0.2/ 0.5/ 1/ 2/ 5/ 10/ 20/ 30/ 50/ 100 V 10 Mȍ Voltage bipolar ( + / - ) Input resistance ±0.01/ ±0.1/ ±0.2/ ±0.5/ ±1/ ±2/ ±5/ ±10/ ±20/ ±30/ ±50/ ±100 V 10 Mȍ Current unipolar ( 0 ... ) / bipolar ( + / - ) Input resistance 0 ... 20 mA, ±20 mA 50 ȍ Signal resolution 16 Bit Accuracy at Tambient = 25 °C (77 °F) ±0.06 % r0,10 % ±0.40 % bipolar voltage ranges unipolar voltage ranges current ranges (bipolar, unipolar) ±40 ppm/K ±80 ppm/K ±250 ppm,/K (±450 ppm/K valid for range 10 mV) Drift at an ambient temperature of -40 °C to +85 °C (-40 °F to +185 °F) +85 °C to +105 °C (+185 °F to +221 °F) +105 °C to +125 °C (+221 °F to +257 °F) Input channel status LED 1. Channel identification for configuration (LED flashes) 2. Current overload indication (LED on) Offset adjust by broadcast command - manual offset adjust - offset adjust for all channels of a group (Offset adjust also supported during measurement!) Hardware filter, switchable 150 Hz, filter type 8-pole Butterworth Software filter (DSP), optional cut-off frequency and filter type selectable Aggregate sample rate max. 16 kHz (1 MBit/s data rate, no other devices) Sensor excitation electricllay isolated Selectable output voltage Off/ ±2.5/ ±5/ ±7.5/ ±8,0/ ±10/ ±12.5/ ±15 VDC Output current (short circuit proof) at Voutput ±2.5/ ±10.0 V at Voutput ±5.0/ ±12.5 V at Voutput ±7.5/ ±15.0 V ±25 mA (independent from output voltage) max. ±30 mA max. ±40 mA max. ±45 mA Derating (decrease of total output power) -1.25 %/K for Tambient 85 °C Accuracy at an ambient temperature of -40 °C / 23 °C / 85 °C / 120 °C (-40 °F / 73 °F / 185 °F / 248 °F) ±0.40 % / ±0.25 % / ±0.40 % / ±0.50 % Hardware connectors Standard ODU System connector EGA 0B 309 EGA 0B 309 Input connector EGG 1B 307 Series F, Size 1, 5-pin CAN output 2.0 B, electricllay isolated Selectable data transfer rate (bit rate) up to 1 MBit/s according to ISO11898-2 CAN message data format (signal) Resolution (Format) Sign 8 Bit (Byte) and 16 Bit (Word) selectable signed, unsigned Configuration interface CAN 45 SIM-STG Fast 8-Channel Multi-Analog Measurement Device with Excitation 8 analog signal inputs for voltage measurements Measurement modes: SENS, STG, ICP, individual for each input Hardware filter and DSP software filter 8 separate dual sensor excitations (up to r15 V, up to r45 mA) Offset and target adjust functions, shunt check Internal resistors for bridge completion selectable Measurement data output to CAN Complete galvanic isolation (inputs, excitation, CAN, power supply, enclosure) Designed for automotive in-vehicle use Measurement modes SENS up to r50 V, STG up to r2 V, ICP up to r5 V Input voltage (IN+ ļ IN-) r100 V, short-time (1 ms) r200 V Input resistance dual, single 10 Mȍ (differential), 5 Mȍ (ground related) Channel sample rates 1/ 2/ 5/ 10/ 20/ 50/ 100/ 200/ 500 Hz 1/ 2/ 5 kHz Internal sample rate 10 kHz Voltage supply 12, 24, 42 VDC power supply systems Switch-off for voltage < 6 V Power consumption, typical 7.0 W (all excitations off) Working temperature range -40 °C ... +85 °C (-40 °F ... +185 °F) Storage temperature range -55 °C ... +125 °C (-67 °F ... +257 °F) Relative humidity 5 ... 95 % IP-Code IP 54 (ISO 20653 - 2013) Dimensions (W x H x D) 69 mm x 112 mm x 185 mm (2.72 in x 4.41 in x 7.28 in) Weight 1400 g (3.09 lb) Cables Measuring input Lemo 1B 7-pin 670-850.xxx DMS/STG Cable open Connecting cable ETH (data, power) Power cable terminated Data cable 630-500.xxx 630-501.xxx 630-502.xxx X-LINK Cable System X-LINK Cable PWR Banana-2 X-LINK Cable RJ45 46 SIM-STG Measurment input general Resolution (SAR ADC) 16 Bit Pre-filter (HF) Cut-off frequency fc Type Accuracy 4.75 kHz RC 2-pole 25 % Hardware filter Cut-off frequency fc Type Accuracy 1200 Hz, can be switched off Butterworth 8-pole 10 % Software filter (DSP) Cut-off frequency fc, selectable Type, selectable Accuracy 1.0/ 1.25/ 1.667/ 2.5/ 5.0/ 6.667/ 10/ 12.5/ 16.67/ 25/ 50/ 66.67/ 100/ 125/ 166.7/ 250 Butterworth, Bessel, Elliptic 8-pole 0.1 % Wire break detection for sensor excitation Enable/ disable per software Galvanic isolation input ļ module power supply excitation ļ module power supply input ļ input nominal voltage r100 V r100 V r100 V Aggregate sample rate 12 kHz @ 500 kBit/s 16 kHz @ 1 MBit/s 20 kHz @ 1 MBit/s (4 channels each set to 5 kHz) pulse voltage r500 V r500 V r500 V Input female connectors 7-pin (SIM-DMS compatible) 8-pin (TEDS, Lemo 2B) EGG 1B 307 EGG 2B 308 SENS Mode Voltages up to r50 V Measuring ranges unipolar / bipolar Accuracy @ Ta = 25 °C 0.01 / 0.02 / 0.05 / 0.1 / 0.2 / 0.5 / 1 / 2 / 5/ 10/ 20/ 50 V 0,075 % corresponding to the absolute value of the range selected 30 ppm/K Drift Sensor excitation Output voltage, selectable Bipolar Uniploar Accuracy @ Ta = 25 °C Drift Output current Offset adjust (also during measurement) 2-wire connection r0.5/ r1.25/ r2.5/ r5/ r10/ r12/ r15 V 0.5/ 1.25/ 2.5/ 5/ 10/ 12/ 15 V 0.5 % 30 ppm/K 45 mA, short-circuit proof, (software controlled) manual adjust with channel multiple selection 47 SIM-STG STG Mode Differential voltages up to r2 V Measuring ranges Range 1 Accuracy @ Ta = 25 °C r2 ... r62 mV r0.10 % + 15 μV Drift Range 2 Accuracy @ Ta = 25 °C 30 ppm/K r64 ... r998 mV r0.075 % + 7 μV Drift Range 3 Accuracy @ Ta = 25 °C 30 ppm/K r1000 ... r2000 mV r0.05 % + 7 μV Drift adjustable in 2 mV steps corresponding to the absolute value of the range configured adjustable in 2 mV steps corresponding to the absolute value of the range configured adjustable in 2 mV steps corresponding to the absolute value of the range configured 30 ppm/K Special functions Bridge adjust Shunt check Shunt resistor simulation Resistors for bridge completion zero adjust resp. target value adjust by hardware on all 4 arms of the bridge, on command also during the measurement executable 5 ... 390 kȍ, (depending on excitation voltage) 120, 350, 1000 ȍ software selectable Sensor excitation Output voltage, selectable Accuracy @ Ta = 25 °C Drift Output current 4-wire-/ 6-wire connection r0.5/ r1.25/ r2.5/ r5 V 0.1 % 30 ppm/K 45 mA, short-circuit proof, (software controlled) ICP Mode Piezo electric sensors Nominal current, regulated Measuring range Lower / upper cut-off frequency Off-load voltage 4,5 mA r10 % r0.1/ r0.2/ r0.5/ r1.0/ r2.0/ r5.0 V filter switched off / 0.1 Hz / 4750 Hz r20 % 24 V Interfaces CAN CAN 2.0B (High Speed) Data transfer rate, selectable max. 1 MBit/s according to ISO11898-2 Data format 8 Bit (Byte) resp. 16 Bit (Word)) resolution / format Configuration interface 48 CAN 49 CANpressure Automotive Pressure Sensor with Data Output to CAN Absolute or relative pressure gauge Various types of CANpressure covering a pressure range of 0 ... 1 bar to 0 ... 250 bars available Built-in sensor to measure the temperature at the gauge point Measurement data output to CAN Complete galvanic isolation (amplifier, CAN, power supply, enclosure) Designed for engine compartment applications General Voltage supply 6 VDC to 36 VDC , power-on voltage 6 V Power consumption, typical < 0.7 W Working temperature range -40 °C ... +125 °C (-40 °F ... +257 °F) Storage temperature range -55 °C ... +150 °C (-67 °F ... +302 °F) Enclosure Welded stainless steel 4435 Pressure connection M 10 x 1 / M 14 x 1,5 / G ¼ (male and female thread available) IP-Code (acc. to ISO 20653 - 2013) Relative gauge: IP 52 Dimensions L76 mm x D24 mm (L2.99 in x D0.94 in) Wrench size 24 mm (0.94 in) Weight 120 g (0.26 lb) Measurement input general Galvanically isolated absolute gauge: IP 65 (pressure connection M 10 x 1 mm, male) Galvanic isolation signal against power supply, CAN bus against power supply Resolution (p, T) 16 Bit Hardwarefilter, Cut-off frequency, Type 1200 Hz, switchable, 8-pole Butterworth Softwarefilter, minimum cut-off frequency fcmin maximum cut-off frequency fcmax Adjustable in 0.1 Hz resp. 1 Hz steps 0.1 Hz @ 1 Hz fsample, 10 Hz @ 2 kHz fsample 0.4 Hz @ 1 Hz fsample, 496 Hz @ 2 kHz fsample depending on sample rate and filter type Filter type selectable Bessel, Butterworth, Chebyshev, Chebyshev inverse, each type 8-pole Internal sample rate 10 kHz Data rate (output to CAN bus) 1/ 2/ 5/ 10/ 20/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz 50 CANpressure Signal amplifier Pressure signal accuracy 0.5 % FS (nominal pressure) TEB (-40 °C ... +125 °C) all errors included Temperature signal range -40 °C ... +150 °C (-40 °F ... 302 °F) Temperature signal accuracy r3.0 K valid for the full temperature and pressure range) Offset adjust (pressure signal) offline, while measurement is running, adjust to target value CAN output Selectable data transfer rate (bit rate) up to 1 MBit/s according to ISO11898-2 CAN message data format (signal) Resolution (Format) / Sign 8 Bit (Byte) and 16 Bit (Word) selectable / signed, unsigned Configuration interface CAN Pressure transducer (relative, absolute) Overload pressure Burst pressure 14.5 psi 29.0 psi 72.5 psi 145 psi 290 psi [1] 363 psi 3 x FS (full scale) 3 x FS 3 x FS 3 x FS 3 x FS 3 x FS > 200 bar / 2,901 psi > 200 bar / 2,901 psi > 200 bar / 2,901 psi > 200 bar / 2,901 psi > 200 bar / 2,901 psi > 200 bar / 2,901 psi 0 ... 50 bar / 0 … 725 psi 0 ... 100 bar / 0 … 1,450 psi 0 ... 150 bar / 0 … 2,176 psi [1] 0 ... 250 bar / 0 … 3,626 psi 3 x FS (full scale) 3 x FS 3 x FS 3 x FS > 850 bar / 12,328 psi > 850 bar / 12,328 psi > 850 bar / 12,328 psi > 850 bar / 12,328 psi 0 ... 500 bar / 0 … 7,252 psi 0 ... 1000 bar / 0 … 14,501 psi 3 x FS (full scale) 1500 bar / 21,756 psi 1500 bar / 21,756 psi 1500 bar / 21,756 psi 0 ... 0 ... 0 ... 0 ... 0 ... 0 ... 1 bar / 0 … 2 bar / 0 … 5 bar / 0 … 10 bar / 0 … 20 bar / 0 … 25 bar / 0 … Pressure ranges 0 ... 500 bar, 0 ... 1000 bar and further ranges on request Medium compatibility Gases and fluids (also fuels and break fluids) up to 200 bar / 2,901 psi, other conditions on request Dimensions D M 10 x 1 male 10 mm / 0.39 in 8.5 mm / 0.33 in 25.5 mm / 1.00 in 17 ... 23 Nm 24 mm / 0.94 in M 10 x 1 female 10 mm / 0.39 in 9.5 mm / 0.37 in 26.5 mm / 1.04 in 17 ... 23 Nm 24 mm / 0.94 in M 14 x 1.5 male 14 mm / 0.55 in 9.5 mm / 0.37 in 25.5 mm / 1.00 in 17 ... 23 Nm 24 mm / 0.94 in M 14 x 1.5 female 14 mm / 0.55 in 10.5 mm / 0.41 in 26.5 mm / 1.04 in 17 ... 23 Nm 24 mm / 0.94 in G ¼ male 13.2 mm / R ¼ 9.5 mm / 0.37 in 25.5 mm / 1.00 in 17 ... 23 Nm 24 mm / 0.94 in G ¼ female 13.2 mm / R ¼ 10.5 mm / 0.41 in 26.5 mm / 1.04 in 17 ... 23 Nm 24 mm / 0.94 in ! L1 L2 fastening torque Wrench size Keep the stated range of the fastening torque when mounting CANpressure to ensure full accuracy! Do not exceed the upper limit of the fastening torque to avoid irreversible damage of the pressure transmitter! Cables Connecting cable M-CAN (data, power) Power cable terminated Data cable terminated 620-560.xxx 620-561.xxx 620-502.xxx M-CAN Cable (CAN, PWR) M-CAN Cable PWR Banana-2 M-CAN Cable D-Sub /S 51 MultiDAQ 42 Channel Multi Module: Temperature/Voltage/Current/Frequency/Period duration 32 K-Type (NiCr/NiAl) thermocouple inputs with PT100 (RTD) for the reference temperature 8 analog inuts for voltage / current, each input with separate dual supply sensor excitation (up to ±15 V, max. ±45 mA) 2 Frequency / counter inputs with adjustable ON/OFF thresholds (comparator), each input with separate single supply sensor excitation (up to 15 V, max. 60 mA) Status LED at each input channel Measurement data output to CAN Complete galvanic isolation (inputs, excitation, CAN, power supply, enclosure) Designed for automotive applications Measurement ranges Temperature -60 °C to +1370 °C (-76 °F to +2498 °F) Measurement ranges Voltage Covering input signals 0.1 V to 100 V Measurement ranges Current 0 ... 20 mA, ±20 mA Measurement ranges Frequency/Period up to 200 kHz / 10 µs (100 kHz) Input voltage (IN+ ↔ IN-) max. ±100 V, short-time (1 ms) ±200 V Channel sample rates 1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz Voltage supply 6 VDC ... 36 VDC Power consumption, typical 6.0 W Working temperature range -40 °C ... +85 °C (-40 °F ... +185 °F) Storage temperature range -55 °C ... +125 °C (-67 °F ... +257 °F) Relative humidity 5 ... 95 % IP-Code IP 67 (ISO 20653 – 2013) Dimensions L261 mm x W116 mm x H55 mm (W10.28 in x W4.57 in x H2.17 in) Weight 1950 g (4.30 lb) Cables Measuring input thermo voltage/current frequency/period 600-888.xxx 670-807.xxx 670-858.xxx TH-MIN Cable open SENS Cable open (Lemo 1B 6-pin) CNT/FRQ-IN Cable open Connecting cable M-CAN (data, power) Power cable terminated Data cable terminated 620-560.xxx 620-561.xxx 620-502.xxx M-CAN Cable (CAN, PWR) M-CAN Cable PWR Banana-2 M-CAN Cable D-Sub /S 52 MultiDAQ Thermocouple input (bank 1 and 2) 32 inputs, electrically isolated Sensor type K-Type thermocouple (Ni10Cr/NiAl) Measuring range type K (Ni10Cr/NiAl) -60 °C to 1370 °C (-76 °F to 2498 °F) AD converter resolution 16 Bit Linearization look-up table resolution ≥ 13 Bit / better than 0.174 °C (0.31 °F) Cold junction compensation 8 PT100 (RTD) to measure the reference temperature Typical accuracy at 25 °C (77 °F) ambient temperature ±0.025 % of full temperature range Accuracy at ambient temperature Ta = 25 °C (77 °F) and measured temperature -60 °C to 1000 °C (-76 °F to 1832 °F) 1000 °C to 1370 °C (1832 °F to 2498 °F) ±0.035 % of full temperature range ±0.035 % of full temperature range ±2 Kelvin Input resistance approx. 1 MΩ with activated sensor break detection approx. 10 MΩ with inactivated sensor break detection Input channel status LED 1. Identify the respective channel in configuration mode (LED flashes) 2. Identify sensor break in measuring mode Align of the AD converter before processing each measuring value Sensor break detection activated per software on command Hardware filter 1.0 Hz, filter type single pole RC low-pass Channel sample rates 1/ 2/ 5/ 10/ min, 1/ 2/ 5/ 10/ 20 Hz Total sampling rate per bank max. 320 Hz Voltage / Current input (bank 3) 8 inputs, electrically isolated (LED lights continuously) Voltage ranges Voltage unipolar ( 0 ... ) Input resistance 0.1/ 0.2/ 0.5/ 1/ 2/ 5/ 10/ 20/ 30/ 50/ 100 V 10 MΩ Voltage bipolar ( + / - ) Input resistance ±0.1/ ±0.2/ ±0.5/ ±1/ ±2/ ±5/ ±10/ ±20/ ±30/ ±50/ ±100 V 10 MΩ Current unipolar ( 0 ... ) / bipolar ( + / - ) Input resistance 0 ... 20 mA, ±20 mA 50 Ω Signal resolution 16 Bit Input channel status LED 1. Channel identification for configuration (flashing) 2. Current overload indication (continuously on) Offset adjust by broadcast command (Offset adjust supported during measurement!) - manual offset adjust - offset adjust for all channels of a group Hardware filter, switchable 150 Hz, filter type 8-pole Butterworth Software filter (DSP), optional cut-off frequency and filter type selectable Channel sample rates 1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz Total sampling rate per bank max. 16 kHz (1 MBit/s data rate, no other devices) Sensor excitation electricllay isolated Selectable output voltage Off/ ±2.5/ ±5/ ±7.5/ ±10/ ±12.5/ ±15 VDC Output current (short circuit proof) at Voutput ±2.5/ ±10.0 V at Voutput ±5.0/ ±12.5 V at Voutput ±7.5/ ±15.0 V max. ±30 mA max. ±40 mA max. ±45 mA 53 MultiDAQ Frequency / Counter input (bank 4) 2 inputs, electrically isolated Adjustable trigger thresholds Quantization at range ±4 V Accuracy at 25 °C / -40 ... +125 °C 0.025 V 3%/8% Quantization at range ±40 V Accuracy at 25 °C / -40 ... +125 °C 0.2 V 3%/8% Signal modes Online calculated by DSP Frequency (min. / max. signal frequency) 0.03 Hz / max. 200 kHz Duty cycle (range) min. signal frequency max. signal frequency (at 1 % accuracy) 0.01 % ... 99.99 % 0.03 Hz 10 kHz @ 1 % duty cycle (worst case) 500 kHz @ 50 % duty cycle (best case) 10 kHz @ 99 % duty cycle (worst case) 1 µ or 1/100 fC Filter (higher value) (Reduced accuracy at higher signal frequency and / or worst case duty cycle.) Resolution Period duration, Pulse duration, Pause duration min. / max. duration, resolution 1 µs / 200 s, 1 µ or 1/100 fC Filter (higher value) Hardware filter, adjustable Attenuation Variance at 25 °C / -40 ... +125 °C Off, 1 Hz ... 30 kHz, filter type 5-pole Bessel ±1.5 dB / ±3.0 dB DC compensation Attenuation Variance at 25 °C / -40 ... +125 °C 0.8 Hz (lower cut-off frequency (- 3 dB) ±1.0 dB / ±2.0 dB Channel sample rates 1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000/5000 Hz Total sampling rate per bank (depends on number of CAN IDS and bit rate) max. 4 kHz (without restriction) 2x 5 kHz (max. 1 CAN ID used @ 500 kBit/s data rate) Sensor excitation electricllay isolated Selectable output voltage Off/ 2.5/ 5/ 7.5/ 10/ 12.5/ 15 VDC Max. output current 60 mA (short circuit proof and overload protected) CAN output (bank 1, 2, 3, 4) CAN 2.0 B, electricllay isolated Selectable data transfer rate (bit rate) up to 1 MBit/s according to ISO11898-2 CAN message data format (signal) Resolution (Format) Sign 8 Bit (Byte) and 16 Bit (Word) selectable signed, unsigned Configuration interface CAN 54 55 IPEcloud Überblick Features Die IPEcloud ist ein nützlicher Dienst, um die gesamte Datenlogger-Flotte optimal zu verwalten. Die Cloud bietet ein breites Funktionsspektrum, auf das weltweit zugegriffen werden kann. Mit dem eingebauten Modem und der WiFi-Kommunikation lässt sich der Logger mit dem Web-Service verbinden, um so Zugang zu den vom Logger aufgezeichneten Daten zu erhalten. Auf diesem Weg kann man die Messkonfiguration aktualisieren und den allgemeinen Status des Loggers überwachen. Weitere Funktionen wie automatisches Reporting werden ebenfalls unterstützt. Die Features sind in drei Teile unterteilt und beinhalten einen E-Mail-Account (IPEmail), den IPETRONIK FTP-Server (IPEdrive) sowie ein Flottenmanagement-System (IPEfleet). 