produktkatalog 2016

PRODUKTKATALOG 2016
INHALT
Mess- und Prüftechnik in der Fahrzeugentwicklung
7
Softwaretreiber-Übersicht
8
Anwendungsbeispiele
9
Messmodule
19
Datenlogger
60
Zubehör
80
Hochvolt-Messtechnik
90
Kabelinformation
96
Herstellerunabhängige Messdatenerfassung
115
Editionen-Übersicht
116
Messprozesse als integratives Gesamtkonzept
133
IPEengineering Projektmanagement
134
IPEengineering Thermomanagement
135
Prüfstände und Umweltsimulationsanlagen
137
Maßgeschneiderte Lösungen zum Thermomanagement
138
Produkte
139
INNOVATIVE MESSTECHNOLOGIE FÜR DIE
AUTOMOBILINDUSTRIE
IPETRONIK ist eines der weltweit führenden Unternehmen für mobile
Messtechnik, DAQ-Software, Ingenieurdienstleistungen und Prüfstandtechnik in der Automobilindustrie.
Strategisch miteinander verbunden, kombiniert IPETRONIK technologische
Entwicklung, praktische Anwendung und zuverlässige Datenverarbeitung
in einem einzigartigen System. Nur so lassen sich die anspruchsvollen
Aufgaben in der Fahrzeugentwicklung und der Industrie umfassend und
unter höchsten Präzisionsmaßstäben betrachten und lösen. Darauf vertrauen Automobilbauer und -zulieferer in Europa und weltweit seit beinahe
25 Jahren.
Das integrative IPETRONIK Konzept wird von mehr als 180 Mitarbeitern
täglich weiterentwickelt und an die Bedürfnisse der Kunden angepasst.
Kontinuierliche Entwicklung.
Zuverlässige Leistung.
Höchste Qualität.
4
HÖCHSTEN QUALITÄTSANSPRÜCHEN VERPFLICHTET
Qualität bedeutet für uns Leistungsfähigkeit, individuellen Zuschnitt und
Zukunftsfähigkeit. Bis ins kleinste Bauteil, bis in jede einzelne programmierte Code-Zeile hinein. Das ist die Basis unserer Arbeit und die Basis Ihres
Erfolgs.
Kalibrierlabor
IPETRONIK verfügt über ein eigenes Prüflabor, in welchem sämtliche Messmodule und Datenlogger eine Werkskalibrierung erhalten. Alle verwendeten
Referenzwerte sind DKD rückführbar. Die Einhaltung der angegebenen
Toleranzen wird durch ein Prüfzertifikat bestätigt. Die IPETRONIK Kalibrierung ist zwei Jahre gültig und umfasst wesentlich mehr als nur den Vergleich
der gemessenen Werte mit einem Normal.
QM Zertifikat
Entwickelt, geprüft, zertifiziert. Unsere hohen Qualitätsansprüche erneuern
und prüfen wir in einem kontinuierlichen Prozess. Bei IPETRONIK gehen
Entwicklung und Qualitätsmanagement Hand in Hand, sodass auch jede
Neuentwicklung und Innovation bereits unter strengen Kriterien geschaffen
wird.
Akkreditierung Leckage Labor
Zur Ermittlung von Leckageraten ist unser Labor vom Kraftfahrt-Bundesamt
(KBA) für die Prüfung mittels R134a akkreditiert. Gemäß der Richtlinie
2006/40/EG einschließlich VO 706/2007 führen wir die Leckagemessungen
an Kfz-Klimaanlagen und ihren Komponenten durch.
5
▸ Mobile Datenerfassungssysteme für extreme Bedingungen
▸ Für jeden analogen Eingang
▸ Daten-Bus Eingänge (CAN, CCP, XCP, FlexRay, J1939, GM-LAN...)
▸ Diagnose (OBD, KWPonCAN, ...)
▸ Datenspeicherung mit Wireless Option
▸ Software Support für ETAS, VECTOR, dSpace, NI-Tools
▸ High Voltage DAQ Module
▸ Globaler Datenzugang
6
MESS- UND PRÜFTECHNIK IN DER FAHRZEUGENTWICKLUNG
IPETRONIK – Systeme zur Datenerfassung aus einer Hand
Die Ansprüche an die Automobilindustrie werden immer höher.
Energiebilanz, Sicherheitsklassifizierung, Störanfälligkeit entscheiden
direkt über Kundenakzeptanz und -nachfrage. Leistungsstarke Messhardware und systematisch konzipierte Datenerfassung bilden
bereits in der Entwicklungsphase eines Fahrzeugs den wesentlichen
Baustein für einen späteren Verkaufserfolg.
So setzt heute nahezu jeder Automobilhersteller weltweit auf Technologie und Dienstleistungen von IPETRONIK. Und das aus gutem
Grund: Denn alle Komponenten sind im System konzipiert und folgen
durchgängig höchsten Qualitätsstandards.
IPETRONIK unterstützt Sie bei der mobilen Datenerfassung auf der
Straße, im Gelände, auf der Schiene, zu Wasser und stationär am
Prüfstand. Im Dauereinsatz, unter härtesten klimatischen Bedingungen und exakt bis in die allerkleinsten Details. Ein Maximum an
Qualität und Zuverlässigkeit und individuell auf Ihre Bedürfnisse zugeschnittene Systemlösungen sind unser Anspruch. Ganzheitliche
Mess- und Prüftechnologie für die Automobilentwicklung.
Mobil.
Individuell zugeschnitten.
Und immer einen Schritt voraus.
Innovative Messtechnologie
▸
Temperatur
▸
Strom und Spannung
▸
Dehnungsmessstreifen
▸
Druck
▸
Frequenzen und Drehzahlen
▸
Volumenstrom
▸
Protokoll- und Diagnosedaten
Entwicklungsleistungen
▸
Antriebsstrangentwicklung
▸
ThermomanagementEntwicklung
▸
Sommer- und
Wintererprobung
▸
Klimawindkanal
▸
Flottenerprobung
▸
HV-Messungen
▸
Betriebsfestigkeit
▸
Bremsenentwicklung
▸
Bordnetzentwicklung
▸
Karosserieentwicklung
7
8
IPEmotion
IPETRONIK-CAN
■
CAN (CANdb)
■
CAN Protocols
■
IPETRONIK-X
INCA
DIAdem
CANape
CANalyzer
IPEaddon INCA
A2L
CANdb
■
CANdia
■
A2L
CANdb
■
A2L
■
Notebook · X-LINK · CAN
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
IPETRONIK-LOG
■
■
■
■
■
■
■
■
■
■
CANdb
■
■
■
■
■
CANdb
■
■
■
■
■
Flotten-Datenlogger
Datenlogger · Onlinemessung (CAN)
Datenlogger · Onlinemessung (ETH)
Datenlogger
Notebook · X-LINK · M-CAN Tunneling
Notebook · X-LINK/M-CAN · CAN
Treiber/Beschreibungsdatei
Notebook · X-LINK · M-CAN · CAN
Software
Notebook · ES59x · M-CAN · CAN
Notebook · M-CAN · CAN
SOFTWARE/TREIBER-ÜBERSICHT
■
■
ANWENDUNGSBEISPIELE
Notebook · M-CAN · CAN
M-Module
MultiDAQ
CANpressure
MultiDAQ
CANpressure
IPEcan Pro
M-CAN
CAN
Fahrzeug
Notebook · ES59x · M-CAN · CAN
M-Module
ETAS ES59x
M-CAN
CAN, ETK
Fahrzeug (ECU)
9
ANWENDUNGSBEISPIELE
Notebook · X-LINK · CAN
Mx-Module
Sx-Module
IPEcan
X-LINK
CAN
Fahrzeug
Notebook · X-LINK · M-CAN · CAN
Mx-Module
Sx-Module
M-Module
MultiDAQ
X-LINK
IPEcan Pro
M-CAN
CAN
Fahrzeug
10
CANpressure
ANWENDUNGSBEISPIELE
Notebook · X-LINK/M-CAN · CAN
X-Module
M-Module
X-LINK
IPEcan Pro
M-CAN
CAN
Fahrzeug
Notebook · X-LINK · M-CAN-Tunneling · CAN
M-Module
X-Module
IPEcan
X-LINK
CAN
HV-Module
CAN
Fahrzeug
11
ANWENDUNGSBEISPIELE
Datenlogger
Datenlogger
Verrechnen,
Speichern
Systemkonfiguration
Konfiguration
ETH (LOG2PC)
CAN 1, CAN 2, ... CAN x
CCP, KWP, XCP, UDS
...
Fahrzeug (ECU)
Datenlogger · Onlinemessung (ETH)
Datenlogger
Verrechnen,
Speichern
Systemkonfiguration
Onlinemessung
Konfiguration
ETH (LOG2PC)
Messdaten
CAN 1, CAN 2, ... CAN x
CCP, KWP, XCP, UDS
...
Fahrzeug (ECU)
12
M-Module
CANpressure
ANWENDUNGSBEISPIELE
Datenlogger · Onlinemessung (CAN)
Datenlogger
M-Module
CANpressure
Verrechnen,
Speichern
IPEcan
CAN
Messdaten
(online)
CAN 1, CAN 2, ... CAN x
CCP, KWP, XCP, UDS
...
Fahrzeug (ECU)
13
ANWENDUNGSBEISPIELE
IPEconnect - IPEhub2 · Kabelloses Logger Display System
WLAN
Datenlogger
Verrechnen,
Speichern
Android Tablet &
IPEmotion App
IPEhub2
CAN 1, CAN 2, ... CAN x
CCP, KWP, XCP, UDS
Fahrzeug (ECU)
Display-System-Beschreibung:
Während einer Testfahrt ist es in vielen Fällen nützlich, dem Fahrer die vom Datenlogger aufgenommenen
Messdaten in Echtzeit anzuzeigen, um ihm unmittelbar die Möglichkeit zu geben, sich über spezielle Messungen, Ereignisse oder Grenzwertüberschreitungen zu informieren. Die kabellose Display-System-Lösung
besteht aus der IPEmotion App, dem IPEhub2 und einem aktuellen IPETRONIK Datenlogger. Mit diesem
integrierten System hat der Fahrer Zugang zu bis zu 250 Online-Messkanälen, die in vier verschiedenen
Instrumenten in der Android App auf dem Tablet oder Smartphone dargestellt werden können.
Systemanforderungen:
Software
IPEmotion 2015 R3 oder höher
IPETRONIK PlugIn LOG V03.56.00 oder höher
IPEmotion App V01.13 oder höher
IPEhub2 Firmware V01.03 oder höher
IPEhub2 Lizenz für IPEconnect
Video: https://youtu.be/mJP5O7AYBsU
14
Hardware
M-LOG / M-LOG V3 / IPElog
FLEETlog2
Interface-Kabel 620-689.015
Interface-Kabel 620-691.015
Android System > 4.0
ANWENDUNGSBEISPIELE
IPEhub2 als CAN-Karten-Schnittstelle für IPEmotion
WLAN
M-Module
IPEhub2
CAN2
LAN
PC - IPEmotion
CAN1
...
Fahrzeug (ECU)
Beschreibung:
Die Applikation zeigt einen IPEhub2 als 2-Kanal-CAN-Schnittstelle. Der IPEhub2 ist mit einem PC verbunden
und ermöglicht eine kabellose Datenübertragung. Eine typische Messapplikation ist die Verwendung an
Bau- und Agrarfahrzeugen. Kabelgebundene Lösungen an drehenden Gerätekomponenten oder Stellantrieben sind hier äußerst störend und fehleranfällig. Die WiFi CAN-Karte bietet den Vorteil, dass keine physische Kabelschnittstelle benötigt wird, um Messungen auf dem Computer zu erfassen. Allein die Reichweite
der WLAN-Verbindung beschränkt die Entfernung zwischen Computer und Messhardware.
WLAN
IPEhub2
CAN1
LAN
PC - IPEmotion
CAN2
M-Module
Analogsensor
15
ANWENDUNGSBEISPIELE
IPEhub2 · Kabellose Display-Anwendung und CAN Trace-Logging
PC - IPEmotion
Android Tablet &
IPEmotion App
LAN
WLAN
M-Module
WLAN
IPEhub2
CAN2
...
CAN1
Fahrzeug (ECU)
Beschreibung:
In der Anwendung als kabelloses Display-Konzept dient der IPEhub2 in Verbindung mit einem Tablet dazu,
Fahrern und Test-Ingenieuren die relevanten Messgrößen komfortabel darzustellen. Über IPEmotion wird die
Konfiguration der Display-Darstellung und die Messkonfiguration der CAN-Schnittstellen vorgenommen und
direkt auf die Messhardware übertragen.
Live-Daten werden unmittelbar nach Aufbau der WLAN-Verbindung des IPEhub2 zum Tablet und Start der
IPEmotion App angezeigt. Parallel werden die gemessenen Daten auf der internen SD-Karte des IPEhub2
abgelegt und können direkt in IPEmotion importiert und analysiert werden.
Die App bietet folgenden Funktionsumfang:
• Manuelles oder automatisches Auslösen der Datenspeicherung des IPEhub2
• Hinzufügen von Kommentaren zu den aufgenommenen Daten
• Hinzufügen und Modifizieren der Display-Instrumente und Definition eines individuellen Layouts
• Speichern neu erstellter Display-Instrumente auf dem IPEhub2
• Multi-Tablet-Funktion zur gleichzeitigen Datenvisualisierung auf mehreren Tablets
Video: https://youtu.be/HGBeR4kvrDM
16
ANWENDUNGSBEISPIELE
Flotten-Datenlogger
GPRS, UMTS, 3G weltweit
Internet
ETH
Messdaten Konfiguration
Beschreibungsdateien
CANdb
A2L
Datenlogger 1
Datenlogger 2
Datenlogger n
Verrechnen, Speichern
Verrechnen, Speichern
Verrechnen, Speichern
CAN 1, CAN 2, ... CAN x
CCP, KWP, XCP, UDS
CAN 1, CAN 2, ... CAN 4
CCP, KWP, XCP, UDS
CAN 1, CAN 2, ... CAN 12
CCP, KWP, XCP, UDS
Messstellenplan
FlexRay: FIBEX, AUTOSAR
...
Fahrzeug (ECU)
...
Fahrzeug (ECU)
...
Fahrzeug (ECU)
17
18
ÜBERSICHT DER MODULE
Signal
Sensor
Temperatur
Thermoelement Typ J
■
Temperatur
Thermoelement Typ K
■
Temperatur
Thermoelement Typ N
■
Temperatur
Thermoelement Typ R
■
Temperatur
Thermoelement Typ S
■
Temperatur
Thermoelement Typ T
■
Temperatur
RTD Pt100
Spannung
+/-2 mV (differenziell)
Spannung
+/-10 mV Min-Bereich
Spannung
bis +/-2 V (differenziell)
■
■
Iso Clamp Connector
High Voltage Iso Divider
AnalogModule
■
■
■
■
■
■
■
■
■
■
■
Spannung
bis +/-50 V
Spannung
bis +/-100 V
HV-Spannung
bis +/-1000 V
Spannung
DMS Voll-, 1/2-, 1/4-Brücke
■
■
Spannung
ICP (IEPE)
■
■
TEDS-Unterstützung
IEEE 1451.4 Class 2
■
■
■
■
■
■
■
■
■
■
Frequenz
■
■
Periodendauer
■
■
Tastverhältnis
■
■
Ereignis
■
Drehrichtung
Mx-SENS
CANpressure
SIM-STG
M-THERMO2 HV
High Voltage Iso DAQ
MultiDAQ
M-CNT
M-SENS
X-Bus-Module
M-RTD
µ-THERMO
M-THERMO
CAN-Module
Sx-STG
Module
Inkremental
■
Zählung vor/rückw.
Inkremental
Strom
bis +/-20 mA
■
■
■
Strom
über Stromzange
■
■
HV-Strom
über Stromzange
Druck direkt
bis 250 bar (abs, rel)
■
■
■
■
■
■
19
Mx-SENS2 4
Fast 4-Channel Analog Measurement Device with Excitation
 4 fast analog signal inputs for voltage / IEPE (Integrated Electronics Piezo-Electric)
 Up to 100 kHz sample rate per channel
 10 bipolar voltage measurement ranges
 TEDS support
 4 galvanically isolated sensor excitations, supply voltage selectable
 Status LED at each input channel
 Measurement data output to Ethernet using XCPonEthernet, Measurement data output to CAN
 Real Time Ethernet Synchronization IEEE1588
 Complete galvanic isolation (inputs, excitation, CAN, Ethernet, power supply, enclosure)
 Designed for automotive in-vehicle use
 Toolless module to module connection
General
Ranges covering input signals ±0.1 V to ±100 V
Input voltage (IN+ ↔ IN-)
max. ±100 V, short-time (1 ms) ±200 V
Channel sample rates
Standard mode
High mode
10/ 20/ 50/ 100/ 200/ 500 Hz, 1/ 2/ 5/ 10 kHz
1/ 2/ 5/ 10/ 20/ 50/ 100 kHz
Internal sample rate (max. per channel)
100 kHz
Total sample rate (max. per module)
400 kHz (Ethernet), 2 kHz (CAN)
Voltage supply
9 VDC to 36 VDC (Switch-off for voltage < 6 V)
Power consumption, typical
4.2 W
Operating temperature range
-40 °C ... +105 °C (-40 °F ... +221 °F)
Storage temperature range
-55 °C ... +105 °C (-67 °F ... +221 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions (W x H x D), approx.
106 mm x 60 mm x 62 mm (4.17 in x 2.36 in x 2.44 in)
Weight
approx. 500 g (1.10 lb)
Cables
Measuring input
670-810.xxx
M-SENS (TEDS) Cable open
Connecting cable ETH (data, power)
Power cable terminated
Data cable
630-500.xxx
630-501.xxx
630-502.xxx
X-LINK Cable System
X-LINK Cable PWR Banana-2
X-LINK Cable RJ45
20
Mx-SENS2 4
Voltage / Current input
electrically isolated
Galvanic isolation
input ↔ module power supply
input ↔ excitation
input ↔ CAN
input ↔ input
nominal voltage
±100 V
±100 V
±100 V
±100 V
pulse voltage
±500 V
±500 V
±500 V
±500 V
Measuring ranges
Voltage (bipolar)
Input resistance
±0.1/ ±0.2/ ±0.5/ ±1/ ±2/ ±5/ ±10/ ±20/ ±50/ ±100 V
5 MΩ
Current (bipolar)
Input resistance
±20 mA
50 Ω
Resolution
22 Bit (oversampling)
Accuracy at 25 °C (77 °F) ambient temperature
±0,06 %
±0,30 %
Drift at an ambient temperature of:
-40 °C … +105 °C (-40 °F to +221 °F)
voltage ranges
current range
±20 ppm/K
Input channel status LED
1. Channel identification for configuration (flashing)
2. Current overload indication (LED on)
Offset adjust by broadcast command
(Offset adjust also supported during measurement!)
- Manual offset adjust
- Offset adjust for all channels of a group
Hardware filter
12 kHz, filter type 8-pole Butterworth, switchable
Software filter
cut-off frequency and filter type selectable
ICP Mode
Piezo electric sensors
Nominal current, regulated
4.5 mA ±10 %
Measuring range
±0.1/ ±0.2/ ±0.5/ ±1.0/ ±2.0/ ±5.0/ ±10.0 V
Cut-off frequency
lower
upper
filter can be switched off,
1 Hz or 200 Hz per software selectable
50 kHz without HW / SW filter
Accuracy
±20 %
Sensor excitation
electrically isolated
Selectable output voltage
Off/ ±2.5/ ±5/ ±7.5/ ±8,0/ ±10/ ±12.5/ ±15 VDC
Output current (short circuit proof)
at VOut ±2.5/ ±10.0 V
at VOut ±5.0/ ±12.5 V
at VOut ±7.5/ ±15.0 V
±25 mA (independed from output voltage)
max. ±30 mA
max. ±40 mA
max. ±60 mA
Interfaces
Ethernet, CAN
Fast Ethernet (100Base-TX)
100 MBit/s data transfer rate according to IEEE 802.3
CAN 2.0B (High Speed)
max. 1 MBit/s according to ISO11898-2
Data format
16 Bit (Word) resp. 32 Bit (DWord Float)
resolution / format
Configuration interface
X-LINK Ethernet
21
Mx-SENS2 8
English
Fast 8-Channel Analog Measurement Device with Excitation
8 analog signal inputs for voltage / current
8 separate sensor excitations, supply voltage individually selectable (up to ±15 V, ±45 mA)
12 unipolar and 12 bipolar measuring ranges
2 current measuring ranges
10 mV range, e.g. for standby current applications
Status LED at each input channel (sensor break indication and configuration aid)
Measurement data output to Ethernet using XCPonEthernet, Measurement data output to CAN
Complete galvanic isolation (inputs, excitation, CAN, Ethernet, power supply, enclosure)
Designed for automotive use
Toolless module to module connection (M2 series housing)
Measurement ranges
Covering input signals r0.01 V to r100 V
Input voltage (IN+ ļ IN-)
max. r100 V, short-time (1 ms) r200 V
Channel sample rates
1/ 2/ 5/ 10/ 20/ 50/ 100/ 200/ 500 Hz
1/ 2/ 5/ 10 kHz
(CAN up to 2 kHz)
Internal sample rate (max. per channel)
10 kHz
Voltage supply
9 VDC to 36 VDC Switch-off for voltage < 6 V
Power consumption, typical
4.0 W (all excitations off)
Working temperature range
-40 °C ... +85 °C (-40 °F ... +185 °F)
Storage temperature range
-55 °C ... +105 °C (-67 °F ... +221 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions
W204 mm x H41 mm x D55 mm
(W8.03 in x H1.61 in x D2.17 in
Weight
690 g (1.52 lb)
Cables
Measuring input
670-810.xxx
M-SENS (TEDS) Cable open
Connecting cable ETH (data, power)
Power cable terminated
Data cable
630-500.xxx
630-501.xxx
630-502.xxx
X-LINK Cable System
X-LINK Cable PWR Banana-2
X-LINK Cable RJ45
22
Mx-SENS2 8
Voltage input
electrically isolated
Galvanic isolation
input ļ module power supply
input ļ excitation
input ļ CAN
input ļ input
nominal voltage
r100 V, short-time (1 ms) r200 V
r100 V, short-time (1 ms) r200 V
r100 V, short-time (1 ms) r200 V
r100 V, short-time (1 ms) r200 V
Voltage ranges
Voltage unipolar ( 0 ... )
Input resistance
0.01/ 0.1/ 0.2/ 0.5/ 1/ 2/ 5/ 10/ 20/ 30/ 50/ 100 V
10 Mȍ
Voltage bipolar ( + / - )
Input resistance
±0.01/ ±0.1/ ±0.2/ ±0.5/ ±1/ ±2/ ±5/ ±10/ ±20/ ±30/
±50/ ±100 V
10 Mȍ
Current unipolar ( 0 ... ) / bipolar ( + / - )
Input resistance
0 ... 20 mA, ±20 mA
50 ȍ
Signal resolution
16 Bit
Accuracy at Tambient = 25 °C (77 °F)
±0.06 %
r0,10 %
±0.40 %
Drift at an ambient temperature of
-40 °C to +85 °C
(-40 °F to +185 °F)
bipolar voltage ranges
unipolar voltage ranges
current ranges (bipolar, unipolar)
±40 ppm/K
Input channel status LED
1. Channel identification for configuration (LED flashes)
2. Current overload indication (LED on)
Offset adjust by broadcast command
- manual offset adjust
- offset adjust for all channels of a group
(Offset adjust also supported during
measurement!)