56 IPEcloud Überblick IPEmail Der IPEmail-Account kann als Mailbox genutzt werden, um Logger-E-Mails und Benachrichtigungen des Flottenmanagement-Systems zu erhalten. Der Account auf dem internen IPETRONIK E-Mail-Server ermöglicht das Versenden von E-Mails über das SMTP-Protokoll. IPEdrive Mit IPEdrive erhält man einen persönlichen Speicherplatz auf dem IPETRONIK FTP-Server. Messungen und Konfigurationsdateien werden hier vom Logger automatisch gespeichert und können anschließend in IPEdrive bearbeitet und verwaltet werden. Mehrere Backup-Prozesse, redundante Datenspeicherung sowie verschlüsselte Protokolle garantieren einen hohen Grad an Datenschutz und -sicherheit. 57 IPEcloud Überblick IPEfleet IPEfleet besteht aus mehreren Funktionen zur Überwachung und Verwaltung von Loggerflotten und ist in folgende Ebenen aufgeteilt: • • • • Projekt-/Flotten-Ebene: enthält die Logger Logger-Ebene: enthält die hochgeladenen Messdateien Messdatei-Ebene: bietet eine detaillierte Übersicht für jede hochgeladene Datei Status-Überwachung Alle eingehenden Dateien werden entsprechend der frei konfigurierbaren „Überwachungsfunktionen“ analysiert und im Webinterface über die Ampelfunktion angezeigt. Über eine frei definierbare E-Mail-Benachrichtigung kann der Anwender gezielt über bestimmte Grenzwertüberschreitung zusätzlich informiert werden. 58 59 M-LOG FLEETlog FLEETlog2 IPElog M-LOG V3 Datenlogger IPElog ÜBERSICHT DATENLOGGER PC CPU LX800 500 MHz CPU Atom 1.33 GHz CPU Atom E3805 dual core; 1.33 GHz RAM 256 MB RAM 1024 MB RAM 2048 MB Betriebssystem RTOS ■ ■ ■ ■ ■ ■ ■ ■ ■ Messdatenspeicher cF-Karte, wechselbar 4 GB inklusive ■ cF-Karte, wechselbar Option, bis 32 GB CFast-Karte, wechselbar 4 GB inklusive ■ CFast-Karte, wechselbar Option, bis 64 GB □ □ 1.8'' SSD, wechselbar 32 GB inklusive ■ 1.8'' SSD, wechselbar Option, > 32 GB □ Schnittstellen USB Datenabruf ■ ■ ■ USB Anzeige ■ ■ ■ Ethernet (Link) IPETRONIK System ■ ■ ■ COM COM1, COM2 ■ Digital I/O 2 IN / 2 OUT Digital I/O 4 IN / 4 OUT ■ ■ ■ IPETRONIK Module ■ ■ CAN High Speed integriert ■ ■ CAN Low Speed optional Messeingänge M-/SIM-CAN (CAN1) optional LIN optional □ □ ETH optional □ □ 60 □ optional □ □ CAN Single Wire ■ inklusive ■ Fortsetzung nächste Seite ÜBERSICHT DATENLOGGER IPElog Datenlogger M-LOG FLEETlog IPElog M-LOG V3 FLEETlog2 (Fortsetzung) CCP + Seed & Key □ □ □ XCPonCAN □ □ □ XCPonETH □ □ Automotive Ethernet □ □ KWPonCAN □ □ □ UDS / OBD □ □ □ GMLAN □ □ □ J1939 □ □ □ optional Protokolle Funktionen Datenspeicherung getriggert, multiple Speichergruppen ■ ■ ■ Online-Berechnung Formeln, Variablen, Konstanten ■ ■ ■ Klassierung DIN, Rainflow ... □ □ □ ■ ■ WakeOnCAN Start über CAN-Traffic ■ WakeOnSMS Start über SMS-Botschaft ■ WakeOnRTC Start über Uhrzeit ■ No Message Lost (NML) ■ Datenausgabe über CAN CANsend ■ ■ ■ CAN-Datenstrom aufzeichnen Traffic-Messung □ □ □ Datenübertragung/GPS WiFi extern 802.11 b/g WiFi intern 802.11 b/g □ ■ Modem extern □ □ Modem intern ■ GPS extern □ □ □ GPS intern ■ Erweiterungen □ optional CAN-Extender □ □ FlexRay-Extender □ □ □ □ □ □ □ COMgate WiFi, Modem IPEspeed GPS über CAN USB-Kamera □ □ Audio □ M-UPS, Kurzzeit-USV ■ inklusive □ Powermanagement □ □ □ □ optional 61 IPEcloud Web portal for central monitoring and administration of your logger fleet Supported data logger using wireless data trnasfer (mobile data, WiFi): M-LOG V3 / M-LOG with COMgate V3 / COMgate or modem or WiFi client IPElog / IPElog2 FLEETlog2 with option modem or WiFi IPEcloud consists of 3 segments: After login with a myIPE access, all services are available. IPEmail Mailbox for administration of logger e-mails and alarm notifications A filter- and forwarding function provides a selected distribution to all e-mail recipient groups. Alarm and logger notifications are sent automatically to the responsible person or group of persons. No need for manual forwarding or unnecessary high e-mail volumes. Timing and extensive rule definitions for email transmission possible. 62 IPEcloud IPEdrive Personal storage space on our ftp servers 10 GB server space provided by the IPEcloud server (German web hosting) Direct access to all logger files, e.g. measurement, logger or configuration data. Clear up- and download functions for all measurement and logger data. Incoming measurement data can be converted automatically in all common formats. Multiple backup processes / redundant data storage as well as encrypted protocols ensure data protection and security. IPEfleet Fleet management tool with numerous monitoring features Monitoring Map view with logger locations Date and time display for last upload and last data transmission of a logger. Limit values of different channels can be configured individually. Current status of the configuration is shown in different colors: - Red: Measured values over or beneath a defined limit. - Green: Measured values within a defined limit. Configuration changes during an ongoing project. Email alert function for each monitored status. Detailed view with key figures for all measured channels. Administration Adaptation of columns view. Filtering function for targeted search. Transmission of a configuration onto the logger. 63 IPElog High Performance Data Logger for Automotive Testing 12 CAN inputs WakeOnCAN supported on all CAN inputs Quick start with NoMessageLost feature (NML) to acquire first CAN messages from wake-up Low standby current consumption Complete galvanic isolation for CAN, ETH and DIG I/O inputs Configuration with IPEmotion Data streaming to IPEmotion, ETAS INCA, Vector CANape via CAN or XCPonETH Wireless connection via 3G, WiFi Integrated GPS receiver supports global positioning No fans, hard drives or other mechanical rotating components ... Operating system Realtime operating system (RTOS32) Data storage 1,8'' SSD, removable (option) Intelligent power management WakeOnCAN, NoMessageLost (NML) emergency supply backup with high capacity capacitors Voltage supply 9 VDC to 36 VDC Power consumption, typical 12.0 W Working temperature range * -40 °C ... +85 °C (-40 °F ... +185 °F) * Derating for data transfer -40 °C ... +70 °C (-40 °F ... +158 °F) Storage temperature range -45 °C ... +90 °C (-49 °F ... +194 °F) Relative humidity 5 ... 95 % IP-Code IP 54 (ISO 20653 - 2013) Dimensions (W x H x D) 206.5 mm x 73 mm x 166.5 mm (8.13 in x 2.87 in x 6.56 in) Weight approx. 1890 g (approx. 4.167 lb) 64 IPElog PC CPU Intel® Atom™ Z520PT, 1.33 GHz, 512 kB L2-Cache RAM / Memory 1 GB DAQ application running on the logger TESTdrive ( Version 3.50) Configuration software (Windows, external) IPEmotion ( Version 2.0) with Logger PlugIn (Version 3.50) Interfaces USB 2.0 1 Type A female 2 VIEW - Lemo connector 3 USB2 - Lemo connector Service interface, data transfer Display M-VIEWfleet Peripheral devices M-CAN IPETRONIK system bus CAN (M-Series modules, CANpressure, MultiDAQ) LINK Ethernet connection IPElog < > PC used for configuration and online data visualization (XCPonETH) CAN measurement inputs 12 x CAN High Speed acc. to ISO 11898-2 Digital input and output 4 x DIG IN / 4 x DIG OUT Ethernet measurement inputs (optional) 2 x Fast Ethernet (100Base-TX) Wireless components Modem built-in GPRS/UMTS/3G Quad-band EGSM 850/900/1800/1900 FME connector for external atenna Wireless LAN built-in WiFi 2.4 GHz, 54 Mb/s acc. to 802.11 b/g SMA connector for external atenna Positioning built-in WiFi 2.4 GHz, 54 Mb/s acc. to 802.11 b/g SMA connector for external atenna Specific features Protocols CCP, XCPonCAN, XCPonETH, KWPonCAN, UDS CAN-Send Output measurement signals and online calculated values to the CAN bus Statistics Online statistical calculations (DIN, Rainflow) Traffic measurement Record data from the CAN bus using the traffic mode (complete data stream). Several filter and trigger functions to limit the data volume supported. Quickstart Fast boot-up with NoMessageLost feature Standard cables (extract) Power/Remote 620-574.xxx PWR/REM - Banana M-CAN terminated (connecting modules) 620-429.xxx CAN/PWR term - M-CAN Lemo 0B Display M-VIEWfleet 620-578.xxx VIEW - Lemo 1B angled Ethernet (IPElink, IPElog < > PC) 620-591.xxx ETH - RJ45 (crosslink) Ethernet (IPElink, IPElog < > network) 620-355.xxx ETH - RJ45 Measuring input CAN 1 600-580.xxx CAN D-Sub - open Measuring input CAN 1 - 7, CAN 2 - 8 (CAN 3 - 9, CAN 4 - 10) (CAN 5 - 11, CAN 6 - 12) 620-593.xxx CAN D-Sub - 2x D-Sub 9/Pin (standard) Digital input / digital output 620-324.xxx DIG I/O HD-Sub 15 - open 65 IPElog2 High Performance Data Logger for Automotive Testing 16 CAN inputs, 10 CAN inputs + 6 LIN inputs optional WakeOnCAN supported on all CAN inputs High/Low speed switching by software supported for 4 CAN inputs Quick start with NoMessageLost feature (NML) to acquire first CAN messages from wake-up Low standby current consumption Complete galvanic isolation for CAN, LIN, ETH and DIG I/O inputs Configuration with IPEmotion Data streaming to IPEmotion, ETAS INCA, Vector CANape via CAN or XCPonETH Wireless connection via cellphone, WiFi with WPS function Integrated GPS receiver supports global positioning Supporting IPEcloud interface for data exchange No fans, hard drives or other mechanical rotating components ... Operating system Realtime operating system (RTOS32) Data storage 4 GB removable CFast card (memory upgrade up to 64 GB optional) Intelligent power management WakeOnCAN, NoMessageLost (NML) emergency supply backup with high capacity capacitors Voltage supply 9 VDC to 36 VDC Power consumption, typical 10.0 W Working temperature range * -40 °C ... +85 °C (-40 °F ... +185 °F) * Derating for data transfer -40 °C ... +70 °C (-40 °F ... +158 °F) Storage temperature range -45 °C ... +90 °C (-49 °F ... +194 °F) Relative humidity 5 ... 95 % IP-Code IP 54 (ISO 20653 - 2013) Dimensions (W x H x D) 206.5 mm x 73 mm x 166.5 mm (8.13 in x 2.87 in x 6.56 in) Weight approx. 1750 g (approx. 3.86 lb) 66 IPElog2 PC CPU Intel® Atom™ E3805 dual core, 1.33 GHz, 1 MB L2-Cache RAM / Memory 2 GB DAQ application running on the logger TESTdrive ( V03.58) Configuration software (Windows, external) IPEmotion ( V05.00) with PlugIn IPETRONIK LOG (V03.58) Interfaces USB 3.0 (USB 2.0 compatible) 1 Type A female 2/3 VIEW/USB (Lemo 1B 10-pin, green) Service interface, data transfer Display M-VIEWfleet / Peripheral devices M-CAN (Lemo 0B 9-pin, blue) IPETRONIK system bus CAN (M-Series modules, CANpressure, MultiDAQ) PC (Lemo 1B 16-Pin, white) Configuration and online visualization (XCPonETH) X-LINK (Lemo 1B 2+6-pin, orange) Interfacing X-Modules and X-LINK systems CAN / LIN inputs (D-Sub 9) 16 x CAN High Speed acc. to ISO 11898-2 optional 10 x CAN (ISO 11898-2), 6 x LIN (V1.3, V2.0) ETH (Lemo 1B 16-Pin, orange) Ethernet measurement inputs (optional) DIG IN/OUT (HD-Sub 15) 4 x digital input / 4 x digital output AUDIO (Lemo 0B 5-pin, grey) Audio / voice recording and audio / voice output VIDEO Video recording via USB Wireless components Modem, built-in (FME connector for external atenna) GPRS/UMTS/3G/4G Quad-band EGSM 850/900/1800/1900 Wireless LAN, built-in (SMA connector for external atenna) WiFi 2.4 GHz, 54 Mb/s acc. to 802.11 b/g GPS, built-in (SMA connector for external atenna) WiFi 2.4 GHz, 54 Mb/s acc. to 802.11 b/g Gyro sensor 100 Hz Specific features Protocols CCP, XCPonCAN, XCPonETH, KWPonCAN, UDS, J1939, OBD, Automotive Ethernet CAN-Send Output measured signals / calculated values to CAN bus Statistics Online statistical calculations (DIN, Rainflow, …) Traffic measurement Record data from the CAN bus using the traffic mode). Different filter and trigger functions to reduce data volume. Quickstart Fast boot-up with NoMessageLost feature Standard cables (extract) Power/Remote 620-574.xxx PWR/REM - Banana M-CAN (connecting modules) 620-560.xxx CAN/PWR Lemo 0B Display M-VIEWfleet 620-578.xxx VIEW - Lemo 1B angled Ethernet (IPElog2 < > PC / network) 620-688.xxx LOG GB-ETH - RJ45 Measuring input CAN 1 600-580.xxx CAN D-Sub - open Measuring input CAN 1 - 9, CAN 2 - 10 (CAN 3 - 11, CAN 4 - 12) (CAN 5 - 13, CAN 6 - 14) (CAN 7 - 15, CAN 8 - 16) 620-593.xxx CAN D-Sub - 2x D-Sub 9/Pin (standard) Digital input / digital output 620-324.xxx DIG I/O HD-Sub 15 - open 67 M-LOG V3 CFast Card (SATA 2.6) M-LOG 3rd Generation for Automotive Testing Up to 12 CAN bus inputs WakeOnCAN supported on all CAN inputs 4x Digital In / 4x Digital Out Data exchange (configuration, measurement data) through USB and LAN High data rate storage on removable CFast card with SATA interface (up to 64 GB) Complete galvanic isolation for CAN, LAN and DIG I/O 100% compatibility to M-LOG port replicators Configuration with IPEmotion Data streaming to IPEmotion, ETAS INCA, Vector CANape or many other tools via CAN or XCPonETH WiFi option supports short-distance wireless data connection Modem option supports long-distance wireless data connection No fans, hard drives or other mechanical rotating components ... Operating system Realtime operating system (RTOS32) Data storage 4 GB internal, 4 GB removable CFast card (memory upgrade up to 64 GB optional) Intelligent power management Ignition, WakeOnCAN, emergency supply backup by Highcaps Voltage supply 9 VDC ... 36 VDC Power consumption, typical 9.0 W Working temperature range -40 °C ... +85 °C (-40 °F ... +185 °F) Storage temperature range -45 °C ... +95 °C (-49 °F ... +203 °F) Relative humidity 5 ... 95 % PR05 , PR06 , Port replicator, selectable PR08 , PR03 , PR13 (Cable adapter for peripheral devices) + IP-Code IP 54 (ISO 20653 - 2013) Dimensions W158 mm x H69 mm x D102 mm (W6.22 in x H2.72 in x D4.02 in) Weight approx. 850 g (approx. 1.87 lb) depending on hardware configuration and port replicator 68 + + = standard, ++ ++ ++ ++ = customer specific M-LOG V3 PC CPU Intel® Atom™ E3805 dual core, 1.33 GHz RAM 2048 MB DAQ application running on the logger TESTdrive (≥ version 3.55) Configuration software (Windows, external) IPEmotion with PlugIn IPETRONIK-LOG Interfaces USB 2.0 USB 1 USB 2 Type A female VIEW (Lemo) Service interface, data transfer Display M-VIEWfleet, M-VIEWgraph M-CAN IPETRONIK CAN bus (M-Series modules, CANpressure, MultiDAQ, ...) IPElink Fast Ethernet (100Base-TX) Connection M-LOG V3 < > PC used for configuration and online data visualization (XCPon ETH) LAN (ETH1, ETH2) 2 x Fast Ethernet (100Base-TX) measurement input CAN measurement input CAN High Speed acc. to ISO 11898-2 Digital input and output 4 x DIG IN / 4 x DIG OUT Hardware options Measurement input CAN LIN CAN2, CAN3, CAN4, CAN5-8, CAN9-12 LIN1,2 Memory upgrade (CFast) 8 / 16/ 32 GB External devices WiFi Modem GPS WiFi per 802.11b/g (COMgate, COMgate WAN) GPRS/3G/CDMA (COMgate WAN) GPS using NMEA protocol Software options Protocols CCP, XCPonCAN, XCPonETH, KWPonCAN, UDS, J1939, OBD, Automotive Ethernet Statistics Online statistical calculations (DIN, Rainflow) Traffic measurement Acquire trace data from CAN bus (complete data stream). Several filter and trigger functions supported. IPEcloud Web portal for centralized administration of the logger fleet, data management, file conversion, status monitoring, logfile analysis, e-mail alerting, reporting Standard cables (extract) Power/Remote 620-574.xxx PWR/REM - Banana M-CAN terminated (connecting modules) 620-429.xxx CAN/PWR term - M-CAN Lemo 0B Display M-VIEWfleet 620-578.xxx VIEW - Lemo 1B angled Display/Online data to IPEhub2 620-689.xxx LOG-VIEW – IPEconnect (IPEhub2) USB2 620-664.xxx USB2 - USB-A/S Ethernet (ETH1, ETH2) 620-636.xxx ETH - RJ45, Power Ethernet (IPElink, FLEETlog2 < > PC) 620-591.xxx ETH - RJ45 (crosslink) Ethernet (IPElink, FLEETlog2 < > network) 620-355.xxx ETH - RJ45 Measuring input CAN 1 600-580.xxx CAN D-Sub - open Measuring input CAN 1 - 3, CAN 2 - 4 620-593.xxx CAN D-Sub - 2x D-Sub 9/Pin (standard) Digital input / digital output 620-324.xxx DIG I/O HD-Sub 15 - open 69 M-LOG V3 Performance M-LOG V3 offers a maximum performance for online calculations and data storage with stationary and mobile testing Latest-generation processor board equipped with Intel® Atom™ offers greater performance and thus more reserve capacity for data processing due to lower CPU usage as compared to previous systems RAM memory 1024 MB main storage size offers a significant performance increase especially when working with extensive configurations New storage medium cFast provides storage devices up to 64 GByte of data volume at quick access to stored data WakeOnCAN Starting logger and data acquisition triggert by traffic at any CAN input Speed option included Preprocessing of measuring signals on CAN card considerably reduces CPU load 100 % connection compatibility with existing infrastructure by retention of standard connectors, exact substitution of the central hardware component without complex rewiring/modification Scenario 1 CANdb signal measurement and data storage, 8x CAN (bus load 24 %) 571 signals per input = 4568 signals in total Scenario 2 Traffic measurement, 8x CAN (bus load 24 %), data storage to traffic and ring buffer traffic group Scenario 3 Traffic measurement, 8x CAN (bus load 50 %), data storage to traffic and ring buffer traffic group Scenario 4 2000 online calculations of internal signals and data storage using a processing/storage rate of 100 Hz 70 M-LOG V3 Performance M-LOG V3 in comparison to M-LOG: CPU load as function of bus load M-LOG 12 CAN, DMA enabled CAN data rate 1 MBaud M-LOG 12 CAN, DMA enabled CAN data rate 500 kBaud M-LOG V3 12 CAN CAN data rate 1 MBaud M-LOG V3 12 CAN CAN data rate 500 kBaud For requests and further information contact Tel: +49 7221 / 9922 333 E-mail: [email protected] 71 COMgate V3 M-LOG/M-LOG V3 wireless communication gateway External communication add-on built-in a M-LOG/M-LOG V3 compatible housing Wireless data transfer for measuring data and system configuration COMgate V3 supporting WiFi 802.11 a/ b/ g/ n and GSM/3G/4G modem Combined PWR/data cable to M-LOG/M-LOG V3 (Power/Ethernet) WPS Button to exchange SSID in access point operating mode No mechanical rotating components like CPU fan, hard drives ... Designed for automotive in-vehicle use General Voltage supply 9 VDC to 36 VDC , Switch-off for voltage < 6 V Power consumption, typical < 6.0 W Operating temperature range -40 °C ... +85 °C (-40 °F ... +185 °F) Storage temperature range -40 °C ... +95 °C (-40 °F ... +203 °F) Relative humidity 5 ... 95 % IP-Code IP 54 (ISO 20653 - 2013) Dimensions (L x W x H) W158 mm x H26.5 mm x D102 mm (W6.22 in x H1.04 in x D4.02 in) Weight approx 600 g (1.32 lb) M-LOG compatibility LX 800, TESTdrive version ≥ 3.17, option 2 x ETH Interfaces Wireless LAN, built-in (SMA connector for external antenna) Standard WiFi 802.11 (2.4 GHz and 5 GHz) a / b / g / n for data transfer to local WiFi access points External modem Dedicated LEMO 0B – 9pin connector to interface external modems including status signal communciation Modem, built-in (FME connector for external antenna) GSM (GPRS, EDGE) Quadband 3G (UMTS) 850/900/1800/1900 MHz 4G (LTE) bands North America: 2, 4, 5, 7, 17 EMEA/APAC: 1, 3, 5, 7, 8, 20 APAC/S-America: 1, 3, 5, 7, 8, 28 2 Gigabit Ethernet interfaces operating in parallel to PC and Logger 2x LAN 72 COMgate V3 Cables & Antennas LOG ETH Cable COMgate Cable 620-692.xx (data logger connection) LOG GB-ETH Cable RJ45 Cable 620-688.xx (PC connection) WiFi antenna SMA(R)-UFL (standard male connector) Modem LTE antenna FME (standard male connector) Status indication Device LED multicolor Status indication (operation, error, power supply) PC link LED Indicating PC communication Logger link LED Indicating logger communication WiFi/Modem (internal & external) Indicating operation status WiFi/Modem (internal & external) multicolor LED red LED yellow LED green Signal strength < 50 % Signal strength 50 % … 75 % Signal strength > 75 % 73 M-LOG V3 Upgrade Kit English The M-LOG V3 Upgrade Kit significantly increases performance and range of functions of M-LOG systems It features the following components and services: Latest-generation main board equipped with Intel® Atom™ replaces LX800 and SC1200 boards offering greater performance and thus more reserve capacity for data processing due to lower CPU usage as compared to previous systems RAM memory extension Expansion of memory from 256 MB (as with M-/S-LOG and FLEETlog so far) to 1024 MB, for significant performance increase especially when working with extensive configurations New storage medium cFast (8 / 16/ 32 GB) provides up to 32 GByte of data volume at quick access to stored data WakeOnCAN, NoMessageLost Capability Data acquisition starting with the first CAN message on all CAN buses to be measured Speed option included Preprocessing of measuring signals on CAN card reduces CPU load by 70 % 100 % connection compatibility with existing infrastructure by retention of the respective port replicators exact substitution of the central hardware component without complex rewiring/modification Port replicators PR05 will be adapted to the new pin compatible type PR08 Detailed inspection with functionality test and climatic test with report and calibration certificate 2 years additional warranty on existing hardware for additional security of investment by automatic warranty extension by 2 more years For requests and further information, please contact Phone: +49 7221 9922 222 E-mail: [email protected] 74 FlexRay-Extender Logger extension for data acquisition from FlexRay networks Time-controlled signal recording at the connected bus network (FlexRay 2.1 Rev. A) ECU connection at the galvanically isolated input with channel A and channel B Data acquisition with the data logger supporting signal measurement, asynchronous measurement and protocol communication using XCPonFlexRay Import of description files (A2L, Autosar, Fibex) for user-friendly signal and system configuration IPEmotion software used for configuration and online data visualization (View tab) and evaluation of stored data records (Analysis tab) Designed for automotive in-vehicle use General Voltage supply 9 VDC to 36 VDC Power consumption, max. 3.0 W Working temperature range -40 °C ... +85 °C (-40 °F ... +185 °F) Storage temperature range -50 °C ... +95 °C (-58 °F ... +203 °F) Relative humidity 5 ... 95 % IP-Code IP 54 (ISO 20653 - 2013) Dimensions (L x W x H) 158 mm x 102 mm x 26.5 mm (6.22 in x 4.02 in x 1.04 in) Weight 450 g (0.99 lb) System requirements M-LOG, IPElog M-LOG Notebook, PC TESTdrive, PlugIn IPETRONIK-LOG V03.50 ETH input (Option 2x ETH), Processor LX 800 PlugIn IPETRONIK-X V01.04, Windows 7 OS Interfaces FlexRay 1 x FlexRay 2.1 Rev. A, Chn A / Chn B Data acquisition Signal measurement Protocol measurement via XCPonFlexRay (option) Asynchronous measurement (option) Data output Ethernet to logger 10/100Base-TX Communication protocol XCPonEthernet Cables FlexRay A/B (measuring input) D-Sub 9-pin, Cable 620-656.xx ETH/PWR (data output, power supply) Lemo EGA 0B 307, Cable 620-649.xx Status indication Operating status LED green LED yellow LED red Power on, ready for operation Measurement is running, data transfer Error FlexRay channel LED green bus traffic 75 FLEETlog2 Automotive Fleet Data Logger with CAN Bus Up to 4 CAN bus inputs WakeOnCAN supported on all CAN inputs Data exchange (configuration, measurement data) through USB and LAN Data storage on removable Compact Flashcard Complete galvanic isolation for CAN, LAN and DIG I/O inputs Configuration with IPEmotion Data streaming to IPEmotion, ETAS INCA, Vector CANape and many other tools via CAN or XCPonETH WiFi option supports wireless data connection by integrated WiFi client Modem option supports wireless data connection by integrated 3G modem GPS option gives position by integrated GPS receiver No fans, hard drives or other mechanical rotating components ... Operating system Realtime operating system (RTOS32) Data storage Compact Flashcard (cF), removable (optional up to 32 GB) Intelligent power management Ignition, WakeOnCAN, emergency supply backup by Highcaps Voltage supply 9 VDC to 36 VDC Power consumption, typical 7.5 W Working temperature range -40 °C ... +85 °C (-40 °F ... +185 °F) Storage temperature range -40 °C ... +85 °C (-40 °F ... +185 °F) Relative humidity 5 ... 95 % IP-Code IP 54 (ISO 20653 - 2013) Dimensions (W x H x D) 140 mm x 40 mm x 185 mm (5.51 in x 1.57 in x 7.28 in) Weight (depending on hardware configuration) approx. 1020 g (2.25 lb) 76 FLEETlog2 PC CPU LX 800, 500 MHz RAM 256 MB DAQ application running on the logger IPETRONIK TESTdrive (≥ Version 3.52) Configuration software (Windows, external) IPEmotion (Version ≥ 3.00) with Logger PlugIn (Version ≥ 3.52) Interfaces USB 2.0 USB 1 USB 2 Type A female (front flap) VIEW - Lemo connector Service interface, data transfer Display M-VIEWfleet M-CAN IPETRONIK system CAN bus (M-Series modules, CANpressure, MultiDAQ) LAN Ethernet connection FLEETlog2 < > PC used for configuration and online data visualization (XCPonETH) CAN measurement input CAN High Speed acc. to ISO 11898-2 Digital input and output 2 x DIG IN / 2 x DIG OUT Wireless options Wireless LAN integrated WiFi 2.4 GHz, 54 Mb/s acc. to 802.11 b/g Modem integrated GPRS/UMTS/3G GPS integrated Satellite positioning, 1 Hz refresh rate, NMEA protocol Options CAN 2, CAN 3, CAN 4 Electrically isolated CAN bus input Data output to CAN bus (CANsend) supported Multi storage groups Data storage using different storage rates, user-specific trigger conditions supported Protocols CCP, XCPonCAN, KWPonCAN, UDS, J1939, OBD Statistics Online statistical calculations (DIN, Rainflow) Traffic measurement Record data from the CAN bus using the traffic mode. Several filter and trigger functions supported. IPEcloud Web portal for centralized administration of the logger fleet, data management, file conversion, status monitoring, logfile analysis, e-mail alerting, reporting Standard cables (extract) Power/Remote 620-574.xxx PWR/REM - Banana M-CAN terminated (connecting modules) 620-429.xxx CAN/PWR term - M-CAN Lemo 0B Display M-VIEWfleet 620-578.xxx VIEW - Lemo 1B angled Display/Online data to IPEhub2 620-691.xxx FLEETlog-VIEW – IPEconnect (IPEhub2) Ethernet (IPElink, FLEETlog2 < > PC) 620-591.xxx ETH - RJ45 (crosslink) Ethernet (IPElink, FLEETlog2 < > network) 620-355.xxx ETH - RJ45 Measuring input CAN 1 600-580.xxx CAN D-Sub - open Measuring input CAN 1 - 3, CAN 2 - 4 620-593.xxx CAN D-Sub - 2x D-Sub 9/Pin (standard) Digital input / digital output 620-324.xxx DIG I/O HD-Sub 15 - open 77 IPEhub2 + IPEmotion App English Wireless CAN-Gateway Wireless LAN device according to WiFi 802.11 b/g (2.4 GHz supported) External interface providing 2 galvanically isolated CAN bus inputs (ISO 11898-2) for data streaming to mobile devices using the IPEmotion App Access Point mode with DHCP server Optional storage to internal SD card (CAN trace logging) Option 1: CAN trace storage on internal SD card (1 GB card included) Option 2: WiFi interface incl. IPEmotion App for mobile device (Android operating system) Easy configuration through web interface using WiFi or LAN 2 multicolor LEDs: WiFi (signal strength), Data storage (memory usage) CAN2 with software selectable termination resistor Encrypted transfer of measurement data (IPEhub2 < > Tablet) using WPA2 Configuration data encryption can be activated by IPEmotion Compact and rugged aluminum enclosure (M2-Series) General Voltage supply 9 VDC to 36 VDC (Switch-off for voltage < 6 V) Power consumption, typical 4.0 W Operating temperature range -40 °C ... +85 °C (-40 °F ... +185 °F) Storage temperature range -40 °C ... +95 °C (-40 °F ... +203 °F) Relative humidity 5 ... 95 % without condensation IP-Code IP 54 (ISO 20653 - 2013) Dimensions W106 mm x H43 mm x D62 mm (W4.17 in x H1.69 in x D2.44 in) Weight 360 g (0.79 lb) Interfaces / Storage CAN High Speed up to 1 MBit/s acc. to ISO11898-2 LAN / Wireless LAN Fast Ethernet 100Base-TX / WiFi 802.11 a/b/g SD memory card 1 GB (included), optional 2/ 4/ 8 GB Connectors, Cabling CAN 1 (D Sub) CAN 2 (D-Sub, M-CAN) PC LAN 600-580.xxx 620-560.xxx 620-680.xxx WiFi antenna (standard male connector) SMA(R)-UFL SUB D/S SER CAN Cable open M-CAN Cable (CAN, PWR) IPEhub2 PC Kabel RJ45 LED status indication Device status CAN bus (CAN 1, CAN 2) Termination CAN 2 PC link status / WiFi status WiFi signal strength SD memory usage 78 Power supply, saving, upload, update Communicaton active/ inactive Resistor switched on/switched off Connection active/inactive Green: > 50 %, Yellow: 50 ... 5 %, Red: < 5 % Green: < 50 %, Yellow: 50 ... 75 %, Red: > 75 % in use IPEhub2 + IPEmotion App IPEmotion App – Display System The IPEmotion App is an Android based measurement data display for smartphones and tablets. The app is designed to show live data measurements from IPEhub2 and data loggers. The app display instruments (GUI) are configured with the data acquisition software IPEmotion and automatically transferred to the tablet over WiFi network. The app requires IPEhub2 as access point system and as data source either for CAN bus measurements with IPEhub2 or in the context of a display system for data loggers called IPEconnect. Summary of technical features of the App: Android based App for operating system 4.0 or higher. Default display configuration created with IPEmotion. Local display and instrument configuration on tablet is supported too. Display of up to 250 measurement channels. Display system for IPEhub2 Can measurements and for data loggers. 4 display instruments (yt-charts, bar graphs, alphanumerical instrument, LED). 20 display pages with customizable page layouts. WPS button to establish WiFi connection to tablet / smartphone. Encrypted file and data transfer between IPEhub2 and app. Trigger function to active data storage on IPEhub2. Add marker comments to IPEhub2 data files. All channel PDF signal validation report. IPEmotion App Screenshots Main navigation Instrument overview Settings PDF report 79 M-UPS2 Intelligent Uninterruptible Power Supply Intelligent power supply for mobile DAQ systems Bypass of voltage drops during cranking (e.g. for crank and cold start tests) Automatic charging of battery Quick and easy battery exchange by user 3 Status LEDs to indicate the operation status Cascading function to increase output power General Working temperature range -25 °C ... +70 °C (-13 °F ... +158 °F) Storage temperature range -35 °C ... +80 °C (-31 °F ... +176 °F) Relative humidity 5 ... 95 % IP-Code IP 54 (ISO 20653 - 2013) Dimensions (W x H x D) 113 mm x 85 mm x 89 mm ( 4.45 in x 3.35 in 3 50 in) Weight 1300 g (2.87 lb) Input Protected against incorrect polarity Supply voltage 9 VDC ... 18 VDC Power consumption, max. 30 W Standby / operating current < 1 mA / < 100 mA (ouput unloaded) Output Protected against incorrect polarity Output voltage 9 V < Vinput < 18 V 15 V ±1 V Output power (continuous / short-time) 30 W / 50 W (line operation only) Battery operation Output power, max. 30 W Backup duration at max. output power (100 % battery charge state required!) 1 ... 5 minutes (Depends on ambient temperature conditions) Monitoring, status indication LED green, yellow, red for operation status status table shows LED indication and meaning Monitoring parameters module temperature, current load, total discharge Power/operation modes Standard (single M-UPS feeding) PWR and control voltage through M-CAN Cascading (multiple M-UPS feeding) PWR through IN connector, control voltage through M-CAN connector 80 M-UPS Intelligent Uninterruptible Power Supply Intelligent DC power supply for mobile DAQ systems Voltage drop and voltage loss bridging for cold start tests Uninterrupted switch-over from line to battery mode and vise versa Different remote functions (switch on / switch off) provided 3 Status LEDs to indicate the operation status Compact and rugged enclosure made of gold anodized aluminum General Working temperature range -40 °C ... +75 °C (-40 °F ... +167 °F) Storage temperature range -40 °C ... +75 °C (-40 °F ... +167 °F) Relative humidity 5 ... 95 % without condensation IP-Code IP 54 (ISO 20653 - 2013) Dimensions W135 mm x H103 mm x D120 mm (W5.31 in x H4.06 in x D4 72 in) Weight 2250 g (4.96 lb) Input Protected against incorrect polarity Supply voltage 6 VDC ... 36 VDC Power consumption, max. 100 W Standby / operating current < 1 mA / < 100 mA (ouput unloaded) Output Protected against incorrect polarity Output voltage 5 V < Vinput < 25 V 25 V < Vinput < 36 V 24 V (voltage regulated) Vinput - 1 V (voltage unregulated) Output power (continuous / short-time) 80 W / 100 W (line operation only) Battery operation Output power, max. 80 W Backup duration at max. output power (100 % battery charge state required!) 1 ... 4 minutes (Depends on ambient temperature conditions) Monitoring, status indication LED green, yellow, red for operation status status table shows LED indication an meaning Monitoring parameters module temperature, current load, total discharge Remote operation Switch on (depending on operating mode) Ign. 15, control signal, remote button START Switch off (depending on operating mode) Ign. 15, control signal, remote button STOP, FLEETlog 81 M-POWER2 Power Distributor Intelligent power distributor with M2-Series enclosure Easy application with existing M-Series systems Dovetail joint for quick module to module connection Multicolor LED indicates 3 ranges of the supply voltage Cable connection through 4 mm female banana connectors Increasing the number of outputs by module cascading General Voltage supply 9 VDC to 36 VDC Power consumption (unloaded) typical 0.06 W, max. 0.15 W Maximum input current < 25 A Short-circuit / overload protection Fused cable 600-749, IN = 20 A Operating temperature range -40 ... +85 °C (-40 ... +185 °F) Storage temperature range -45 ... +95 °C (-49 ... +203 °F) Relative humidity 15 ... 