Hardware filter, switchable
1200 Hz, filter type 8-pole Butterworth
Software filter (DSP), optional
cut-off frequency and filter type selectable
Aggregate sample rate
max. 80 kHz (CAN up to 2 kHz)
Sensor excitation
electrically isolated
Selectable output voltage
Off/ ±2.5/ ±5/ ±7.5/ ±8,0/ ±10/ ±12.5/ ±15 VDC
Output current (short circuit proof)
at Voutput ±2.5/ ±10.0 V
at Voutput ±5.0/ ±12.5 V
at Voutput ±7.5/ ±15.0 V
±25 mA (independent from output voltage)
max. ±30 mA
max. ±40 mA
max. ±45 mA
Accuracy at an ambient temperature of
-40 °C / 23 °C / 85 °C
(-40 °F / 73 °F / 185 °F)
±0.40 % / ±0.25 % / ±0.40 %
Interfaces
Ethernet, CAN
Fast Ethernet (100Base-TX)
100 MBit/s data transfer rate according to IEEE 802.3
CAN 2.0B (High Speed)
Data transfer rate, selectable
(data output to CAN Bus in preparation)
max. 1 MBit/s according to ISO11898-2
Data format
16 Bit (Word) resp. 32 Bit (DWord Float)
resolution / format
Configuration interface
Ethernet (CAN projected)
23
Sx-STG
Fast 8-Channel Multi-Analog Measurement Device with Excitation
8 analog signal inputs for voltage measurements
Measurement modes: SENS, STG, ICP, individual for each input
8 separate dual sensor excitations (up to r15 V, up to r45 mA)
Offset and target adjust functions, shunt check
Internal resistors for bridge completion selectable
TEDS support (data output to Ethernet)
Measurement data output to Ethernet using XCPonEthernet, Measurement data output to CAN
Complete galvanic isolation (signal inputs, excitation, CAN, Ethernet, power supply)
Designed for automotive in-vehicle use
Toolless module to module connection as option
Measurement modes
SENS up to r50 V, STG up to r2 V, ICP up to r5 V
Input resistance
10 Mȍ (differential), 5 Mȍ (ground related)
dual, single
Channel sample rates
1/ 2/ 5/ 10/ 20/ 50/ 100/ 200/ 500 Hz
1/ 2/ 5/ 10/ 20/ 40 kHz (CAN up to 2 kHz)
Internal sample rate ()
40 kHz max. per channel
Voltage supply
9 VDC to 36 VDC, Switch-off for voltage < 6 V
Power consumption, typical
7.5 W (all excitations off)
Working temperature range
-40 °C ... +85 °C (-40 °F ... +185 °F)
Storage temperature range
-55 °C ... +105 °C (-67 °F ... +221 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions (W x H x D)
75 mm x 119 mm x 185 mm, (2.95 in x 4.69 in x 7.28 in)
Weight
1430 g (3.15 lb)
Cables
Measuring input Lemo 2B 10-pin
Lemo 1B 7-pin
600-747.xxx
670-850.xxx
STG 2B 10p. Cable open
DMS/STG Cable open
Connecting cable ETH (data, power)
Power cable terminated
Data cable
630-500.xxx
630-501.xxx
630-502.xxx
X-LINK Cable System
X-LINK Cable PWR Banana-2
X-LINK Cable RJ45
24
Sx-STG
Measurement input general
Resolution (SAR ADC)
16 Bit
Pre-filter (HF)
Cut-off frequency fc
Type
Accuracy
17 kHz
RC 2-pole
25 %
Hardware filter
Cut-off frequency fc
Type
Accuracy
4800 Hz, can be switched off
Butterworth 8-pole
10 %
Software filter (DSP)
Cut-off frequency fc, selectable
Type, selectable
Accuracy
1.0/ 1.25/ 1.667/ 2.5/ 5.0/ 6.667/ 10/ 12.5/ 16.67/ 25/
50/ 66.67/ 100/ 125/ 166.7/ 250/ 500/ 667 Hz
1.0/ 1.25/ 1.667/ 2.5/ 5.0/ 6.667/ 10/ 12.5/ 16.67 kHz
Butterworth, Bessel, Elliptic 8-pole
0.05 %
Wire break detection for sensor excitation
Galvanic isolation
input ļ module power supply
excitation ļ module power supply
input ļ input
nominal voltage
r100 V, short-time (1 ms) r200 V
r100 V, short-time (1 ms) r200 V
r100 V, short-time (1 ms) r200 V
Input female connectors
7-pin (SIM-DMS compatible)
10-pin (TEDS)
EGG 1B 307
EGG 2B 310
SENS Mode
Voltages up to r50 V
Measuring ranges unipolar / bipolar
Accuracy @ Ta = 25 °C
0.01 / 0.02 / 0.05 / 0.1 / 0.2 / 0.5 / 1 / 2 / 5/ 10/ 20/ 50 V
0,075 %
corresponding to the absolute value
of the range selected
30 ppm/K
Drift
Sensor excitation
Output voltage, selectable
Bipolar
Uniploar
Accuracy @ Ta = 25 °C
Drift
Output current
Offset adjust
(also during measurement)
2-wire connection
r0.5/ r1.25/ r2.5/ r5/ r10/ r12/ r15 V
0.5/ 1.25/ 2.5/ 5/ 10/ 12/ 15 V
0.5 %
30 ppm/K
45 mA, short-circuit proof, (software controlled)
manual adjust with channel multiple selection
25
Sx-STG
STG Mode
Differential voltages up to r2 V
Measuring ranges
Range 1
Accuracy @ Ta = 25 °C
r2 ... r62 mV
r0.10 % + 15 μV
Drift
Range 2
Accuracy @ Ta = 25 °C
30 ppm/K
r64 ... r998 mV
r0.075 % + 7 μV
Drift
Range 3
Accuracy @ Ta = 25 °C
30 ppm/K
r1000 ... r2000 mV
r0.05 % + 7 μV
Drift
adjustable in 2 mV steps
corresponding to the absolute
value of the range configured
adjustable in 2 mV steps
corresponding to the absolute
value of the range configured
adjustable in 2 mV steps
corresponding to the absolute
value of the range configured
30 ppm/K
Special functions
Bridge adjust
Shunt check (in preparation)
Shunt resistor simulation
Resistors for bridge completion
zero adjust resp. target value adjust by hardware
on all 4 arms of the bridge, on command also during the
measurement executable
5 ... 200 kȍ, (depending on excitation voltage)
120, 350, 1000 ȍ software selectable
Sensor excitation
Output voltage, selectable
Accuracy @ Ta = 25 °C
Drift
Output current
4-wire-/ 6-wire connection
r0.5/ r1.25/ r2.5/ r5 V
0.1 %
30 ppm/K
45 mA, short-circuit proof, (software controlled)
ICP Mode
Piezo electric sensors
Nominal current, regulated
Measuring range
Cut-off frequency, Accuracy
lower
upper
Off-load voltage
4,5 mA r10 %
r0.1/ r0.2/ r0.5/ r1.0/ r2.0/ r5.0 V
filter can be switched off, r20 %
0.1 Hz
16000 Hz
24 V
Interfaces
Ethernet, CAN
Fast Ethernet (100Base-TX)
100 MBit/s data transfer rate according to IEEE 802.3
CAN 2.0B (High Speed)
Data transfer rate, selectable
max. 1 MBit/s according to ISO11898-2
Data format
16 Bit (Word) resp. 32 Bit (DWord Float)
resolution / format
Configuration interface
26
Ethernet
27
M-UNI2
8-Channel Multi Input for K-Type Thermocouples and Voltage
 8 analog measuring inputs for:
- K-Type thermocouples (NiCr/NiAl)
- Voltage up to ±30 V
 Cold junction compensation per channel
 Separate 24 Bit ADC for each channel
 Status LED at each input channel (sensor break indication and configuration aid)
 Measurement data output to CAN
 Complete galvanic isolation (inputs, CAN, power supply, enclosure)
 Designed for engine compartment applications
 Toolless module to module connection
Measurement ranges
-60 to 1370 °C (-76 to 2498 °F), ±30 V
Input voltage
max. ±50 V (indefinitely), ±200 V (short-time, t < 2 ms)
Channel sample rates
1/ 2/ 5/ 10/ min
1/ 2/ 5/ 10/ 20/ 50/ 100 Hz
Voltage supply
6 VDC to 36 VDC
Power consumption, typical
1.1 W
Working temperature range
-40 ... +125 °C (-40 ... +257 °F)
Storage temperature range
-55 ... +150 °C (-67 ... +302 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions
W106 mm x H30 mm x D57.5 mm
(W4.17 in x H1.18 in x D2.26 in)
Weight
305 g (0.67 lb)
Cables
28
Measuring input
620-644.xxx
Mc-THERMO VIN CL Cable open
Connecting cable M-CAN (data, power)
Power cable terminated
Data cable terminated
620-560.xxx
620-561.xxx
620-502.xxx
M-CAN Cable (CAN, PWR)
M-CAN Cable PWR Banana-2
M-CAN Cable D-Sub /S
M-UNI2
Measuring input general
Galvanic isolation
input ↔ module power supply
input ↔ CAN
input ↔ input
nominal voltage
±100 V
±100 V
±100 V
ADC resolution
24 Bit
Align of the AD converter unit
at processing each measuring value
Input channel status LED
1. Identify the respective channel in configuration
mode
pulse voltage
±500 V
±500 V
±500 V
(LED flashes)
2. Identify sensor break in measuring mode
(LED lights continuously)
Aggregate sampling rate
max. 800 Hz
Temperature mode
-60 to 1370 °C (-76 to 2498 °F)
Sensor type
K-Type thermocouple (Ni10Cr/NiAl)
Resolution
16 Bit
Linearization of sensor characteristic line
numerical, interpolated, resolution 15 Bit
Cold junction compensation
each input with PT100 (RTD) for the reference
temperature
Accuracy at ambient temperature
Ta = 25 °C (77 °F) and measured temperature
-60 °C to 1000 °C (-76 °F to 1832 °F)
1000 °C to 1370 °C (1832 °F to 2498 °F)
±0.035 % of full temperature range
±0.035 % of full temperature range ±2 Kelvin
Drift at ambient temperature range:
-40 °C to +125 °C (-40 ... +257 °F)
±40 ppm/K
Input resistance, approx.
2.6 MΩ (sensor break detection active)
4.1 MΩ (sensor break detection inactive)
Sensor break detection
activated per software on command
Hardware filter
2.5 Hz, filter type single pole RC low-pass
Voltage mode
±30 V
Resolution
16 Bit
Accuracy at 25 °C (77 °F) ambient temperature
±0.1 % of total voltage range (±60 mV)
Drift at ambient temperature range:
-40 °C to +125 °C (-40 ... +257 °F)
±50 ppm/K
Input resistance, approx.
4.1 MΩ @ 25 °C (77 °F) ambient temperature
3.6 MΩ @ 85 °C (185 °F) ambient temperature
1.2 MΩ @ 125 °C (257 °F) ambient temperature
Hardware filter
330 Hz, filter type single pole RC low-pass
CAN output
Selectable data transfer rate (bit rate)
up to 1 MBit/s according to ISO11898-2
CAN message data format (signal)
Resolution (Format)
Sign
8 Bit (Byte) and 16 Bit (Word) selectable
signed, unsigned
Configuration interface
CAN
29
M-THERMO2 u
8-Channel Universal Thermocouple Inputs
 8 Universal thermocouple inputs supporting type J, K, N, R, S, T
 Cold junction compensation for each channel
 Separate ADC for each channel
 Status LED at each input channel (sensor break indication and configuration aid)
 Measurement data output to CAN
 Complete galvanic isolation (inputs, CAN, power supply, enclosure)
 Designed for automotive use
 Toolless module to module connection
Measurement ranges
-60 to 1760 °C (-76 to 3200 °F)
depends on sensor type selection
Input voltage
max. ±50 V (indefinitely), ±200 V (short-time, t < 2 ms)
Channel sample rates
1/ 2/ 5/ 10/ min
1/ 2/ 5/ 10/ 20/ 50/ 100 Hz
Voltage supply
9 VDC to 36 VDC
Switch-off for voltage < 6 V
Power consumption, typical
1.1 W
Working temperature range
-40 °C ... +125 °C (-40 °F ... +257 °F)
Storage temperature range
-40 °C ... +150 °C (-40 °F ... +302 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions
W106 x H30 x D57.5 mm (W4.17 x H1.18 x D2.26 in)
Weight
305 g (0.67 lb)
Cables
Measuring input
600-888.xxx
TH-MIN Cable open
Connecting cable M-CAN (data, power)
Power cable terminated
Data cable terminated
620-560.xxx
620-561.xxx
620-502.xxx
M-CAN Cable (CAN, PWR)
M-CAN Cable PWR Banana-2
M-CAN Cable D-Sub /S
30
M-THERMO2 u
Thermocouple measurement input
Type J, K, N, R, S, T
Galvanic isolation
input ↔ module power supply
input ↔ CAN
input ↔ input
nominal voltage
±100 V
±100 V
±100 V
pulse voltage
±500 V
±500 V
±500 V
Measurement ranges
Type J
Fe/CuNi
-50 °C to 1000 °C
-58 °F to 1832 °F
Type K
NiCr/NiAl
-60 °C to 1370 °C
-76 °F to 2498 °F
Type N
NiCrSi/NiSi
-50 °C to 1300 °C
-58 °F to 2372 °F
Type R
Pt13Rh/Pt
-50 °C to 1760 °C
-58 °F to 3200 °F
Type S
Pt10Rh/Pt
-50 °C to 1760 °C
-58 °F to 3200 °F
Type T
Cu/CuNi
-200 °C to 200 °C
-328 °F to 392 °F
Resolution
16 Bit
Linearization of sensor characteristic line
numerical, interpolated
Cold junction compensation
each input with RTD (Pt100) for the reference
temperature
Accuracy at ambient temperature
Ta = 25 °C (77 °F) and measured temperature
Lower range to 1000 °C (-76 °F to 1832 °F)
1000 °C to 1370 °C (1832 °F to 2498 °F)
±0.025 % of full temperature range
±0.025 % of full temperature range ±2 Kelvin
Drift at ambient temperature range:
-40 °C to +125 °C (-40 ... +257 °F)
±10 ppm/K
Input resistance, approx.
2.6 MΩ (sensor break detection active)
4.1 MΩ (sensor break detection inactive)
Align of the AD converter unit
at processing each measuring value
Sensor break detection
activated per software on command
Input channel status LED
1. Identify the respective channel in configuration mode
(LED flashes)
2. Identify sensor break in measuring mode
(LED lights continuously)
Hardware filter
10 Hz, filter type single pole RC low-pass
Aggregate sampling rate
max. 800 Hz
Miniature thermocouple connectors
color
female connector material
gray
gold plated
CAN output
Selectable data transfer rate (bit rate)
up to 1 MBit/s according to ISO11898-2
CAN message data format (signal)
Resolution (Format)
Sign
8 Bit (Byte) and 16 Bit (Word) selectable
signed, unsigned
Configuration interface
CAN
31
M-THERMO2 K8
8-Channel Temperature Measurement for K-Type Thermocouples
 8 Thermocouple measurement inputs type K (NiCr/NiAl)
 Cold junction compensation per channel
 Separate ADC for each channel
 Status LED at each input channel (sensor break indication and configuration aid)
 Measurement data output to CAN
 Complete galvanic isolation (inputs, CAN, power supply, enclosure)
 Designed for engine compartment applications
 Toolless module to module connection
Measurement range
-60 °C to 1370 °C (-76 °F to 2498 °F)
Input voltage
max. ±50 V (indefinitely), ±200 V (short-time, t < 2 ms)
Channel sample rates
1/ 2/ 5/ 10/ min
1/ 2/ 5/ 10/ 20/ 50/ 100 Hz
Voltage supply
6 VDC to 36 VDC
Power consumption, typical
1.1 W
Working temperature range
-40 ... +125 °C (-40 ... +257 °F)
Storage temperature range
-55 ... +150 °C (-67 ... +302 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions
W106 mm x H30 mm x D57.5 mm
(W4.17 in x H1.18 in x D2.26 in)
Weight
315 g (0.69 lb)
Cables
Measuring input
600-888.xxx
TH-MIN Cable open
Connecting cable M-CAN (data, power)
Power cable terminated
Data cable terminated
620-560.xxx
620-561.xxx
620-502.xxx
M-CAN Cable (CAN, PWR)
M-CAN Cable PWR Banana-2
M-CAN Cable D-Sub /S
32
M-THERMO2 K8
Thermocouple measurement input
Galvanic isolation
input ↔ module power supply
input ↔ CAN
input ↔ input
nominal voltage
±100 V
±100 V
±100 V
Measuring range Type K (Ni10Cr/NiAl)
-60 to 1370 °C (-76 to 2498 °F)
Resolution
16 Bit
Linearization of sensor characteristic line
numerical, interpolated, resolution 15 Bit
Cold junction compensation
each input with PT100 (RTD) for the reference
temperature
Typical accuracy at 25 °C (77 °F)
ambient temperature
±0.025 % of full temperature range
Accuracy at ambient temperature
Ta = 25 °C (77 °F) and measured temperature
-60 °C to 1000 °C (-76 °F to 1832 °F)
1000 °C to 1370 °C (1832 °F to 2498 °F)
pulse voltage
±500 V
±500 V
±500 V
±0.035 % of full temperature range
±0.035 % of full temperature range ±2 K Kelvin
Drift at ambient temperature range:
-40 °C to +125 °C (-40 ... +257 °F)
±40 ppm/K
Input resistance, approx.
2.6 MΩ (sensor break detection active)
4.1 MΩ (sensor break detection inactive)
Align of the AD converter unit
at processing each measuring value
Sensor break detection
activated per software on command
Input channel status LED
1. Identify the respective channel in configuration mode
(LED flashes)
2. Identify sensor break in measuring mode
(LED lights continuously)
Hardware filter
10 Hz, filter type single pole RC low-pass
Aggregate sampling rate
max. 800 Hz
Input female connectors
color per DIN IEC 584
color per ANSI MC 96.1
Miniature thermocouple connector
green
yellow
CAN output
Selectable data transfer rate (bit rate)
up to 1 MBit/s according to ISO11898-2
CAN message data format (signal)
Resolution (Format)
Sign
8 Bit (Byte) and 16 Bit (Word) selectable
signed, unsigned
Configuration interface
CAN
31
M-RTD2
4-Channel RTD Temperature Input
4 measurement inputs for RTD
Measurement data output to CAN
Complete galvanic isolation (inputs, excitation, CAN, power supply, enclosure)
Designed for engine compartment applications
Toolless module to module connection
Measurement range
-50 °C to 450 °C (-58 °F to 842 °F)
Input voltage (PT_IN+ ļ PT_IN-)
max. r100 V (indefinitely), r200 V (short-time, t < 2 ms)
Channel sample rates
1/ 2/ 5/ 10/ min
1/ 2/ 5/ 10/ 20/ 50/ 100 Hz
Offset adjust by broadcast command
- manual offset adjust
- offset adjust for all channels of a group
(Offset adjust also supported during measurement.)
Voltage supply
9 to 36 VDC
Switch-off for voltage < 6 V
Power consumption, typical
2.5 W
Working temperature range
-40 ... +125 °C (-40 ... +257 °F)
Storage temperature range
-40 ... +150 °C (-40 ... +302 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions
W106 mm x H43 mm x D60 mm
(W4.17 in x H1.69 in x D2.36 in)
Weight
410 g (0.90 lb)
Cables
Measuring input
670-937.xxx
620-657.xxx
PT100/RTD 0S Cable open
M-RTD 1S 4-pin Cable open
Connecting cable M-CAN (data, power)
Power cable terminated
Data cable terminated
620-560.xxx
620-561.xxx
620-502.xxx
M-CAN Cable (CAN, PWR)
M-CAN Cable PWR Banana-2
M-CAN Cable D-Sub /S
34
M-RTD2
Measuring input for RTDs
Galvanic isolation
input ļ module power supply
input ļ excitation
input ļ CAN
input ļ input
nominal voltage
r100 V
r100 V
r100 V
r100 V
Measuring range PT
-50 to 450 °C (-58 to 842 °F)
Supported RTDs
RTD100 (PT100)
AD converter resolution (ADC SAR)
16 Bit
Accuracy at ambient temperature
Ta = 25 °C
(77 °F)
Ta = -40 °C ... 85 °C
(-40 °F ... 185 °F)
Ta = -40 °C ... 125 °C
(-40 °F ... 257 °F)
±0.10 K
±0.60 K
±1.25 K
Hardware filter, switchable
150 Hz, filter type 8-pole Butterworth
Software filter (DSP), selectable
cut-off frequency and filter type selectable
Internal sample rate
1 kHz
pulse voltage
r500 V
r500 V
r500 V
r500 V
(0.02 % of measuring range)
(0.12 % of measuring range)
(0.25 % of measuring range)
Current output PT
Inverse voltage (I_OUT+ ļ I_OUT-)
max. r20 V
Closed loop controlled curent
(short-circuit-proof)
1 mA
Female connectors
Version M-CAN Lemo (IPETRONIK standard)
Version CAN Lemo
System connector
EGA 0B 309
EGG 0B 305
Input connector
ERA 0S 304
ERA 1S 304
CAN output
Selectable data transfer rate (bit rate)
up to 1 MBit/s according to ISO11898-2
CAN message data format (signal)
Resolution (Format)
Sign
8 Bit (Byte) and 16 Bit (Word) selectable
signed, unsigned
Configuration interface
CAN
35
M-SENS2
4-Channel Analog Input with Sensor Excitation
4 measurement inputs for voltage / current
4 separate sensor excitations, supply voltage individually selectable (up to 15 V, 60 mA)
12 unipolar and 12 bipolar measuring ranges
TEDS support (optional)
Measurement data output to CAN
Complete galvanic isolation (signal inputs, excitation, CAN, power supply, enclosure)
Designed for engine compartment applications
Toolless module to module connection
Measurement ranges
Covering input signals 0.1 V to 100 V
Input voltage (IN+ ļ IN-)
max. r100 V (indefinitely), r200 V (short-time, t < 2 ms)
Channel sample rates
1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz
Voltage supply
9 VDC to 36 VDC
Switch-off for voltage < 6 V
Power consumption, typical
3.0 W
Working temperature range
-40 ... +125 °C (-40 ... +257 °F)
Storage temperature range
-55 ... +150 °C (-67 ... +302 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions
W106 mm x H43 mm x D60 mm
(W4.17 in x H1.69 in x D2.36 in)
Weight
420 g (0.93 lb)
Cables
Measuring input
670-807.xxx
SENS Cable open (Lemo 1B 6-pin)
Connecting cable M-CAN (data, power)
Power cable terminated
Data cable terminated
620-560.xxx
620-561.xxx
620-502.xxx
M-CAN Cable (CAN, PWR)
M-CAN Cable PWR Banana-2
M-CAN Cable D-Sub /S
36
M-SENS2
Voltage input
electricllay isolated
Galvanic isolation
input ļ module power supply
input ļ excitation
input ļ CAN
input ļ input
nominal voltage
r100 V
r100 V
r100 V
r100 V
pulse voltage
r500 V
r500 V
r500 V
r500 V
Voltage ranges
Voltage unipolar ( 0 ... )
0.1/ 0.2/ 0.5/ 1/ 2/ 5/ 10/ 20/ 30/ 50/ 60/ 100 V
Accuracy at 25 °C (77 °F) ambient temperature
±0.13 %
Voltage bipolar ( + / - )
0.1/ 0.2/ 0.5/ 1/ 2/ 5/ 10/ 20/ 30/ 50/ 60/ 100 V
Accuracy at 25 °C (77 °F) ambient temperature
±0.05 %
Input resistance
10 0ȍ
Current ranges
Current unipolar ( 0 ... ) / bipolar ( + / - )
0 ... 20 mA, ±20 mA
Accuracy at 25 °C (77 °F) ambient temperature
±0.30 %
Input resistance
50 ȍ
General input specifications
Drift at an ambient temperature of
-40 °C to +85 °C
(-40 °F to +185 °F)
+85 °C to +105 °C (+185 °F to +221 °F)
+105 °C to +125 °C (+221 °F to +257 °F)
±40 ppm/K
±80 ppm/K
±120 ppm/K
Signal resolution
16 Bit
Offset adjust by broadcast command
(Offset adjust also supported during
measurement!)
- manual offset adjust
- offset adjust for all channels of a group
Hardware filter, switchable
250 Hz, filter type 8-pole Butterworth
Software filter (DSP), optional
cut-off frequency and filter type selectable
Internal channel sample rate
4 kHz
Aggregate sample rate
max. 8 kHz
TEDS support, optional
IEEE-1451.4 Class 2 (PlugIn IPETRONIK-X)
Sensor excitation
electricllay isolated
Selectable output voltage
Off/ 2.5/ 5/ 7.5/ 10/ 12.5/ 15 VDC
Max. output current
60 mA (short circuit proof and overload protected)
Accuracy at an ambient temperature of
23 °C (73 °F) / 85 °C (185 °F) / 120 °C (248 °F)
±0.20 % / ±0.40 % / ±0.60 %
Hardware connectors
Input female connectors
Version M-CAN Lemo (IPETRONIK standard)
System connector
EGA 0B 309
Input connector
EGG 1B 306
CAN output
2.0 B, electricllay isolated
Selectable data transfer rate (bit rate)
up to 1 MBit/s according to ISO11898-2
CAN message data format (signal)
Resolution (Format)
Sign
8 Bit (Byte) and 16 Bit (Word) selectable
signed, unsigned
Configuration interface
CAN
37
M-CNT2
4-Channel Universal Counter with Sensor Excitation
4 signal inputs with adjustable ON and OFF thresholds
Measurement modes: frequency from period duration, period duration, pulse duration,
pause duration, duty cycle, event counter, detection of rotating direction (mode frequency
and event counter)
4 separate sensor excitations, supply voltage individually selectable (up to 15 V, 60 mA)
Status LED at each input channel indicates signal processing
Measurement data output to CAN
Complete galvanic isolation (signal inputs, excitation, CAN, power supply)
Designed for engine compartment applications
Toolless module to module connection
Measurement ranges
(frequency, period duration)
0.03 Hz to 200 kHz, 1 μs to 200 s
Input voltage (IN+ ļ IN-)
max. r100 V (indefinitely), r200 V (short-time, t < 2 ms)
Channel sample rates
1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000/ 5000 Hz
Voltage supply
9 VDC to 36 VDC, Switch-off for voltage < 6 V
Power consumption, typical
2.0 W
Working temperature range
-40 ... +125 °C (-40 ... +257 °F)
Storage temperature range
-55 ... +150 °C (-67 ... +302 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions
W106 mm x H43 mm x D60 mm
(W4.17 in x H1.69 in x D2.36 in)
Weight
420 g (0.93 lb)
Cables
Measuring input
670-858.xxx
CNT/FRQ-IN Cable open
Connecting cable M-CAN (data, power)
Power cable terminated
Data cable terminated
620-560.xxx
620-561.xxx
620-502.xxx
M-CAN Cable (CAN, PWR)
M-CAN Cable PWR Banana-2
M-CAN Cable D-Sub /S
38
M-CNT2
Voltage input
electricllay isolated
Galvanic isolation
input ļ module power supply
input ļ excitation
input ļ CAN
input ļ input
nominal voltage
r100 V
r100 V
r100 V
r100 V
pulse voltage
r500 V
r500 V
r500 V
r500 V
Adjustable trigger thresholds
Quantization at range r4 V
Accuracy at 25 °C / -40 ... +125 °C
0.025 V
3%/8%
Quantization at range r40 V
Accuracy at 25 °C / -40 ... +125 °C
0.2 V
3%/8%
Signal modes
Online calculated by DSP
Frequency (min. / max. signal frequency)
0.03 Hz / max. 200 kHz
Duty cycle (range)
min. signal frequency
max. signal frequency (at 1 % accuracy)
0.01 % ... 99.99 %
0.03 Hz
10 kHz
@ 1 % duty cycle (worst case)
500 kHz @ 50 % duty cycle (best case)
10 kHz
@ 99 % duty cycle (worst case)
1 μ or 1/100 fC Filter (higher value)
(Reduced accuracy at higher signal frequency
and / or worst case duty cycle.)
Resolution
Period duration, Pulse duration, Pause duration
min. / max. duration, resolution
Event counter
1 μs / 200 s, 1 μ or 1/100 fC Filter (higher value)
Reset functions: without reset, reset by time, overflow,
Up/down counting with detection of rotating direction
General input specifications
Internal time base
Accuracy at 25 °C (77 °F)
Drift at -40 < T < 85 °C (-40 < T < 185 °F)
Drift at 85 < T < 105 °C (185 < T < 221 °F)
Drift at 105 < T < 125 °C (221 < T < 257 °F)
0.01 % (100 ppm)
r1.5 ppm/K
r2.5 ppm/K
r5.0 ppm/K
Hardware filter, adjustable
Attenuation Variance at 25 °C / -40 ... +125 °C
Off, 1 Hz ... 30 kHz, filter type 5-pole Bessel
±1.5 dB / ±3.0 dB
DC compensation
Attenuation Variance at 25 °C / -40 ... +125 °C
0.8 Hz (lower cut-off frequency (- 3 dB)
±1.0 dB / ±2.0 dB
Aggregate sampling rate
max. 5 kHz (without restriction)
4x 2 kHz (max. 2 CAN IDs used)
4x 5 kHz (max. 1 CAN ID used @ 1 MBit/s data rate)
2x 5 kHz (max. 1 CAN ID used @ 500 kBit/s data rate)
(depends on number of CAN IDS and bit rate)
Sensor excitation
electricllay isolated
Selectable output voltage
Off/ 2.5/ 5/ 7.5/ 10/ 12.5/ 15 VDC
Max. output current
60 mA (short circuit proof and overload protected)
Accuracy at an ambient temperature of
23 °C (73 °F) / 85 °C (185 °F) / 120 °C (248 °F)
±5.0 % / ±6.0 % / ±7.0 %
CAN output
CAN 2.0 B, electricllay isolated
Selectable data transfer rate (bit rate)
up to 1 MBit/s according to ISO11898-2
CAN message data format (signal)
Resolution (Format)
Sign
8 Bit (Byte) and 16 Bit (Word) selectable
signed, unsigned
Configuration interface
CAN
39
M-THERMO K16
16-Channel Temperature Measurement for Thermocouples Type K
 16 measurement inputs for thermocouples type K (NiCr/NiAl)
 4 RTDs (PT100) for the reference temperature (cold junction compensation)
 Status LED at each input channel (sensor break indication and configuration aid)
 Measurement data output to CAN
 Complete galvanic isolation (inputs, CAN, power supply, enclosure)
 Designed for engine compartment applications
 Toolless module to module connection
Measurement range
-60 °C to 1370 °C (-76 °F to 2498 °F)
Input voltage
max. ±50 V
Channel sample rates
1/ 2/ 5/ 10/ 20 Hz
Voltage supply
9 VDC to 36 VDC
Switch-off for voltage < 6 V
Power consumption, typical
1.2 W
Working temperature range
-40 °C ... +125 °C (-40 °F ... +257 °F)
Storage temperature range
-55 °C ... +150 °C (-67 °F ... +302 °F)
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions
W204 mm x H41 mm x D55 mm
(W8.03 in x H1.61 in x D2.17 in)
Weight
630 g (1.39 lb)
Cables
Measuring input
600-888.xxx
TH-MIN Cable open
Connecting cable M-CAN (data, power)
Power cable terminated
Data cable terminated
620-560.xxx
620-561.xxx
620-502.xxx
M-CAN Cable (CAN, PWR)
M-CAN Cable PWR Banana-2
M-CAN Cable D-Sub /S
40
M-THERMO K16
Voltage input
Galvanic isolation
input ↔ module power supply
input ↔ CAN
input ↔ input
±100 V, short-time (1 ms) ±200 V
±100 V, short-time (1 ms) ±200 V
±100 V, short-time (1 ms) ±200 V
Measuring range type K (Ni10Cr/NiAl)
-60 °C to 1370 °C (-76 °F to 2498 °F)
AD converter resolution
16 Bit
Linearization look-up table resolution
≥ 13 Bit / better than 0.174 °C (0.31 °F)
Cold junction compensation
4 PT100 (RTD) to measure the reference temperature
Typical accuracy at 25 °C (77 °F)
ambient temperature
±0.025 % of full temperature range
Accuracy at ambient temperature
Ta = 25 °C (77 °F) and measured temperature
-60 °C to 1000 °C (-76 °F to 1832 °F)
1000 °C to 1370 °C (1832 °F to 2498 °F)
±0.035 % of full temperature range
±0.035 % of full temperature range ±2 K Kelvin
Drift over ambient temperature:
-40 °C to +85 °C
+85 °C to +120 °C
±20 ppm/K
±30 ppm/K
Input resistance
approx. 1 MΩ with activated sensor break detection
approx. 10 MΩ with inactivated sensor break detection
Align of the AD converter
before processing each measuring value
Sensor break detection
activated per software on command
Input channel status LED
1. Channel identification for configuration (LED flashes)
2. Current overload indication (LED on)
Hardware filter
1.0 Hz, filter type single pole RC low-pass
Aggregate sampling rate
max. 320 Hz
Input female connectors
color per DIN IEC 584
color per ANSI MC 96.1
Miniature thermocouple connector
green
yellow
CAN output
Selectable data transfer rate (bit rate)
up to 1 MBit/s according to ISO11898-2
CAN message data format (signal)
Resolution (Format)
Sign
8 Bit (Byte) and 16 Bit (Word) selectable
signed, unsigned
Configuration interface
CAN
41
M-SENS 8
8-Channel Analog Input with Sensor Excitation
8 measurement inputs for voltage / current
8 separate sensor excitations, supply voltage individually selectable (up to ±15 V, ±45 mA)
11 unipolar and 11 bipolar measuring ranges
2 current measuring ranges
Status LED at each input channel (sensor break indication and configuration aid)
Measurement data output to CAN
Complete galvanic isolation (signal inputs, excitation, CAN, power supply, enclosure)
Designed for engine compartment applications
Toolless module to module connection
Measurement ranges
Covering input signals 0.1 V to 100 V
Input voltage (IN+ ļ,1-)
max. r100 V, short-time (1 ms) r200 V
Channel sample rates
1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz
Voltage supply
12, 24, 36 VDC automotive power supply systems
Switch-off for voltage < 6 V
Power consumption, typical
3.5 W
Working temperature range
-40 °C ... +125 °C (-40 °F ... +257 °F)
Storage temperature range
-55 °C ... +150 °C (-67 °F ... +302 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions
W204 mm x H41 mm x D55 mm
(W8.03 in x H1.61 in x D2.17 in)
Weight
695 g (1.53 lb)
Cables
Measuring input
670-807.xxx
SENS Cable open (Lemo 1B 6-pin)
Connecting cable M-CAN (data, power)
Power cable terminated
Data cable terminated
620-560.xxx
620-561.xxx
620-502.xxx
M-CAN Cable (CAN, PWR)
M-CAN Cable PWR Banana-2
M-CAN Cable D-Sub /S
42
M-SENS 8
Voltage input
electricllay isolated
Galvanic isolation
input ļ module power supply
input ļ excitation
input ļ CAN
input ļ input
nominal voltage
r100 V, short-time (1 ms) r200 V
r100 V, short-time (1 ms) r200 V
r100 V, short-time (1 ms) r200 V
r100 V, short-time (1 ms) r200 V
Voltage ranges
Voltage unipolar ( 0 ... )
Input resistance
0.1/ 0.2/ 0.5/ 1/ 2/ 5/ 10/ 20/ 30/ 50/ 100 V
10 Mȍ
Voltage bipolar ( + / - )
Input resistance
±0.1/ ±0.2/ ±0.5/ ±1/ ±2/ ±5/ ±10/ ±20/ ±30/ ±50/ ±100 V
10 Mȍ
Current unipolar ( 0 ... ) / bipolar ( + / - )
Input resistance
0 ... 20 mA, ±20 mA
50 ȍ
Signal resolution
16 Bit
Accuracy at Tambient = 25 °C (77 °F)
±0.10 %
r0,15 %
±0.50 %
Drift at an ambient temperature of
-40 °C to +85 °C
(-40 °F to +185 °F)
+85 °C to +105 °C (+185 °F to +221 °F)
+105 °C to +125 °C (+221 °F to +257 °F)
bipolar voltage ranges
unipolar voltage ranges
current ranges (bipolar, unipolar)
±40 ppm
±80 ppm
±250 ppm
Input channel status LED
1. Channel identification for configuration (LED flashes)
2. Current overload indication (LED on)
Offset adjust by broadcast command
- manual offset adjust
- offset adjust for all channels of a group
(Offset adjust also supported during
measurement!)
Hardware filter, switchable
150 Hz, filter type 8-pole Butterworth
Software filter (DSP), optional
cut-off frequency and filter type selectable
Aggregate sample rate
max. 16 kHz (1 MBit/s data rate, no other devices)
Sensor excitation
electricllay isolated
Selectable output voltage
Off/ ±2.5/ ±5/ ±7.5/ ±8,0/ ±10/ ±12.5/ ±15 VDC
Output current (short circuit proof)
at Voutput ±2.5/ ±10.0 V
at Voutput ±5.0/ ±12.5 V
at Voutput ±7.5/ ±15.0 V
±25 mA (independent from output voltage)
max. ±30 mA
max. ±40 mA
max. ±45 mA
Derating (decrease of total output power)
-1.25 %/K for Tambient • 85 °C
Accuracy at an ambient temperature of
-40 °C / 23 °C / 85 °C / 120 °C
(-40 °F / 73 °F / 185 °F / 248 °F)
±0.50 % / ±0.30 % / ±0.50 % / ±0.70 %
Hardware connectors
Standard
ODU
System connector
EGA 0B 309
EGA 0B 309
Input connector
EGG 1B 307
Series F, Size 1, 5-pin
CAN output
2.0 B, electricllay isolated
Selectable data transfer rate (bit rate)
up to 1 MBit/s according to ISO11898-2
CAN message data format (signal)
Resolution (Format)
Sign
8 Bit (Byte) and 16 Bit (Word) selectable
signed, unsigned
Configuration interface
CAN
43
M-SENS 8plus
8-Channel Analog Input with Sensor Excitation
8 measurement inputs for voltage / current
8 separate sensor excitations, supply voltage individually selectable (up to ±15 V, ±45 mA)
12 unipolar and 12 bipolar measuring ranges
2 current measuring ranges
10 mV range, e.g. for stanby current applications
Status LED at each input channel (sensor break indication and configuration aid)
Measurement data output to CAN
Complete galvanic isolation (inputs, excitation, CAN, power supply, enclosure)
Designed for engine compartment applications
Toolless module to module connection
Measurement ranges
Covering input signals 0.01 V to 100 V
Input voltage (IN+ ļ,1-)
max. r100 V, short-time (1 ms) r200 V
Channel sample rates
1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz
Voltage supply
12, 24, 36 VDC automotive power supply systems
Switch-off for voltage < 6 V
Power consumption, typical
3.5 W
Working temperature range
-40 °C ... +125 °C (-40 °F ... +257 °F)
Storage temperature range
-55 °C ... +150 °C (-67 °F ... +302 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions
W204 mm x H41 mm x D55 mm
(W8.03 in x H1.61 in x D2.17 in)
Weight
695 g (1.53 lb)
Cables
Measuring input
670-807.xxx
SENS Cable open (Lemo 1B 6-pin)
Connecting cable M-CAN (data, power)
Power cable terminated
Data cable terminated
620-560.xxx
620-561.xxx
620-502.xxx
M-CAN Cable (CAN, PWR)
M-CAN Cable PWR Banana-2
M-CAN Cable D-Sub /S
44
M-SENS 8plus
Voltage input
electricllay isolated
Galvanic isolation
input ļ module power supply
input ļ excitation
input ļ CAN
input ļ input
nominal voltage
r100 V, short-time (1 ms) r200 V
r100 V, short-time (1 ms) r200 V
r100 V, short-time (1 ms) r200 V
r100 V, short-time (1 ms) r200 V
Voltage ranges
Voltage unipolar ( 0 ... )
Input resistance
0.01/ 0.1/ 0.2/ 0.5/ 1/ 2/ 5/ 10/ 20/ 30/ 50/ 100 V
10 Mȍ
Voltage bipolar ( + / - )
Input resistance
±0.01/ ±0.1/ ±0.2/ ±0.5/ ±1/ ±2/ ±5/ ±10/ ±20/ ±30/
±50/ ±100 V
10 Mȍ
Current unipolar ( 0 ... ) / bipolar ( + / - )
Input resistance
0 ... 20 mA, ±20 mA
50 ȍ
Signal resolution
16 Bit
Accuracy at Tambient = 25 °C (77 °F)
±0.06 %
r0,10 %
±0.40 %
bipolar voltage ranges
unipolar voltage ranges
current ranges (bipolar, unipolar)
±40 ppm/K
±80 ppm/K
±250 ppm,/K
(±450 ppm/K valid for range 10 mV)
Drift at an ambient temperature of
-40 °C to +85 °C
(-40 °F to +185 °F)
+85 °C to +105 °C (+185 °F to +221 °F)
+105 °C to +125 °C (+221 °F to +257 °F)
Input channel status LED
1. Channel identification for configuration (LED flashes)
2. Current overload indication (LED on)
Offset adjust by broadcast command
- manual offset adjust
- offset adjust for all channels of a group
(Offset adjust also supported during
measurement!)
Hardware filter, switchable
150 Hz, filter type 8-pole Butterworth
Software filter (DSP), optional
cut-off frequency and filter type selectable
Aggregate sample rate
max. 16 kHz (1 MBit/s data rate, no other devices)
Sensor excitation
electricllay isolated
Selectable output voltage
Off/ ±2.5/ ±5/ ±7.5/ ±8,0/ ±10/ ±12.5/ ±15 VDC
Output current (short circuit proof)
at Voutput ±2.5/ ±10.0 V
at Voutput ±5.0/ ±12.5 V
at Voutput ±7.5/ ±15.0 V
±25 mA (independent from output voltage)
max. ±30 mA
max. ±40 mA
max. ±45 mA
Derating (decrease of total output power)
-1.25 %/K for Tambient • 85 °C
Accuracy at an ambient temperature of
-40 °C / 23 °C / 85 °C / 120 °C
(-40 °F / 73 °F / 185 °F / 248 °F)
±0.40 % / ±0.25 % / ±0.40 % / ±0.50 %
Hardware connectors
Standard
ODU
System connector
EGA 0B 309
EGA 0B 309
Input connector
EGG 1B 307
Series F, Size 1, 5-pin
CAN output
2.0 B, electricllay isolated
Selectable data transfer rate (bit rate)
up to 1 MBit/s according to ISO11898-2
CAN message data format (signal)
Resolution (Format)
Sign
8 Bit (Byte) and 16 Bit (Word) selectable
signed, unsigned
Configuration interface
CAN
45
SIM-STG
Fast 8-Channel Multi-Analog Measurement Device with Excitation
8 analog signal inputs for voltage measurements
Measurement modes: SENS, STG, ICP, individual for each input
Hardware filter and DSP software filter
8 separate dual sensor excitations (up to r15 V, up to r45 mA)
Offset and target adjust functions, shunt check
Internal resistors for bridge completion selectable
Measurement data output to CAN
Complete galvanic isolation (inputs, excitation, CAN, power supply, enclosure)
Designed for automotive in-vehicle use
Measurement modes
SENS up to r50 V, STG up to r2 V, ICP up to r5 V
Input voltage (IN+ ļ IN-)
r100 V, short-time (1 ms) r200 V
Input resistance dual, single
10 Mȍ (differential), 5 Mȍ (ground related)
Channel sample rates
1/ 2/ 5/ 10/ 20/ 50/ 100/ 200/ 500 Hz 1/ 2/ 5 kHz
Internal sample rate
10 kHz
Voltage supply
12, 24, 42 VDC power supply systems
Switch-off for voltage < 6 V
Power consumption, typical
7.0 W (all excitations off)
Working temperature range
-40 °C ... +85 °C (-40 °F ... +185 °F)
Storage temperature range
-55 °C ... +125 °C (-67 °F ... +257 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions (W x H x D)
69 mm x 112 mm x 185 mm (2.72 in x 4.41 in x 7.28 in)
Weight
1400 g (3.09 lb)
Cables
Measuring input Lemo 1B 7-pin
670-850.xxx
DMS/STG Cable open
Connecting cable ETH (data, power)
Power cable terminated
Data cable
630-500.xxx
630-501.xxx
630-502.xxx
X-LINK Cable System
X-LINK Cable PWR Banana-2
X-LINK Cable RJ45
46
SIM-STG
Measurment input general
Resolution (SAR ADC)
16 Bit
Pre-filter (HF)
Cut-off frequency fc
Type
Accuracy
4.75 kHz
RC 2-pole
25 %
Hardware filter
Cut-off frequency fc
Type
Accuracy
1200 Hz, can be switched off
Butterworth 8-pole
10 %
Software filter (DSP)
Cut-off frequency fc, selectable
Type, selectable
Accuracy
1.0/ 1.25/ 1.667/ 2.5/ 5.0/ 6.667/ 10/ 12.5/ 16.67/ 25/
50/ 66.67/ 100/ 125/ 166.7/ 250
Butterworth, Bessel, Elliptic 8-pole
0.1 %
Wire break detection for sensor excitation
Enable/ disable per software
Galvanic isolation
input ļ module power supply
excitation ļ module power supply
input ļ input
nominal voltage
r100 V
r100 V
r100 V
Aggregate sample rate
12 kHz @ 500 kBit/s
16 kHz @ 1 MBit/s
20 kHz @ 1 MBit/s (4 channels each set to 5 kHz)
pulse voltage
r500 V
r500 V
r500 V
Input female connectors
7-pin (SIM-DMS compatible)
8-pin (TEDS, Lemo 2B)
EGG 1B 307
EGG 2B 308
SENS Mode
Voltages up to r50 V
Measuring ranges unipolar / bipolar
Accuracy @ Ta = 25 °C
0.01 / 0.02 / 0.05 / 0.1 / 0.2 / 0.5 / 1 / 2 / 5/ 10/ 20/ 50 V
0,075 %
corresponding to the absolute value
of the range selected
30 ppm/K
Drift
Sensor excitation
Output voltage, selectable
Bipolar
Uniploar
Accuracy @ Ta = 25 °C
Drift
Output current
Offset adjust
(also during measurement)
2-wire connection
r0.5/ r1.25/ r2.5/ r5/ r10/ r12/ r15 V
0.5/ 1.25/ 2.5/ 5/ 10/ 12/ 15 V
0.5 %
30 ppm/K
45 mA, short-circuit proof, (software controlled)
manual adjust with channel multiple selection
47
SIM-STG
STG Mode
Differential voltages up to r2 V
Measuring ranges
Range 1
Accuracy @ Ta = 25 °C
r2 ... r62 mV
r0.10 % + 15 μV
Drift
Range 2
Accuracy @ Ta = 25 °C
30 ppm/K
r64 ... r998 mV
r0.075 % + 7 μV
Drift
Range 3
Accuracy @ Ta = 25 °C
30 ppm/K
r1000 ... r2000 mV
r0.05 % + 7 μV
Drift
adjustable in 2 mV steps
corresponding to the absolute
value of the range configured
adjustable in 2 mV steps
corresponding to the absolute
value of the range configured
adjustable in 2 mV steps
corresponding to the absolute
value of the range configured
30 ppm/K
Special functions
Bridge adjust
Shunt check
Shunt resistor simulation
Resistors for bridge completion
zero adjust resp. target value adjust by hardware
on all 4 arms of the bridge, on command also during the
measurement executable
5 ... 390 kȍ, (depending on excitation voltage)
120, 350, 1000 ȍ software selectable
Sensor excitation
Output voltage, selectable
Accuracy @ Ta = 25 °C
Drift
Output current
4-wire-/ 6-wire connection
r0.5/ r1.25/ r2.5/ r5 V
0.1 %
30 ppm/K
45 mA, short-circuit proof, (software controlled)
ICP Mode
Piezo electric sensors
Nominal current, regulated
Measuring range
Lower / upper cut-off frequency
Off-load voltage
4,5 mA r10 %
r0.1/ r0.2/ r0.5/ r1.0/ r2.0/ r5.0 V
filter switched off / 0.1 Hz / 4750 Hz r20 %
24 V
Interfaces
CAN
CAN 2.0B (High Speed)
Data transfer rate, selectable
max. 1 MBit/s according to ISO11898-2
Data format
8 Bit (Byte) resp. 16 Bit (Word))
resolution / format
Configuration interface
48
CAN
49
CANpressure
Automotive Pressure Sensor with Data Output to CAN
Absolute or relative pressure gauge
Various types of CANpressure covering a pressure range of 0 ... 1 bar to 0 ... 250 bars available
Built-in sensor to measure the temperature at the gauge point
Measurement data output to CAN
Complete galvanic isolation (amplifier, CAN, power supply, enclosure)
Designed for engine compartment applications
General
Voltage supply
6 VDC to 36 VDC , power-on voltage • 6 V
Power consumption, typical
< 0.7 W
Working temperature range
-40 °C ... +125 °C (-40 °F ... +257 °F)
Storage temperature range
-55 °C ... +150 °C (-67 °F ... +302 °F)
Enclosure
Welded stainless steel 4435
Pressure connection
M 10 x 1 / M 14 x 1,5 / G ¼ (male and female thread available)
IP-Code (acc. to ISO 20653 - 2013)
Relative gauge: IP 52
Dimensions
L76 mm x D24 mm (L2.99 in x D0.94 in)
Wrench size
24 mm (0.94 in)
Weight
120 g (0.26 lb)
Measurement input general
Galvanically isolated
absolute gauge: IP 65
(pressure connection M 10 x 1 mm, male)
Galvanic isolation
signal against power supply, CAN bus against power supply
Resolution (p, T)
16 Bit
Hardwarefilter, Cut-off frequency, Type
1200 Hz, switchable, 8-pole Butterworth
Softwarefilter,
minimum cut-off frequency fcmin
maximum cut-off frequency fcmax
Adjustable in 0.1 Hz resp. 1 Hz steps
0.1 Hz @ 1 Hz fsample, 10 Hz @ 2 kHz fsample
0.4 Hz @ 1 Hz fsample, 496 Hz @ 2 kHz fsample
depending on sample rate and filter type
Filter type selectable
Bessel, Butterworth, Chebyshev, Chebyshev inverse,
each type 8-pole
Internal sample rate
10 kHz
Data rate (output to CAN bus)
1/ 2/ 5/ 10/ 20/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz
50
CANpressure
Signal amplifier
Pressure signal accuracy
0.5 % FS (nominal pressure)
TEB (-40 °C ... +125 °C) all errors included
Temperature signal range
-40 °C ... +150 °C (-40 °F ... 302 °F)
Temperature signal accuracy
r3.0 K valid for the full temperature and pressure range)
Offset adjust (pressure signal)
offline, while measurement is running, adjust to target value
CAN output
Selectable data transfer rate (bit rate)
up to 1 MBit/s according to ISO11898-2
CAN message data format (signal)
Resolution (Format) / Sign
8 Bit (Byte) and 16 Bit (Word) selectable / signed, unsigned
Configuration interface
CAN
Pressure transducer
(relative, absolute)
Overload pressure
Burst pressure
14.5 psi
29.0 psi
72.5 psi
145 psi
290 psi
[1]
363 psi
3 x FS (full scale)
3 x FS
3 x FS
3 x FS
3 x FS
3 x FS
> 200 bar / 2,901 psi
> 200 bar / 2,901 psi
> 200 bar / 2,901 psi
> 200 bar / 2,901 psi
> 200 bar / 2,901 psi
> 200 bar / 2,901 psi
0 ... 50 bar / 0 …
725 psi
0 ... 100 bar / 0 … 1,450 psi
0 ... 150 bar / 0 … 2,176 psi
[1]
0 ... 250 bar / 0 … 3,626 psi
3 x FS (full scale)
3 x FS
3 x FS
3 x FS
> 850 bar / 12,328 psi
> 850 bar / 12,328 psi
> 850 bar / 12,328 psi
> 850 bar / 12,328 psi
0 ... 500 bar / 0 … 7,252 psi
0 ... 1000 bar / 0 … 14,501 psi
3 x FS (full scale)
1500 bar / 21,756 psi
1500 bar / 21,756 psi
1500 bar / 21,756 psi
0 ...
0 ...
0 ...
0 ...
0 ...
0 ...
1 bar / 0 …
2 bar / 0 …
5 bar / 0 …
10 bar / 0 …
20 bar / 0 …
25 bar / 0 …
Pressure ranges 0 ... 500 bar, 0 ... 1000 bar and further ranges on request
Medium compatibility
Gases and fluids (also fuels and break fluids) up to 200 bar / 2,901 psi, other conditions on request
Dimensions
D
M 10 x 1 male
10 mm / 0.39 in
8.5 mm / 0.33 in 25.5 mm / 1.00 in 17 ... 23 Nm 24 mm / 0.94 in
M 10 x 1 female
10 mm / 0.39 in
9.5 mm / 0.37 in 26.5 mm / 1.04 in 17 ... 23 Nm 24 mm / 0.94 in
M 14 x 1.5 male
14 mm / 0.55 in
9.5 mm / 0.37 in 25.5 mm / 1.00 in 17 ... 23 Nm 24 mm / 0.94 in
M 14 x 1.5 female
14 mm / 0.55 in 10.5 mm / 0.41 in 26.5 mm / 1.04 in 17 ... 23 Nm 24 mm / 0.94 in
G ¼ male
13.2 mm / R ¼
9.5 mm / 0.37 in 25.5 mm / 1.00 in 17 ... 23 Nm 24 mm / 0.94 in
G ¼ female
13.2 mm / R ¼
10.5 mm / 0.41 in 26.5 mm / 1.04 in 17 ... 23 Nm 24 mm / 0.94 in
!
L1
L2
fastening
torque
Wrench size
Keep the stated range of the fastening torque when mounting CANpressure to ensure full accuracy!
Do not exceed the upper limit of the fastening torque to avoid irreversible damage of the pressure
transmitter!