90 % IP-Code IP 54 (ISO 20653 – 2013) Dimensions (W x H x D) 106 mm x 43 mm x 60 mm (4.17 in x 1.69 in x 2.36 in) Weight 295 g (0.65 lb) Voltage supply status indication LED- color decreasing voltage rising voltage green > 10.6 V > yellow > 9.9 V > red red < 10.2 V < yellow < 11.1 V < green Cables Power input with fuse 600-749.xxx PWR-Banana/S Cable Fuse-Battery Connection cable 620-672.xxx M-POWER2 Cable M-POWER2 Connection cable short (single wires) 620-673.xxx M-POWER2 Cable M-POWER2 short 82 83 IPEspeed English Always mount the GPS antenna at the vehicle’s outside surface! GPS Receiver for Dynamic Applications Accurate GPS receiver with CAN output Real 20 Hz update rate Low power consumption Magnetic GPS antenna with multipath suppression feature included Web interface to provide configuration and CANdb export General Voltage supply 9 VDC to 36 VDC Power consumption, max. 0.75 W Working temperature range -40 °C ... +85 °C (-40 °F ... +185 °F) Storage temperature range -45 °C ... +90 °C (-49 °F ... +194 °F) IP-Code IP 54 (ISO 20653 - 2013) Dimensions L126/100 mm x W50 mm x H25 mm (with/without lugs) L4.96/3.95 in x W1.97 in x H0.98 in (with/without lugs) Weight 165 g (0.36 lb) Interfaces CAN (measuring data) CAN High Speed acc. to ISO 11898-2 and IPETRONIK M-CAN LAN (configuration) Ethernet 10/100 MBit, fixed IP: 192.168.232.241 Signals Position Geographic longitude, latitude (format: Real 32, angle), altitude (height above sea level), Number of satellites used Speed Speed over ground (miles/h, km/h) Course Course over ground (nautic course, North based) Time Date, Time (UTC) Positioning OK IPEspeed outputs valid data LED status indication Green Yellow Orange PWR GPS CAN Power on, ready for operation GPS operation (positioning active) Data transfer to CAN bus Cables CAN + Power 620-660.xxx CAN/PWR - D-Sub9/S, Banana IPETRONIK M-CAN 620-663.xxx CAN/PWR - M-CAN Lemo 0B CAN + ETH + Power 620-666.xxx ETH/CAN/PWR – RJ45, D-Sub9/S, Banana CAN + Power, terminated 620-669.xxx CAN/PWR – D-Sub9/S, term, Banana IPETRONIK M-CAN, terminated 620-670.xxx CAN/PWR - M-CAN, term Lemo 0B 84 IPEspeed Receiver specifications GPS C/A Code, SBAS capable Accuracy Position Velocity Time 2.5 m CEP 0.1 m/s (0.36 km/h) 60 ns First acquisition Cold start Hot start Open Sky TTFF (Time To First Fix) 29 s 1s Sensitivity Tracking Cold start -165 dBm -148 dBm Update rates 1 / 2 / 4 / 5 / 8 / 10 / 20 Hz Operational limits (COCOM limit) Altitude Velocity < 18,000 m < 515 m/s Protocol NMEA-0183 V3.01 Signal description as stated in CANdb IPEspeed The latest CANdb is available at: The download area of IPETRONIK's website (http://myipe.ipetronik.com/en/downloads) subdirectory Public/IPETRONIK Firmware A default CANdb is available from the IPEmotion installation diretory, e.g. C:\Program Files (x86)\Common Files\IPETRONIK\IPEmotion\Import\IPEspeed.dbc Signal name CAN ID Start Bit Bit Length Data type Status 380 0 8 Byte unsigned Latitude (Latitude_degree) 381 0 32 DWord signed Longitude (Longitude_degree) 381 32 32 DWord signed Latitude (Latitude_NMEA) 382 0 32 DWord signed Longitude (Longitude_NMEA) 382 32 32 DWord signed Altitude 383 0 32 Real32 Speed, Knots (Speed_knots)) 384 0 32 Real32 Course 384 32 32 Real32 Speed, Kilometer per hour (Speed_kmh) 385 0 32 Real32 Speed, Meter per second (Speed_ms) 385 32 32 Real32 Speed, Miles per hour (Speed_mph) 386 0 32 Real32 Satellites in use (Satellites_in_View) 387 0 8 Byte unsigned Day 388 0 8 Byte unsigned Month 388 8 8 Byte unsigned Year 388 16 8 Byte unsigned Hours (Hour) 389 0 8 Byte unsigned Minutes 389 8 8 Byte unsigned Seconds 389 16 8 Byte unsigned Milliseconds 389 24 16 Word unsigned 85 IPEaudio English Acoustics Measurement for Automotive Testing Noise measurement inside the passenger compartment IPEaudio kit with system case consisting of: - IEPE microphone with wind shield and mounting material - Amplifier with signal conditioning and filtering - iMIC device with push-button (trigger + status LEDs) - Headphones - Cabling Synchronous recording of audio signals (noises) and CAN data (vehicle operating data) with M-LOG Triggering of audio signal recording with iMIC device on user command Offline data analysis with well-established software tools like the PAK system (Mueller-BBM) supported by IPEmotion ATFX export Audio signal output to peripheral devices (vehicle infotainment, sound system) through line out connector 86 IPEaudio General Voltage supply IPEaudio iMIC 9 VDC to 36 VDC 9 VDC to 36 VDC Power consumption, typical IPEaudio iMIC 1.5 W 0.5 W Operating temperature range IPEaudio Micro Roga MI-17, iMIC -40 °C ... +85 °C (-40 °F ... +185 °F) -10 °C ... +50 °C (+14 °F ... +122 °F) Storage temperature range IPEaudio Micro Roga MI-17, iMIC -40 °C ... +95 °C (-40 °F ... +203 °F) -20 °C ... +60 °C (-4 °F ... +140 °F) Relative humidity 5 ... 95 % without condensation IP-Code IP 54 (ISO 20653 - 2013) Dimensions IPEaudio (L x W x H) iMIC (W x H x D) Weight IPEaudio iMIC 126 mm x 50 mm x 26 mm (4.96 in x 1.97 in x 1.02 in) 40 mm x 26 mm x 37 mm (1.57 in x 1.02 in x 1.46 in) 155 g (0.342 lb) 50 g (0.110 lb) IPEaudio Switch mode for filter/gain selection High-pass filter 20 Hz High-pass filter 200 Hz Gain selectable 0/ +10/ +20/ +30 dB Gain selectable 0/ +10/ +20/ +30 dB Connectors, Cabling IPEaudio PWR, Micro/Headphone Push-button trigger Microphone ROGA MI-17 620-480.xxx 620-607.xxx Supported data loggers Audio interface required M-LOG PR03 / PR04 / PR05 / PR08 / PR10 / PR11 LOG AUDIO, DI/O Cable IPEaudio, DI/O LOG Cable iMIC BNC 90° Cable BNC S-LOG Configuration / Data acquisition Configuration IPEmotion 2013/ 2014 + PlugIn IPETRONIK-LOG 3.52 Data acquisition Data logger with TESTdrive 3.52 Data conversion/ data export IPEmotion 2013/ 2014, ATFX export for PAK (Mueller-BBM) each WAV source file is converted to the respective ATFX target file 87 IPEcan FD USB2CAN-FD-Gateway PC-USB bus adapter for the CAN-FD bus High Speed CAN-Bus input per ISO 11898 (mode “ISO” and “Non-ISO” selectable) Connecting the bus channel with D Sub male connector per CiA® 102 standard pin assignment Data output to PC/Notebook through USB 2.0 (compatible with USB 1.1 and USB 3.0) Status LED indicates the current operation status (USB, CAN) Interface for configuration and data acquisition using IPEmotion software General Voltage supply 5 VDC per USB connection (PC) Power / current consumption 0.8 W, max. 200 mA @ 5 V Operating temperature range -40 °C ... +85 °C (-40 °F ... +185 °F) Storage temperature range -40 °C ... +100 °C (-40 °F ... +212 °F) Relative humidity 15 ... 90 % Dimensions (L x W x H) 92 mm x 54 mm x 16 mm (3.62 in x 2.13 in x 0.63 in) Weight (incl. cable) 115 g (0.254 lb) EMC standards EN 55024: 2003-10 / EN 55022: 2008-05 EC Directive 2004/108/EG CAN Specification Data transfer rates CAN CAN-FD CAN High Speed acc. to ISO 11898, 2.0A (standard ID), 2.0B (extended ID), FD 1.0 40 kBit/s to 1 MBit/s (High Speed) 40 kBit/s to 12 MBit/s Cables M-CAN (DATA) 620-502.xxx M-CAN Cable SubD/S term M-CAN (DATA + PWR) 620-567.xxx M-CAN/PWR term Cable - SubD/S, Banana 3 SIM-CAN (DATA) 600-851.xxx SIM-CAN Cable SUBD/S term SIM-CAN (DATA + PWR) 600-359.xxx SIM-CAN/PWR term Cable - SubD/S, Banana 3 88 IPEcan FD Pro USB2CAN-FD/LIN-Gateway PC-USB bus adapter 2x CAN-FD + 2x LIN 2 High Speed CAN-Bus inputs per ISO 11898 (mode “ISO” and “Non-ISO” selectable) 2 LIN-Bus inputs Connecting the bus channels with two D Sub male connectors per CiA® 102 standard pin assignment Data output to PC/Notebook through USB 2.0 (compatible with USB 1.1 and USB 3.0) 5 LEDs indicate the current operation status (USB, CAN 1/2, LIN 1/2) Interface for configuration and data acquisition using IPEmotion software General Voltage supply LIN transceiver 5 VDC per USB connection (PC) 8 VDC to 18 VDC through D Sub connection Power / current consumption 1.0 W, max. 200 mA @ 5 V Operating temperature range -40 °C ... +85 °C (-40 °F ... +185 °F) Storage temperature range -40 °C ... +100 °C (-40 °F ... +212 °F) Relative humidity 15 ... 90 % Dimensions (L x W x H) 120 mm x 71 mm x 24 mm (4.72 in x 2.80 in x 0.94 in) Weight (incl. cable) 230 g (0.507 lb) EMC standards EN 55024: 2011-09 / EN 55022: 2011-12 EC Directive 2004/108/EG CAN CAN 1, CAN 2 Specification CAN High Speed acc. to ISO 11898, 2.0A (standard ID), 2.0B (extended ID), FD 1.0 Data transfer rates CAN CAN-FD 40 kBit/s to 1 MBit/s (High Speed) 40 kBit/s to 12 MBit/s Galvanic isolation each CAN-FD channel up to 500 V against USB and LIN LIN LIN 1, LIN 2 Specification LIN specification 2.1 Data transfer rates 1 kBit/s to 20 kBit/s Cables M-CAN (DATA) 620-502.xxx M-CAN Cable SubD/S term M-CAN (DATA + PWR) 620-567.xxx M-CAN/PWR term Cable - SubD/S, Banana 3 SIM-CAN (DATA) 600-851.xxx SIM-CAN Cable SUBD/S term SIM-CAN (DATA + PWR) 600-359.xxx SIM-CAN/PWR term Cable - SubD/S, Banana 3 89 High Voltage Iso DAQ HV Current Limiter Four Channel DC-High Voltage Measurement System 4 electrically isolated high voltage inputs supporting 1 kV measuring range 4 external safety dividers (HV Current Limiter) Signal scaling and acquisition rate selectable per channel Safely measure voltage on high voltage DC systems of electric and hybrid vehicles Complete galvanic isolation (signal inputs, CAN, power supply, enclosure) Measurement data output to CAN Configuration and measurement using Windows software IPEmotion Measurement range r1000 V (lower ranges on request) Input voltage (IN+ ļ IN-) max. r1000 VDC / 600 VAC Channel sample rates 1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz Voltage supply 9 VDC to 36 VDC Switch-off for voltage < 6 V Power consumption, typical 7.5 W Working temperature range -20 °C ... +70 °C (-4 °F ... +158 °F) indefinitely Storage temperature range -30 °C ... +85 °C (-22 °F ... +185 °F) Relative humidity 5 ... 95 % IP-Code IP 54 (ISO 20653 - 2013) Dimensions High Voltage Iso DAQ (W x H x D) High Voltage Current Limiter (L x W x H) 165 mm x 60 mm x 130 mm (6.50 in x 2.36 in x 5.12 in) 55 mm x 26 mm x 12 mm (2.17 in x 1.02 in x 0.47 in) Weight High Voltage Iso DAQ High Voltage Current Limiter + HV cable 1370 g (3.02 lb) 135 g (0.30 lb) 90 High Voltage Iso DAQ Voltag input Measuring range r1000 V (lower ranges on request) Number of input channels per module 4 measurement inputs using 4 mm laboratory safety connectors Galvanic isolation input ļ module power supply input ļ CAN input ļ input r1000 V r1000 V r1000 V Maximum allowable input voltage Application according to CAT I Application according to CAT II 1000 VDC 600 VAC @ 50 ... 60 Hz (sine wave) Unallowable applications CAT III and CAT IV Input to output test voltage (2 s duration) 3536 VAC @ 50 Hz (sine wave ) Input impedance 21 Mȍ // 100 pF (with Current Limiter and HV cable) Cut-off frequency 2 kHz (max. input cable lenght of 1 m) Hardware filter, switchable 150 Hz, filter type 8-pole Butterworth Aggregate sample rate max. 8 kHz CAN output 2.0 B, electricllay isolated Selectable data transfer rate (bit rate) up to 1 MBit/s according to ISO11898-2 CAN message data format (signal) Resolution (Format) Sign 8 Bit (Byte) and 16 Bit (Word) selectable signed, unsigned Configuration interface CAN Safety instructions ! Do not use High Voltage Iso Divider for applications on AC voltages of three-phase current drives in electric and hybrid vehicles, due to extremely high transient voltages and HF currents generated by the drive train systems. An operation without the HV Current Limiter is strictly forbidden! All users working on High Voltage applications must be trained and approved for this kind of work. 91 M-THERMO2 HV 4-Channel HV Temperature Measurement for K-Type Thermocouples 4 High voltage thermocouple measurement inputs type K (NiCr/NiAl) acc. to device safety standard EN 61010-2 Each signal input with separate high voltage safety connector Cold junction compensation per channel Separate 24 bit ADC for each channel Status LED at each input channel (sensor break indication and configuration aid) Measurement data output to CAN Complete galvanic isolation (inputs, CAN, power supply, enclosure) up to 846 VDC Approved applications according to CAT I and CAT II Designed for engine compartment applications Toolless module to module connection Measurement range -60 °C to 1370 °C (-76 °F to 2498 °F) Input voltage (signal) max. r50 V (indefinitely), r200 V (short-time, t < 2 ms) Channel sample rates 1/ 2/ 5/ 10/ min 1/ 2/ 5/ 10/ 20/ 50/ 100 Hz Voltage supply 6 VDC to 36 VDC Switch-on V > 9 r0.3 VDC / Switch-off V < 6 r0.3 VDC Power consumption, typical < 0.9 W Working temperature range -40 ... +105 °C (-40 ... +221 °F) Storage temperature range -55 … +150 °C (-67 … +302 °F) Relative humidity 5 … 95 % Operating height (altitude) up to 5000 m (16404 ft) above sea level IP-Code IP 67 (ISO 20653 - 2013) Dimensions W106 mm x H73 mm x D60 mm (W4.17 in x H2.87 in x D2.36 in) Weight approx. 495 g (1.09 lb) 92 M-THERMO2 HV HV Thermocouple measurement input Galvanic isolation input ļ module power supply input ļ CAN input ļ enclosure input ļ input Test voltage 3536 VAC @ 50 Hz (sine wave) r846 VDC r846 VDC r846 VDC r846 VDC CAT approval Application according to CAT I Application according to CAT II 846 VDC 500 VAC @ 50 ... 60 Hz (sine wave) Measuring range Type K (Ni10Cr/NiAl) -60 to 1370 °C (-76 to 2498 °F) Resolution ADC / data output 24 Bit / 16 Bit (0.0218 °C) Linearization of sensor characteristic line numerically interpolated Cold junction compensation each input with PT100 (RTD) for the reference temperature Accuracy at an ambient temperature of 25 °C (77 °F) ±0.035 % of full temperature range Drift within ambient temperature range: -40 °C to +125 °C (185 ... +257 °F) r20 ppm/K * FS Input resistance, typical 3.94 Mȍ Align of the AD converter unit at processing each measuring value Sensor break detection activated per software on command Input channel status LED 1. Identify the respective channel in configuration mode (LED flashes) 2. Identify sensor break in measuring mode (LED lights continuously) Hardware filter 10 Hz, filter type single pole RC low-pass Aggregate sampling rate max. 400 Hz CAN output Selectable data transfer rate (bit rate) up to 1 MBit/s according to ISO11898-2 CAN message data format (signal) Resolution (Format) Sign 8 Bit (Byte) and 16 Bit (Word) selectable signed, unsigned Configuration interface CAN Cables, Connectors CAN bus data, terminated Daisy chain cable (data, power) Power cable, terminated CAN bus data / power cable, terminated 620-502.xxx 620-560.xxx 620-561.xxx 620-567.xxx M-CAN term – SubD9/S, term M-CAN – Lemo 0B M-PWR term – Banana M-CAN/PWR term – SubD9/S, Banana Signal input (cable connector, female) Lemo alternatively Thermo Sensor CKC.H02.SLK.C52Y.1369 442-11-02 Safety instructions Do not use M-THERMO2 HV for applications on AC voltages of three-phase current drives in electric and hybrid vehicles, due to the extremely high transient voltages and HF currents generated by these drive train systems! All users working on High Voltage applications must be trained and approved for this kind of work. Each M-THERMO2 HV has to be equipped with its mounting brackets + ground terminal (MOD-M-HV-HWI-1 delivered with the module) and has to be connected to a suitable grounding point of the peripheral system. 93 High Voltage Iso Divider English DC-High-Voltage-Divider up to 1 kV input range Electrically isolated high voltage divider with safety current limiter (HV Current Limiter) Safely measure voltage on high voltage DC systems of electric and hybrid vehicles Short-circuit current limit with the HV Current Limiter Connect directly to IPETRONIK SENS modules Measurement range (range defined by the hardware) r1000 V, r100 V, r10 V (other ranges on request) Accuracy at ambient temperature +25 °C (+77 °F) -20 °C ... +70 °C (-4 °F ... +158 °F) r0.20 % r0.50 % Maximum allowable input voltage Application according to CAT I Application according to CAT II 1000 VDC 600 VAC @ 50 ... 60 Hz (sine wave) Unallowable applications CAT III and CAT IV Input to output test voltage (2 s duration) 3536 VAC @ 50 Hz (sine wave ) Input impedance 21 Mȍ // 100 pF (with Current Limiter and HV cable) Cut-off frequency 2 kHz (max. input cable lenght of 1 m) Voltage supply 15 VDC @ 35 mA typical (43 mA max.) Power consumption, typical 0.5 W Working temperature range -20 °C ... +70 °C (-4 °F ... +158 °F) indefinitely Storage temperature range -30 °C ... +70 °C (-22 °F ... +158 °F) Relative humidity 5 ... 95 % without condensation IP-Code IP 67 (ISO 20653 - 2013) Dimensions HV Divider HV Current Limiter Weight HV Divider HV Current Limiter + 1.5 m HV cable L100 mm (L125 mm with lugs) x W51 mm x H25 mm L3.94 in (L4.92 in with lugs) x W2.01 in x H0.98 in L55 mm x W26 mm x H12 mm L2.17 in x W1.02 in x H0.47 in 120 g (0.26 lb) 135 g (0.30 lb) Safety instructions Do not use High Voltage Iso Divider for applications on AC voltages of three-phase current drives in electric and hybrid vehicles, due to the extremely high transient voltages and HF currents generated by the drive train systems! An operation without the HV Current Limiter is strictly forbidden! All users working on High Voltage applications must be trained and approved for this kind of work. 94 Iso Clamp Connector High Voltage Current Clamp front-end Device Electrically isolated front-end amplifier unit for mobile current transformers used for high voltage applications up to 1000 V Safe current measurement on high voltage DC systems of electric and hybrid vehicles using battery powered current clamps Direct connection to IPETRONIK SENS modules General Voltage supply 15 VDC @ 35 mA typical (43 mA max.) Power consumption, typical 0.7 W Working temperature range -20 °C ... +70 °C (-4 )..)indefinitely Storage temperature range -30 °C ... +80 °C (-22 )..) Relative humidity 5 ... 95 % IP-Code IP 67 (ISO 20653 - 2013) Dimensions L125 mm x B51 mm x H25 mm (L4.92 in x W2.01 in x H0.98 in) Weight approx. 120 g (0.26 lb) Measuring input Measuring range r1 V (other ranges on request) $FFXUDF\DW&)DPELHQWWHPSHUDWXUH ±0.2 % of full temperature range Accuracy within working temperature range ±0.5 % of full temperature range Maximum allowable input voltage Applications according to CAT I Applications according to CAT II 1000 VDC 650 VAC @ 50 ... 60 Hz (sine) Unallowable applications CAT III und CAT IV Input to output test voltage (2 s duration) 3536 VAC @ 50 Hz (sine) Input impedance 20 0ȍ__S) Safety instructions Do not use Iso Clamp Connector for applications on AC voltages of three-phase current drives in electric and hybrid vehicles, GXHWRWKHH[WUHPHO\KLJKWUDQVLHQWYROWDJHVDQG+)FXUUHQWVJHQHUDWHGE\WKHGULYHWUDLQV\VWHPV! The current clamp has to meet at least the same categorie (CAT) as the Iso Clamp Connector! All users working on High Voltage applications must be trained and approved for this kind of work. 95 Kabelinformationen Systemkabel X Systemkabel M Systemkabel SIM System- und Eingangskabel für Datenlogger Eingangskabel 96 Systemkabel X 630-500.xxx Pin-Nr. 1 2 3 4 5 6 7 8 4 X-LINK Kabel System Bezeichnung Power GND ETH RX + ETH RX GND COM Power + ACC CTRL ETH TX + ETH TX Shield Pin-Nr. 1 7 8 4 5 6 2 3 4 630-501.xxx Lemo-Stecker 1B, 2+6-polig Lemo-Stecker 1B, 2+6-polig X-LINK Kabel PWR BÜSCHEL-2 Pin-Nr. Bezeichnung 1 2 3 4 5 6 7 8 Power GND Farbe schwarz Power + rot Lemo-Stecker 1B, 2+6-polig Büschel Stecker 120 630-522.xxx Pin-Nr. 1 2 3 4 5 6 7 8 X-LINK System Kabel PC RJ45 Bezeichnung Pin-Nr. X-ETH RX + X-ETH RX Shield 1 2 X-ETH TX + X-ETH TX - 3 6 630-503.xxx Pin-Nr. 1 2 3 4 5 6 7 8 4 Lemo-Stecker 1B, 2+6polig RJ45 X-LINK Kabel System XL Bezeichnung Power GND ETH RX + ETH RX GND COM Power + ACC CTRL ETH TX + ETH TX Shield Pin-Nr. 1 7 8 4 5 6 2 3 4 630-504.xxx Lemo-Stecker 1B, 2+6-polig Lemo-Stecker 1B, 2+6-polig X-LINK Cable M-CAN/PWR Pin-Nr. Bezeichnung Pin-Nr. 1 2 3 4 5 6 7 8 4 Power GND RX + RX COM GND Power + 6, 7 9 CAN L TX + TX Shield Lemo-Stecker 1B, 2+6-polig Lemo-Stecker 0B, 9-polig 5 CAN GND 1, 2 8 CAN H 5 97 Systemkabel X 630-505.xxx Pin-Nr 1 5 X-LINK PWR Kabel X-LINK-CAN/M-CAN Bezeichnung Power GND RX + RX COM GND Power + X-LINK M-CAN 1 2 9 CAN-L 3 4 5 CAN-GND 5 TX + TX Shield 7 8 4 Lemo-Stecker 1B, 2+6-polig Lemo-Stecker 1B, 2+6-polig 8 CAN-H 5 630-506.xxx Lemo-Stecker 0B, 9-polig X-LINK Kabel M-LOG PR08 ETH/M-PWR Pin-Nr. Bezeichnung 1 2 3 4 5 6 7 8 4 Power GND RX + RX COM GND LOG-ETH Lemo-Stecker 1B, 2+6-polig Lemo-Stecker 0B, 7-polig 1 2 5 1, 2 M-PWR + Power + TX + TX - M-CAN 6, 7 PWR GND 3 4 Lemo-Stecker 0B, 9-polig Shield 630-507.xxx Pin-Nr. 1 2 3 4 5 6 7 8 4 X-LINK Kabel M-LOG PR08 ETH Bezeichnung Pin-Nr. ETH RX + ETH RX GND COM 1 2 5 ETH TX + ETH TX Shield 3 4 Lemo-Stecker 1B, 2+6-polig 630-508.xxx Pin-Nr. 1 2 3 4 5 6 7 8 4 X-LINK Kabel CAN SUBD9/S Bezeichnung Pin-Nr. RX + RX COM GND 7 CAN H TX + TX Shield 2 CAN L Lemo-Stecker 1B, 2+6-polig SUBD-Stecker, 9-polig 120 3 CAN GND Chassis 630-509.xxx X-LINK Kabel SIM-CAN/PWR Pin-Nr. Bezeichnung Pin-Nr. 1 2 3 4 5 6 7 8 4 Power GND RX + RX COM GND Power + 9, 10 3 CAN GND 7, 8 TX + TX Shield 1 CAN H 2 CAN L Chassis 98 Lemo-Stecker 0B, 7-polig Lemo-Stecker 1B, 2+6-polig Lemo-Stecker 1B, 10-polig Systemkabel X 630-510.xxx Pin-Nr. 1 2 3 4 5 6 7 8 4 X-LINK Kabel System Lanyard Bezeichnung Power GND ETH RX + ETH RX GND COM Power + ACC CTRL ETH TX + ETH TX Shield Pin-Nr. 1 7 8 4 5 6 2 3 4 Lemo-Stecker 1B, 2+6-polig 630-511.xxx Lemo-Stecker 1B, 2+6-polig X-LINK System Lanyard Kabel PWR Büschel Pin-Nr. Bezeichnung Farbe 1 2 3 4 5 6 7 8 Power GND schwarz Power + rot Lemo-Stecker 1B, 2+6-polig Büschel-Stecker 120 630-520.xxx X-LINK Kabel CAN SUBD9/S, PWR Büschel Pin-Nr. Bezeichnung 1 2 3 4 5 6 7 8 4 Power GND RX + RX COM GND Power + TX + TX Shield Pin-Nr. Farbe Lemo-Stecker 1B, 2+6-polig schwarz 120 SUBD-Stecker, 9-polig 7 CAN H 3 CAN GND rot 2 CAN L Chassis Büschel-Stecker 630-302.xxx Pin-Nr. 1 2 3 4 5 6 7 8 X-LINK System Kabel ES ETH Bezeichnung Pin-Nr. X-ETH RX + X-ETH RX Shield 8 5 X-ETH TX + X-ETH TX - 4 6 Lemo-Stecker 1B, 2+6-polig Lemo-Stecker 1B, 8-polig 99 Systemkabel M 620-560.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 Chassis M-CAN Kabel Bezeichnung Power + Power + SYNC + SYNC – CAN GND Power GND Power GND CAN + CAN – Shield Litzen-Nr. 1 2 3 4 5 6 7 8 9 Chassis 620-561.xxx Pin-Nr. Bezeichnung Power + Power + SYNC + SYNC – CAN GND Power GND Power GND CAN + CAN – Shield Farbe rot FYA FYA Lemo-Stecker 0B, 9-polig Büschel Stecker schwarz FYA 620-502.xxx M-CAN Kabel SUB D/S Abschluss Pin-Nr. Bezeichnung 1 2 3 4 5 6 7 8 9 Chassis Power + Power + SYNC + SYNC – CAN GND Power GND Power GND CAN + CAN – Shield Litzen-Nr. Lemo-Stecker 0B, 9-polig SUB D-Buchse, 9-polig 3 FYA 7 2 Chassis 620-562.xxx M-CAN Kabel SIM-CAN Bezeichnung Power + Power + SYNC + SYNC – CAN GND Power GND Power GND CAN + CAN – Shield Litzen-Nr. 7 8 5 6 3 9 10 1 2 Chassis 620-509.xxx Lemo-Stecker 0B, 9-polig FYA Lemo-Stecker 1B, 10-polig (gelb) FYA M-CAN Abschluss Kabel ETAS Pin-Nr. Bezeichnung 1 2 3 4 5 6 7 8 9 Chassis Power + Power + SYNC + SYNC – CAN GND Power GND Power GND CAN + CAN – Shield 100 Lemo-Stecker 0B, 9-polig M-PWR Abschluss Kabel BÜSCHEL 1 2 3 4 5 6 7 8 9 Chassis Pin-Nr. 1 2 3 4 5 6 7 8 9 Chassis Lemo-Stecker 0B, 9-polig Litzen-Nr. Lemo-Stecker 0B, 9-polig Lemo-Stecker 1B, 8-polig (schwarz) 3, 6 FYA 7 2 Chassis FGC Systemkabel M 620-510.xxx M-CAN Kabel SUB D/S Pin-Nr. 1 2 3 4 5 6 7 8 9 Chassis Bezeichnung Power + Power + SYNC + SYNC – CAN GND Power GND Power GND CAN + CAN – Shield Litzen-Nr. Lemo-Stecker 0B, 9-polig SUB D-Buchse, 9-polig 3 FYA 7 2 Chassis 620-567.xxx M-CAN/PWR Abschluss Kabel SUB D/S, BÜSCHEL Pin-Nr. Bezeichnung 1 2 3 4 5 6 7 8 9 Chassis Power + Power + SYNC + SYNC – CAN GND Power GND Power GND CAN + CAN – Shield Litzen-Nr. Farbe rot Lemo-Stecker 0B, 9-polig SUB D-Buchse, 9-polig 3 schwarz 7 2 Chassis FYA blau Büschel-Stecker M-CAN-ABS-100 Pin-Nr. 1 2 3 4 5 6 7 8 9 Chassis Abschluss-Stecker Bezeichnung Power + Power + SYNC + SYNC – CAN GND Power GND Power GND CAN + CAN – Shield Litzen-Nr./Farbe Lemo-Stecker 0B, 9-polig Abschluss von CAN-Bus und SYNC-Leitungen FYA 101 Systemkabel SIM 600-357.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 10 Chassis SIM-CAN Abschluss Kabel ETAS Bezeichnung SIM CAN + SIM CAN – SIM CAN GND Status IN SYNC + SYNC – Power + Power + Power GND Power GND Shield Litzen-Nr. 7 2 3, 6 Lemo-Stecker 1B, 10-polig (gelb) Lemo-Stecker 1B, 8-polig (schwarz) FYA FGC Chassis 600-359.xxx SIM-CAN/PWR Abschluss Kabel SUB D/S, BÜSCHEL Pin-Nr. Bezeichnung Litzen-Nr. 1 2 3 4 5 6 7 8 9 10 Chassis SIM CAN+ SIM CAN + SIM CAN GND Status IN SYNC + SYNC – Power + Power + Power GND Power GND Shield 7 2 3 Farbe rot Lemo-Stecker 1B, 10-polig (gelb) SUB D-Buchse, 9-polig FGA schwarz Chassis blau Büschel-Stecker 600-801.xxx SIM-POWER Kabel MIP Abschluss Pin-Nr. Bezeichnung Litzen-Nr. 1 2 3 4 5 6 7 8 9 10 Power + Power + Power GND Power GND Chassis Shield 1 2 3 4 5 6 Chassis 102 Lemo-Stecker 1B, 10-polig (gelb) FGA Lemo-Stecker 1B, 6-polig (rot) Systemkabel SIM 600-830.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 10 Chassis SIM-CAN Kabel Bezeichnung SIM CAN + SIM CAN – SIM CAN GND Status IN SYNC + SYNC – Power + Power + Power GND Power GND Shield Litzen-Nr. 1 2 3 4 5 6 7 8 9 10 Chassis 600-851.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 10 Chassis Lemo Stecker 1B, 10-polig (gelb) FGA SIM-CAN Kabel SUB D Abschluss Bezeichnung SIM CAN + SIM CAN – SIM CAN GND Status IN SYNC + SYNC – Litzen-Nr. 7 2 3 Shield Chassis Lemo Stecker 1B, 10-polig (gelb) SUB D Buchse, 9-polig FGA 600-855.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 10 Chassis Lemo Stecker 1B, 10-polig (gelb) SIM-POWER Abschluss Kabel BÜSCHEL Bezeichnung SIM CAN + SIM CAN – SIM CAN GND Status IN SYNC + SYNC – Power + Power + Power GND Power GND Shield Farbe rot Lemo Stecker 1B, 10-polig (gelb) Büschel Stecker FGA schwarz blau 103 System- und Eingangskabel für Datenlogger 600-580.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 Chassis SUB D/S SER CAN Kabel OFFEN Bezeichnung Litzen-Nr. / Farbe CAN – CAN GND 2 braun 3 schwarz CAN + 7 rot S (Shield, dick) blau 620-324.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Chassis SUB D Buchse, 9-polig M-LOG PR03 DI/O Kabel OFFEN Bezeichnung DIN-1 DIN-2 DIN-3 DIN-4 DIN-GND +LOG PWR LED1 LED2 LED3 DIN-GND DOUT-1 DOUT-2 DOUT-3 DOUT-4 DOUT-GND Shield Litzen-Nr. / Farbe 1 weiß 2 braun 3 rot 4 schwarz 5 grün 6 gelb 1 weiß 2 braun 3 rot Chassis 4 schwarz 5 grün 6 gelb 7 violett 8 grau Chassis 620-429.xxx Pin-Nr. 1 2 3 4 5 6 7 8 120 9 Chassis M-CAN/PWR term Kabel M-CAN/PWR Bezeichnung Power + 120 CAN GND Power GND CAN + CAN Shield 104 HDD-Buchse, 15-polig Litzen-Nr. 1 2 3 4 5 6 7 8 9 Chassis Lemo Stecker 0B, 9-polig Lemo Stecker 0B, 9-polig System- und Eingangskabel für Datenlogger 620-537.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 Chassis M-CAN SUB D/S Kabel BÜSCHEL Bezeichnung Litzen-Nr. / Farbe CAN – CAN GND 2 schwarz 3 blau CAN + 7 rot Büschel Stecker Shield 620-574.xxx M-LOG PR05 PWR Kabel Büschel Pin-Nr. 1 2 3 4 5 6 Bezeichnung Power + 1mm² Power + Power GND 1mm² Power GND Klemme 15 Remote 2 2 schwarz Chassis Shield S (Shield, dick) blau Litzen-Nr. / Farbe 1 rot Pin-Nr. 1 2 3 4 5 6 7 8 Büschel Stecker FNB M-VIEWfleet Kabel M-LOG PR05 Bezeichnung Litzen-Nr. / Farbe GPS_PWR 1 REMOTE2 2 GND 3 USB2-D – (HOST – ) 4 USB2-D+ (HOST +) 5 USB3-D – (CLIENT – ) 6 USB3-D+ (CLIENT +) 7 8 DGND 9 USB2-PWR(5V) 10 Chassis 620-591.xxx Lemo Stecker 1B, 8-polig Lemo Stecker 1B, 10-polig (grün) FNG FHG LOG PR05 ETH Kabel (crosslink), RJ45 Bezeichnung RxD+ RxDTxD+ TxD- Shield Lemo-Stecker 1B, 6-polig (rot) 3 gelb 620-578.xxx Pin-Nr. 1 TxD+ 2 TxD3 RxD+ 4 RxD5 6 SUB D Buchse, 9-polig Litzen-Nr. / Farbe 3 6 1 2 Ethernet Ethernet Chassis 105 System- und Eingangskabel für Datenlogger 620-621.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 OBD2 Kabel M-LOG PR05 Bezeichnung Pin-Nr. OBD2-Buchse, 16-polig CAN GND CAN + 3 7 CAN - 2 Shield Chassis 620-631.xxx Pin-Nr. 1 2 3 4 5 Chassis M-LOG PR08 COM2 Kabel GPS Bezeichnung GPS-PWR RxD TxD Power GND D-GND Shield Litzen-Nr. 5 1 2 4 3 620-647.xxx Pin-Nr. 1 2 3 4 5 6 Chassis Bezeichnung Power + Power GND Remote-LOG LOG-Power Shield Bezeichnung TxD + TxD RxD + RxD ETH-GND PWR-GND PWR-OUT + Shield 106 Lemo-Stecker 0B, 5-polig GPS M-UPS PWR-OUT Kabel Logger Pin-Nr. 1 2 3 4 5 6 Chassis 620-649.xxx Pin-Nr. 1 2 3 4 5 6 7 5 SUB D Buchse, 9-polig Lemo-Stecker1B, 6-polig Lemo-Stecker1B, 6-polig LOG ETH-IN Kabel EXTENDER ETH abgewinkelt Pin-Nr. 3 RxD + 4 RxD 1 TxD + 2 TxD 5 7 6 PWR + 5 Lemo-Stecker 0B, 7-polig Lemo-Stecker 0B, 7-polig System- und Eingangskabel für Datenlogger 620-656.xxx Pin-Nr. 9 7 2 3 Chassis EXTENDER FlexRay-IN Kabel offen SUBD9/S Bezeichnung VBAT BP BM GND Shield 620-660.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 10 IPEspeed CAN/PWR Kabel CAN-SubD/S, PWR-Büschel/P Bezeichnung Power GND Pin-Nr. CAN-L Power + CAN-H 2 CAN-GND Shield 3 Farbe schwarz Lemo-Stecker 1B, 10-polig SubD9/S rot 7 Büschel 620-666.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 10 IPEspeed ETH, CAN, PWR Kabel RJ45, CAN-SubD, PWR-Büschel Bezeichnung Power ETH RX + ETH RX CAN-L Power + CANETH TX + ETH TX CAN-GND Shield Pin-Nr. Farbe Litzen-Nr. schwarz 1 2 Lemo-Stecker1B, 10-polig SubD9/S 2 rot 7 3 6 Büschel 3 Chassis RJ45 620-669.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 10 IPEspeed CAN/PWR Kabel CAN-SubD/S, term, PWR-Büschel/P Bezeichnung Power-GND Pin-Nr. CAN-L Power + CAN-H 2 CAN-GND Shield 3 Farbe schwarz Lemo-Stecker 1B, 10-polig SubD9/S rot 7 Büschel 107 System- und Eingangskabel für Datenlogger 620-680.xxx IPEhub2 PC Kabel RJ45 RJ45 Lemo-Stecker 0B, 9-polig Pin-Nr. 1 2 3 4 5 6 7 8 9 Bezeichnung TxD + TxD Shield RxD + RxD - Litzen-Nr. 3 6 Chassis 1 2 620-684.xxx Pin-Nr. 2 7 3 5 8 9 1 8 9 Chassis IPEhub2/IPElog CAN1+2 Kabel 2x CAN SubD/P Bezeichnung CAN-A Low CAN-A High CAN-A GND Pin-Nr. 2 7 3 CAN-B Low CAN-B High CAN-B GND Shield Chassis Pin-Nr. SubD9/S SubD9/P 2 7 3 Chassis SubD9/P 620-685.xxx Pin-Nr. 2 7 8 9 3 1 5 6 4 Chassis LOG CAN/LIN Kabel 2x CAN/LIN SubD/P Bezeichnung Pin-Nr. CAN-A Low/LIN-A VBAT 2 CAN/LIN-A High 7 CAN-A VBAT 8 UB-OUT + 9 CAN/LIN-A+B GND 3 CAN-B Low/LIN-B VBAT CAN-B VBAT UB-OUT GND 6 CAN/LIN-B HIGH Shield Chassis Pin-Nr. SubD9/P SubD9/S SubD9/S 9 3 2 8 6 7 Chassis SubD9/P 620-689.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 10 Chassis LOG-VIEW Kabel IPEconnect Bezeichnung Pin-Nr. GPS-PWR 1, 2 PWR + GND USB2-D USB2-D + USB-GND USB-VBUS Shield 108 Pin-Nr. Lemo-Stecker 1B, 10-polig (geeignet für M-LOG, M-LOG V3, IPElog, IPElog2) Lemo-Stecker 0B, 9-polig 6, 7 PWR-GND 8 7 Chassis 6 9 Chassis Lemo-Stecker 0B, 9-polig System- und Eingangskabel für Datenlogger 620-688.xxx Pin-Nr. 3 12 2 8 9 5 6 11 1 10 15 16 4 13 14 2 LOG GB-ETH Kabel RJ45 Bezeichnung ETH D1 + ETH D1 ETH-GND ETH D3 + ETH D3 ETH D2 + ETH D2 ETH D4 + ETH D4 PWR + PWR + PWR + PWR PWR PWR Shield Litzen-Nr. 1 2 4 5 3 6 7 8 Chassis 620-691.xxx LOG-VIEW Kabel IPEconnect Lemo-Stecker 1B, 10-polig Pin-Nr. 1 2 3 4 5 6 7 8 9 Chassis Bezeichnung GPS-PWR Pin-Nr. Pin-Nr. 1, 2 PWR + GND USB2-D USB2-D + 6, 7 PWR-GND 8 7 USB-GND Shield Chassis 620-692.xxx Pin-Nr. 1 2 3 4 5 6 7 Bezeichnung TxD + TxD RxD + RxD Shield PWR-GND PWR + (notwendig für FLEETlog2) Lemo-Stecker 0B, 9-polig Lemo-Stecker 0B, 9-polig 6 Chassis LOG ETH Kabel COMgate V3 Pin-Nr. 3 RxD + RxD - 12 TxD + 5 TxD - 6 2 13, 14 15, 16 620-696.xxx Pin-Nr. 3 12 5 6 2 10 15 16 4 13 14 8 9 11 1 7 RJ45 Lemo-Stecker 1B, 16-polig Lemo-Stecker 0B, 7-polig Lemo-Stecker 1B, 16-polig LOG GB-ETH Kabel Extender Bezeichnung RxD + RxD TxD + TxD ETH-GND ETH D2 + PWR + PWR + Litzen-Nr. 1 TxD + 2 TxD 3 RxD + 4 RxD 5 ETH-GND PWR-GND PWR-GND 6 6 Lemo-Stecker 1B, 16-polig Lemo Stecker 0B, 7-polig/P,30° 7 7 109 Eingangskabel 670-807.xxx Pin-Nr. 1 2 Shield 3 4 5 6 Chassis SIM-SENS Kabel OFFEN Bezeichnung VIN + VIN –/IIN – IIN + + VOUT GND – VOUT Litzen-Nr. 1 2 3 4 5 6 S (Shield) 670-850.xxx Pin-Nr. 1 2 3 4 5 6 7 Chassis Litzen-Nr. 1 2 3 4 5 6 7 670-858.xxx Lemo Stecker 1B, 7-polig (schwarz) FGG SIM-CNT-IN Kabel OFFEN Bezeichnung IN + GND IN – + Power Limit 40 mA POWER GND DIG 1 DIG 2 Shield Litzen-Nr. 1 2 3 4 5 6 7 S (Shield) 600-102.xxx Pin-Nr. 1 2 3 4 5 6 2 FGG KIM/SIM-DMS Kabel OFFEN Bezeichnung IN + – VOUT + VOUT IN – – SENS + SENS GND + Shield Pin-Nr. 1 2 3 4 5 6 7 Chassis Lemo Stecker 1B, 6-polig (schwarz) Lemo Stecker 1B, 7-polig (schwarz) FGG SIM-SENS Kabel IPESHUNT Bezeichnung VIN + VIN - / IIN - Pin-Nr. 4 3 +VOUT GND 2 1 Lemo Stecker 1B, 6-polig Shield 600-747.xxx Pin-Nr. 1 2 3 4 5 6 7 8 9 10 STG 2B 10p. Kabel offen Bezeichnung INPUT + INPUT EXCIT + SENS + TEDS + EXCIT SENS INPUT GND Shield 110 Lemo Stecker 2B, 10-polig Datamate L-Tek, 4-polig Eingangskabel 600-861.xxx Pin-Nr. 1 2 Shield 3 4 5 6 Chassis SIM-SENS Kabel BÜSCHEL 6 Bezeichnung VIN + VIN –/ IIN + + VOUT GND – VOUT Litzen-Nr. 1 IIN – 2 3 4 5 6 Büschel Stecker Lemo Stecker 1B, 6-polig (schwarz) FGG 600-864.xxx Pin-Nr. 1 2 Shield 3 4 5 6 Chassis SIM-SENS Kabel BÜSCHEL 2 Bezeichnung VIN + VIN –/ IIN + + VOUT GND – VOUT Litzen-Nr. rot IIN – schwarz 3 4 5 6 600-896.xxx Pin-Nr. 1 2 3 4 5 6 7 Chassis Büschel Stecker FGG KIM/SIM-DMS Kabel BÜSCHEL Bezeichnung IN + – VOUT + VOUT IN – – SENS + SENS GND + Shield Farbe rot Lemo Stecker 1B, 7-polig (schwarz) Büschel Stecker schwarz FGG 600-898.xxx Pin-Nr. 1 2 3 4 5 6 2 Lemo Stecker 1B, 6-polig (schwarz) SIM-SENS Kabel Verlängerung Bezeichnung VIN + VIN-/IINIIN+ +VOUT GND -VOUT Shield Pin-Nr. 1 2 3 4 5 6 2 Lemo Stecker 1B, 6-polig Lemo Stecker 1B, 6-polig 111 Eingangskabel 620-044.xxx Pin-Nr. 1 2 HViso Kabel DIVIDER Bezeichnung IN + IN – Büschel Stecker 620-640.xxx Pin-Nr. 1 2 3 4 5 6 HViso Kabel SENS 1B 6p Bezeichnung VOUT + VOUT GND PWR + 15V Pin-Nr. 1 2 4 PWR GND 1) Shield 5 6 2 600-896.xxx Pin-Nr. 1 2 3 4 5 6 7 Chassis 620-695.xxx Farbe rot Lemo Stecker 1B, 7-polig (schwarz) schwarz Mx-SENS 1B 7-poliger Adapter BNC/S-ICP Bezeichnung + VOUT - VOUT 112 Lemo-Stecker 1B, 6-polig KIM/SIM-DMS Kabel BÜSCHEL Bezeichnung IN + – VOUT + VOUT IN – – SENS + SENS GND + Shield Pin-Nr. 1 2 3 4 5 6 7 FIPS, 6-polig Lemo Stecker 1B, 7-polig Büschel Stecker Eingangskabel 670-937.xxx Pin-Nr. 1 2 3 4 Chassis SIM-PT100 0S Kabel OFFEN Bezeichnung PT IN + I OUT + PT IN – I OUT – Shield Litzen-Nr. 1 2 3 4 Chassis 671-847.xxx Pin-Nr. 1 2 3 4 5 6 7 8 Bezeichnung Not Connected CAN + VBATT 120 Ω Chassis / Shield CAN GND Not Connected Not Connected Shield Litzen-Nr. / Farbe Lemo Stecker 2B, 8-polig (schwarz) 1 grün 2 rot 3 schwarz 4 braun FNG S (Shield, dick) blau SIM/FIM-STG 2B Kabel OFFEN Bezeichnung Litzen-Nr. / Farbe +VOUT 1 rot IN – 2 weiß IN + 3 grün – VOUT 4 schwarz Channel / GND / Shield TEDS+ 6 gelb – SENS/ – TEDS 7 violett +SENS 8 grau Shield S (Shield, dick) blau 671-858.xxx Pin-Nr. 1 2 3 4 5 6 7 8 FFA GMLAN SINGLE WIRE 2B Kabel OFFEN 671-850.xxx Pin-Nr. 1 2 3 4 5 6 7 8 Lemo Stecker 0S, 4-polig (schwarz) Lemo Stecker 2B, 8-polig (schwarz) FNG SIM-CNT-IN 2B Kabel OFFEN Bezeichnung +Power Limit 40 mA IN – IN + POWER GND Channel GND / Shield DIG 1 DIG 2 Not Connected Shield Litzen-Nr. / Farbe 1 red 2 white 3 green 4 black 5 brown 6 yellow 7 violet Lemo Stecker 2B, 8-polig (schwarz) FNG S (Shield, thick) blue 113 ▸ Messung, Analyse, Automation, Reporting ▸ Hardware herstellerunabhängig ▸ Thermomanagement Funktionen wie log p-h, Enthalpy ▸ Video Capture ▸ CCP, XCP, OBD, GMLAN ▸ CCP Anpassung ▸ CANdb, A2L, ODX, LDF Import ▸ Mehrsprachig ▸ Software-Schnittstelle COM, Python, VisualBasic 114 HERSTELLERUNABHÄNGIGE MESSDATENERFASSUNG Erfassung, Analyse und Automatisierung mit IPEmotion Praxisorientierte Messmittelnutzung und zuverlässige Datenerfassung stehen für uns an erster Stelle. Dazu haben wir IPEmotion entwickelt – eine einfach zu bedienende Messsoftware für alle Anwendungen im Prüfprozess. Unterstützte Protokolle und Standards: ▸ CCP – CAN Calibration