Cables
Connecting cable M-CAN (data, power)
Power cable terminated
Data cable terminated
620-560.xxx
620-561.xxx
620-502.xxx
M-CAN Cable (CAN, PWR)
M-CAN Cable PWR Banana-2
M-CAN Cable D-Sub /S
51
MultiDAQ
42 Channel Multi Module: Temperature/Voltage/Current/Frequency/Period duration
 32 K-Type (NiCr/NiAl) thermocouple inputs with PT100 (RTD) for the reference temperature
 8 analog inuts for voltage / current,
each input with separate dual supply sensor excitation (up to ±15 V, max. ±45 mA)
 2 Frequency / counter inputs with adjustable ON/OFF thresholds (comparator),
each input with separate single supply sensor excitation (up to 15 V, max. 60 mA)
 Status LED at each input channel
 Measurement data output to CAN
 Complete galvanic isolation (inputs, excitation, CAN, power supply, enclosure)
 Designed for automotive applications
Measurement ranges Temperature
-60 °C to +1370 °C (-76 °F to +2498 °F)
Measurement ranges Voltage
Covering input signals 0.1 V to 100 V
Measurement ranges Current
0 ... 20 mA, ±20 mA
Measurement ranges Frequency/Period
up to 200 kHz / 10 µs (100 kHz)
Input voltage (IN+ ↔ IN-)
max. ±100 V, short-time (1 ms) ±200 V
Channel sample rates
1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz
Voltage supply
6 VDC ... 36 VDC
Power consumption, typical
6.0 W
Working temperature range
-40 °C ... +85 °C (-40 °F ... +185 °F)
Storage temperature range
-55 °C ... +125 °C (-67 °F ... +257 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 67 (ISO 20653 – 2013)
Dimensions
L261 mm x W116 mm x H55 mm
(W10.28 in x W4.57 in x H2.17 in)
Weight
1950 g (4.30 lb)
Cables
Measuring input thermo
voltage/current
frequency/period
600-888.xxx
670-807.xxx
670-858.xxx
TH-MIN Cable open
SENS Cable open (Lemo 1B 6-pin)
CNT/FRQ-IN Cable open
Connecting cable M-CAN (data, power)
Power cable terminated
Data cable terminated
620-560.xxx
620-561.xxx
620-502.xxx
M-CAN Cable (CAN, PWR)
M-CAN Cable PWR Banana-2
M-CAN Cable D-Sub /S
52
MultiDAQ
Thermocouple input (bank 1 and 2)
32 inputs, electrically isolated
Sensor type
K-Type thermocouple (Ni10Cr/NiAl)
Measuring range type K (Ni10Cr/NiAl)
-60 °C to 1370 °C (-76 °F to 2498 °F)
AD converter resolution
16 Bit
Linearization look-up table resolution
≥ 13 Bit / better than 0.174 °C (0.31 °F)
Cold junction compensation
8 PT100 (RTD) to measure the reference temperature
Typical accuracy at 25 °C (77 °F)
ambient temperature
±0.025 % of full temperature range
Accuracy at ambient temperature
Ta = 25 °C (77 °F) and measured temperature
-60 °C to 1000 °C (-76 °F to 1832 °F)
1000 °C to 1370 °C (1832 °F to 2498 °F)
±0.035 % of full temperature range
±0.035 % of full temperature range ±2 Kelvin
Input resistance
approx. 1 MΩ with activated sensor break detection
approx. 10 MΩ with inactivated sensor break detection
Input channel status LED
1. Identify the respective channel in configuration
mode (LED flashes)
2. Identify sensor break in measuring mode
Align of the AD converter
before processing each measuring value
Sensor break detection
activated per software on command
Hardware filter
1.0 Hz, filter type single pole RC low-pass
Channel sample rates
1/ 2/ 5/ 10/ min, 1/ 2/ 5/ 10/ 20 Hz
Total sampling rate per bank
max. 320 Hz
Voltage / Current input (bank 3)
8 inputs, electrically isolated
(LED lights continuously)
Voltage ranges
Voltage unipolar ( 0 ... )
Input resistance
0.1/ 0.2/ 0.5/ 1/ 2/ 5/ 10/ 20/ 30/ 50/ 100 V
10 MΩ
Voltage bipolar ( + / - )
Input resistance
±0.1/ ±0.2/ ±0.5/ ±1/ ±2/ ±5/ ±10/ ±20/ ±30/ ±50/ ±100 V
10 MΩ
Current unipolar ( 0 ... ) / bipolar ( + / - )
Input resistance
0 ... 20 mA, ±20 mA
50 Ω
Signal resolution
16 Bit
Input channel status LED
1. Channel identification for configuration (flashing)
2. Current overload indication (continuously on)
Offset adjust by broadcast command
(Offset adjust supported during measurement!)
- manual offset adjust
- offset adjust for all channels of a group
Hardware filter, switchable
150 Hz, filter type 8-pole Butterworth
Software filter (DSP), optional
cut-off frequency and filter type selectable
Channel sample rates
1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz
Total sampling rate per bank
max. 16 kHz (1 MBit/s data rate, no other devices)
Sensor excitation
electricllay isolated
Selectable output voltage
Off/ ±2.5/ ±5/ ±7.5/ ±10/ ±12.5/ ±15 VDC
Output current (short circuit proof)
at Voutput ±2.5/ ±10.0 V
at Voutput ±5.0/ ±12.5 V
at Voutput ±7.5/ ±15.0 V
max. ±30 mA
max. ±40 mA
max. ±45 mA
53
MultiDAQ
Frequency / Counter input (bank 4)
2 inputs, electrically isolated
Adjustable trigger thresholds
Quantization at range ±4 V
Accuracy at 25 °C / -40 ... +125 °C
0.025 V
3%/8%
Quantization at range ±40 V
Accuracy at 25 °C / -40 ... +125 °C
0.2 V
3%/8%
Signal modes
Online calculated by DSP
Frequency (min. / max. signal frequency)
0.03 Hz / max. 200 kHz
Duty cycle (range)
min. signal frequency
max. signal frequency (at 1 % accuracy)
0.01 % ... 99.99 %
0.03 Hz
10 kHz
@ 1 % duty cycle (worst case)
500 kHz @ 50 % duty cycle (best case)
10 kHz
@ 99 % duty cycle (worst case)
1 µ or 1/100 fC Filter (higher value)
(Reduced accuracy at higher signal frequency
and / or worst case duty cycle.)
Resolution
Period duration, Pulse duration, Pause duration
min. / max. duration, resolution
1 µs / 200 s, 1 µ or 1/100 fC Filter (higher value)
Hardware filter, adjustable
Attenuation Variance at 25 °C / -40 ... +125 °C
Off, 1 Hz ... 30 kHz, filter type 5-pole Bessel
±1.5 dB / ±3.0 dB
DC compensation
Attenuation Variance at 25 °C / -40 ... +125 °C
0.8 Hz (lower cut-off frequency (- 3 dB)
±1.0 dB / ±2.0 dB
Channel sample rates
1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000/5000 Hz
Total sampling rate per bank
(depends on number of CAN IDS and bit rate)
max. 4 kHz (without restriction)
2x 5 kHz (max. 1 CAN ID used @ 500 kBit/s data rate)
Sensor excitation
electricllay isolated
Selectable output voltage
Off/ 2.5/ 5/ 7.5/ 10/ 12.5/ 15 VDC
Max. output current
60 mA (short circuit proof and overload protected)
CAN output (bank 1, 2, 3, 4)
CAN 2.0 B, electricllay isolated
Selectable data transfer rate (bit rate)
up to 1 MBit/s according to ISO11898-2
CAN message data format (signal)
Resolution (Format)
Sign
8 Bit (Byte) and 16 Bit (Word) selectable
signed, unsigned
Configuration interface
CAN
54
55
IPEcloud Überblick
Features
Die IPEcloud ist ein nützlicher Dienst, um die gesamte Datenlogger-Flotte optimal zu verwalten.
Die Cloud bietet ein breites Funktionsspektrum, auf das weltweit zugegriffen werden kann. Mit
dem eingebauten Modem und der WiFi-Kommunikation lässt sich der Logger mit dem Web-Service
verbinden, um so Zugang zu den vom Logger aufgezeichneten Daten zu erhalten. Auf diesem Weg
kann man die Messkonfiguration aktualisieren und den allgemeinen Status des Loggers überwachen. Weitere Funktionen wie automatisches Reporting werden ebenfalls unterstützt.
Die Features sind in drei Teile unterteilt und beinhalten einen E-Mail-Account (IPEmail), den
IPETRONIK FTP-Server (IPEdrive) sowie ein Flottenmanagement-System (IPEfleet).
56
IPEcloud Überblick
IPEmail
Der IPEmail-Account kann als Mailbox genutzt werden, um Logger-E-Mails und Benachrichtigungen des Flottenmanagement-Systems zu erhalten. Der Account auf dem internen IPETRONIK
E-Mail-Server ermöglicht das Versenden von E-Mails über das SMTP-Protokoll.
IPEdrive
Mit IPEdrive erhält man einen persönlichen Speicherplatz auf dem IPETRONIK FTP-Server. Messungen und Konfigurationsdateien werden hier vom Logger automatisch gespeichert und können
anschließend in IPEdrive bearbeitet und verwaltet werden. Mehrere Backup-Prozesse, redundante
Datenspeicherung sowie verschlüsselte Protokolle garantieren einen hohen Grad an Datenschutz
und -sicherheit.
57
IPEcloud Überblick
IPEfleet
IPEfleet besteht aus mehreren Funktionen zur Überwachung und Verwaltung von Loggerflotten und
ist in folgende Ebenen aufgeteilt:
•
•
•
•
Projekt-/Flotten-Ebene: enthält die Logger
Logger-Ebene: enthält die hochgeladenen Messdateien
Messdatei-Ebene: bietet eine detaillierte Übersicht für jede hochgeladene Datei
Status-Überwachung
Alle eingehenden Dateien werden entsprechend der frei konfigurierbaren „Überwachungsfunktionen“ analysiert und im Webinterface über die Ampelfunktion angezeigt. Über eine frei definierbare
E-Mail-Benachrichtigung kann der Anwender gezielt über bestimmte Grenzwertüberschreitung
zusätzlich informiert werden.
58
59
M-LOG
FLEETlog
FLEETlog2
IPElog
M-LOG V3
Datenlogger
IPElog
ÜBERSICHT DATENLOGGER
PC
CPU
LX800 500 MHz
CPU
Atom 1.33 GHz
CPU
Atom E3805 dual core; 1.33 GHz
RAM
256 MB
RAM
1024 MB
RAM
2048 MB
Betriebssystem
RTOS
■
■
■
■
■
■
■
■
■
Messdatenspeicher
cF-Karte, wechselbar
4 GB inklusive
■
cF-Karte, wechselbar
Option, bis 32 GB
CFast-Karte, wechselbar
4 GB inklusive
■
CFast-Karte, wechselbar
Option, bis 64 GB
□
□
1.8'' SSD, wechselbar
32 GB inklusive
■
1.8'' SSD, wechselbar
Option, > 32 GB
□
Schnittstellen
USB
Datenabruf
■
■
■
USB
Anzeige
■
■
■
Ethernet (Link)
IPETRONIK System
■
■
■
COM
COM1, COM2
■
Digital I/O
2 IN / 2 OUT
Digital I/O
4 IN / 4 OUT
■
■
■
IPETRONIK Module
■
■
CAN High Speed
integriert
■
■
CAN Low Speed
optional
Messeingänge
M-/SIM-CAN (CAN1)
optional
LIN
optional
□
□
ETH
optional
□
□
60
□ optional
□
□
CAN Single Wire
■ inklusive
■
Fortsetzung nächste Seite
ÜBERSICHT DATENLOGGER
IPElog
Datenlogger
M-LOG
FLEETlog
IPElog
M-LOG V3
FLEETlog2
(Fortsetzung)
CCP + Seed & Key
□
□
□
XCPonCAN
□
□
□
XCPonETH
□
□
Automotive Ethernet
□
□
KWPonCAN
□
□
□
UDS / OBD
□
□
□
GMLAN
□
□
□
J1939
□
□
□
optional
Protokolle
Funktionen
Datenspeicherung
getriggert, multiple Speichergruppen
■
■
■
Online-Berechnung
Formeln, Variablen, Konstanten
■
■
■
Klassierung
DIN, Rainflow ...
□
□
□
■
■
WakeOnCAN
Start über CAN-Traffic
■
WakeOnSMS
Start über SMS-Botschaft
■
WakeOnRTC
Start über Uhrzeit
■
No Message Lost (NML)
■
Datenausgabe über CAN
CANsend
■
■
■
CAN-Datenstrom aufzeichnen
Traffic-Messung
□
□
□
Datenübertragung/GPS
WiFi extern
802.11 b/g
WiFi intern
802.11 b/g
□
■
Modem extern
□
□
Modem intern
■
GPS extern
□
□
□
GPS intern
■
Erweiterungen
□
optional
CAN-Extender
□
□
FlexRay-Extender
□
□
□
□
□
□
□
COMgate
WiFi, Modem
IPEspeed
GPS über CAN
USB-Kamera
□
□
Audio
□
M-UPS, Kurzzeit-USV
■ inklusive
□
Powermanagement
□
□
□
□ optional
61
IPEcloud
Web portal for central monitoring and administration of your logger fleet
Supported data logger using wireless data trnasfer (mobile data, WiFi):
M-LOG V3 / M-LOG with COMgate V3 / COMgate or modem or WiFi client
IPElog / IPElog2
FLEETlog2 with option modem or WiFi
IPEcloud consists of 3 segments:
After login with a myIPE access, all services are available.
IPEmail
Mailbox for administration of logger e-mails and alarm notifications
A filter- and forwarding function provides a selected distribution to all e-mail recipient groups.
Alarm and logger notifications are sent automatically to the responsible person or group of
persons.
No need for manual forwarding or unnecessary high e-mail volumes.
Timing and extensive rule definitions for email transmission possible.
62
IPEcloud
IPEdrive
Personal storage space on our ftp servers
10 GB server space provided by the IPEcloud server (German web hosting)
Direct access to all logger files, e.g. measurement, logger or configuration data.
Clear up- and download functions for all measurement and logger data.
Incoming measurement data can be converted automatically in all common formats.
Multiple backup processes / redundant data storage as well as encrypted protocols ensure data
protection and security.
IPEfleet
Fleet management tool with numerous monitoring features
Monitoring
Map view with logger locations
Date and time display for last upload and last data transmission of a logger.
Limit values of different channels can be configured individually.
Current status of the configuration is shown in different colors:
- Red: Measured values over or beneath a defined limit.
- Green: Measured values within a defined limit.
Configuration changes during an ongoing project.
Email alert function for each monitored status.
Detailed view with key figures for all measured channels.
Administration
Adaptation of columns view.
Filtering function for targeted search.
Transmission of a configuration onto the logger.
63
IPElog
High Performance Data Logger for Automotive Testing
12 CAN inputs
WakeOnCAN supported on all CAN inputs
Quick start with NoMessageLost feature (NML) to acquire first CAN messages from wake-up
Low standby current consumption
Complete galvanic isolation for CAN, ETH and DIG I/O inputs
Configuration with IPEmotion
Data streaming to IPEmotion, ETAS INCA, Vector CANape via CAN or XCPonETH
Wireless connection via 3G, WiFi
Integrated GPS receiver supports global positioning
No fans, hard drives or other mechanical rotating components ...
Operating system
Realtime operating system (RTOS32)
Data storage
1,8'' SSD, removable (option)
Intelligent power management
WakeOnCAN, NoMessageLost (NML)
emergency supply backup with high capacity
capacitors
Voltage supply
9 VDC to 36 VDC
Power consumption, typical
12.0 W
Working temperature range *
-40 °C ... +85 °C (-40 °F ... +185 °F)
* Derating for data transfer
-40 °C ... +70 °C (-40 °F ... +158 °F)
Storage temperature range
-45 °C ... +90 °C (-49 °F ... +194 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions (W x H x D)
206.5 mm x 73 mm x 166.5 mm
(8.13 in x 2.87 in x 6.56 in)
Weight
approx. 1890 g (approx. 4.167 lb)
64
IPElog
PC
CPU
Intel® Atom™ Z520PT, 1.33 GHz, 512 kB L2-Cache
RAM / Memory
1 GB
DAQ application running on the logger
TESTdrive (• Version 3.50)
Configuration software (Windows, external)
IPEmotion (• Version 2.0) with
Logger PlugIn (•Version 3.50)
Interfaces
USB 2.0
1
Type A female
2
VIEW - Lemo connector
3
USB2 - Lemo connector
Service interface, data transfer
Display M-VIEWfleet
Peripheral devices
M-CAN
IPETRONIK system bus CAN
(M-Series modules, CANpressure, MultiDAQ)
LINK
Ethernet connection IPElog < > PC used for
configuration and online data visualization (XCPonETH)
CAN measurement inputs
12 x CAN High Speed acc. to ISO 11898-2
Digital input and output
4 x DIG IN / 4 x DIG OUT
Ethernet measurement inputs (optional)
2 x Fast Ethernet (100Base-TX)
Wireless components
Modem built-in
GPRS/UMTS/3G
Quad-band EGSM 850/900/1800/1900
FME connector for external atenna
Wireless LAN built-in
WiFi 2.4 GHz, 54 Mb/s acc. to 802.11 b/g
SMA connector for external atenna
Positioning built-in
WiFi 2.4 GHz, 54 Mb/s acc. to 802.11 b/g
SMA connector for external atenna
Specific features
Protocols
CCP, XCPonCAN, XCPonETH, KWPonCAN, UDS
CAN-Send
Output measurement signals and online calculated values
to the CAN bus
Statistics
Online statistical calculations (DIN, Rainflow)
Traffic measurement
Record data from the CAN bus using the traffic mode
(complete data stream). Several filter and trigger functions
to limit the data volume supported.
Quickstart
Fast boot-up with NoMessageLost feature
Standard cables (extract)
Power/Remote
620-574.xxx
PWR/REM - Banana
M-CAN terminated (connecting modules)
620-429.xxx
CAN/PWR term - M-CAN Lemo 0B
Display M-VIEWfleet
620-578.xxx
VIEW - Lemo 1B angled
Ethernet (IPElink, IPElog < > PC)
620-591.xxx
ETH - RJ45 (crosslink)
Ethernet (IPElink, IPElog < > network)
620-355.xxx
ETH - RJ45
Measuring input CAN 1
600-580.xxx
CAN D-Sub - open
Measuring input CAN 1 - 7, CAN 2 - 8
(CAN 3 - 9, CAN 4 - 10)
(CAN 5 - 11, CAN 6 - 12)
620-593.xxx
CAN D-Sub - 2x D-Sub 9/Pin (standard)
Digital input / digital output
620-324.xxx
DIG I/O HD-Sub 15 - open
65
IPElog2
High Performance Data Logger for Automotive Testing
16 CAN inputs,
10 CAN inputs + 6 LIN inputs optional
WakeOnCAN supported on all CAN inputs
High/Low speed switching by software supported for 4 CAN inputs
Quick start with NoMessageLost feature (NML) to acquire first CAN messages from wake-up
Low standby current consumption
Complete galvanic isolation for CAN, LIN, ETH and DIG I/O inputs
Configuration with IPEmotion
Data streaming to IPEmotion, ETAS INCA, Vector CANape via CAN or XCPonETH
Wireless connection via cellphone, WiFi with WPS function
Integrated GPS receiver supports global positioning
Supporting IPEcloud interface for data exchange
No fans, hard drives or other mechanical rotating components ...
Operating system
Realtime operating system (RTOS32)
Data storage
4 GB removable CFast card
(memory upgrade up to 64 GB optional)
Intelligent power management
WakeOnCAN, NoMessageLost (NML)
emergency supply backup with high capacity
capacitors
Voltage supply
9 VDC to 36 VDC
Power consumption, typical
10.0 W
Working temperature range *
-40 °C ... +85 °C (-40 °F ... +185 °F)
* Derating for data transfer
-40 °C ... +70 °C (-40 °F ... +158 °F)
Storage temperature range
-45 °C ... +90 °C (-49 °F ... +194 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions (W x H x D)
206.5 mm x 73 mm x 166.5 mm
(8.13 in x 2.87 in x 6.56 in)
Weight
approx. 1750 g (approx. 3.86 lb)
66
IPElog2
PC
CPU
Intel® Atom™ E3805 dual core, 1.33 GHz,
1 MB L2-Cache
RAM / Memory
2 GB
DAQ application running on the logger
TESTdrive (• V03.58)
Configuration software (Windows, external)
IPEmotion (• V05.00)
with PlugIn IPETRONIK LOG (•V03.58)
Interfaces
USB 3.0 (USB 2.0 compatible)
1
Type A female
2/3 VIEW/USB (Lemo 1B 10-pin, green)
Service interface, data transfer
Display M-VIEWfleet / Peripheral devices
M-CAN (Lemo 0B 9-pin, blue)
IPETRONIK system bus CAN
(M-Series modules, CANpressure, MultiDAQ)
PC (Lemo 1B 16-Pin, white)
Configuration and online visualization (XCPonETH)
X-LINK (Lemo 1B 2+6-pin, orange)
Interfacing X-Modules and X-LINK systems
CAN / LIN inputs (D-Sub 9)
16 x CAN High Speed acc. to ISO 11898-2
optional 10 x CAN (ISO 11898-2), 6 x LIN (V1.3, V2.0)
ETH (Lemo 1B 16-Pin, orange)
Ethernet measurement inputs (optional)
DIG IN/OUT (HD-Sub 15)
4 x digital input / 4 x digital output
AUDIO (Lemo 0B 5-pin, grey)
Audio / voice recording and audio / voice output
VIDEO
Video recording via USB
Wireless components
Modem, built-in
(FME connector for external atenna)
GPRS/UMTS/3G/4G
Quad-band EGSM 850/900/1800/1900
Wireless LAN, built-in
(SMA connector for external atenna)
WiFi 2.4 GHz, 54 Mb/s acc. to 802.11 b/g
GPS, built-in
(SMA connector for external atenna)
WiFi 2.4 GHz, 54 Mb/s acc. to 802.11 b/g
Gyro sensor 100 Hz
Specific features
Protocols
CCP, XCPonCAN, XCPonETH, KWPonCAN, UDS,
J1939, OBD, Automotive Ethernet
CAN-Send
Output measured signals / calculated values to CAN bus
Statistics
Online statistical calculations (DIN, Rainflow, …)
Traffic measurement
Record data from the CAN bus using the traffic mode).
Different filter and trigger functions to reduce data volume.
Quickstart
Fast boot-up with NoMessageLost feature
Standard cables (extract)
Power/Remote
620-574.xxx
PWR/REM - Banana
M-CAN (connecting modules)
620-560.xxx
CAN/PWR Lemo 0B
Display M-VIEWfleet
620-578.xxx
VIEW - Lemo 1B angled
Ethernet (IPElog2 < > PC / network)
620-688.xxx
LOG GB-ETH - RJ45
Measuring input CAN 1
600-580.xxx
CAN D-Sub - open
Measuring input CAN 1 - 9, CAN 2 - 10
(CAN 3 - 11, CAN 4 - 12)
(CAN 5 - 13, CAN 6 - 14)
(CAN 7 - 15, CAN 8 - 16)
620-593.xxx
CAN D-Sub - 2x D-Sub 9/Pin (standard)
Digital input / digital output
620-324.xxx
DIG I/O HD-Sub 15 - open
67
M-LOG V3
CFast Card
(SATA 2.6)
M-LOG 3rd Generation for Automotive Testing
 Up to 12 CAN bus inputs
 WakeOnCAN supported on all CAN inputs
 4x Digital In / 4x Digital Out
 Data exchange (configuration, measurement data) through USB and LAN
 High data rate storage on removable CFast card with SATA interface (up to 64 GB)
 Complete galvanic isolation for CAN, LAN and DIG I/O
 100% compatibility to M-LOG port replicators
 Configuration with IPEmotion
 Data streaming to IPEmotion, ETAS INCA, Vector CANape or many other tools via
CAN or XCPonETH
 WiFi option supports short-distance wireless data connection
 Modem option supports long-distance wireless data connection
 No fans, hard drives or other mechanical rotating components ...
Operating system
Realtime operating system (RTOS32)
Data storage
4 GB internal, 4 GB removable CFast card
(memory upgrade up to 64 GB optional)
Intelligent power management
Ignition, WakeOnCAN,
emergency supply backup by Highcaps
Voltage supply
9 VDC ... 36 VDC
Power consumption, typical
9.0 W
Working temperature range
-40 °C ... +85 °C (-40 °F ... +185 °F)
Storage temperature range
-45 °C ... +95 °C (-49 °F ... +203 °F)
Relative humidity
5 ... 95 % PR05 , PR06 ,
Port replicator, selectable
PR08 , PR03 , PR13
(Cable adapter for peripheral devices)
+
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions
W158 mm x H69 mm x D102 mm
(W6.22 in x H2.72 in x D4.02 in)
Weight
approx. 850 g (approx. 1.87 lb) depending on hardware
configuration and port replicator
68
+
+
= standard,
++
++
++
++
= customer specific
M-LOG V3
PC
CPU
Intel® Atom™ E3805 dual core, 1.33 GHz
RAM
2048 MB
DAQ application running on the logger
TESTdrive (≥ version 3.55)
Configuration software (Windows, external)
IPEmotion with PlugIn IPETRONIK-LOG
Interfaces
USB 2.0
USB 1
USB 2
Type A female
VIEW (Lemo)
Service interface, data transfer
Display M-VIEWfleet, M-VIEWgraph
M-CAN
IPETRONIK CAN bus
(M-Series modules, CANpressure, MultiDAQ, ...)
IPElink
Fast Ethernet (100Base-TX)
Connection M-LOG V3 < > PC used for configuration and
online data visualization (XCPon ETH)
LAN (ETH1, ETH2)
2 x Fast Ethernet (100Base-TX) measurement input
CAN measurement input
CAN High Speed acc. to ISO 11898-2
Digital input and output
4 x DIG IN / 4 x DIG OUT
Hardware options
Measurement input
CAN
LIN
CAN2, CAN3, CAN4, CAN5-8, CAN9-12
LIN1,2
Memory upgrade (CFast)
8 / 16/ 32 GB
External devices
WiFi
Modem
GPS
WiFi per 802.11b/g
(COMgate, COMgate WAN)
GPRS/3G/CDMA
(COMgate WAN)
GPS using NMEA protocol
Software options
Protocols
CCP, XCPonCAN, XCPonETH, KWPonCAN, UDS, J1939,
OBD, Automotive Ethernet
Statistics
Online statistical calculations (DIN, Rainflow)
Traffic measurement
Acquire trace data from CAN bus (complete data stream).
Several filter and trigger functions supported.
IPEcloud
Web portal for centralized administration of the logger fleet,
data management, file conversion, status monitoring, logfile
analysis, e-mail alerting, reporting
Standard cables (extract)
Power/Remote
620-574.xxx
PWR/REM - Banana
M-CAN terminated (connecting modules)
620-429.xxx
CAN/PWR term - M-CAN Lemo 0B
Display M-VIEWfleet
620-578.xxx
VIEW - Lemo 1B angled
Display/Online data to IPEhub2
620-689.xxx
LOG-VIEW – IPEconnect (IPEhub2)
USB2
620-664.xxx
USB2 - USB-A/S
Ethernet (ETH1, ETH2)
620-636.xxx
ETH - RJ45, Power
Ethernet (IPElink, FLEETlog2 < > PC)
620-591.xxx
ETH - RJ45 (crosslink)
Ethernet (IPElink, FLEETlog2 < > network)
620-355.xxx
ETH - RJ45
Measuring input CAN 1
600-580.xxx
CAN D-Sub - open
Measuring input CAN 1 - 3, CAN 2 - 4
620-593.xxx
CAN D-Sub - 2x D-Sub 9/Pin (standard)
Digital input / digital output
620-324.xxx
DIG I/O HD-Sub 15 - open
69
M-LOG V3 Performance
M-LOG V3 offers a maximum performance for online calculations and data storage with stationary and
mobile testing
Latest-generation processor board equipped
with Intel® Atom™
offers greater performance and thus more reserve
capacity for data processing due to lower CPU usage
as compared to previous systems
RAM memory
1024 MB main storage size offers a significant
performance increase especially when working
with extensive configurations
New storage medium cFast
provides storage devices up to 64 GByte of data
volume at quick access to stored data
WakeOnCAN
Starting logger and data acquisition triggert by traffic
at any CAN input
Speed option included
Preprocessing of measuring signals on CAN card
considerably reduces CPU load
100 % connection compatibility
with existing infrastructure by retention of standard
connectors, exact substitution of the central hardware
component without complex rewiring/modification
Scenario 1
CANdb signal measurement and data storage, 8x CAN (bus load 24 %) 571 signals per input = 4568 signals
in total
Scenario 2
Traffic measurement, 8x CAN (bus load 24 %), data storage to traffic and ring buffer traffic group
Scenario 3
Traffic measurement, 8x CAN (bus load 50 %), data storage to traffic and ring buffer traffic group
Scenario 4
2000 online calculations of internal signals and data storage using a processing/storage rate of 100 Hz
70
M-LOG V3 Performance
M-LOG V3 in comparison to M-LOG: CPU load as function of bus load
M-LOG 12 CAN, DMA enabled
CAN data rate 1 MBaud
M-LOG 12 CAN, DMA enabled
CAN data rate 500 kBaud
M-LOG V3 12 CAN
CAN data rate 1 MBaud
M-LOG V3 12 CAN
CAN data rate 500 kBaud
For requests and further information contact
Tel:
+49 7221 / 9922 333
E-mail:
[email protected]
71
COMgate V3
M-LOG/M-LOG V3 wireless communication gateway
 External communication add-on built-in a M-LOG/M-LOG V3 compatible housing
 Wireless data transfer for measuring data and system configuration
 COMgate V3 supporting WiFi 802.11 a/ b/ g/ n and GSM/3G/4G modem
 Combined PWR/data cable to M-LOG/M-LOG V3 (Power/Ethernet)
 WPS Button to exchange SSID in access point operating mode
 No mechanical rotating components like CPU fan, hard drives ...
 Designed for automotive in-vehicle use
General
Voltage supply
9 VDC to 36 VDC , Switch-off for voltage < 6 V
Power consumption, typical
< 6.0 W
Operating temperature range
-40 °C ... +85 °C (-40 °F ... +185 °F)
Storage temperature range
-40 °C ... +95 °C (-40 °F ... +203 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions (L x W x H)
W158 mm x H26.5 mm x D102 mm
(W6.22 in x H1.04 in x D4.02 in)
Weight
approx 600 g (1.32 lb)
M-LOG compatibility
LX 800, TESTdrive version ≥ 3.17, option 2 x ETH
Interfaces
Wireless LAN, built-in
(SMA connector for external antenna)
Standard WiFi 802.11 (2.4 GHz and 5 GHz) a / b / g / n
for data transfer to local WiFi access points
External modem
Dedicated LEMO 0B – 9pin connector to interface external
modems including status signal communciation
Modem, built-in
(FME connector for external antenna)
GSM (GPRS, EDGE) Quadband
3G (UMTS) 850/900/1800/1900 MHz
4G (LTE) bands North America:
2, 4, 5, 7, 17
EMEA/APAC:
1, 3, 5, 7, 8, 20
APAC/S-America: 1, 3, 5, 7, 8, 28
2 Gigabit Ethernet interfaces operating in parallel
to PC and Logger
2x LAN
72
COMgate V3
Cables & Antennas
LOG ETH Cable COMgate
Cable 620-692.xx (data logger connection)
LOG GB-ETH Cable RJ45
Cable 620-688.xx (PC connection)
WiFi antenna
SMA(R)-UFL (standard male connector)
Modem LTE antenna
FME (standard male connector)
Status indication
Device LED multicolor
Status indication (operation, error, power supply)
PC link LED
Indicating PC communication
Logger link LED
Indicating logger communication
WiFi/Modem (internal & external)
Indicating operation status
WiFi/Modem (internal & external) multicolor
LED red
LED yellow
LED green
Signal strength < 50 %
Signal strength 50 % … 75 %
Signal strength > 75 %
73
M-LOG V3 Upgrade Kit
English
The M-LOG V3 Upgrade Kit significantly increases performance and range of functions of
M-LOG systems
It features the following components and services:
Latest-generation main board equipped with Intel® Atom™
replaces LX800 and SC1200 boards offering greater performance and thus more reserve
capacity for data processing due to lower CPU usage as compared to previous systems
RAM memory extension
Expansion of memory from 256 MB (as with M-/S-LOG and FLEETlog so far) to 1024 MB, for
significant performance increase especially when working with extensive configurations
New storage medium cFast (8 / 16/ 32 GB)
provides up to 32 GByte of data volume at quick access to stored data
WakeOnCAN, NoMessageLost Capability
Data acquisition starting with the first CAN message on all CAN buses to be measured
Speed option included
Preprocessing of measuring signals on CAN card reduces CPU load by 70 %
100 % connection compatibility
with existing infrastructure by retention of the respective port replicators exact substitution of the
central hardware component without complex rewiring/modification
Port replicators PR05 will be adapted to the new pin compatible type PR08
Detailed inspection with functionality test and climatic test
with report and calibration certificate
2 years additional warranty on existing hardware
for additional security of investment by automatic warranty extension by 2 more years
For requests and further information, please contact
Phone:
+49 7221 9922 222
E-mail:
[email protected]
74
FlexRay-Extender
Logger extension for data acquisition from FlexRay networks
Time-controlled signal recording at the connected bus network (FlexRay 2.1 Rev. A)
ECU connection at the galvanically isolated input with channel A and channel B
Data acquisition with the data logger supporting signal measurement, asynchronous measurement and
protocol communication using XCPonFlexRay
Import of description files (A2L, Autosar, Fibex) for user-friendly signal and system configuration
IPEmotion software used for configuration and online data visualization (View tab) and evaluation of stored
data records (Analysis tab)
Designed for automotive in-vehicle use
General
Voltage supply
9 VDC to 36 VDC
Power consumption, max.
3.0 W
Working temperature range
-40 °C ... +85 °C (-40 °F ... +185 °F)
Storage temperature range
-50 °C ... +95 °C (-58 °F ... +203 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions (L x W x H)
158 mm x 102 mm x 26.5 mm (6.22 in x 4.02 in x 1.04 in)
Weight
450 g (0.99 lb)
System requirements
M-LOG, IPElog
M-LOG
Notebook, PC
TESTdrive, PlugIn IPETRONIK-LOG • V03.50
ETH input (Option 2x ETH), Processor LX 800
PlugIn IPETRONIK-X • V01.04, Windows 7 OS
Interfaces
FlexRay
1 x FlexRay 2.1 Rev. A, Chn A / Chn B
Data acquisition
Signal measurement
Protocol measurement via XCPonFlexRay (option)
Asynchronous measurement (option)
Data output
Ethernet to logger
10/100Base-TX
Communication protocol
XCPonEthernet
Cables
FlexRay A/B (measuring input)
D-Sub 9-pin,
Cable 620-656.xx
ETH/PWR (data output, power supply)
Lemo EGA 0B 307,
Cable 620-649.xx
Status indication
Operating status
LED green
LED yellow
LED red
Power on, ready for operation
Measurement is running, data transfer
Error
FlexRay channel
LED green
bus traffic
75
FLEETlog2
Automotive Fleet Data Logger with CAN Bus
 Up to 4 CAN bus inputs
 WakeOnCAN supported on all CAN inputs
 Data exchange (configuration, measurement data) through USB and LAN
 Data storage on removable Compact Flashcard
 Complete galvanic isolation for CAN, LAN and DIG I/O inputs
 Configuration with IPEmotion
 Data streaming to IPEmotion, ETAS INCA, Vector CANape and many other tools
via CAN or XCPonETH
 WiFi option supports wireless data connection by integrated WiFi client
 Modem option supports wireless data connection by integrated 3G modem
 GPS option gives position by integrated GPS receiver
 No fans, hard drives or other mechanical rotating components ...
Operating system
Realtime operating system (RTOS32)
Data storage
Compact Flashcard (cF), removable
(optional up to 32 GB)
Intelligent power management
Ignition, WakeOnCAN,
emergency supply backup by Highcaps
Voltage supply
9 VDC to 36 VDC
Power consumption, typical
7.5 W
Working temperature range
-40 °C ... +85 °C (-40 °F ... +185 °F)
Storage temperature range
-40 °C ... +85 °C (-40 °F ... +185 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions (W x H x D)
140 mm x 40 mm x 185 mm
(5.51 in x 1.57 in x 7.28 in)
Weight
(depending on hardware configuration)
approx. 1020 g (2.25 lb)
76
FLEETlog2
PC
CPU
LX 800, 500 MHz
RAM
256 MB
DAQ application running on the logger
IPETRONIK TESTdrive (≥ Version 3.52)
Configuration software (Windows, external)
IPEmotion (Version ≥ 3.00) with
Logger PlugIn (Version ≥ 3.52)
Interfaces
USB 2.0
USB 1
USB 2
Type A female (front flap)
VIEW - Lemo connector
Service interface, data transfer
Display M-VIEWfleet
M-CAN
IPETRONIK system CAN bus
(M-Series modules, CANpressure, MultiDAQ)
LAN
Ethernet connection FLEETlog2 < > PC used for
configuration and online data visualization (XCPonETH)
CAN measurement input
CAN High Speed acc. to ISO 11898-2
Digital input and output
2 x DIG IN / 2 x DIG OUT
Wireless options
Wireless LAN integrated
WiFi 2.4 GHz, 54 Mb/s acc. to 802.11 b/g
Modem integrated
GPRS/UMTS/3G
GPS integrated
Satellite positioning, 1 Hz refresh rate, NMEA protocol
Options
CAN 2, CAN 3, CAN 4
Electrically isolated CAN bus input
Data output to CAN bus (CANsend) supported
Multi storage groups
Data storage using different storage rates,
user-specific trigger conditions supported
Protocols
CCP, XCPonCAN, KWPonCAN, UDS, J1939, OBD
Statistics
Online statistical calculations (DIN, Rainflow)
Traffic measurement
Record data from the CAN bus using the traffic mode.
Several filter and trigger functions supported.
IPEcloud
Web portal for centralized administration of the logger fleet,
data management, file conversion, status monitoring, logfile
analysis, e-mail alerting, reporting
Standard cables (extract)
Power/Remote
620-574.xxx
PWR/REM - Banana
M-CAN terminated (connecting modules)
620-429.xxx
CAN/PWR term - M-CAN Lemo 0B
Display M-VIEWfleet
620-578.xxx
VIEW - Lemo 1B angled
Display/Online data to IPEhub2
620-691.xxx
FLEETlog-VIEW – IPEconnect (IPEhub2)
Ethernet (IPElink, FLEETlog2 < > PC)
620-591.xxx
ETH - RJ45 (crosslink)
Ethernet (IPElink, FLEETlog2 < > network)
620-355.xxx
ETH - RJ45
Measuring input CAN 1
600-580.xxx
CAN D-Sub - open
Measuring input CAN 1 - 3, CAN 2 - 4
620-593.xxx
CAN D-Sub - 2x D-Sub 9/Pin (standard)
Digital input / digital output
620-324.xxx
DIG I/O HD-Sub 15 - open
77
IPEhub2 + IPEmotion App
English
Wireless CAN-Gateway
 Wireless LAN device according to WiFi 802.11 b/g (2.4 GHz supported)
 External interface providing 2 galvanically isolated CAN bus inputs (ISO 11898-2)
for data streaming to mobile devices using the IPEmotion App
 Access Point mode with DHCP server
 Optional storage to internal SD card (CAN trace logging)
Option 1: CAN trace storage on internal SD card (1 GB card included)
Option 2: WiFi interface incl. IPEmotion App for mobile device (Android operating system)
 Easy configuration through web interface using WiFi or LAN
 2 multicolor LEDs: WiFi (signal strength), Data storage (memory usage)
 CAN2 with software selectable termination resistor
 Encrypted transfer of measurement data (IPEhub2 < > Tablet) using WPA2
Configuration data encryption can be activated by IPEmotion
 Compact and rugged aluminum enclosure (M2-Series)
General
Voltage supply
9 VDC to 36 VDC (Switch-off for voltage < 6 V)
Power consumption, typical
4.0 W
Operating temperature range
-40 °C ... +85 °C (-40 °F ... +185 °F)
Storage temperature range
-40 °C ... +95 °C (-40 °F ... +203 °F)
Relative humidity
5 ... 95 % without condensation
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions
W106 mm x H43 mm x D62 mm
(W4.17 in x H1.69 in x D2.44 in)
Weight
360 g (0.79 lb)
Interfaces / Storage
CAN
High Speed up to 1 MBit/s acc. to ISO11898-2
LAN / Wireless LAN
Fast Ethernet 100Base-TX / WiFi 802.11 a/b/g
SD memory card
1 GB (included), optional 2/ 4/ 8 GB
Connectors, Cabling
CAN 1 (D Sub)
CAN 2 (D-Sub, M-CAN)
PC LAN
600-580.xxx
620-560.xxx
620-680.xxx
WiFi antenna (standard male connector)
SMA(R)-UFL
SUB D/S SER CAN Cable open
M-CAN Cable (CAN, PWR)
IPEhub2 PC Kabel RJ45
LED status indication
Device status
CAN bus (CAN 1, CAN 2)
Termination CAN 2
PC link status / WiFi status
WiFi signal strength
SD memory usage
78
Power supply, saving, upload, update
Communicaton active/ inactive
Resistor switched on/switched off
Connection active/inactive
Green: > 50 %, Yellow: 50 ... 5 %, Red: < 5 %
Green: < 50 %, Yellow: 50 ... 75 %, Red: > 75 % in use
IPEhub2 + IPEmotion App
IPEmotion App – Display System
The IPEmotion App is an Android based
measurement data display for smartphones
and tablets. The app is designed to show
live data measurements from IPEhub2 and
data loggers. The app display instruments
(GUI) are configured with the data acquisition software IPEmotion and
automatically transferred to the tablet over WiFi network. The app requires
IPEhub2 as access point system and as data source either for CAN bus measurements with IPEhub2 or in the
context of a display system for data loggers called IPEconnect.
Summary of technical features of the App:
 Android based App for operating system 4.0 or higher.
 Default display configuration created with IPEmotion.
 Local display and instrument configuration on tablet is supported too.
 Display of up to 250 measurement channels.
 Display system for IPEhub2 Can measurements and for data loggers.
 4 display instruments (yt-charts, bar graphs, alphanumerical instrument, LED).
 20 display pages with customizable page layouts.
 WPS button to establish WiFi connection to tablet / smartphone.
 Encrypted file and data transfer between IPEhub2 and app.
 Trigger function to active data storage on IPEhub2.
 Add marker comments to IPEhub2 data files.
 All channel PDF signal validation report.
IPEmotion App Screenshots
Main navigation
Instrument overview
Settings
PDF report
79
M-UPS2
Intelligent Uninterruptible Power Supply
Intelligent power supply for mobile DAQ systems
Bypass of voltage drops during cranking (e.g. for crank and cold start tests)
Automatic charging of battery
Quick and easy battery exchange by user
3 Status LEDs to indicate the operation status
Cascading function to increase output power
General
Working temperature range
-25 °C ... +70 °C (-13 °F ... +158 °F)
Storage temperature range
-35 °C ... +80 °C (-31 °F ... +176 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions (W x H x D)
113 mm x 85 mm x 89 mm ( 4.45 in x 3.35 in 3 50 in)
Weight
1300 g (2.87 lb)
Input
Protected against incorrect polarity
Supply voltage
9 VDC ... 18 VDC
Power consumption, max.
30 W
Standby / operating current
< 1 mA / < 100 mA (ouput unloaded)
Output
Protected against incorrect polarity
Output voltage
9 V < Vinput < 18 V
15 V ±1 V
Output power (continuous / short-time)
30 W / 50 W (line operation only)
Battery operation
Output power, max.
30 W
Backup duration at max. output power
(100 % battery charge state required!)
1 ... 5 minutes
(Depends on ambient temperature conditions)
Monitoring, status indication
LED green, yellow, red for operation status
status table shows LED indication and meaning
Monitoring parameters
module temperature, current load, total discharge
Power/operation modes
Standard (single M-UPS feeding)
PWR and control voltage through M-CAN
Cascading (multiple M-UPS feeding)
PWR through IN connector,
control voltage through M-CAN connector
80
M-UPS
Intelligent Uninterruptible Power Supply
Intelligent DC power supply for mobile DAQ systems
Voltage drop and voltage loss bridging for cold start tests
Uninterrupted switch-over from line to battery mode and vise versa
Different remote functions (switch on / switch off) provided
3 Status LEDs to indicate the operation status
Compact and rugged enclosure made of gold anodized aluminum
General
Working temperature range
-40 °C ... +75 °C (-40 °F ... +167 °F)
Storage temperature range
-40 °C ... +75 °C (-40 °F ... +167 °F)
Relative humidity
5 ... 95 % without condensation
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions
W135 mm x H103 mm x D120 mm
(W5.31 in x H4.06 in x D4 72 in)
Weight
2250 g (4.96 lb)
Input
Protected against incorrect polarity
Supply voltage
6 VDC ... 36 VDC
Power consumption, max.
100 W
Standby / operating current
< 1 mA / < 100 mA (ouput unloaded)
Output
Protected against incorrect polarity
Output voltage
5 V < Vinput < 25 V
25 V < Vinput < 36 V
24 V (voltage regulated)
Vinput - 1 V (voltage unregulated)
Output power (continuous / short-time)
80 W / 100 W (line operation only)
Battery operation
Output power, max.
80 W
Backup duration at max. output power
(100 % battery charge state required!)
1 ... 4 minutes
(Depends on ambient temperature conditions)
Monitoring, status indication
LED green, yellow, red for operation status
status table shows LED indication an meaning
Monitoring parameters
module temperature, current load, total discharge
Remote operation
Switch on (depending on operating mode)
Ign. 15, control signal, remote button START
Switch off (depending on operating mode)
Ign. 15, control signal, remote button STOP, FLEETlog
81
M-POWER2
Power Distributor
Intelligent power distributor with M2-Series enclosure
Easy application with existing M-Series systems
Dovetail joint for quick module to module connection
Multicolor LED indicates 3 ranges of the supply voltage
Cable connection through 4 mm female banana connectors
Increasing the number of outputs by module cascading
General
Voltage supply
9 VDC to 36 VDC
Power consumption (unloaded)
typical 0.06 W, max. 0.15 W
Maximum input current
< 25 A
Short-circuit / overload protection
Fused cable 600-749, IN = 20 A
Operating temperature range
-40 ... +85 °C
(-40 ... +185 °F)
Storage temperature range
-45 ... +95 °C
(-49 ... +203 °F)
Relative humidity
15 ... 90 %
IP-Code
IP 54 (ISO 20653 – 2013)
Dimensions (W x H x D)
106 mm x 43 mm x 60 mm (4.17 in x 1.69 in x 2.36 in)
Weight
295 g (0.65 lb)
Voltage supply status indication
LED- color
decreasing voltage
rising voltage
green > 10.6 V > yellow > 9.9 V > red
red < 10.2 V < yellow < 11.1 V < green
Cables
Power input with fuse
600-749.xxx
PWR-Banana/S Cable Fuse-Battery
Connection cable
620-672.xxx
M-POWER2 Cable M-POWER2
Connection cable short (single wires)
620-673.xxx
M-POWER2 Cable M-POWER2 short
82
83
IPEspeed
English
Always mount the GPS antenna
at the vehicle’s outside surface!
GPS Receiver for Dynamic Applications
Accurate GPS receiver with CAN output
Real 20 Hz update rate
Low power consumption
Magnetic GPS antenna with multipath suppression feature included
Web interface to provide configuration and CANdb export
General
Voltage supply
9 VDC to 36 VDC
Power consumption, max.
0.75 W
Working temperature range
-40 °C ... +85 °C (-40 °F ... +185 °F)
Storage temperature range
-45 °C ... +90 °C (-49 °F ... +194 °F)
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions
L126/100 mm x W50 mm x H25 mm (with/without lugs)
L4.96/3.95 in x W1.97 in x H0.98 in (with/without lugs)
Weight
165 g (0.36 lb)
Interfaces
CAN (measuring data)
CAN High Speed acc. to ISO 11898-2 and IPETRONIK M-CAN
LAN (configuration)
Ethernet 10/100 MBit, fixed IP: 192.168.232.241
Signals
Position
Geographic longitude, latitude (format: Real 32, angle),
altitude (height above sea level), Number of satellites used
Speed
Speed over ground (miles/h, km/h)
Course
Course over ground (nautic course, North based)
Time
Date, Time (UTC)
Positioning OK
IPEspeed outputs valid data
LED status indication
Green
Yellow
Orange
PWR
GPS
CAN
Power on, ready for operation
GPS operation (positioning active)
Data transfer to CAN bus
Cables
CAN + Power
620-660.xxx
CAN/PWR - D-Sub9/S, Banana
IPETRONIK M-CAN
620-663.xxx
CAN/PWR - M-CAN Lemo 0B
CAN + ETH + Power
620-666.xxx
ETH/CAN/PWR – RJ45, D-Sub9/S, Banana
CAN + Power, terminated
620-669.xxx
CAN/PWR – D-Sub9/S, term, Banana
IPETRONIK M-CAN, terminated
620-670.xxx
CAN/PWR - M-CAN, term Lemo 0B
84
IPEspeed
Receiver specifications
GPS C/A Code, SBAS capable
Accuracy
Position
Velocity
Time
2.5 m CEP
0.1 m/s (0.36 km/h)
60 ns
First acquisition
Cold start
Hot start
Open Sky TTFF (Time To First Fix)
29 s
1s
Sensitivity
Tracking
Cold start
-165 dBm
-148 dBm
Update rates
1 / 2 / 4 / 5 / 8 / 10 / 20 Hz
Operational limits (COCOM limit)
Altitude
Velocity
< 18,000 m
< 515 m/s
Protocol
NMEA-0183 V3.01
Signal description as stated in CANdb IPEspeed
The latest CANdb is available at:
The download area of IPETRONIK's website (http://myipe.ipetronik.com/en/downloads)
subdirectory Public/IPETRONIK Firmware
A default CANdb is available from the IPEmotion installation diretory, e.g.