Protocol ▸ XCP – Universal Measurement & Calibration Protocol IPEmotion unterstützt durch spezielle PlugIns die Messanwendungen im Bereich der automobilen Fahrzeugerprobung – unabhängig von der eingesetzten Hardware. Ebenso verbindet IPEmotion problemlos komplexe Steuergeräteanwendungen mit hochpräziser Messtechnik für physikalische Größen. ▸ OBD – On Board Diagnostics ▸ KwPonCAN – Key Word Protocol ▸ FlexRay, GM-LAN, LIN Bus, J1939 und weitere Funktionen und Anwendungen: Durch kundenspezifische Einrichtung und angepasstes Setup wird IPEmotion zur individuellen Softwarelösung für Ihre Messanwendungen. Komplettiert durch die flexible Anpassung der Datendarstellung auch bei laufender Messung und Speicherung (Online-Diagnose). ▸ CAN-Bus Datenerfassung ▸ Messwerterfassung für Versuch und Erprobung ▸ IPEmotion ist in sieben Sprachen verfügbar, ausgelegt auf die Erfassung großer Datenmengen (High Speed-Speicherung) und ermöglicht eine automatische Auswertung, Reporterstellung und OfflineMessdatenverarbeitung. Einfach zuverlässig und hochpräzise. Prüfstände steuern und automatisieren ▸ Datenlogger Konfiguration ▸ ECU Kommunikation ▸ Anzeigen von Online-Daten ▸ Messdatenanalyse ▸ Im- und Export von Messdaten ▸ Automatisches Reporting ▸ Skripting-Schnittstelle ▸ SDK für 3rd party 115 IPEmotion 2016 EDITIONEN-ÜBERSICHT Funktionen Demo/Student Basic Lite Standard Professional Developer Analyse (Offline Auswertung) gratis: 30 Tage/ 6 Monate gratis kostenpflichtig kostenpflichtig kostenpflichtig kostenpflichtig kostenpflichtig alle alle alle (1 aktives) alle alle alle nicht relevant Anzahl der darstellbaren Kanäle keine Begrenzung 250 Kanäle 64 Kanäle 256 Kanäle keine Begrenzung keine Begrenzung keine Begrenzung Anzahl der Speichergruppen (Online Daten) keine Begrenzung keine Speicherung 1 Speichergruppe 2 Speichergruppen keine Begrenzung keine Begrenzung nicht relevant Anzahl der Anzeigeseiten zur Online und Offline Visualisierung von Messdaten keine Begrenzung 20 Seiten (Analyse 1 Seite) 5 Seiten 20 Seiten (Analyse 5 Seiten) keine Begrenzung keine Begrenzung keine Begrenzung Import von Beschreibungsdateien (DBC, A2L, etc) ja ja ja ja ja ja ja (DBC) Makro - VBS und Python Skripting Seite ja nein nein nein ja ja ja Online & Offline Kartendarstellung ja nein nein nein ja ja ja (offline) Karte, Traffic Analyse, 3D-Anzeige COM Schnittstelle – externer Programmzugriff ja nein ja ja ja ja ja nein nein nein nein nein ja nein ja nein nein nein optional optional nein auf Anfrage nein nein nein optional optional ja ja nein nein nein optional optional optional Lizenz unterstützte PlugIns Erstellen von Runtime Versionen Option Control: Funktionsgenerator, PID-Regler, Ablaufsteuerung Option Klima: log p-h Diagramm, Enthalpie Option Akustik Neu in IPEmotion 2016 116 WAS IST EIN PLUGIN? ▸ Ein PlugIn ist die Schnittstelle zwischen einer spezifischen Hardware und IPEmotion. ▸ Das PlugIn bietet jeweils eine Schnittstelle zur Konfiguration sowie zur Messung und Steuerung der Hardware. Es kann außerdem auf die Hersteller API (Application Programming Interface) zugreifen, um die Geräte einzubinden. ▸ Für die Konfiguration der anzuschließenden Hardware steht ein komfortabler PlugIn-Designer zur Verfügung, mit dem sich die notwendigen Einstellungen graphisch konfigurieren lassen. ▸ Der Designer erstellt ein VisualStudio-Projekt mit einem C#-Framework für die Konfiguration und einem C++-Framework für die Messung. ▸ Die PlugIn-Schnittstelle ist komplett offengelegt und frei verfügbar. Die zugehörige Dokumen- tation enthält viele Beispiele für den schnellen Einstieg. Einzigartiges PlugIn-Konzept zur herstellerunabhängigen Messdatenerfassung. 117 PLUGIN-ÜBERSICHT 118 PLUGIN-DETAILANSICHT Kategorie Automotive PlugIn-Name Beschreibung Hardware IPETRONIK-CAN Gerätekonfiguration und Messwerterfassung (TEDS, DMS, ICP, Volt, Hochspannung, mA, PT100, TE, DIO, PWM, Encoder) mit IPETRONIK Messmodulen über CAN-Bus. M-SENS2 M-THERMO2 etc. IPETRONIK-LOG Konfiguration und Datenerfassung der IPETRONIK Datenlogger und Zusatzmodule: Video Extender, FlexRay Extender, COMgate etc. M-LOG FLEETlog IPElog IPETRONIK-X PlugIn zur Messdatenerfassung vom FlexRay-Bus und zur Anbindung der Mx-SENS und Sx-STG Module auf TCP/IP oder alternativ auf CAN-Bus-Basis. Mx-SENS Sx-STG FlexRay CAN-Messen CAN-Bus Datenerfassung von Steuergeräten. Signalkonfiguration wird über CANdb oder Autosar-Dateien realisiert. Exportfunktionen als CANdb und XML CANdb werden auch unterstützt. Anwendungen Industrie Bild Vector Kvaser IPEcan/Peak PEAK NI Softing TRAMA Drewtech ICS-CAN I+ME Actia M-WiFi CAN-Protokoll Messen an Steuergeräten über XCP, CCP, KWP und GM-LAN Protokolle. Diagnose über den OBD-2-Standard steht auch zur Verfügung. CAN-Senden Versenden von CAN-Bus-Nachrichten an Steuergeräte oder externe Software-Tools, die CAN-Bus-Nachrichten empfangen können. Konfiguration der Kanäle wird über DBC und Autosar-Beschreibungsdateien unterstützt. PCAN-USB Pro LIN LIN-Bus-Messdatenerfassung als Master, Slave oder Listener. Signale können über eine *.LDF-Beschreibungsdatei importiert werden. PEAK-CAN Pro Dataforth Unterstützt die Konfiguration der MAQ20 COM-4-Serie mit allen IO-Modulen. Die Geräteanbindung wird über USB oder über Ethernet TCP/IP realisiert. MAQ20 COM Module ProfiBus Anbindung an ein ProfiBus-Netzwerk. Das PlugIn kann als Master oder Slave fungieren. Softing ProfiBus USB-Adapter IsPro PCI-Adapter IsPro USB-Adapter SIEMENS SPS Anbindung an Siemens-Steuerungen über verschiedene Schnittstellen. Konfiguration von *.s7p-Projektdateien können importiert werden, um ein Prozessabbild aufzubauen. SIEMENS S7 TCP/IP NetLink USB NetLink Pro Ethernet Softing ProfiBus PG-PC Interface Beckhoff Konfiguration und Datenerfassung über Beckhoff TCP/IP-Feldbuskoppler mit K-Bus-Klemmen. Die Anbindung an TwinCAT-Steuerungen mit EtherCAT EL-Klemmen wird auch unterstützt. BK9000 BK9050 BK9100 TwinCAT-ADS TwinCAT-R3IO WAGO Konfiguration und Datenerfassung über WAGO TCP/IP-Feldbuskoppler mit WAGO-Klemmen. 750-341 750-343 750-352 119 PLUGIN-DETAILANSICHT (Fortsetzung) Kategorie Industrie PlugIn-Name Beschreibung Hardware WAGO PLC Controller-Programmierung über CODESYS. IPEmotion importiert Prozessabbild der IO-Klemmen und internen Variablen der CODESYSKonfiguration. Schreib-/ Lese-Zugriff auf die Variablen. Kanalkonfiguration nicht veränderbar. Ist lizenziert. SPS Controller 8202 PFC 200 Advantech Datenerfassung über Feldbuskoppler. Es werden alle Module unterstützt. Konfiguration der Module wird über Advantech .NET Utility-Software vorgenommen. APAX 5070 Advantech ADAM Datenerfassung und Gerätekonfiguration für die Basis von seriellen Schnittstellen. ADAM-4000 OPC Einbindung von Variablen (lesen & schreiben) über die OPC DA-Schnittstelle. Das PlugIn arbeitet als OPC-Slave. Ist lizensiert. OPC Slave DA Mode Technikmedia MODBUS Anbindung von Modbus-Geräten über die RTU- (seriell) und TCP- (LAN) Schnittstelle. Unterstützung diverser Funktionscodes zum Lesen und Setzen von Registern. Ist lizensiert. Modbus Slave RTU TCP OPTRIS Einbindung der OPTRIS PI Wärmebildkameras und CT-Pyrometer. PI Serie: 160, 200, 400, 450, 640 CT-Serie Goldammer Messkarten für dynamische Anwendungen mit integrierten Realtime-Funktionen. Alle Funktionen können über das PlugIn konfiguriert werden, mit Ausnahme der FFT-Berechnung. Eine automatische Geräteerkennung wird unterstützt. USB Multi Choice Basic USB Multi Choice MC4 PCI Series PCI Express Series Addi-Data Kanal- und Gerätekonfiguration auf Basis von TCP/IP. MSX-E1701 NI-DAQmx Geräte und Kanalkonfigurationen können durchgeführt werden. Die Geräte werden auch über USB automatisch erkannt. Die NI DAQmx Treiber sind für den Verbindungsaufbau notwendig. USB 6501 USB 6221 BNC USB 6229 BNC Gantner Instruments Gerätekonfigurationen können über die automatische Hardwareerkennung eingelesen werden. Für die Erstellung der Gerätekonfiguration wird die testCommander-Software benötigt. Q.Station Q.Gates e.Series HBM QuantumX Das PlugIn ermöglicht die Konfiguration der MX840-Serie von HBM-Messtechnik. MX840 IOtech Konfiguration und Datenerfassung der DaqBook 2000 Geräteserie und der Messmodule. Das PlugIn benötigt auch den IOtech DATACom-Gerätetreiber. DaqBook 2001/2005 (Fortsetzung) Dynamische Systeme 120 Bild PLUGIN-DETAILANSICHT (Fortsetzung) Kategorie PlugIn-Name Beschreibung Hardware GPS Erfassung von GPS-Signalen über das NMEA-Protokoll. GPS-Empfänger über NMEA Standard Demo Erzeugt Demo-Signal von verschiedenen Funktionsgeneratoren. Keine Hardware erforderlich Sound Erfassung von Schallpegel über das PC-Mikrofon. Soundkarte von PC ETH Senden und Empfangen von ASCII-Daten über das UDP- oder TCP-Protokoll. Das spezifische AK-Protokoll für MAHARollenprüfstände wird auch unterstützt. keine Hardware erforderlich Video Erfassung von Bilddaten über USB-WebKameras und IP-Kameras mit dem Real Time Streaming Protokoll. USB-Kameras und IP-Kameras Serial Über das serielle PlugIn können serielle Geräte eingebunden werden. Die Einbindung wird über eine gerätespezifische DLL gelöst, in der die Befehle hinterlegt sind. Multimeter Metrix MX556 Leistungsmessgerät Fluke Norma 3000 YOKOGAWA Messwerterfassung von Strom, Spannung, Leistung und vielen weiteren Kenngrößen von Leistungsmessgeräten. WT500 WT3000S WT3000M WT1600S WT1600M EASYBus Einbindung der Easybus-Geräte von Greisinger. EBW1, EBW3, EBW64, EBW240 GRS 3100 USB3100 Gas Service Erfassung von Temperatur, CO2 und Volumenstrom von einem Gaschromatometer. LumaSense INNOVA 1412 Scales Unterstützt die serielle Kommunikation zu Waagen. Mettler Toledo Kern Satorius Combics Velleman K8055 Experimentier-Board für Studenten. Automatische Hardwareerkennung über die USB-Schnittstelle. Die Ansteuerung aller IOs wird unterstützt. K8055 / VM110 Technikmedia AVR-NET-IO Experimentier-Board von Pollin. Ansteuerung aller IOs und der Relay-Karte K8 sind möglich. AVR-NET-IO Technikmedia ATMEL Das PlugIn kann die IOs von ATMELProzessoren ansprechen. Das ATMELProgramm steht im Setup mit zur Verfügung. ATMEL ATmega32 Prozessor STK 5000 Board Sonstige Serielle Geräte Evaluation Kits Bild 121 IPEaddon INCA 5 Produktinformation Deutsch IPETRONIK X-LINK Gerätetreiber für ETAS INCA Messungen bis 100 kHz Verwendung von IPETRONIK X Modulen Mx/Sx und IPETRONIK M2 CAN Modulen mit der INCA Software zur: - Spannungs-, Temperatur-, Strommesuung - DMS-, Druck- und ICP-Messung - Synchronen Erfassung von Steuergerätedaten X-Module mit hohen Abtastraten (100 kHz Mx-SENS2 4, 40 kHz Sx-STG, 10 kHz Mx-SENS) (CAN Tunneling: eine Busleitung für CAN- und Ethernet-Module) Eine einheitliche Konfigurationsschnittstelle für M- und X-Module Module werden direkt aus der INCA-Oberfläche erkannt, konfiguriert und initialisiert Unterstützte Interfaces: alle ETAS Schnittstellenmodule mit ETH-Verbindungen (ES-593, 595, …) und Interfaces mit OHI-Treiber Unterstützung Signalaufnahme und Datenspeicherung mit unterschiedlichen Abtastraten in INCA-Experimenten Anlegen von Systemen ohne angeschlossene Hardware (“Trockenkonfiguration”) Offsetabgleich auf Null oder auf benutzerdefinerte Referenzwerte 122 IPEaddon INCA 5 Produktinformation 123 IPEmotion Klima-Modul Das IPEmotion Klima-Modul kann als zusätzliche Option die Professional- oder Developer-Edition erweitern. Mit dem Klima-Modul wird Ihnen eine einfache Berechnung der Kühlmittelmenge und der Eigenschaften innerhalb eines Kühlkreislaufes ermöglicht. Das Modul basiert dabei auf einem sogenannten log-ph-Diagramm sowie einem Pool aus bestimmten Formeln zur Berechnung von Enthalpie und Entropie unter Berücksichtigung der REFPROP-Datenbank für Kühlmittel des NIST (National Institute of Standardization). HVAC-Kühlkreislauf-Diagramm Mit dem Klima-Modul können alle thermodynamischen Größen an jedem beliebigen Punkt des Kühlkreislaufes bestimmt werden. Der Kühlkreislauf kann dabei in folgende vier Hauptbereiche unterteilt werden: 124 ▸ Kompressor Der Kompressor wandelt gasförmiges Niederdruck-Kühlmittel zu HochdruckKühlmittel um, wodurch die Temperatur des Kühlmittels steigt und auch der Kom pressor erheblich an Wärme gewinnt. ▸ Kondensator Der Kondensator kühlt das heiße Hochdruck-Kühlmittel. Ein kalte Flüssigkeit ent steht. ▸ Verdampfer Die kalte Niederdruck-Flüssigkeit verdampft beim Durchfließen durch den Ver dampfer und wird dadurch gasförmig. ▸ Expansions-Ventil Wenn das Kühlmittel das Expansions-Ventil durchströmt, wird Druck freigesetzt, das Kühlmittel verdampft. Durch den Verdampfungsvorgang kommt es zu einem Wärmedrift. Der Verdampfer kühlt ab und nimmt dabei die Energie der einströmenden warmen Luft auf. IPEmotion Klima-Modul Zweck Das Klima-Modul ist ein äußerst leistungsfähiges Instrument für Online- und Offline-Messungen an HVAC-Kühlkreisläufen wie auf der schematischen Darstellung eines HVAC-Diagramms zu sehen ist. Die Formeln ermöglichen es dem Benutzer, die Enthalpie [kJ/kg] von allen Druck- und Temperaturmessstellen unter Berücksichtigung der jeweiligen thermodynamischen Eigenschaften des gewählten Kühlmittels zu messen. Die Ergebnisse der Online- oder Offline-Messungen werden grafisch in einem log-pH-Diagramm angezeigt. Log-ph-Diagramm Anwendungsbereiche Das Klima-Modul wird häufig in Entwicklungsbereichen aller HVAC-Klima-System- und Kompressoren-Hersteller verwendet. Mit dem Klima-Modul ermöglicht IPETRONIK ein einzigartiges, herstellerunabhängiges Software-Paket für die Entwicklung von HVAC-Komponenten, wie zum Beispiel Kompressoren, Kondensatoren und Verdampfern. Der IPETRONIK Geschäftsbereich IPEtec bietet außerdem spezifische Prüfstandslösungen wie IPEload und IPEcomp – Kompressor-Prüfstand -- die diese Software-Funktion für Entwicklungsarbeiten nutzen. Neue Kühlungsmittel wie HFO123a oder R774 (CO2) haben neue thermodynamische Eigenschaften und das Klima-Modul ist sehr nützlich für deren Produktentwicklung. Unterstützte Kühlmittel: ▸ R134a ▸ HFO1234yf ▸ R22 ▸ R404a ▸ R410a ▸ R507a ▸ R744 ▸ R718 ▸ R729 125 IPEmotion Klima-Modul Übersicht zu Formeln der Thermodynamik im IPEmotion-Klima-Modul ▸ h_std berechnet die spezifische Entropie (Einheit: kJ/kg) ▸ h_liq berechnet die spezifische Enthalpie (Einheit: kJ/kg) ▸ h_vap berechnet die spezifische Enthalpie (Einheit: kJ/kg) ▸ u_std berechnet die spezifische interne Energie (Einheit: kJ/kg) ▸ s_std berechnet die spezifische Entropie (Einheit: kJ/kg) ▸ rho_std berechnet die Dichte (Einheit: kg/m³) ▸ V_spec berechnet die spezifische Volumen (Einheit: m³/kg) ▸ c_sound berechnet die Schallgeschwindigkeit (Einheit: m/s) ▸ c_vol berechnet die isochore Wärmekapazität (Einheit: kJ/kgK) ▸ c_pres berechnet die isobare Wärmekapazität (Einheit: kJ/kgK) ▸ T_sat_liq berechnet die Sättigungstemperatur der Siedelinie (Einheit:°C) ▸ T_sat_vap berechnet die Sättigungstemperatur der Taulinie (Einheit:°C) ▸ superheating berechnet die Überhitzung (Einheit:°C) ▸ subcooling berechnet die Unterkühlung (Einheit:°C) als eine Funktion der Temperatur (Ein heit:°C), des Drucks (Einheit: Bar) und eines Kältemittels ▸ enthalpy_dif_liq berechnet die Enthalpiedifferenz (Einheit: kJ/kg) zwischen dem Messpunkt und der Siedekurve bei gleichem Druck ▸ enthalpy_dif_vap berechnet die Enthalpiedifferenz (Einheit: kJ/kg) zwischen dem Messpunkt und der Kondensationskurve bei gleichem Druck 126 ▸ ha_P_sat_vap berechnet den Sättigungsdampfdruck von Wasser in feuchter Luft (Einheit: Bar) ▸ ha_P_vap berechnet den Dampfdruck von Wasser in feuchter Luft (Einheit: Bar) ▸ ha_rh berechnet die relative Luftfeuchte (Einheit: %) ▸ ha_ah_1 berechnet die Dichte von Wasserdampf in feuchter Luft (Einheit: kg/m³) ▸ ha_ah_2 berechnet die Dichte von Wasserdampf in feuchter Luft (Einheit: kg/m³) ▸ ha_ah_3 berechnet die Dichte von Wasserdampf in feuchter Luft (Einheit: kg/m³) ▸ ha_T_dew_pt_1 berechnet die Taupunkttemperatur von Wasser in feuchter Luft (Einheit: °C) ▸ ha_T_dew_pt_2 berechnet die Taupunkttemperatur von Wasser in feuchter Luft (Einheit: °C) ▸ ha_h berechnet die Enthalpie von feuchter Luft (Einheit: kJ/kg) 127 IPEmotion Control-Modul Das IPEmotion Control-Modul kann als Erweiterung zu Ihrer Professional- oder Developer-Edition erworben werden. Es bietet Ihnen eine Reihe von zusätzlichen Möglichkeiten für Prüfstands- und Test-Automatisierungs-Anwendungen. Prüfstand-Screenshot Anwendungsbereiche des Control-Moduls Das Control-Modul deckt ein großes Spektrum an Einsatzmöglichkeiten ab und wird dabei nicht nur in der Automobil-Industrie genutzt, sondern kommt auch bei Automatisierungs- und Prüfstandsanwendungen, bei Motorprüfständen, Designverifikationstests, Lebensdaueruntersuchungen und bei der Qualitätssicherung, zum Einsatz. ▸ ▸ ▸ ▸ ▸ HVAC-Kompressor-Untersuchungen, siehe IPETRONIK-Geschäftsbereich IPEtec Powertrain Entwicklungen Klima-Prüfkammern Prozess- und Anlagenüberwachung Materialermüdungs-, Dauerlauf- und Lebensdaueruntersuchungen Funktionen des Control-Moduls 128 Funktionsgenerator Der Funktionsgenerator unterstützt verschiedene Signalformen wie Sinus, Sägezahn, Rechteck oder Rampe. Mit dem frei konfigurierbaren Funktionsgenerator können beliebige Ausgabeprofile aus Messdateien ausgegeben werden. Ein beliebiger Generator kann dabei mit einer Datei und enthaltenen manuell veränderten Signalformen oder aufgezeichneten Signalformen verbunden werden. Die Auflösung, Signalfrequenz, Offset und Pulsweitenmodulation ist individuell einstellbar und kann über seperate Steuerkanäle in einer laufenden Messung verändert werden. Zur Steuerung stehen Start-, Stop- und