C:\Program Files (x86)\Common Files\IPETRONIK\IPEmotion\Import\IPEspeed.dbc
Signal name
CAN ID
Start Bit
Bit Length
Data type
Status
380
0
8
Byte unsigned
Latitude (Latitude_degree)
381
0
32
DWord signed
Longitude (Longitude_degree)
381
32
32
DWord signed
Latitude (Latitude_NMEA)
382
0
32
DWord signed
Longitude (Longitude_NMEA)
382
32
32
DWord signed
Altitude
383
0
32
Real32
Speed, Knots (Speed_knots))
384
0
32
Real32
Course
384
32
32
Real32
Speed, Kilometer per hour (Speed_kmh)
385
0
32
Real32
Speed, Meter per second (Speed_ms)
385
32
32
Real32
Speed, Miles per hour (Speed_mph)
386
0
32
Real32
Satellites in use (Satellites_in_View)
387
0
8
Byte unsigned
Day
388
0
8
Byte unsigned
Month
388
8
8
Byte unsigned
Year
388
16
8
Byte unsigned
Hours (Hour)
389
0
8
Byte unsigned
Minutes
389
8
8
Byte unsigned
Seconds
389
16
8
Byte unsigned
Milliseconds
389
24
16
Word unsigned
85
IPEaudio
English
Acoustics Measurement for Automotive Testing
Noise measurement inside the passenger compartment
IPEaudio kit with system case consisting of:
- IEPE microphone with wind shield and mounting material
- Amplifier with signal conditioning and filtering
- iMIC device with push-button (trigger + status LEDs)
- Headphones
- Cabling
Synchronous recording of audio signals (noises) and CAN data (vehicle operating data) with M-LOG
Triggering of audio signal recording with iMIC device on user command
Offline data analysis with well-established software tools like the PAK system (Mueller-BBM) supported by
IPEmotion ATFX export
Audio signal output to peripheral devices (vehicle infotainment, sound system)
through line out connector
86
IPEaudio
General
Voltage supply
IPEaudio
iMIC
9 VDC to 36 VDC
9 VDC to 36 VDC
Power consumption, typical
IPEaudio
iMIC
1.5 W
0.5 W
Operating temperature range
IPEaudio
Micro Roga MI-17, iMIC
-40 °C ... +85 °C (-40 °F ... +185 °F)
-10 °C ... +50 °C (+14 °F ... +122 °F)
Storage temperature range
IPEaudio
Micro Roga MI-17, iMIC
-40 °C ... +95 °C (-40 °F ... +203 °F)
-20 °C ... +60 °C (-4 °F ... +140 °F)
Relative humidity
5 ... 95 % without condensation
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions
IPEaudio (L x W x H)
iMIC (W x H x D)
Weight
IPEaudio
iMIC
126 mm x 50 mm x 26 mm
(4.96 in x 1.97 in x 1.02 in)
40 mm x 26 mm x 37 mm
(1.57 in x 1.02 in x 1.46 in)
155 g (0.342 lb)
50 g (0.110 lb)
IPEaudio
Switch mode for filter/gain selection
High-pass filter 20 Hz
High-pass filter 200 Hz
Gain selectable 0/ +10/ +20/ +30 dB
Gain selectable 0/ +10/ +20/ +30 dB
Connectors, Cabling
IPEaudio PWR, Micro/Headphone
Push-button trigger
Microphone ROGA MI-17
620-480.xxx
620-607.xxx
Supported data loggers
Audio interface required
M-LOG
PR03 / PR04 / PR05 / PR08 / PR10 / PR11
LOG AUDIO, DI/O Cable IPEaudio, DI/O
LOG Cable iMIC
BNC 90° Cable BNC
S-LOG
Configuration / Data acquisition
Configuration
IPEmotion 2013/ 2014 + PlugIn IPETRONIK-LOG 3.52
Data acquisition
Data logger with TESTdrive 3.52
Data conversion/ data export
IPEmotion 2013/ 2014, ATFX export for PAK (Mueller-BBM)
each WAV source file is converted to the respective ATFX
target file
87
IPEcan FD
USB2CAN-FD-Gateway
PC-USB bus adapter for the CAN-FD bus
High Speed CAN-Bus input per ISO 11898 (mode “ISO” and “Non-ISO” selectable)
Connecting the bus channel with D Sub male connector per CiA® 102 standard pin assignment
Data output to PC/Notebook through USB 2.0 (compatible with USB 1.1 and USB 3.0)
Status LED indicates the current operation status (USB, CAN)
Interface for configuration and data acquisition using IPEmotion software
General
Voltage supply
5 VDC per USB connection (PC)
Power / current consumption
0.8 W, max. 200 mA @ 5 V
Operating temperature range
-40 °C ... +85 °C (-40 °F ... +185 °F)
Storage temperature range
-40 °C ... +100 °C (-40 °F ... +212 °F)
Relative humidity
15 ... 90 %
Dimensions (L x W x H)
92 mm x 54 mm x 16 mm (3.62 in x 2.13 in x 0.63 in)
Weight (incl. cable)
115 g (0.254 lb)
EMC standards
EN 55024: 2003-10 / EN 55022: 2008-05
EC Directive 2004/108/EG
CAN
Specification
Data transfer rates
CAN
CAN-FD
CAN High Speed acc. to ISO 11898,
2.0A (standard ID), 2.0B (extended ID), FD 1.0
40 kBit/s to 1 MBit/s (High Speed)
40 kBit/s to 12 MBit/s
Cables
M-CAN (DATA)
620-502.xxx
M-CAN Cable SubD/S term
M-CAN (DATA + PWR)
620-567.xxx
M-CAN/PWR term Cable - SubD/S, Banana 3
SIM-CAN (DATA)
600-851.xxx
SIM-CAN Cable SUBD/S term
SIM-CAN (DATA + PWR)
600-359.xxx
SIM-CAN/PWR term Cable - SubD/S, Banana 3
88
IPEcan FD Pro
USB2CAN-FD/LIN-Gateway
PC-USB bus adapter 2x CAN-FD + 2x LIN
2 High Speed CAN-Bus inputs per ISO 11898 (mode “ISO” and “Non-ISO” selectable)
2 LIN-Bus inputs
Connecting the bus channels with two D Sub male connectors
per CiA® 102 standard pin assignment
Data output to PC/Notebook through USB 2.0 (compatible with USB 1.1 and USB 3.0)
5 LEDs indicate the current operation status (USB, CAN 1/2, LIN 1/2)
Interface for configuration and data acquisition using IPEmotion software
General
Voltage supply
LIN transceiver
5 VDC per USB connection (PC)
8 VDC to 18 VDC through D Sub connection
Power / current consumption
1.0 W, max. 200 mA @ 5 V
Operating temperature range
-40 °C ... +85 °C (-40 °F ... +185 °F)
Storage temperature range
-40 °C ... +100 °C (-40 °F ... +212 °F)
Relative humidity
15 ... 90 %
Dimensions (L x W x H)
120 mm x 71 mm x 24 mm (4.72 in x 2.80 in x 0.94 in)
Weight (incl. cable)
230 g (0.507 lb)
EMC standards
EN 55024: 2011-09 / EN 55022: 2011-12
EC Directive 2004/108/EG
CAN
CAN 1, CAN 2
Specification
CAN High Speed acc. to ISO 11898,
2.0A (standard ID), 2.0B (extended ID), FD 1.0
Data transfer rates
CAN
CAN-FD
40 kBit/s to 1 MBit/s (High Speed)
40 kBit/s to 12 MBit/s
Galvanic isolation
each CAN-FD channel up to 500 V against USB and LIN
LIN
LIN 1, LIN 2
Specification
LIN specification 2.1
Data transfer rates
1 kBit/s to 20 kBit/s
Cables
M-CAN (DATA)
620-502.xxx
M-CAN Cable SubD/S term
M-CAN (DATA + PWR)
620-567.xxx
M-CAN/PWR term Cable - SubD/S, Banana 3
SIM-CAN (DATA)
600-851.xxx
SIM-CAN Cable SUBD/S term
SIM-CAN (DATA + PWR)
600-359.xxx
SIM-CAN/PWR term Cable - SubD/S, Banana 3
89
High Voltage Iso DAQ
HV Current Limiter
Four Channel DC-High Voltage Measurement System
4 electrically isolated high voltage inputs supporting 1 kV measuring range
4 external safety dividers (HV Current Limiter)
Signal scaling and acquisition rate selectable per channel
Safely measure voltage on high voltage DC systems
of electric and hybrid vehicles
Complete galvanic isolation (signal inputs, CAN, power supply, enclosure)
Measurement data output to CAN
Configuration and measurement using Windows software IPEmotion
Measurement range
r1000 V (lower ranges on request)
Input voltage (IN+ ļ IN-)
max. r1000 VDC / 600 VAC
Channel sample rates
1/ 2/ 5/ 10/ 50/ 100/ 200/ 500/ 1000/ 2000 Hz
Voltage supply
9 VDC to 36 VDC
Switch-off for voltage < 6 V
Power consumption, typical
7.5 W
Working temperature range
-20 °C ... +70 °C (-4 °F ... +158 °F) indefinitely
Storage temperature range
-30 °C ... +85 °C (-22 °F ... +185 °F)
Relative humidity
5 ... 95 %
IP-Code
IP 54 (ISO 20653 - 2013)
Dimensions
High Voltage Iso DAQ (W x H x D)
High Voltage Current Limiter (L x W x H)
165 mm x 60 mm x 130 mm (6.50 in x 2.36 in x 5.12 in)
55 mm x 26 mm x 12 mm (2.17 in x 1.02 in x 0.47 in)
Weight
High Voltage Iso DAQ
High Voltage Current Limiter + HV cable
1370 g (3.02 lb)
135 g (0.30 lb)
90
High Voltage Iso DAQ
Voltag input
Measuring range
r1000 V (lower ranges on request)
Number of input channels per module
4 measurement inputs using 4 mm laboratory safety
connectors
Galvanic isolation
input ļ module power supply
input ļ CAN
input ļ input
r1000 V
r1000 V
r1000 V
Maximum allowable input voltage
Application according to CAT I
Application according to CAT II
1000 VDC
600 VAC @ 50 ... 60 Hz (sine wave)
Unallowable applications
CAT III and CAT IV
Input to output test voltage (2 s duration)
3536 VAC @ 50 Hz (sine wave )
Input impedance
21 Mȍ // 100 pF (with Current Limiter and HV cable)
Cut-off frequency
2 kHz (max. input cable lenght of 1 m)
Hardware filter, switchable
150 Hz, filter type 8-pole Butterworth
Aggregate sample rate
max. 8 kHz
CAN output
2.0 B, electricllay isolated
Selectable data transfer rate (bit rate)
up to 1 MBit/s according to ISO11898-2
CAN message data format (signal)
Resolution (Format)
Sign
8 Bit (Byte) and 16 Bit (Word) selectable
signed, unsigned
Configuration interface
CAN
Safety instructions
!
Do not use High Voltage Iso Divider for applications on AC voltages of three-phase current drives in
electric and hybrid vehicles, due to extremely high transient voltages and HF currents generated by
the drive train systems. An operation without the HV Current Limiter is strictly forbidden!
All users working on High Voltage applications must be trained and approved for this kind of work.
91
M-THERMO2 HV
4-Channel HV Temperature Measurement for K-Type Thermocouples
4 High voltage thermocouple measurement inputs type K (NiCr/NiAl)
acc. to device safety standard EN 61010-2
Each signal input with separate high voltage safety connector
Cold junction compensation per channel
Separate 24 bit ADC for each channel
Status LED at each input channel (sensor break indication and configuration aid)
Measurement data output to CAN
Complete galvanic isolation (inputs, CAN, power supply, enclosure) up to 846 VDC
Approved applications according to CAT I and CAT II
Designed for engine compartment applications
Toolless module to module connection
Measurement range
-60 °C to 1370 °C (-76 °F to 2498 °F)
Input voltage (signal)
max. r50 V (indefinitely), r200 V (short-time, t < 2 ms)
Channel sample rates
1/ 2/ 5/ 10/ min
1/ 2/ 5/ 10/ 20/ 50/ 100 Hz
Voltage supply
6 VDC to 36 VDC
Switch-on V > 9 r0.3 VDC / Switch-off V < 6 r0.3 VDC
Power consumption, typical
< 0.9 W
Working temperature range
-40 ... +105 °C (-40 ... +221 °F)
Storage temperature range
-55 … +150 °C (-67 … +302 °F)
Relative humidity
5 … 95 %
Operating height (altitude)
up to 5000 m (16404 ft) above sea level
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions
W106 mm x H73 mm x D60 mm
(W4.17 in x H2.87 in x D2.36 in)
Weight
approx. 495 g (1.09 lb)
92
M-THERMO2 HV
HV Thermocouple measurement input
Galvanic isolation
input ļ module power supply
input ļ CAN
input ļ enclosure
input ļ input
Test voltage 3536 VAC @ 50 Hz (sine wave)
r846 VDC
r846 VDC
r846 VDC
r846 VDC
CAT approval
Application according to CAT I
Application according to CAT II
846 VDC
500 VAC @ 50 ... 60 Hz (sine wave)
Measuring range Type K (Ni10Cr/NiAl)
-60 to 1370 °C (-76 to 2498 °F)
Resolution ADC / data output
24 Bit / 16 Bit (0.0218 °C)
Linearization of sensor characteristic line
numerically interpolated
Cold junction compensation
each input with PT100 (RTD) for the reference
temperature
Accuracy at an ambient temperature of
25 °C (77 °F)
±0.035 % of full temperature range
Drift within ambient temperature range:
-40 °C to +125 °C (185 ... +257 °F)
r20 ppm/K * FS
Input resistance, typical
3.94 Mȍ
Align of the AD converter unit
at processing each measuring value
Sensor break detection
activated per software on command
Input channel status LED
1. Identify the respective channel in configuration mode
(LED flashes)
2. Identify sensor break in measuring mode
(LED lights continuously)
Hardware filter
10 Hz, filter type single pole RC low-pass
Aggregate sampling rate
max. 400 Hz
CAN output
Selectable data transfer rate (bit rate)
up to 1 MBit/s according to ISO11898-2
CAN message data format (signal)
Resolution (Format)
Sign
8 Bit (Byte) and 16 Bit (Word) selectable
signed, unsigned
Configuration interface
CAN
Cables, Connectors
CAN bus data, terminated
Daisy chain cable (data, power)
Power cable, terminated
CAN bus data / power cable, terminated
620-502.xxx
620-560.xxx
620-561.xxx
620-567.xxx
M-CAN term – SubD9/S, term
M-CAN – Lemo 0B
M-PWR term – Banana
M-CAN/PWR term – SubD9/S, Banana
Signal input
(cable connector, female)
Lemo
alternatively
Thermo Sensor
CKC.H02.SLK.C52Y.1369
442-11-02
Safety instructions
Do not use M-THERMO2 HV for applications on AC voltages of three-phase current drives in electric and hybrid
vehicles, due to the extremely high transient voltages and HF currents generated by these drive train systems!
All users working on High Voltage applications must be trained and approved for this kind of work.
Each M-THERMO2 HV has to be equipped with its mounting brackets + ground terminal (MOD-M-HV-HWI-1
delivered with the module) and has to be connected to a suitable grounding point of the peripheral system.
93
High Voltage Iso Divider
English
DC-High-Voltage-Divider up to 1 kV input range
Electrically isolated high voltage divider with safety current limiter (HV Current Limiter)
Safely measure voltage on high voltage DC systems of electric and hybrid vehicles
Short-circuit current limit with the HV Current Limiter
Connect directly to IPETRONIK SENS modules
Measurement range
(range defined by the hardware)
r1000 V, r100 V, r10 V
(other ranges on request)
Accuracy at ambient temperature
+25 °C (+77 °F)
-20 °C ... +70 °C (-4 °F ... +158 °F)
r0.20 %
r0.50 %
Maximum allowable input voltage
Application according to CAT I
Application according to CAT II
1000 VDC
600 VAC @ 50 ... 60 Hz (sine wave)
Unallowable applications
CAT III and CAT IV
Input to output test voltage (2 s duration)
3536 VAC @ 50 Hz (sine wave )
Input impedance
21 Mȍ // 100 pF (with Current Limiter and HV cable)
Cut-off frequency
2 kHz (max. input cable lenght of 1 m)
Voltage supply
15 VDC @ 35 mA typical (43 mA max.)
Power consumption, typical
0.5 W
Working temperature range
-20 °C ... +70 °C (-4 °F ... +158 °F) indefinitely
Storage temperature range
-30 °C ... +70 °C (-22 °F ... +158 °F)
Relative humidity
5 ... 95 % without condensation
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions
HV Divider
HV Current Limiter
Weight
HV Divider
HV Current Limiter + 1.5 m HV cable
L100 mm (L125 mm with lugs) x W51 mm x H25 mm
L3.94 in (L4.92 in with lugs) x W2.01 in x H0.98 in
L55 mm x W26 mm x H12 mm
L2.17 in x W1.02 in x H0.47 in
120 g (0.26 lb)
135 g (0.30 lb)
Safety instructions
Do not use High Voltage Iso Divider for applications on AC voltages of three-phase current drives in electric and
hybrid vehicles, due to the extremely high transient voltages and HF currents generated by the drive train systems!
An operation without the HV Current Limiter is strictly forbidden!
All users working on High Voltage applications must be trained and approved for this kind of work.
94
Iso Clamp Connector
High Voltage Current Clamp front-end Device
Electrically isolated front-end amplifier unit for mobile current transformers used for high voltage
applications up to 1000 V
Safe current measurement on high voltage DC systems of electric and hybrid vehicles using
battery powered current clamps
Direct connection to IPETRONIK SENS modules
General
Voltage supply
15 VDC @ 35 mA typical (43 mA max.)
Power consumption, typical
0.7 W
Working temperature range
-20 °C ... +70 °C (-4 ƒ)..ƒ)indefinitely
Storage temperature range
-30 °C ... +80 °C (-22 ƒ)..ƒ)
Relative humidity
5 ... 95 %
IP-Code
IP 67 (ISO 20653 - 2013)
Dimensions
L125 mm x B51 mm x H25 mm
(L4.92 in x W2.01 in x H0.98 in)
Weight
approx. 120 g (0.26 lb)
Measuring input
Measuring range
r1 V (other ranges on request)
$FFXUDF\DWƒ&ƒ)DPELHQWWHPSHUDWXUH
±0.2 % of full temperature range
Accuracy within working temperature range
±0.5 % of full temperature range
Maximum allowable input voltage
Applications according to CAT I
Applications according to CAT II
1000 VDC
650 VAC @ 50 ... 60 Hz (sine)
Unallowable applications
CAT III und CAT IV
Input to output test voltage (2 s duration)
3536 VAC @ 50 Hz (sine)
Input impedance
20 0ȍ__S)
Safety instructions
Do not use Iso Clamp Connector for applications on AC voltages of three-phase current drives in electric and hybrid
vehicles, GXHWRWKHH[WUHPHO\KLJKWUDQVLHQWYROWDJHVDQG+)FXUUHQWVJHQHUDWHGE\WKHGULYHWUDLQV\VWHPV!
The current clamp has to meet at least the same categorie (CAT) as the Iso Clamp Connector!
All users working on High Voltage applications must be trained and approved for this kind of work.
95
Kabelinformationen
Systemkabel X
Systemkabel M
Systemkabel SIM
System- und Eingangskabel für Datenlogger
Eingangskabel
96
Systemkabel X
630-500.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
4
X-LINK Kabel System
Bezeichnung
Power GND
ETH RX +
ETH RX GND COM
Power +
ACC CTRL
ETH TX +
ETH TX Shield
Pin-Nr.
1
7
8
4
5
6
2
3
4
630-501.xxx
Lemo-Stecker 1B, 2+6-polig
Lemo-Stecker 1B, 2+6-polig
X-LINK Kabel PWR BÜSCHEL-2
Pin-Nr.
Bezeichnung
1
2
3
4
5
6
7
8
Power GND
Farbe
schwarz
Power +
rot
Lemo-Stecker 1B, 2+6-polig
Büschel Stecker
120
630-522.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
X-LINK System Kabel PC RJ45
Bezeichnung
Pin-Nr.
X-ETH RX +
X-ETH RX Shield
1
2
X-ETH TX +
X-ETH TX -
3
6
630-503.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
4
Lemo-Stecker 1B, 2+6polig
RJ45
X-LINK Kabel System XL
Bezeichnung
Power GND
ETH RX +
ETH RX GND COM
Power +
ACC CTRL
ETH TX +
ETH TX Shield
Pin-Nr.
1
7
8
4
5
6
2
3
4
630-504.xxx
Lemo-Stecker 1B, 2+6-polig
Lemo-Stecker 1B, 2+6-polig
X-LINK Cable M-CAN/PWR
Pin-Nr.
Bezeichnung
Pin-Nr.
1
2
3
4
5
6
7
8
4
Power GND
RX +
RX COM GND
Power +
6, 7
9 CAN L
TX +
TX Shield
Lemo-Stecker 1B, 2+6-polig
Lemo-Stecker 0B, 9-polig
5 CAN GND
1, 2
8 CAN H
5
97
Systemkabel X
630-505.xxx
Pin-Nr
1
5
X-LINK PWR Kabel X-LINK-CAN/M-CAN
Bezeichnung
Power GND
RX +
RX COM GND
Power +
X-LINK
M-CAN
1
2
9 CAN-L
3
4
5 CAN-GND
5
TX +
TX Shield
7
8
4
Lemo-Stecker 1B, 2+6-polig
Lemo-Stecker 1B, 2+6-polig
8 CAN-H
5
630-506.xxx
Lemo-Stecker 0B, 9-polig
X-LINK Kabel M-LOG PR08 ETH/M-PWR
Pin-Nr.
Bezeichnung
1
2
3
4
5
6
7
8
4
Power GND
RX +
RX COM GND
LOG-ETH
Lemo-Stecker 1B, 2+6-polig
Lemo-Stecker 0B, 7-polig
1
2
5
1, 2 M-PWR +
Power +
TX +
TX -
M-CAN
6, 7 PWR GND
3
4
Lemo-Stecker 0B, 9-polig
Shield
630-507.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
4
X-LINK Kabel M-LOG PR08 ETH
Bezeichnung
Pin-Nr.
ETH RX +
ETH RX GND COM
1
2
5
ETH TX +
ETH TX Shield
3
4
Lemo-Stecker 1B, 2+6-polig
630-508.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
4
X-LINK Kabel CAN SUBD9/S
Bezeichnung
Pin-Nr.
RX +
RX COM GND
7 CAN H
TX +
TX Shield
2 CAN L
Lemo-Stecker 1B, 2+6-polig
SUBD-Stecker, 9-polig
120
3 CAN GND
Chassis
630-509.xxx
X-LINK Kabel SIM-CAN/PWR
Pin-Nr.
Bezeichnung
Pin-Nr.
1
2
3
4
5
6
7
8
4
Power GND
RX +
RX COM GND
Power +
9, 10
3 CAN GND
7, 8
TX +
TX Shield
1 CAN H
2 CAN L
Chassis
98
Lemo-Stecker 0B, 7-polig
Lemo-Stecker 1B, 2+6-polig
Lemo-Stecker 1B, 10-polig
Systemkabel X
630-510.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
4
X-LINK Kabel System Lanyard
Bezeichnung
Power GND
ETH RX +
ETH RX GND COM
Power +
ACC CTRL
ETH TX +
ETH TX Shield
Pin-Nr.
1
7
8
4
5
6
2
3
4
Lemo-Stecker 1B, 2+6-polig
630-511.xxx
Lemo-Stecker 1B, 2+6-polig
X-LINK System Lanyard Kabel PWR Büschel
Pin-Nr.
Bezeichnung
Farbe
1
2
3
4
5
6
7
8
Power GND
schwarz
Power +
rot
Lemo-Stecker 1B, 2+6-polig
Büschel-Stecker
120
630-520.xxx
X-LINK Kabel CAN SUBD9/S, PWR Büschel
Pin-Nr.
Bezeichnung
1
2
3
4
5
6
7
8
4
Power GND
RX +
RX COM GND
Power +
TX +
TX Shield
Pin-Nr.
Farbe
Lemo-Stecker 1B, 2+6-polig
schwarz
120
SUBD-Stecker, 9-polig
7 CAN H
3 CAN GND
rot
2 CAN L
Chassis
Büschel-Stecker
630-302.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
X-LINK System Kabel ES ETH
Bezeichnung
Pin-Nr.
X-ETH RX +
X-ETH RX Shield
8
5
X-ETH TX +
X-ETH TX -
4
6
Lemo-Stecker 1B, 2+6-polig
Lemo-Stecker 1B, 8-polig
99
Systemkabel M
620-560.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
Chassis
M-CAN Kabel
Bezeichnung
Power +
Power +
SYNC +
SYNC –
CAN GND
Power GND
Power GND
CAN +
CAN –
Shield
Litzen-Nr.
1
2
3
4
5
6
7
8
9
Chassis
620-561.xxx
Pin-Nr.
Bezeichnung
Power +
Power +
SYNC +
SYNC –
CAN GND
Power GND
Power GND
CAN +
CAN –
Shield
Farbe
rot
FYA
FYA
Lemo-Stecker 0B, 9-polig
Büschel Stecker
schwarz
FYA
620-502.xxx
M-CAN Kabel SUB D/S Abschluss
Pin-Nr.
Bezeichnung
1
2
3
4
5
6
7
8
9
Chassis
Power +
Power +
SYNC +
SYNC –
CAN GND
Power GND
Power GND
CAN +
CAN –
Shield
Litzen-Nr.
Lemo-Stecker 0B, 9-polig
SUB D-Buchse, 9-polig
3
FYA
7
2
Chassis
620-562.xxx
M-CAN Kabel SIM-CAN
Bezeichnung
Power +
Power +
SYNC +
SYNC –
CAN GND
Power GND
Power GND
CAN +
CAN –
Shield
Litzen-Nr.
7
8
5
6
3
9
10
1
2
Chassis
620-509.xxx
Lemo-Stecker 0B, 9-polig
FYA
Lemo-Stecker 1B, 10-polig (gelb)
FYA
M-CAN Abschluss Kabel ETAS
Pin-Nr.
Bezeichnung
1
2
3
4
5
6
7
8
9
Chassis
Power +
Power +
SYNC +
SYNC –
CAN GND
Power GND
Power GND
CAN +
CAN –
Shield
100
Lemo-Stecker 0B, 9-polig
M-PWR Abschluss Kabel BÜSCHEL
1
2
3
4
5
6
7
8
9
Chassis
Pin-Nr.
1
2
3
4
5
6
7
8
9
Chassis
Lemo-Stecker 0B, 9-polig
Litzen-Nr.
Lemo-Stecker 0B, 9-polig
Lemo-Stecker 1B, 8-polig (schwarz)
3, 6
FYA
7
2
Chassis
FGC
Systemkabel M
620-510.xxx
M-CAN Kabel SUB D/S
Pin-Nr.
1
2
3
4
5
6
7
8
9
Chassis
Bezeichnung
Power +
Power +
SYNC +
SYNC –
CAN GND
Power GND
Power GND
CAN +
CAN –
Shield
Litzen-Nr.
Lemo-Stecker 0B, 9-polig
SUB D-Buchse, 9-polig
3
FYA
7
2
Chassis
620-567.xxx
M-CAN/PWR Abschluss Kabel SUB D/S, BÜSCHEL
Pin-Nr.
Bezeichnung
1
2
3
4
5
6
7
8
9
Chassis
Power +
Power +
SYNC +
SYNC –
CAN GND
Power GND
Power GND
CAN +
CAN –
Shield
Litzen-Nr.
Farbe
rot
Lemo-Stecker 0B, 9-polig
SUB D-Buchse, 9-polig
3
schwarz
7
2
Chassis
FYA
blau
Büschel-Stecker
M-CAN-ABS-100
Pin-Nr.
1
2
3
4
5
6
7
8
9
Chassis
Abschluss-Stecker
Bezeichnung
Power +
Power +
SYNC +
SYNC –
CAN GND
Power GND
Power GND
CAN +
CAN –
Shield
Litzen-Nr./Farbe
Lemo-Stecker 0B, 9-polig
Abschluss von CAN-Bus und SYNC-Leitungen
FYA
101
Systemkabel SIM
600-357.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
10
Chassis
SIM-CAN Abschluss Kabel ETAS
Bezeichnung
SIM CAN +
SIM CAN –
SIM CAN GND
Status IN
SYNC +
SYNC –
Power +
Power +
Power GND
Power GND
Shield
Litzen-Nr.