Haltetrigger mit Zykluszählern zur Verfügung. PID-Regler Für Anwendungen mit PID-Regelkreisen sind Regler verfügbar. Die Regler (P=Proportional control, I=Integral control und D=Derivative control) sind mit folgenden Einstellungsfaktoren konfiguriert: Kr: (Verstärkung) Hat Einfluss auf die proportionale Verstärkung Tv: (Vorlaufzeit) Ist eine Zeitkonstante für die sekundäre Verstärkung Tn: (Reset-Zeit) Ist eine Zeitkonstante für die ganzheitlichen Verstärkung Die Abtastrate der PID-Berechnungen kann bis auf 1kHz erhöht werden. Folgende Kanäle dienen als Ein- und Ausgabeparameter: - Stellwert-Kanal - Sollwert-Kanal - Istwert-Kanal IPEmotion Control-Modul Router Die Hauptfunktion des Router-Kanals besteht darin, ein eingehendes Signal zu empfangen und an einen weiteren Kanal umzuleiten. Mit dem Router können Messwerte PlugIn-übergreifend ausgetauscht werden. Der Quellkanal sendet die Messdaten auf den Ausgabekanal. Mit der Nutzung des Router-Kanals wird es Ihnen ermöglicht, Daten zwischen verschiedenen PlugIns auszutauschen. Sequenzen Die Testläufe sind eine absolute Stärke des gesamten Control-Moduls zum Automatisieren von Testläufen. Dieses Modul ist besonders hilfreich, wenn Sie Testläufe automatisieren. Diese Funktion ermöglicht es Ihnen einzelne Testabschnitte in chronologischer Reihenfolge abzubilden. Innerhalb einer Sequenz können Sie drei unterschiedliche Funktionen nutzen: ▸ Ausgang setzen: In dieser Funktion wird ein numerischer Wert oder ein Text-Wert auf einen Ausgabekanal geschrieben. ▸ Prüfkanal: Diese Funktion wird überwiegend zur Durchführung von Grenzwertüberwachungen genutzt. Erst wenn die Grenzwert bedingung erfüllt ist, kann der nächste Schritt des Testablaufs ausgeführt werden. ▸ Run Script: Diese Funktion unterstützt die Einbindung von externen Anwendungen und komplexeren Programmabläufen des Testlaufs. Durch die Skripteinbindung hat der Anwender eine sehr hohe Flexibiltät kundenspezisfische Funktionen in seinen Testlauf einzubeziehen. Beispiel eines Testlaufs eines Hydraulik-Systems im Baumaschinen-Sektor 129 IPEmotion Akustik-Modul Mit dem Akustik-Paket kann der Anwender akustische Signale über Mikrofone und Schwingungssignale von Beschleunigungsaufnehmern über FFT-Analysen und das Campbell-Diagramm auswerten. Die schnelle Abtastung der zeitbezogenen Signale kann über IPETRONIK X-Module oder auch über andere PlugIns mit entsprechend schnellen Analogeingängen realisiert werden. IPETRONIK bietet dazu die synchron abtastenden, 4-kanaligen Mx-SENS2 4-Module mit einer Abtastrate von bis zu 100 kHz an, oder das 8-kanalige SxSTG mit einer Abtastrate von bis zu 40 kHz pro Kanal. Die hochauflösenden, zeitbezogenen Signale können in der Datenverarbeitung über die FFT-Analyse oder über die Campbell-Analyse-Operation ausgewertet werden. Die Campbell-Operation ermöglich viele Einstellmöglichkeiten wie z. B.: • FFT-Auflösung • FFT-Überlappungsfaktor • Fenster Funktion wie Hanning, Hamming, Blackman etc. • Führungskanal für nicht zeitbezogene FFT-Berechnungen • Butterworth-Filter • Bewertungsfunktionen nach db-A und db-C, linear, etc. Bild zur Parametrierung der Campbell-Operation 130 IPEmotion Akustik-Modul Die Ergebnisse der FFT-Berechnung bzw. der Campbell-Operation lassen sich im Campbell-Diagramm sehr gut darstellen. Das Campbell-Instrument bietet viele Konfigurationsmöglichkeiten hinsichtlich der Min-/ Max-Amplituden (Y-Achsenskalierung), Einstellung der drei Farbskalen (Regenbogen, Rot, Grau) und des einfachen Zooms zur optimalen visuellen Darstellung der Farbtiefe, um den gewünschten Kontrast einzustellen. Darstellung der Ergebnisse aus der Campbell- Operation im Campbell-Diagramm Applikationsbeispiel — NVH-Messungen an Fahrzeug-Klimaanlagen In Verbindung mit dem Mx-SENS2 4-Modulen eignet sich das IPEmotion Akustik-Paket sehr gut zur Validierung von Kompressoren (Komponenten) und Fahrzeug-Klimaanlagen (Gesamtsystem). Hier können in einem Software-Paket die thermodynamischen Parameter wie Kältemittelverdichter, Gasdruckpulsation, Umgebungsgeräusche, Temperaturen, Kompressoren, Drehzahl und Lastzustand zusammen mit Kennwerten aus dem Motor- und Klimasteuergerät erfasst werden. Die synchrone Erfassung der physikalischen Größen — zusammen mit Kennwerten aus den zugehörigen Steuergeräten — erweitert erheblich die Analysemöglichkeiten zur Identifizierung der Geräuschursache. 131 ▸ A/C System-Entwicklung ▸ A/C Prüfstand-Erprobung ▸ A/C Leckagetests ▸ Klima-Akustik-Erprobung ▸ Thermomanagement für Fahrzeuge ▸ Flottenerprobung ▸ E-Mobility Tests ▸ Dauererprobungen 132 MESSPROZESSE ALS INTEGRATIVES GESAMTKONZEPT IPEengineering entwickelt Systeme für die Umsetzung komplexer Messaufgaben Von Messprozessen in der Fahrzeugentwicklung und Fahrzeugerprobung über spezielle Prüfleistungen zur Klima- und Energieeffizienz bis hin zu kompletten Entwicklungsprojekten im Umfeld alternativ angetriebener Fahrzeuge ist IPETRONIK Ihr professioneller Partner. Neben der eigentlichen Messtechnik liegt die Stärke von IPETRONIK in der Umsetzung von Messaufgaben. Auch umfangreichere Projekte werden von unseren Spezialisten aus einer Hand umgesetzt. Das Dienstleistungsspektrum im IPETRONIK Technologie Zentrum umfasst das Auf-/Abrüsten von Versuchsfahrzeugen gemäß Ihren Anforderungen, die Begleitung von Erprobungen und die Betreuung während der Projektlaufzeit, Sommer-/Wintererprobungsbegleitung und Datenvorauswertung. Hinzu kommen die Durchführung umfassender Projektreihen inklusive vollständigem Benchmarking mit verschiedenen Serienfahrzeugen, Dauerlaufbetrieb, Komponentenerprobung, Vergleichsanalysen, statistische Auswertungen sowie die Erstellung von Testberichten. Entwicklungsleistungen ▸ A/C Systementwicklung ▸ A/C Prüfstandmessungen ▸ A/C Leckagetests (KBA akkreditiert) ▸ Klimaakustik-Untersuchungen ▸ Kfz Thermomanagement Entwicklung ▸ Flottenerprobung ▸ Betriebsfestigkeit Dienstleistungsspektrum ▸ Separate Prototypenkammern ▸ Optimierte Aufrüsthallen für Zweiräder bis zum 40-Tonner ▸ Kraftfahrzeuge ▸ Für Sie als unseren Kunden hat das zahlreiche Vorteile: Sie können Erprobungsspitzen ohne zusätzliche Kapitalbindung bewältigen und wiederkehrende Standardaufgaben auslagern. Die Bereitstellung der gesamten Messtechnik inklusive Zubehör auf Mietbasis sowie die Übernahme aller erforderlichen Aufgaben in der Projektabwicklung durch unsere Spezialisten ermöglichen Ihnen, sich voll und ganz auf Ihr Kerngeschäft zu konzentrieren. Klimaakustik-Kammer für Klimaprüfstände für Kältekreiskomponenten ▸ Systemprüfstände Ganzheitliche Messsysteme, entwickelt für Ihren Bedarf. 133 IPEengineering PROJEKTMANAGEMENT Aufrüstung Das IPEengineering-Team macht Ihr Versuchsfahrzeug startklar, sorgt für die Verkabelung der Sensorapplikationen und baut die Messtechnik ein. Die Konfiguration und Datendefinition gehören dabei ebenso zum Leistungsumfang wie die Kalibrierung und Funktionsprüfung. Bei Bedarf ersetzen wir Komponenten und bauen die Messapplikationen schließlich auch wieder ab. Eigens hierfür stehen eine moderne Aufrüsthalle sowie ein erfahrenes Team an Applikationsingenieuren und Mechanikern bereit. Erprobung und Begleitung In der Erprobungsphase sind unsere Spezialisten durchgehend an Ihrer Seite und sorgen dafür, dass die eingesetzte Messtechnik fehlerfrei arbeitet. Wir schaffen alle technischen Voraussetzungen, um in extrem unterschiedlichen Bedingungen testen zu können – oder für Prüfvorgänge im Windkanal. Darüber hinaus nehmen wir eine Datenvorauswertung vor und erstellen detaillierte Versuchsreports. So reduzieren Sie Verzögerungen oder Standzeiten auf ein Minimum und bleiben im definierten Zeitplan. Flottentest Sind die neu entwickelten Komponenten serienreif? Diese Frage beantworten wir für Sie im Flottendauerlauf. Wir wickeln ganze Flottenprojekte im Detail für Sie ab. Ob es dabei einfach nur um die Organisation des Fahrbetriebs geht oder um die systematische Auslegung des gesamten Fahrprofils – unsere Spezialisten haben eine internationale Infrastruktur geschaffen und nutzen ihre Erfahrungen aus zahlreichen Projekten. 134 IPEengineering THERMOMANAGEMENT Effiziente Kühlung Die „Klimabilanz“ eines Fahrzeugs entscheidet in Zukunft immer mehr über Akzeptanz und Nachfrage. Mit unseren Entwicklungen rund um Fahrzeug-Klimatisierung und Thermomanagement verschaffen Sie sich in dieser Hinsicht einen entscheidenden Vorsprung. Denn die aktuellen politischen und gesellschaftlichen Diskussionen zum Schutz unserer Umwelt fordern die schnelle Umsetzung neuer Technologien. Hybrid-Systeme waren der Anfang, Elektrofahrzeuge werden in fernerer Zukunft eine bedeutende Rolle spielen. Die Klimatisierung und das Thermomanagement in solchen Konzepten spielen neben dem Antrieb die wichtigste Rolle bei der Effizienzbetrachtung. IPETRONIK entwickelt komplette Systeme und konzentriert sich auf wichtige Themen wie alternative Kältemittel, Batterietechnologien und optimierte Klimaaggregate für die Auslegung von effizienten Fahrzeugen. Aufbau von Versuchsfahrzeugen Nach einer genauen Bedarfsanalyse rüsten wir Ihr Fahrzeug mit der nötigen Messtechnik aus. Wir arbeiten zum Beispiel schon an innovativen Kühlsystemen für Batterien in der Konzeption und Erprobung sowie an einer speziellen Klimaanlage für Elektrofahrzeuge auf Basis des natürlichen Kältemittels R744. IPEengineering KLIMAAKUSTIK-UNTERSUCHUNGEN Akustische Optimierung der Fahrgastzelle Untersuchungen zur Ermittlung von Geräuschquellen im Fahrgastraum und deren Verhalten abhängig von Umgebungsbedingungen nehmen in der aktuellen Fahrzeugentwicklung an Bedeutung zu. Mit neuen Prüfkammern und der Fachkompetenz im Entwicklungsbereich ist IPETRONIK in der Lage, individuelle Projektanforderungen kosten- und zeitoptimiert zu erfüllen. Leistungsfähige Klimakammern mit der messtechnischen Ausstattung für Akustikmessungen sorgen für verlässliche und aussagekräftige Daten zur Optimierung des Geräuschverhaltens. 135 ▸ A/C-Komponenten Prüfstände ▸ A/C System Kalorimeter ▸ Klima-Akustik-Kammer ▸ Umbau von bestehenden Anlagen ▸ Prüfstand Engineering & Consulting ▸ Prüfstand-Service ▸ Umweltsimulationen ▸ Medienversorgungsmodule ▸ Belastungseinheiten für Kältemittelkompressoren ▸ Kompressorprüfstände 136 PRÜFSTÄNDE UND UMWELTSIMULATIONSANLAGEN IPEtec schafft perfekte Prüfbedingungen vor Ort Optimale Erprobungsbedingungen vor Ort, in Ihrer Anlage oder Ihrer Fertigungshalle. IPETRONIK ist der Spezialist in Entwicklung und Bau von Prüfständen. Von der Idee über die Konzeption und Konstruktion bis hin zum fertigen Prüfstand. Mit IPEtec-Prüfständen bieten wir Ihnen vorwiegend komplexe thermodynamische Prüfstandlösungen für Wärmeübertrager und Klimasysteme. Denn die Verlagerung der Straßenerprobung auf eine reproduzierbare Prüfstandumgebung trägt zu einer deutlichen Verkürzung der Entwicklungszeiten neuer Fahrzeuge bei. Prüfstandlösungen ▸ Sekundärkalorimeter ▸ Klimasystemprüfstand ▸ Prüfkältekreis ▸ Klimakammern ▸ Medienversorgung ▸ Umweltsimulation ▸ Umbau/Erneuerung, Service/Wartung Unser kompetentes Ingenieur- und Techniker-Team arbeitet in allen Disziplinen rund um die Entwicklung von Prüfständen. Von der Kältetechnik und thermodynamischen Verfahrenstechnik über Anlagenbetriebstechnik und Maschinenbau bis hin zu SPS Steuerungstechnik. Die ausgereifte IPETRONIK Infrastruktur garantiert Ihnen einen hohen Reifegrad der Prüfanlage bereits bei Anlieferung und beschleunigt so die schnelle Installation und Inbetriebnahme der Prüfstände. Von der Konzeption bis zur Montage. Präzise und professionell. 137 MASSGESCHNEIDERTE LÖSUNGEN ZUM THERMOMANAGEMENT IPEtec Prüfstandtechnik projektiert und liefert maßgeschneiderte Prüfstandlösungen zur Entwicklung und Validierung von Komponenten und Systemen im Entwicklungs-, Erprobungs- und Produktionsbereich. Unser erfahrenes Team bietet das komplette Spektrum an Prüfständen und Medienversorgungsmodulen für die Thermomanagemententwicklung von Kraftfahrzeugen. Systemprüfstände für Klima- und Kühlsysteme Das Leistungsspektrum umfasst dabei Prüfstandlösungen sowohl für die Fahrzeugkühlung (Kühlmittel-, Ladeluft- und Ölkühler, Batterieund E-Motorkühlung, Abgaskühlung) als auch für das breite Anwendungsgebiet der Fahrzeugklimatisierung. Hierzu zählen System-, Komponenten- und Kalorimeterprüfstände für vollständige Kältekreisläufe oder einzelne Komponenten wie Kältemittelkondensatoren, Verdampfer, Kompressoren, Gebläse und Expansionsventile. Wir berücksichtigen die Belange des aktuell noch verwendeten Kältemittels R134a sowie die zukünftigen Alternativen 1234yf und auch CO2 (R744) unter individuell nach Entwicklungsschwerpunkten ausgelegten Prüfstandausführungen. Kühlkomponenten und Medienversorgung Kompressorprüfstände für mechanische und elektrisch angetriebene Kältemittelverdichter, Prüfstandkreisläufe für Ventil- und Pumpenversuche, Medienversorgungsmodule wie z. B. für Kältemittel, Kühlmittel, Ladeluft und Öl komplettieren den Lieferumfang mittlerweile mit Standardprodukten auf hohem technischen Funktions- und Qualitätsniveau. Klimakammern IPETRONIK bietet befahrbare Temperatur- und Klimakammern für verschiedenste Umweltsimulationstests an Kraftfahrzeugen. 138 IPEload-01 Product information Load unit for testing refrigerant compressors for vehicles In the development process of vehicle air conditioning systems, the refrigerant compressors need to be impinged on test benches (engine test benches, endurance test benches, EMV tests, NVH tests, etc.) in a realistic and reliable environment under thermodynamic conditions. Therefore, special load devices which meet the latest and high requirements have been developed. Besides the usability of the test bench, reliability, size, weight and energy consumption play an essential role here. Due to many years of experience with large endurance test benches for the validation process of refrigerant compressors in the automotive industry, IPETRONIK develops and builds user-friendly devices, which meet these high requirements. This type allows fast load changes along with precise adjustment possibilities in the automatic as in the manual mode as well. IPEload R134a mechanical equipment All available parameters (pV1, pV2, tV1h) can be regulated and adjusted manually with mechanic control valves. Compressor speed (nv) is given by external devices. Presence of qualified personal at the test benches is required at any time! Thanks to their compactness each IPEload unit can be transported easily. Each model only needs a cooling water connection. With the high-/low pressure regulator (top center) the suction or high pressure of the compressor can be configured. The medium pressure regulator enables the control of the brine mass flow. During an exchange the compressor can be evacuated on the service connections with an appendant hose. With the sight glass, the ideal filling level of the refrigerant is monitored. The pressure gages installed on the right side of the device indicate high pressure, middle pressure and low pressure. Technical data Controller Pressure range high pressure side 8 ... 28 bar Pressure range low pressure side 1.5 ... 6 bar Superheat (low pressure side) 5 ... 30 K Refrigerant massflow 30 ... 250 kg/h Supply Cool water inlet temperature 6 °C Required cool water massflow 180 kg/h Required cool water differential pressure ǻp > 0.5 bar Electrical supply none General Refrigerant types R134a HFO-1234yf Dimensions W x H x D (base frame included) 500 mm x 600 mm x 500 mm 139 IPEload-02 Product information Load unit for testing automotive refrigerant compressors In the development process of vehicle air conditioning systems, the refrigerant compressors need to be impinged on test benches (engine test benches, endurance test benches, EMV tests, NVH tests, etc.) in a realistic and reliable environment under thermodynamic conditions. Therefore, special load devices which meet the latest and high requirements have been developed which meet the latest and high requirements. Besides the usability of the test bench, reliability, size, weight and energy consumption play an essential role here. Due to many years of experience with large endurance test benches for the validation process of refrigerant compressors in the automotive industry, IPETRONIK develops and builds user-friendly devices, which meet these high requirements. This type allows fast load changes along with precise adjustment possibilities in the automatic as in the manual mode as well. IPEload R744 mechanical equipment All available parameters (pV1, pV2) can be regulated and adjusted manually with mechanic control valves. Compressor speed (nv) is given by external devices. A PWM signal for regulation of the compressor can be implemented; however, it is preset manually with the PWM converter. Presence of qualified personal at the test benches is required at any time ! Thanks to their compactness each IPEload unit can be transported easily. Each model only needs a cooling water connection and a power supply. Using manually operated control valves, low pressure (blue) and high pressure (red) can be adjusted. Superheat is provided at the expansion control valve with display (top center). Optional the swashplate adjustment of the compressor can be controlled as well. With a small potentiometer the control current shown on the top right corner of the display can be adjusted. The frequency of the PWM signal can be configured with the frequency generator on the left of the display. During an exchange the compressor can be evacuated on the service connections with an appendant hose. The intermediate pressure is configured over a control valve, a grey hand wheel (middle right side). In the bottom right corner is a switching valve by which you can either change to low pressure control mode (blue valve) or fix throttle control mode (black hand wheel). On the right side next to the brine ports the needle valve is installed as fix throttle. Therefore, the refrigerant flow rate can be set and the low pressure can be configured with the swashplate. The pressure gages installed on the right side of the device display high pressure, middle pressure and low pressure. 