7
2
3, 6
Lemo-Stecker 1B, 10-polig (gelb)
Lemo-Stecker 1B, 8-polig (schwarz)
FYA
FGC
Chassis
600-359.xxx
SIM-CAN/PWR Abschluss Kabel SUB D/S, BÜSCHEL
Pin-Nr.
Bezeichnung
Litzen-Nr.
1
2
3
4
5
6
7
8
9
10
Chassis
SIM CAN+
SIM CAN +
SIM CAN GND
Status IN
SYNC +
SYNC –
Power +
Power +
Power GND
Power GND
Shield
7
2
3
Farbe
rot
Lemo-Stecker 1B, 10-polig (gelb)
SUB D-Buchse, 9-polig
FGA
schwarz
Chassis
blau
Büschel-Stecker
600-801.xxx
SIM-POWER Kabel MIP Abschluss
Pin-Nr.
Bezeichnung
Litzen-Nr.
1
2
3
4
5
6
7
8
9
10
Power +
Power +
Power GND
Power GND
Chassis
Shield
1
2
3
4
5
6
Chassis
102
Lemo-Stecker 1B, 10-polig (gelb)
FGA
Lemo-Stecker 1B, 6-polig (rot)
Systemkabel SIM
600-830.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
10
Chassis
SIM-CAN Kabel
Bezeichnung
SIM CAN +
SIM CAN –
SIM CAN GND
Status IN
SYNC +
SYNC –
Power +
Power +
Power GND
Power GND
Shield
Litzen-Nr.
1
2
3
4
5
6
7
8
9
10
Chassis
600-851.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
10
Chassis
Lemo Stecker 1B, 10-polig (gelb)
FGA
SIM-CAN Kabel SUB D Abschluss
Bezeichnung
SIM CAN +
SIM CAN –
SIM CAN GND
Status IN
SYNC +
SYNC –
Litzen-Nr.
7
2
3
Shield
Chassis
Lemo Stecker 1B, 10-polig (gelb)
SUB D Buchse, 9-polig
FGA
600-855.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
10
Chassis
Lemo Stecker 1B, 10-polig (gelb)
SIM-POWER Abschluss Kabel BÜSCHEL
Bezeichnung
SIM CAN +
SIM CAN –
SIM CAN GND
Status IN
SYNC +
SYNC –
Power +
Power +
Power GND
Power GND
Shield
Farbe
rot
Lemo Stecker 1B, 10-polig (gelb)
Büschel Stecker
FGA
schwarz
blau
103
System- und Eingangskabel für Datenlogger
600-580.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
Chassis
SUB D/S SER CAN Kabel OFFEN
Bezeichnung
Litzen-Nr. / Farbe
CAN –
CAN GND
2 braun
3 schwarz
CAN +
7 rot
S (Shield, dick) blau
620-324.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Chassis
SUB D Buchse, 9-polig
M-LOG PR03 DI/O Kabel OFFEN
Bezeichnung
DIN-1
DIN-2
DIN-3
DIN-4
DIN-GND
+LOG PWR
LED1
LED2
LED3
DIN-GND
DOUT-1
DOUT-2
DOUT-3
DOUT-4
DOUT-GND
Shield
Litzen-Nr. / Farbe
1 weiß
2 braun
3 rot
4 schwarz
5 grün
6 gelb
1 weiß
2 braun
3 rot
Chassis
4 schwarz
5 grün
6 gelb
7 violett
8 grau
Chassis
620-429.xxx
Pin-Nr.
1
2
3
4
5
6
7
8 120
9
Chassis
M-CAN/PWR term Kabel M-CAN/PWR
Bezeichnung
Power +
120
CAN GND
Power GND
CAN +
CAN Shield
104
HDD-Buchse, 15-polig
Litzen-Nr.
1
2
3
4
5
6
7
8
9
Chassis
Lemo Stecker 0B, 9-polig
Lemo Stecker 0B, 9-polig
System- und Eingangskabel für Datenlogger
620-537.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
Chassis
M-CAN SUB D/S Kabel BÜSCHEL
Bezeichnung
Litzen-Nr. / Farbe
CAN –
CAN GND
2 schwarz
3 blau
CAN +
7 rot
Büschel Stecker
Shield
620-574.xxx
M-LOG PR05 PWR Kabel Büschel
Pin-Nr.
1
2
3
4
5
6
Bezeichnung
Power +
1mm²
Power +
Power GND 1mm²
Power GND
Klemme 15
Remote 2
2 schwarz
Chassis
Shield
S (Shield, dick) blau
Litzen-Nr. / Farbe
1 rot
Pin-Nr.
1
2
3
4
5
6
7
8
Büschel Stecker
FNB
M-VIEWfleet Kabel M-LOG PR05
Bezeichnung
Litzen-Nr. / Farbe
GPS_PWR
1
REMOTE2
2
GND
3
USB2-D – (HOST – )
4
USB2-D+ (HOST +)
5
USB3-D – (CLIENT – )
6
USB3-D+ (CLIENT +)
7
8
DGND
9
USB2-PWR(5V)
10
Chassis
620-591.xxx
Lemo Stecker 1B, 8-polig
Lemo Stecker 1B, 10-polig (grün)
FNG
FHG
LOG PR05 ETH Kabel (crosslink), RJ45
Bezeichnung
RxD+
RxDTxD+
TxD-
Shield
Lemo-Stecker 1B, 6-polig (rot)
3 gelb
620-578.xxx
Pin-Nr.
1 TxD+
2 TxD3 RxD+
4 RxD5
6
SUB D Buchse, 9-polig
Litzen-Nr. / Farbe
3
6
1
2
Ethernet
Ethernet
Chassis
105
System- und Eingangskabel für Datenlogger
620-621.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
OBD2 Kabel M-LOG PR05
Bezeichnung
Pin-Nr.
OBD2-Buchse, 16-polig
CAN GND
CAN +
3
7
CAN -
2
Shield
Chassis
620-631.xxx
Pin-Nr.
1
2
3
4
5
Chassis
M-LOG PR08 COM2 Kabel GPS
Bezeichnung
GPS-PWR
RxD
TxD
Power GND
D-GND
Shield
Litzen-Nr.
5
1
2
4
3
620-647.xxx
Pin-Nr.
1
2
3
4
5
6
Chassis
Bezeichnung
Power +
Power GND
Remote-LOG
LOG-Power
Shield
Bezeichnung
TxD +
TxD RxD +
RxD ETH-GND
PWR-GND
PWR-OUT +
Shield
106
Lemo-Stecker 0B, 5-polig
GPS
M-UPS PWR-OUT Kabel Logger
Pin-Nr.
1
2
3
4
5
6
Chassis
620-649.xxx
Pin-Nr.
1
2
3
4
5
6
7
5
SUB D Buchse, 9-polig
Lemo-Stecker1B, 6-polig
Lemo-Stecker1B, 6-polig
LOG ETH-IN Kabel EXTENDER ETH abgewinkelt
Pin-Nr.
3 RxD +
4 RxD 1 TxD +
2 TxD 5
7
6 PWR +
5
Lemo-Stecker 0B, 7-polig
Lemo-Stecker 0B, 7-polig
System- und Eingangskabel für Datenlogger
620-656.xxx
Pin-Nr.
9
7
2
3
Chassis
EXTENDER FlexRay-IN Kabel offen
SUBD9/S
Bezeichnung
VBAT
BP
BM
GND
Shield
620-660.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
10
IPEspeed CAN/PWR Kabel CAN-SubD/S, PWR-Büschel/P
Bezeichnung
Power GND
Pin-Nr.
CAN-L
Power +
CAN-H
2
CAN-GND
Shield
3
Farbe
schwarz
Lemo-Stecker 1B, 10-polig
SubD9/S
rot
7
Büschel
620-666.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
10
IPEspeed ETH, CAN, PWR Kabel RJ45, CAN-SubD, PWR-Büschel
Bezeichnung
Power ETH RX +
ETH RX CAN-L
Power +
CANETH TX +
ETH TX CAN-GND
Shield
Pin-Nr.
Farbe Litzen-Nr.
schwarz
1
2
Lemo-Stecker1B, 10-polig
SubD9/S
2
rot
7
3
6
Büschel
3
Chassis
RJ45
620-669.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
10
IPEspeed CAN/PWR Kabel CAN-SubD/S, term, PWR-Büschel/P
Bezeichnung
Power-GND
Pin-Nr.
CAN-L
Power +
CAN-H
2
CAN-GND
Shield
3
Farbe
schwarz
Lemo-Stecker 1B, 10-polig
SubD9/S
rot
7
Büschel
107
System- und Eingangskabel für Datenlogger
620-680.xxx
IPEhub2 PC Kabel RJ45
RJ45
Lemo-Stecker 0B, 9-polig
Pin-Nr.
1
2
3
4
5
6
7
8
9
Bezeichnung
TxD +
TxD Shield
RxD +
RxD -
Litzen-Nr.
3
6
Chassis
1
2
620-684.xxx
Pin-Nr.
2
7
3
5
8
9
1
8
9
Chassis
IPEhub2/IPElog CAN1+2 Kabel 2x CAN SubD/P
Bezeichnung
CAN-A Low
CAN-A High
CAN-A GND
Pin-Nr.
2
7
3
CAN-B Low
CAN-B High
CAN-B GND
Shield
Chassis
Pin-Nr.
SubD9/S
SubD9/P
2
7
3
Chassis
SubD9/P
620-685.xxx
Pin-Nr.
2
7
8
9
3
1
5
6
4
Chassis
LOG CAN/LIN Kabel 2x CAN/LIN SubD/P
Bezeichnung
Pin-Nr.
CAN-A Low/LIN-A VBAT 2
CAN/LIN-A High
7
CAN-A VBAT
8
UB-OUT +
9
CAN/LIN-A+B GND 3
CAN-B Low/LIN-B VBAT
CAN-B VBAT
UB-OUT GND
6
CAN/LIN-B HIGH
Shield
Chassis
Pin-Nr.
SubD9/P
SubD9/S
SubD9/S
9
3
2
8
6
7
Chassis
SubD9/P
620-689.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
10
Chassis
LOG-VIEW Kabel IPEconnect
Bezeichnung Pin-Nr.
GPS-PWR
1, 2 PWR +
GND
USB2-D USB2-D +
USB-GND
USB-VBUS
Shield
108
Pin-Nr.
Lemo-Stecker 1B, 10-polig
(geeignet für M-LOG, M-LOG V3, IPElog, IPElog2)
Lemo-Stecker 0B, 9-polig
6, 7 PWR-GND
8
7
Chassis
6
9
Chassis
Lemo-Stecker 0B, 9-polig
System- und Eingangskabel für Datenlogger
620-688.xxx
Pin-Nr.
3
12
2
8
9
5
6
11
1
10
15
16
4
13
14
2
LOG GB-ETH Kabel RJ45
Bezeichnung
ETH D1 +
ETH D1 ETH-GND
ETH D3 +
ETH D3 ETH D2 +
ETH D2 ETH D4 +
ETH D4 PWR +
PWR +
PWR +
PWR PWR PWR Shield
Litzen-Nr.
1
2
4
5
3
6
7
8
Chassis
620-691.xxx
LOG-VIEW Kabel IPEconnect
Lemo-Stecker 1B, 10-polig
Pin-Nr.
1
2
3
4
5
6
7
8
9
Chassis
Bezeichnung
GPS-PWR
Pin-Nr.
Pin-Nr.
1, 2 PWR +
GND
USB2-D USB2-D +
6, 7 PWR-GND
8
7
USB-GND
Shield
Chassis
620-692.xxx
Pin-Nr.
1
2
3
4
5
6
7
Bezeichnung
TxD +
TxD RxD +
RxD Shield
PWR-GND
PWR +
(notwendig für FLEETlog2)
Lemo-Stecker 0B, 9-polig
Lemo-Stecker 0B, 9-polig
6
Chassis
LOG ETH Kabel COMgate V3
Pin-Nr.
3 RxD +
RxD - 12
TxD + 5
TxD - 6
2
13, 14
15, 16
620-696.xxx
Pin-Nr.
3
12
5
6
2
10
15
16
4
13
14
8
9
11
1
7
RJ45
Lemo-Stecker 1B, 16-polig
Lemo-Stecker 0B, 7-polig
Lemo-Stecker 1B, 16-polig
LOG GB-ETH Kabel Extender
Bezeichnung
RxD +
RxD TxD +
TxD ETH-GND
ETH D2 +
PWR +
PWR +
Litzen-Nr.
1 TxD +
2 TxD 3 RxD +
4 RxD 5 ETH-GND
PWR-GND
PWR-GND
6
6
Lemo-Stecker 1B, 16-polig
Lemo Stecker 0B, 7-polig/P,30°
7
7
109
Eingangskabel
670-807.xxx
Pin-Nr.
1
2 Shield
3
4
5
6
Chassis
SIM-SENS Kabel OFFEN
Bezeichnung
VIN +
VIN –/IIN –
IIN +
+ VOUT
GND
– VOUT
Litzen-Nr.
1
2
3
4
5
6
S (Shield)
670-850.xxx
Pin-Nr.
1
2
3
4
5
6
7
Chassis
Litzen-Nr.
1
2
3
4
5
6
7
670-858.xxx
Lemo Stecker 1B, 7-polig (schwarz)
FGG
SIM-CNT-IN Kabel OFFEN
Bezeichnung
IN +
GND
IN –
+ Power Limit 40 mA
POWER GND
DIG 1
DIG 2
Shield
Litzen-Nr.
1
2
3
4
5
6
7
S (Shield)
600-102.xxx
Pin-Nr.
1
2
3
4
5
6
2
FGG
KIM/SIM-DMS Kabel OFFEN
Bezeichnung
IN +
– VOUT
+ VOUT
IN –
– SENS
+ SENS
GND + Shield
Pin-Nr.
1
2
3
4
5
6
7
Chassis
Lemo Stecker 1B, 6-polig (schwarz)
Lemo Stecker 1B, 7-polig (schwarz)
FGG
SIM-SENS Kabel IPESHUNT
Bezeichnung
VIN +
VIN - / IIN -
Pin-Nr.
4
3
+VOUT
GND
2
1
Lemo Stecker 1B, 6-polig
Shield
600-747.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
9
10
STG 2B 10p. Kabel offen
Bezeichnung
INPUT +
INPUT EXCIT +
SENS +
TEDS +
EXCIT SENS INPUT GND
Shield
110
Lemo Stecker 2B, 10-polig
Datamate L-Tek, 4-polig
Eingangskabel
600-861.xxx
Pin-Nr.
1
2 Shield
3
4
5
6
Chassis
SIM-SENS Kabel BÜSCHEL 6
Bezeichnung
VIN +
VIN –/
IIN +
+ VOUT
GND
– VOUT
Litzen-Nr.
1
IIN – 2
3
4
5
6
Büschel Stecker
Lemo Stecker 1B, 6-polig (schwarz)
FGG
600-864.xxx
Pin-Nr.
1
2 Shield
3
4
5
6
Chassis
SIM-SENS Kabel BÜSCHEL 2
Bezeichnung
VIN +
VIN –/
IIN +
+ VOUT
GND
– VOUT
Litzen-Nr.
rot
IIN –
schwarz
3
4
5
6
600-896.xxx
Pin-Nr.
1
2
3
4
5
6
7
Chassis
Büschel Stecker
FGG
KIM/SIM-DMS Kabel BÜSCHEL
Bezeichnung
IN +
– VOUT
+ VOUT
IN –
– SENS
+ SENS
GND + Shield
Farbe
rot
Lemo Stecker 1B, 7-polig (schwarz)
Büschel Stecker
schwarz
FGG
600-898.xxx
Pin-Nr.
1
2
3
4
5
6
2
Lemo Stecker 1B, 6-polig (schwarz)
SIM-SENS Kabel Verlängerung
Bezeichnung
VIN +
VIN-/IINIIN+
+VOUT
GND
-VOUT
Shield
Pin-Nr.
1
2
3
4
5
6
2
Lemo Stecker 1B, 6-polig
Lemo Stecker 1B, 6-polig
111
Eingangskabel
620-044.xxx
Pin-Nr.
1
2
HViso Kabel DIVIDER
Bezeichnung
IN +
IN –
Büschel Stecker
620-640.xxx
Pin-Nr.
1
2
3
4
5
6
HViso Kabel SENS 1B 6p
Bezeichnung
VOUT +
VOUT GND
PWR + 15V
Pin-Nr.
1
2
4
PWR GND
1)
Shield
5
6
2
600-896.xxx
Pin-Nr.
1
2
3
4
5
6
7
Chassis
620-695.xxx
Farbe
rot
Lemo Stecker 1B, 7-polig (schwarz)
schwarz
Mx-SENS 1B 7-poliger Adapter BNC/S-ICP
Bezeichnung
+ VOUT
- VOUT
112
Lemo-Stecker 1B, 6-polig
KIM/SIM-DMS Kabel BÜSCHEL
Bezeichnung
IN +
– VOUT
+ VOUT
IN –
– SENS
+ SENS
GND + Shield
Pin-Nr.
1
2
3
4
5
6
7
FIPS, 6-polig
Lemo Stecker 1B, 7-polig
Büschel Stecker
Eingangskabel
670-937.xxx
Pin-Nr.
1
2
3
4
Chassis
SIM-PT100 0S Kabel OFFEN
Bezeichnung
PT IN +
I OUT +
PT IN –
I OUT –
Shield
Litzen-Nr.
1
2
3
4
Chassis
671-847.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
Bezeichnung
Not Connected
CAN +
VBATT
120 Ω
Chassis / Shield
CAN GND
Not Connected
Not Connected
Shield
Litzen-Nr. / Farbe
Lemo Stecker 2B, 8-polig (schwarz)
1 grün
2 rot
3 schwarz
4 braun
FNG
S (Shield, dick) blau
SIM/FIM-STG 2B Kabel OFFEN
Bezeichnung
Litzen-Nr. / Farbe
+VOUT
1 rot
IN –
2 weiß
IN +
3 grün
– VOUT
4 schwarz
Channel / GND / Shield
TEDS+
6 gelb
– SENS/ – TEDS
7 violett
+SENS
8 grau
Shield
S (Shield, dick) blau
671-858.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
FFA
GMLAN SINGLE WIRE 2B Kabel OFFEN
671-850.xxx
Pin-Nr.
1
2
3
4
5
6
7
8
Lemo Stecker 0S, 4-polig (schwarz)
Lemo Stecker 2B, 8-polig (schwarz)
FNG
SIM-CNT-IN 2B Kabel OFFEN
Bezeichnung
+Power Limit 40 mA
IN –
IN +
POWER GND
Channel GND / Shield
DIG 1
DIG 2
Not Connected
Shield
Litzen-Nr. / Farbe
1 red
2 white
3 green
4 black
5 brown
6 yellow
7 violet
Lemo Stecker 2B, 8-polig (schwarz)
FNG
S (Shield, thick) blue
113
▸ Messung, Analyse, Automation, Reporting
▸ Hardware herstellerunabhängig
▸ Thermomanagement Funktionen wie log p-h, Enthalpy
▸ Video Capture
▸ CCP, XCP, OBD, GMLAN
▸ CCP Anpassung
▸ CANdb, A2L, ODX, LDF Import
▸ Mehrsprachig
▸ Software-Schnittstelle COM, Python, VisualBasic
114
HERSTELLERUNABHÄNGIGE MESSDATENERFASSUNG
Erfassung, Analyse und Automatisierung mit IPEmotion
Praxisorientierte Messmittelnutzung und zuverlässige Datenerfassung stehen für uns an erster Stelle. Dazu haben wir IPEmotion
entwickelt – eine einfach zu bedienende Messsoftware für alle
Anwendungen im Prüfprozess.
Unterstützte Protokolle und
Standards:
▸
CCP – CAN Calibration Protocol
▸
XCP – Universal Measurement
& Calibration Protocol
IPEmotion unterstützt durch spezielle PlugIns die Messanwendungen
im Bereich der automobilen Fahrzeugerprobung – unabhängig von
der eingesetzten Hardware. Ebenso verbindet IPEmotion problemlos
komplexe Steuergeräteanwendungen mit hochpräziser Messtechnik
für physikalische Größen.
▸
OBD – On Board Diagnostics
▸
KwPonCAN – Key Word Protocol
▸
FlexRay, GM-LAN, LIN Bus, J1939
und weitere
Funktionen und Anwendungen:
Durch kundenspezifische Einrichtung und angepasstes Setup wird
IPEmotion zur individuellen Softwarelösung für Ihre Messanwendungen. Komplettiert durch die flexible Anpassung der Datendarstellung
auch bei laufender Messung und Speicherung (Online-Diagnose).
▸
CAN-Bus Datenerfassung
▸
Messwerterfassung für Versuch
und Erprobung
▸
IPEmotion ist in sieben Sprachen verfügbar, ausgelegt auf die Erfassung großer Datenmengen (High Speed-Speicherung) und ermöglicht eine automatische Auswertung, Reporterstellung und OfflineMessdatenverarbeitung.
Einfach zuverlässig und hochpräzise.
Prüfstände steuern und automatisieren
▸
Datenlogger Konfiguration
▸
ECU Kommunikation
▸
Anzeigen von Online-Daten
▸
Messdatenanalyse
▸
Im- und Export von Messdaten
▸
Automatisches Reporting
▸
Skripting-Schnittstelle
▸
SDK für 3rd party
115
IPEmotion 2016
EDITIONEN-ÜBERSICHT
Funktionen
Demo/Student
Basic
Lite
Standard
Professional
Developer Analyse (Offline
Auswertung)
gratis: 30 Tage/
6 Monate
gratis
kostenpflichtig
kostenpflichtig
kostenpflichtig
kostenpflichtig
kostenpflichtig
alle
alle
alle
(1 aktives)
alle
alle
alle
nicht relevant
Anzahl der darstellbaren
Kanäle
keine
Begrenzung
250 Kanäle
64 Kanäle
256 Kanäle
keine
Begrenzung
keine
Begrenzung
keine
Begrenzung
Anzahl der Speichergruppen (Online Daten)
keine
Begrenzung
keine
Speicherung
1 Speichergruppe
2 Speichergruppen
keine
Begrenzung
keine
Begrenzung
nicht relevant
Anzahl der Anzeigeseiten
zur Online und Offline
Visualisierung von
Messdaten
keine
Begrenzung
20 Seiten
(Analyse 1
Seite)
5 Seiten
20 Seiten
(Analyse 5
Seiten)
keine
Begrenzung
keine
Begrenzung
keine
Begrenzung
Import von Beschreibungsdateien (DBC, A2L, etc)
ja
ja
ja
ja
ja
ja
ja (DBC)
Makro - VBS und Python
Skripting Seite
ja
nein
nein
nein
ja
ja
ja
Online & Offline Kartendarstellung
ja
nein
nein
nein
ja
ja
ja (offline) Karte,
Traffic Analyse,
3D-Anzeige
COM Schnittstelle –
externer Programmzugriff
ja
nein
ja
ja
ja
ja
ja
nein
nein
nein
nein
nein
ja
nein
ja
nein
nein
nein
optional
optional
nein
auf Anfrage
nein
nein
nein
optional
optional
ja
ja
nein
nein
nein
optional
optional
optional
Lizenz
unterstützte PlugIns
Erstellen von Runtime
Versionen
Option Control: Funktionsgenerator, PID-Regler,
Ablaufsteuerung
Option Klima: log p-h
Diagramm, Enthalpie
Option Akustik
Neu in IPEmotion 2016
116
WAS IST EIN PLUGIN?
▸ Ein PlugIn ist die Schnittstelle zwischen einer spezifischen Hardware und IPEmotion.
▸ Das PlugIn bietet jeweils eine Schnittstelle zur Konfiguration sowie zur Messung und Steuerung
der Hardware. Es kann außerdem auf die Hersteller API (Application Programming Interface)
zugreifen, um die Geräte einzubinden.
▸ Für die Konfiguration der anzuschließenden Hardware steht ein komfortabler PlugIn-Designer
zur Verfügung, mit dem sich die notwendigen Einstellungen graphisch konfigurieren lassen.
▸ Der Designer erstellt ein VisualStudio-Projekt mit einem C#-Framework für die Konfiguration
und einem C++-Framework für die Messung.
▸ Die PlugIn-Schnittstelle ist komplett offengelegt und frei verfügbar. Die zugehörige Dokumen-
tation enthält viele Beispiele für den schnellen Einstieg.
Einzigartiges PlugIn-Konzept zur
herstellerunabhängigen Messdatenerfassung.
117
PLUGIN-ÜBERSICHT
118
PLUGIN-DETAILANSICHT
Kategorie
Automotive
PlugIn-Name
Beschreibung
Hardware
IPETRONIK-CAN
Gerätekonfiguration und Messwerterfassung (TEDS, DMS, ICP, Volt, Hochspannung, mA, PT100, TE, DIO, PWM,
Encoder) mit IPETRONIK Messmodulen
über CAN-Bus.
M-SENS2
M-THERMO2
etc.
IPETRONIK-LOG
Konfiguration und Datenerfassung der
IPETRONIK Datenlogger und Zusatzmodule: Video Extender, FlexRay Extender,
COMgate etc.
M-LOG
FLEETlog
IPElog
IPETRONIK-X
PlugIn zur Messdatenerfassung vom
FlexRay-Bus und zur Anbindung der
Mx-SENS und Sx-STG Module auf TCP/IP
oder alternativ auf CAN-Bus-Basis.
Mx-SENS
Sx-STG
FlexRay
CAN-Messen
CAN-Bus Datenerfassung von
Steuergeräten. Signalkonfiguration wird
über CANdb oder Autosar-Dateien
realisiert. Exportfunktionen als CANdb
und XML CANdb werden auch
unterstützt.
Anwendungen
Industrie
Bild
Vector
Kvaser
IPEcan/Peak
PEAK
NI
Softing
TRAMA
Drewtech
ICS-CAN
I+ME Actia
M-WiFi
CAN-Protokoll
Messen an Steuergeräten über XCP, CCP,
KWP und GM-LAN Protokolle. Diagnose
über den OBD-2-Standard steht auch zur
Verfügung.