140 IPEload-02 Product information Technical data Controller Pressure range high pressure side 80 ... 140 bar Pressure range low pressure side 15 ... 40 bar Superheat (low pressure side) 5 ... 30 K Refrigerant massflow 30 ... 250 kg/h Supply Cool water inlet temperature 6 °C Cool water outlet temperature 12 °C Required cool water massflow 400 kg/h Required cool water differential pressure ǻp > 0.8 bar Electrical supply 230 VAC / 16 A General Refrigerant type R744 Dimensions W x H x D (base frame included) 600 mm x 700 mm x 400 mm 141 IPEload-03 Product information Load unit for testing automotive refrigerant compressors In the development process of vehicle air conditioning systems, the refrigerant compressors need to be impinged on test benches (engine test benches, endurance test benches, EMV tests, NVH tests, etc.) in a realistic and reliable environment under thermodynamic conditions. Therefore, special load devices which meet the latest and high requirements have been developed. Besides the usability of the test bench, reliability, size, weight and energy consumption play an essential role here. Due to many years of experience with large endurance test benches for the validation process of refrigerant compressors in the automotive industry, IPETRONIK develops and builds userfriendly devices, which meet these high requirements. This type allows fast load changes along with precise adjustment possibilities in the automatic as in the manual mode as well. IPEload R134a automatic equipment All parameters (pV1, pV2, tV1h, nV, cooling water flow rate, PWM, etc.) are controlled via a mobile panel (touchpad) or analog inputs (signal input from external devices). Controlled process variables are output to stepper valves. Qualified personal is only needed to start-up the test bench. All changes can be done by remote or from the measuring station. Worldwide access is available as an option. Dynamic conditions like operation cycles can be predefined. Each model only needs a connection to cooling water and a power supply. Optional components: Air cooling by climate control unit, massflow measurement, oil circulation rate For a quick and easy compressor exchange, a refrigerant recycling unit and a vacuum pump is optionally integrated. Technical data Controller Pressure range high pressure side 8 ... 28 bar Pressure range low pressure side 1.5 ... 6 bar Superheat (low pressure side) 5 ... 30 K Refrigerant massflow 30 ... 250 kg/h Supply Cool water inlet temperature 6 °C Required cool water massflow 180 kg/h Required cool water differential pressure ǻp > 0.5 bar Electrical supply 230 VAC / 16 A General Refrigerant types R134a HFO-1234yf Dimensions W x H x D 600 mm x 800 mm x 600 mm 142 IPEload-03 Product information Panel (Touchpad) Display of schematic representation of the refrigerant circuit in extracts For high pressure, medium pressure and low pressure the set value can be entered (green field) and the actual value can be displayed. Superheat can be configured with the minimum stable signal. There are multiple user accounts with different permissions available. The configuration possibilities might be limited due to type of user account. It is possible to switch into the optional manual operation mode. In this mode instead of pressure, the percentage of the opening angle of the stepper valves is controlled. Using a second PLC, the IPEload unit can be controlled also by its provided analog inputs from a measuring station. All control parameters and actual values are available as analog output of the measuring station. The swashplate can be controlled in two operating modes: 1. The maximal hub for the swashplate is set and the low pressure is controlled with the low pressure valve. 2. A fixed value for the opening angle of the low pressure stepper valve is set and with the PWM signal the angle of the swashplate is altered, so that the requested preset low pressure parameter is obtained The progression of pressure and superheat can be displayed in a progression chart, shown in the image on the right. Dynamic controllers which are able to regulate high pressure, medium pressure and low pressure to ±0.2 bar and superheat to ±0.5 K within minutes, are used. 143 IPEload-04 Product information Load unit for testing automotive refrigerant compressors In the development process of vehicle air conditioning systems, the refrigerant compressors need to be impinged on test benches (engine test benches, endurance test benches, EMV tests, NVH tests, etc.) in a realistic and reliable environment under thermodynamic conditions. Therefore, special load devices which meet the latest and high requirements have been developed. Besides the usability of the testbench, reliability, size, weight and energy consumption play an essential role here. Due to many years of experience with large endurance test benches for the validation process of refrigerant compressors in the automotive industry, IPETRONIK develops and builds user-friendly devices, which meet these high requirements. This type allows fast load changes along with precise adjustment possibilities in the automatic as in the manual mode as well. IPEload R744 automatic equipment All parameters (pV1, pV2, tV1h, nV, cooling water flow rate, PWM, etc.) are controlled via a mobile panel (touchpad) or analog inputs (signal input from external devices) and are output to stepper valves. Qualified personal is only needed to start-up the test bench. All changes can be done by remote or from the measuring station. Worldwide access is available as an option. Dynamic conditions like operation cycles can be predefined. Each model only needs a connection to cooling water and a power supply. Optional components: Air cooling by climate control unit, massflow measurement, oil circulation rate For a quick and easy compressor exchange, a refrigerant fluid suction is supported as option. This means re-filling of R744 refrigerant fluid is required not until 20 … 30 compressor exchange cycles. Technical data Controller Pressure range high pressure side 80 ... 140 bar Pressure range low pressure side 15 ... 40 bar Superheat (low pressure side) 5 ... 30 K Refrigerant massflow 30 ... 250 kg/h Supply Cool water inlet temperature 6 °C Required cool water massflow 400 kg/h Required cool water differential pressure ǻp > 0.8 bar Electrical supply 230 VAC / 16 A General Refrigerant type R744 Dimensions W x H x D 600 mm x 800 mm x 600 mm 144 IPEload-04 Product information Panel (Touchpad) Display of schematic representation of the refrigerant circuit in extracts For high pressure, medium pressure and low pressure the set value can be entered (green field) and the actual value can be displayed. Superheat can be configured with the minimum stable signal. There are multiple user accounts with different permissions available. The configuration possibilities might be limited due to type of user account. It is possible to switch into the optional manual operation mode. In this mode instead of pressure, the percentage of the opening angle of the stepper valves is controlled. Using a second PLC, the IPEload unit can be controlled also by its provided analog inputs from a measuring station. All control parameters and actual values are available as analog output of the measuring station. The swashplate can be controlled in two operating modes: 1. The maximal hub for the swashplate is set and the low pressure is controlled with the low pressure valve. 2. A fixed value for the opening angle of the low pressure stepper valve is set and with the PWM signal the angle of the swashplate is altered, so that the requested preset low pressure parameter is obtained The progression of pressure and superheat can be displayed in a progression chart, shown in the image on the right. Dynamic controllers which are able to regulate high pressure, medium pressure and low pressure to ±0.2 bar and superheat to ±0.5 K within minutes, are used. 145 IPEflush Product information Cleaning device for flushing air-conditioning systems The flushing procedure of air-conditioning systems serves the purpose of removing dirt particles within the system. Additionally, the process facilitates a detachment of the oil from the refrigerant and a removal out of the system. Refrigerant-, compressorand AC-oil manufacturers demand a clean system since dirt particles can cause failure of components such as magnetic valves and compressors. Furthermore, IPEflush is well suited for oil management tests in automotive AC-systems. Within only one hour, it is possible to flush approximately 95% of the refrigerator oil out of a system. The high flushing pressure of up to 12 bars even allows to clean complex structured oil out of refrigeration circuits without leaving residue. Characteristics Recovery of flushed systems with up to 1 bar absolut pressure. Evacuation of the system with a pressure of up to 0,003 bars. Flushing of approximately 99% refrigerant oil. Self-sufficient flushing operation, only start and finish of the flushing process need to be initialized by the user. Flushing procedure The repeating flushing procedure consists of the following sub processes: Filling the system with R134a until the liquid physical state of the refrigerant is entirely reached. Flushing the system with repetitive pulsations in a frequency range of 5 Hz. Recovery of the system until a gaseous state of the refrigerant is entirely reached. Once again flushing of the system with pressures up to 12 bars. Collecting and boiling the refrigerant oil. The user can drain the already separated refrigerant into a vessel at any time and abort the process. Technical data General Usable volume of the oil collector 700 ml Flushing cycles approx. 18 1/h Jetting pressure 12 bar Vacuum pump Flow rate 42 l/h Minimal pressure 0.05 mbar Electrical supply Required power supply 146 230 VAC / 16 A 147 IPEcomp-01 Product information Load system for testing automotive refrigerant compressors In the development process of vehicle air conditioning systems, the refrigerant compressors need to be tested under specific validation procedures. Therefore, specific compressor test benches which meet the highest requirements have been developed. Besides the usability of the test bench, a high repeatability at various load conditions is a core feature in order to acquire reliable characteristic values Due to many years of experience in designing, manufacturing and operating compressor test benches, IPETRONIK offers user-friendly devices, which meet these high requirements. Furthermore, IPETRONIK acquired comprehensive experiences during recent years as automotive development partner in the field of refrigerant cycle systems and thermal management. This fact is leading to continuous improvement of IPETRONIK products in relation to customers requirements. Load characteristics and edge conditions of compressor test procedures are based on the latest VDA standards. R134a / HFO-1234yf Compressor Test Bench for VDA validation tests Simulating operation conditions for refrigerant circuits Thermodynamic load of the compressor unit Supporting manual operation (setpoint setting by user) and automatic operation (executing predefined test procedures) Automated raffer tests, FAT (Factory Acceptance Test), VDA 20 / 25-point matrix, ... Tests of electrically and mechanically driven compressors supported Signal conditioning and data acquisition of all relevant physical variables (temperature, pressure, rotational speed, torque, voltage, current, ...) Oil management analysis and online OCR measurement Standard carrier for compressors acc. to VDA (seismic mass fixation) provides a quick mounting Vibration and pulsation (NVH) measurement Convenient belt-tensioning system Software IPEmotion with special add-on for thermodynamic cycles for intuitive user operation COP determination and calorimetric analysis Integrated refrigerant recycling enables an easy exchange of the compressor Modular system construction provides high flexibility 148 IPEcomp-01 Product information Technical data Controller Pressure range high pressure side 7 ... 28 bar Pressure range low pressure side 1 ... 7 bar Superheat (low pressure side) 5 ... 50 K Refrigerant massflow 25 ... 300 kg/h Mechanical drivetrain Rotation speed 0 ... 10000 rpm Swashplate control 0 ... 1000 mA resp. 0 ... 100 % Magnetic clutch 12 V / 24 V Electrical supply Power unit 0 … 500 V / 0 … 90 A 0 … 80 V / 0 … 340 A Compressor environment Air speed 0 ... 8 m/s (VDA standard 6 m/s) Temperature -30 °C (-40 °C) ... 150 °C Software IPEmotion IPEmotion 2015 Professional incl. Option Climate incl. Option Control Infrastructure Brine volume flow 40 l/min Brine temperature 6 °C ± 2 K Main supply 2 x 63 A, 400 V AC / 50 Hz 149 IPEcomp-02 Product information Load unit for testing automotive refrigerant compressors In the development process of vehicle air conditioning systems, the refrigerant compressors need to be tested under specific validation procedures. Therefore, specific compressor test benches which meet highest requirements have been developed. Besides the usability of the test bench, a high repeatability at various load conditions is a core feature in order to acquire reliable characteristic values Due to many years of experience in designing, manufacturing and operating compressor test benches, IPETRONIK offers user-friendly devices, which meet these high requirements. Furthermore, IPETRONIK acquired comprehensive experiences during recent years as automotive development partner in the field of refrigerant cycle systems and thermal management. This fact is leading to continuous improvement of IPETRONIK products in relation to customers requirements. Load characteristics and edge conditions of compressor test procedures are based on the latest VDA standards. R744 Compressor Test Bench for VDA validation tests Simulating operation conditions for refrigerant circuits Thermodynamic load of the compressor unit Supporting manual operation (setpoint setting by user) and automatic operation (executing predefined test procedures) Automated raffer tests, FAT (Factory Acceptance Test), VDA 30 point matrix, ... Tests of electrically and mechanically driven compressors supported Signal conditioning and data acquisition of all relevant physical variables (temperature, pressure, rotational speed, torque, voltage, current, ...) Oil management analysis and online OCR measurement Standard carrier for compressors acc. to VDA (seismic mass fixation) provides a quick mounting Vibration and pulsation (NVH measurement) Convenient belt-tensioning system Software IPEmotion with special add-on for thermodynamic cycles for intuitive user operation COP determination and calorimetric analysis Modular system construction provides high flexibility 150 IPEcomp-02 Product information Technical data Controller Pressure range high pressure side 65 ... 140 bar Pressure range low pressure side 20 ... 60 bar Superheat (low pressure side) 5 ... 50 K Refrigerant massflow 25 ... 300 kg/h Mechanical drivetrain Rotation speed 0 ... 10000 rpm Swashplate control 0 ... 1000 mA resp. 0 ... 100 % Magnetic clutch 12 V / 24 V Electrical supply Power unit 0 … 500 V / 0 … 90 A 0 … 80 V / 0 … 340 A Compressor environment Air speed 0 ... 8 m/s (VDA standard 6 m/s) Temperature -30 °C (-40 °C) ... 150 °C Software IPEmotion IPEmotion 2015 Professional incl. Option Climate incl. Option Control Infrastructure Brine volume flow 40 l/min Brine temperature 6 °C ± 2 K Main supply 2 x 63 A, 400 V AC / 50 Hz 151 152 153 154 Instrumentation Headquarters IPETRONIK GmbH & Co. KG Im Rollfeld 28 76532 Baden-Baden, Germany Phone +49 7221 9922 0 [email protected] www.ipetronik.com Australia Melbourne [email protected] Brazil Sao Paulo [email protected] China Beijing [email protected] Software Technical Center IPETRONIK GmbH & Co. KG Parsevalstraße 9b 40468 Duesseldorf, Germany Phone +49 7221 9922 0 [email protected] www.ipetronik.com France, Belgium, Luxembourg Paris (France) [email protected] Germany, Austria, Switzerland, Czech Republic, Netherlands Baden-Baden (Germany) [email protected] IPETRONIK GmbH & Co. KG Im Rollfeld 26 76532 Baden-Baden, Germany Phone +49 7221 9922 0 IPETRONIK Eichstätt GmbH Industriestraße 10 85072 Eichstätt, Germany Phone +49 8421 9374 0 [email protected] www.ipetronik.com Test Benches IPETRONIK GmbH & Co. KG Im Rollfeld 13 76532 Baden-Baden, Germany Phone +49 7221 9922 0 [email protected] www.ipetronik.com India Bangalore [email protected] South Korea Seoul [email protected] UK Gothenburg (Sweden) [email protected] Italy Roddi d‘Alba [email protected] Sweden Gothenburg [email protected] USA, Canada, Mexico Wixom, MI (USA) [email protected] Japan Tokyo [email protected] Turkey Istanbul [email protected]
© Copyright 2024 ExpyDoc