CAN-Senden
Versenden von CAN-Bus-Nachrichten an
Steuergeräte oder externe Software-Tools, die CAN-Bus-Nachrichten
empfangen können. Konfiguration der
Kanäle wird über DBC und Autosar-Beschreibungsdateien unterstützt.
PCAN-USB
Pro LIN
LIN-Bus-Messdatenerfassung als Master,
Slave oder Listener. Signale können über
eine *.LDF-Beschreibungsdatei
importiert werden.
PEAK-CAN
Pro
Dataforth
Unterstützt die Konfiguration der MAQ20
COM-4-Serie mit allen IO-Modulen.
Die Geräteanbindung wird über USB oder
über Ethernet TCP/IP realisiert.
MAQ20 COM
Module
ProfiBus
Anbindung an ein ProfiBus-Netzwerk.
Das PlugIn kann als Master oder Slave
fungieren.
Softing ProfiBus
USB-Adapter
IsPro PCI-Adapter
IsPro USB-Adapter
SIEMENS SPS
Anbindung an Siemens-Steuerungen
über verschiedene Schnittstellen.
Konfiguration von *.s7p-Projektdateien
können importiert werden, um ein
Prozessabbild aufzubauen.
SIEMENS S7
TCP/IP
NetLink USB
NetLink Pro
Ethernet
Softing ProfiBus
PG-PC Interface
Beckhoff
Konfiguration und Datenerfassung über
Beckhoff TCP/IP-Feldbuskoppler mit
K-Bus-Klemmen. Die Anbindung an
TwinCAT-Steuerungen mit EtherCAT
EL-Klemmen wird auch unterstützt.
BK9000
BK9050
BK9100
TwinCAT-ADS
TwinCAT-R3IO
WAGO
Konfiguration und Datenerfassung über
WAGO TCP/IP-Feldbuskoppler mit
WAGO-Klemmen.
750-341
750-343
750-352
119
PLUGIN-DETAILANSICHT (Fortsetzung)
Kategorie
Industrie
PlugIn-Name
Beschreibung
Hardware
WAGO PLC
Controller-Programmierung über
CODESYS. IPEmotion importiert
Prozessabbild der IO-Klemmen und
internen Variablen der CODESYSKonfiguration. Schreib-/ Lese-Zugriff auf
die Variablen. Kanalkonfiguration nicht
veränderbar. Ist lizenziert.
SPS Controller
8202 PFC 200
Advantech
Datenerfassung über Feldbuskoppler. Es
werden alle Module unterstützt.
Konfiguration der Module wird über
Advantech .NET Utility-Software
vorgenommen.
APAX 5070
Advantech ADAM
Datenerfassung und Gerätekonfiguration
für die Basis von seriellen Schnittstellen.
ADAM-4000
OPC
Einbindung von Variablen (lesen &
schreiben) über die OPC DA-Schnittstelle. Das PlugIn arbeitet als OPC-Slave.
Ist lizensiert.
OPC Slave
DA Mode
Technikmedia
MODBUS
Anbindung von Modbus-Geräten über die
RTU- (seriell) und TCP- (LAN) Schnittstelle.
Unterstützung diverser Funktionscodes
zum Lesen und Setzen von Registern.
Ist lizensiert.
Modbus Slave
RTU
TCP
OPTRIS
Einbindung der OPTRIS PI Wärmebildkameras und CT-Pyrometer.
PI Serie: 160, 200,
400, 450, 640
CT-Serie
Goldammer
Messkarten für dynamische Anwendungen mit integrierten Realtime-Funktionen. Alle Funktionen können über das
PlugIn konfiguriert werden, mit
Ausnahme der FFT-Berechnung. Eine
automatische Geräteerkennung wird
unterstützt.
USB Multi Choice
Basic
USB Multi Choice
MC4
PCI Series
PCI Express Series
Addi-Data
Kanal- und Gerätekonfiguration auf Basis
von TCP/IP.
MSX-E1701
NI-DAQmx
Geräte und Kanalkonfigurationen können
durchgeführt werden. Die Geräte werden
auch über USB automatisch erkannt.
Die NI DAQmx Treiber sind für den
Verbindungsaufbau notwendig.
USB 6501
USB 6221 BNC
USB 6229 BNC
Gantner Instruments
Gerätekonfigurationen können über die
automatische Hardwareerkennung
eingelesen werden. Für die Erstellung
der Gerätekonfiguration wird die
testCommander-Software benötigt.
Q.Station
Q.Gates
e.Series
HBM QuantumX
Das PlugIn ermöglicht die Konfiguration
der MX840-Serie von HBM-Messtechnik.
MX840
IOtech
Konfiguration und Datenerfassung der
DaqBook 2000 Geräteserie und der
Messmodule. Das PlugIn benötigt auch
den IOtech DATACom-Gerätetreiber.
DaqBook
2001/2005
(Fortsetzung)
Dynamische Systeme
120
Bild
PLUGIN-DETAILANSICHT (Fortsetzung)
Kategorie
PlugIn-Name
Beschreibung
Hardware
GPS
Erfassung von GPS-Signalen über das
NMEA-Protokoll.
GPS-Empfänger
über NMEA
Standard
Demo
Erzeugt Demo-Signal von verschiedenen
Funktionsgeneratoren.
Keine Hardware
erforderlich
Sound
Erfassung von Schallpegel über das
PC-Mikrofon.
Soundkarte von PC
ETH
Senden und Empfangen von ASCII-Daten
über das UDP- oder TCP-Protokoll. Das
spezifische AK-Protokoll für MAHARollenprüfstände wird auch unterstützt.
keine Hardware
erforderlich
Video
Erfassung von Bilddaten über USB-WebKameras und IP-Kameras mit dem Real
Time Streaming Protokoll.
USB-Kameras und
IP-Kameras
Serial
Über das serielle PlugIn können serielle
Geräte eingebunden werden. Die
Einbindung wird über eine gerätespezifische DLL gelöst, in der die Befehle
hinterlegt sind.
Multimeter
Metrix MX556
Leistungsmessgerät
Fluke Norma 3000
YOKOGAWA
Messwerterfassung von Strom,
Spannung, Leistung und vielen weiteren
Kenngrößen von Leistungsmessgeräten.
WT500
WT3000S
WT3000M
WT1600S
WT1600M
EASYBus
Einbindung der Easybus-Geräte von
Greisinger.
EBW1, EBW3,
EBW64, EBW240
GRS 3100
USB3100
Gas Service
Erfassung von Temperatur, CO2 und
Volumenstrom von einem Gaschromatometer.
LumaSense
INNOVA 1412
Scales
Unterstützt die serielle Kommunikation
zu Waagen.
Mettler Toledo
Kern
Satorius Combics
Velleman
K8055 Experimentier-Board für
Studenten. Automatische Hardwareerkennung über die USB-Schnittstelle. Die
Ansteuerung aller IOs wird unterstützt.
K8055 / VM110
Technikmedia
AVR-NET-IO
Experimentier-Board von Pollin.
Ansteuerung aller IOs und der
Relay-Karte K8 sind möglich.
AVR-NET-IO
Technikmedia
ATMEL
Das PlugIn kann die IOs von ATMELProzessoren ansprechen. Das ATMELProgramm steht im Setup mit zur
Verfügung.
ATMEL
ATmega32
Prozessor
STK 5000 Board
Sonstige
Serielle Geräte
Evaluation Kits
Bild
121
IPEaddon INCA 5
Produktinformation
Deutsch
IPETRONIK X-LINK Gerätetreiber für ETAS INCA Messungen bis 100 kHz
Verwendung von IPETRONIK X Modulen Mx/Sx und IPETRONIK M2 CAN Modulen mit der INCA Software
zur:
-
Spannungs-, Temperatur-, Strommesuung
-
DMS-, Druck- und ICP-Messung
-
Synchronen Erfassung von Steuergerätedaten
X-Module mit hohen Abtastraten (100 kHz Mx-SENS2 4, 40 kHz Sx-STG, 10 kHz Mx-SENS)
(CAN Tunneling: eine Busleitung für CAN- und Ethernet-Module)
Eine einheitliche Konfigurationsschnittstelle für M- und X-Module
Module werden direkt aus der INCA-Oberfläche erkannt, konfiguriert und initialisiert
Unterstützte Interfaces: alle ETAS Schnittstellenmodule mit ETH-Verbindungen (ES-593, 595, …) und
Interfaces mit OHI-Treiber Unterstützung
Signalaufnahme und Datenspeicherung mit unterschiedlichen Abtastraten in INCA-Experimenten
Anlegen von Systemen ohne angeschlossene Hardware (“Trockenkonfiguration”)
Offsetabgleich auf Null oder auf benutzerdefinerte Referenzwerte
122
IPEaddon INCA 5
Produktinformation
123
IPEmotion
Klima-Modul
Das IPEmotion Klima-Modul kann als zusätzliche Option die Professional- oder Developer-Edition erweitern.
Mit dem Klima-Modul wird Ihnen eine einfache Berechnung der Kühlmittelmenge und der Eigenschaften
innerhalb eines Kühlkreislaufes ermöglicht. Das Modul basiert dabei auf einem sogenannten log-ph-Diagramm sowie einem Pool aus bestimmten Formeln zur Berechnung von Enthalpie und Entropie unter
Berücksichtigung der REFPROP-Datenbank für Kühlmittel des NIST (National Institute of Standardization).
HVAC-Kühlkreislauf-Diagramm
Mit dem Klima-Modul können alle thermodynamischen Größen an jedem beliebigen Punkt des Kühlkreislaufes bestimmt werden. Der Kühlkreislauf kann dabei in folgende vier Hauptbereiche unterteilt werden:
124
▸ Kompressor
Der Kompressor wandelt gasförmiges Niederdruck-Kühlmittel zu HochdruckKühlmittel um, wodurch die Temperatur des Kühlmittels steigt und auch der Kom
pressor erheblich an Wärme gewinnt.
▸ Kondensator
Der Kondensator kühlt das heiße Hochdruck-Kühlmittel. Ein kalte Flüssigkeit ent
steht.
▸ Verdampfer
Die kalte Niederdruck-Flüssigkeit verdampft beim Durchfließen durch den Ver
dampfer und wird dadurch gasförmig.
▸ Expansions-Ventil
Wenn das Kühlmittel das Expansions-Ventil durchströmt, wird Druck freigesetzt,
das Kühlmittel verdampft. Durch den Verdampfungsvorgang kommt es zu einem
Wärmedrift. Der Verdampfer kühlt ab und nimmt dabei die Energie der einströmenden warmen Luft auf.
IPEmotion
Klima-Modul
Zweck
Das Klima-Modul ist ein äußerst leistungsfähiges Instrument für Online- und Offline-Messungen an
HVAC-Kühlkreisläufen wie auf der schematischen Darstellung eines HVAC-Diagramms zu sehen ist. Die
Formeln ermöglichen es dem Benutzer, die Enthalpie [kJ/kg] von allen Druck- und Temperaturmessstellen
unter Berücksichtigung der jeweiligen thermodynamischen Eigenschaften des gewählten Kühlmittels zu
messen. Die Ergebnisse der Online- oder Offline-Messungen werden grafisch in einem log-pH-Diagramm
angezeigt.
Log-ph-Diagramm
Anwendungsbereiche
Das Klima-Modul wird häufig in Entwicklungsbereichen aller HVAC-Klima-System- und Kompressoren-Hersteller verwendet. Mit dem Klima-Modul ermöglicht IPETRONIK ein einzigartiges, herstellerunabhängiges
Software-Paket für die Entwicklung von HVAC-Komponenten, wie zum Beispiel Kompressoren, Kondensatoren und Verdampfern. Der IPETRONIK Geschäftsbereich IPEtec bietet außerdem spezifische Prüfstandslösungen wie IPEload und IPEcomp – Kompressor-Prüfstand -- die diese Software-Funktion für Entwicklungsarbeiten nutzen. Neue Kühlungsmittel wie HFO123a oder R774 (CO2) haben neue thermodynamische
Eigenschaften und das Klima-Modul ist sehr nützlich für deren Produktentwicklung.
Unterstützte Kühlmittel:
▸ R134a
▸ HFO1234yf
▸ R22
▸ R404a
▸ R410a
▸ R507a
▸ R744
▸ R718
▸ R729
125
IPEmotion
Klima-Modul
Übersicht zu Formeln der Thermodynamik im IPEmotion-Klima-Modul
▸ h_std
berechnet die spezifische Entropie (Einheit: kJ/kg)
▸ h_liq
berechnet die spezifische Enthalpie (Einheit: kJ/kg)
▸ h_vap
berechnet die spezifische Enthalpie (Einheit: kJ/kg)
▸ u_std
berechnet die spezifische interne Energie (Einheit: kJ/kg)
▸ s_std
berechnet die spezifische Entropie (Einheit: kJ/kg)
▸ rho_std
berechnet die Dichte (Einheit: kg/m³)
▸ V_spec
berechnet die spezifische Volumen (Einheit: m³/kg)
▸ c_sound
berechnet die Schallgeschwindigkeit (Einheit: m/s)
▸ c_vol
berechnet die isochore Wärmekapazität (Einheit: kJ/kgK)
▸ c_pres
berechnet die isobare Wärmekapazität (Einheit: kJ/kgK)
▸ T_sat_liq
berechnet die Sättigungstemperatur der Siedelinie (Einheit:°C)
▸ T_sat_vap
berechnet die Sättigungstemperatur der Taulinie (Einheit:°C)
▸ superheating
berechnet die Überhitzung (Einheit:°C)
▸ subcooling
berechnet die Unterkühlung (Einheit:°C) als eine Funktion der Temperatur (Ein
heit:°C), des Drucks (Einheit: Bar) und eines Kältemittels
▸ enthalpy_dif_liq
berechnet die Enthalpiedifferenz (Einheit: kJ/kg) zwischen dem Messpunkt und der
Siedekurve bei gleichem Druck
▸ enthalpy_dif_vap
berechnet die Enthalpiedifferenz (Einheit: kJ/kg) zwischen dem Messpunkt und der
Kondensationskurve bei gleichem Druck
126
▸ ha_P_sat_vap
berechnet den Sättigungsdampfdruck von Wasser in feuchter Luft (Einheit: Bar)
▸ ha_P_vap
berechnet den Dampfdruck von Wasser in feuchter Luft (Einheit: Bar)
▸ ha_rh
berechnet die relative Luftfeuchte (Einheit: %)
▸ ha_ah_1
berechnet die Dichte von Wasserdampf in feuchter Luft (Einheit: kg/m³)
▸ ha_ah_2
berechnet die Dichte von Wasserdampf in feuchter Luft (Einheit: kg/m³)
▸ ha_ah_3
berechnet die Dichte von Wasserdampf in feuchter Luft (Einheit: kg/m³)
▸ ha_T_dew_pt_1
berechnet die Taupunkttemperatur von Wasser in feuchter Luft (Einheit: °C)
▸ ha_T_dew_pt_2
berechnet die Taupunkttemperatur von Wasser in feuchter Luft (Einheit: °C)
▸ ha_h
berechnet die Enthalpie von feuchter Luft (Einheit: kJ/kg)
127
IPEmotion
Control-Modul
Das IPEmotion Control-Modul kann als Erweiterung zu Ihrer Professional- oder Developer-Edition erworben
werden. Es bietet Ihnen eine Reihe von zusätzlichen Möglichkeiten für Prüfstands- und Test-Automatisierungs-Anwendungen.
Prüfstand-Screenshot
Anwendungsbereiche des Control-Moduls
Das Control-Modul deckt ein großes Spektrum an Einsatzmöglichkeiten ab und wird dabei nicht nur in der
Automobil-Industrie genutzt, sondern kommt auch bei Automatisierungs- und Prüfstandsanwendungen, bei
Motorprüfständen, Designverifikationstests, Lebensdaueruntersuchungen und bei der Qualitätssicherung,
zum Einsatz.
▸
▸
▸
▸
▸
HVAC-Kompressor-Untersuchungen, siehe IPETRONIK-Geschäftsbereich IPEtec
Powertrain Entwicklungen
Klima-Prüfkammern
Prozess- und Anlagenüberwachung
Materialermüdungs-, Dauerlauf- und Lebensdaueruntersuchungen
Funktionen des Control-Moduls
128
Funktionsgenerator
Der Funktionsgenerator unterstützt verschiedene Signalformen wie Sinus, Sägezahn, Rechteck oder Rampe. Mit dem frei konfigurierbaren Funktionsgenerator
können beliebige Ausgabeprofile aus Messdateien ausgegeben werden. Ein beliebiger Generator kann dabei mit einer Datei und enthaltenen manuell veränderten
Signalformen oder aufgezeichneten Signalformen verbunden werden. Die Auflösung, Signalfrequenz, Offset und Pulsweitenmodulation ist individuell einstellbar
und kann über seperate Steuerkanäle in einer laufenden Messung verändert
werden. Zur Steuerung stehen Start-, Stop- und Haltetrigger mit Zykluszählern zur
Verfügung.
PID-Regler
Für Anwendungen mit PID-Regelkreisen sind Regler verfügbar. Die Regler (P=Proportional control, I=Integral control und D=Derivative control) sind mit folgenden
Einstellungsfaktoren konfiguriert:
Kr: (Verstärkung) Hat Einfluss auf die proportionale Verstärkung
Tv: (Vorlaufzeit) Ist eine Zeitkonstante für die sekundäre Verstärkung
Tn: (Reset-Zeit) Ist eine Zeitkonstante für die ganzheitlichen Verstärkung
Die Abtastrate der PID-Berechnungen kann bis auf 1kHz erhöht werden.
Folgende Kanäle dienen als Ein- und Ausgabeparameter:
- Stellwert-Kanal
- Sollwert-Kanal
- Istwert-Kanal
IPEmotion
Control-Modul
Router
Die Hauptfunktion des Router-Kanals besteht darin, ein eingehendes Signal zu empfangen und an einen weiteren Kanal umzuleiten.
Mit dem Router können Messwerte PlugIn-übergreifend ausgetauscht werden.
Der Quellkanal sendet die Messdaten auf den Ausgabekanal. Mit der Nutzung des
Router-Kanals wird es Ihnen ermöglicht, Daten zwischen verschiedenen PlugIns
auszutauschen.
Sequenzen
Die Testläufe sind eine absolute Stärke des gesamten Control-Moduls zum Automatisieren von Testläufen. Dieses Modul ist besonders hilfreich, wenn Sie Testläufe
automatisieren. Diese Funktion ermöglicht es Ihnen einzelne Testabschnitte in
chronologischer Reihenfolge abzubilden. Innerhalb einer Sequenz können Sie drei
unterschiedliche Funktionen nutzen:
▸ Ausgang setzen: In dieser Funktion wird ein numerischer Wert oder ein
Text-Wert auf einen Ausgabekanal geschrieben.
▸ Prüfkanal: Diese Funktion wird überwiegend zur Durchführung von
Grenzwertüberwachungen genutzt. Erst wenn die Grenzwert
bedingung erfüllt ist, kann der nächste Schritt des Testablaufs
ausgeführt werden.
▸ Run Script: Diese Funktion unterstützt die Einbindung von externen
Anwendungen und komplexeren Programmabläufen des Testlaufs. Durch die Skripteinbindung hat der Anwender eine sehr
hohe Flexibiltät kundenspezisfische Funktionen in seinen
Testlauf einzubeziehen.
Beispiel eines Testlaufs eines
Hydraulik-Systems im Baumaschinen-Sektor
129
IPEmotion
Akustik-Modul
Mit dem Akustik-Paket kann der Anwender akustische Signale über Mikrofone und Schwingungssignale
von Beschleunigungsaufnehmern über FFT-Analysen und das Campbell-Diagramm auswerten. Die schnelle
Abtastung der zeitbezogenen Signale kann über IPETRONIK X-Module oder auch über andere PlugIns mit
entsprechend schnellen Analogeingängen realisiert werden. IPETRONIK bietet dazu die synchron abtastenden, 4-kanaligen Mx-SENS2 4-Module mit einer Abtastrate von bis zu 100 kHz an, oder das 8-kanalige SxSTG mit einer Abtastrate von bis zu 40 kHz pro Kanal. Die hochauflösenden, zeitbezogenen Signale können
in der Datenverarbeitung über die FFT-Analyse oder über die Campbell-Analyse-Operation ausgewertet
werden.
Die Campbell-Operation ermöglich viele Einstellmöglichkeiten wie z. B.:
• FFT-Auflösung
• FFT-Überlappungsfaktor
• Fenster Funktion wie Hanning, Hamming, Blackman etc.
• Führungskanal für nicht zeitbezogene FFT-Berechnungen
• Butterworth-Filter
• Bewertungsfunktionen nach db-A und db-C, linear, etc.
Bild zur Parametrierung der Campbell-Operation
130
IPEmotion
Akustik-Modul
Die Ergebnisse der FFT-Berechnung bzw. der Campbell-Operation lassen sich im Campbell-Diagramm sehr
gut darstellen. Das Campbell-Instrument bietet viele Konfigurationsmöglichkeiten hinsichtlich der Min-/
Max-Amplituden (Y-Achsenskalierung), Einstellung der drei Farbskalen (Regenbogen, Rot, Grau) und des
einfachen Zooms zur optimalen visuellen Darstellung der Farbtiefe, um den gewünschten Kontrast einzustellen.
Darstellung der Ergebnisse aus der Campbell- Operation im Campbell-Diagramm
Applikationsbeispiel — NVH-Messungen an Fahrzeug-Klimaanlagen
In Verbindung mit dem Mx-SENS2 4-Modulen eignet sich das IPEmotion Akustik-Paket sehr gut zur Validierung von Kompressoren (Komponenten) und Fahrzeug-Klimaanlagen (Gesamtsystem). Hier können in einem
Software-Paket die thermodynamischen Parameter wie Kältemittelverdichter, Gasdruckpulsation, Umgebungsgeräusche, Temperaturen, Kompressoren, Drehzahl und Lastzustand zusammen mit Kennwerten
aus dem Motor- und Klimasteuergerät erfasst werden. Die synchrone Erfassung der physikalischen Größen
— zusammen mit Kennwerten aus den zugehörigen Steuergeräten — erweitert erheblich die Analysemöglichkeiten zur Identifizierung der Geräuschursache.
131
▸ A/C System-Entwicklung
▸ A/C Prüfstand-Erprobung
▸ A/C Leckagetests
▸ Klima-Akustik-Erprobung
▸ Thermomanagement für Fahrzeuge
▸ Flottenerprobung
▸ E-Mobility Tests
▸ Dauererprobungen
132
MESSPROZESSE ALS INTEGRATIVES GESAMTKONZEPT
IPEengineering entwickelt Systeme für die Umsetzung
komplexer Messaufgaben
Von Messprozessen in der Fahrzeugentwicklung und Fahrzeugerprobung über spezielle Prüfleistungen zur Klima- und Energieeffizienz bis
hin zu kompletten Entwicklungsprojekten im Umfeld alternativ angetriebener Fahrzeuge ist IPETRONIK Ihr professioneller Partner.
Neben der eigentlichen Messtechnik liegt die Stärke von IPETRONIK
in der Umsetzung von Messaufgaben. Auch umfangreichere Projekte
werden von unseren Spezialisten aus einer Hand umgesetzt. Das
Dienstleistungsspektrum im IPETRONIK Technologie Zentrum umfasst das Auf-/Abrüsten von Versuchsfahrzeugen gemäß Ihren
Anforderungen, die Begleitung von Erprobungen und die Betreuung
während der Projektlaufzeit, Sommer-/Wintererprobungsbegleitung
und Datenvorauswertung. Hinzu kommen die Durchführung umfassender Projektreihen inklusive vollständigem Benchmarking mit
verschiedenen Serienfahrzeugen, Dauerlaufbetrieb, Komponentenerprobung, Vergleichsanalysen, statistische Auswertungen sowie
die Erstellung von Testberichten.
Entwicklungsleistungen
▸
A/C Systementwicklung
▸
A/C Prüfstandmessungen
▸
A/C Leckagetests
(KBA akkreditiert)
▸
Klimaakustik-Untersuchungen
▸
Kfz Thermomanagement
Entwicklung
▸
Flottenerprobung
▸
Betriebsfestigkeit
Dienstleistungsspektrum
▸
Separate Prototypenkammern
▸
Optimierte Aufrüsthallen für
Zweiräder bis zum 40-Tonner
▸
Kraftfahrzeuge
▸
Für Sie als unseren Kunden hat das zahlreiche Vorteile: Sie können
Erprobungsspitzen ohne zusätzliche Kapitalbindung bewältigen und
wiederkehrende Standardaufgaben auslagern. Die Bereitstellung der
gesamten Messtechnik inklusive Zubehör auf Mietbasis sowie die
Übernahme aller erforderlichen Aufgaben in der Projektabwicklung
durch unsere Spezialisten ermöglichen Ihnen, sich voll und ganz auf
Ihr Kerngeschäft zu konzentrieren.
Klimaakustik-Kammer für
Klimaprüfstände für Kältekreiskomponenten
▸
Systemprüfstände
Ganzheitliche Messsysteme, entwickelt für Ihren Bedarf.
133
IPEengineering PROJEKTMANAGEMENT
Aufrüstung
Das IPEengineering-Team macht Ihr Versuchsfahrzeug startklar, sorgt
für die Verkabelung der Sensorapplikationen und baut die Messtechnik ein. Die Konfiguration und Datendefinition gehören dabei ebenso
zum Leistungsumfang wie die Kalibrierung und Funktionsprüfung.
Bei Bedarf ersetzen wir Komponenten und bauen die Messapplikationen schließlich auch wieder ab. Eigens hierfür stehen eine moderne
Aufrüsthalle sowie ein erfahrenes Team an Applikationsingenieuren
und Mechanikern bereit.
Erprobung und Begleitung
In der Erprobungsphase sind unsere Spezialisten durchgehend an
Ihrer Seite und sorgen dafür, dass die eingesetzte Messtechnik
fehlerfrei arbeitet. Wir schaffen alle technischen Voraussetzungen,
um in extrem unterschiedlichen Bedingungen testen zu können –
oder für Prüfvorgänge im Windkanal. Darüber hinaus nehmen wir
eine Datenvorauswertung vor und erstellen detaillierte Versuchsreports. So reduzieren Sie Verzögerungen oder Standzeiten auf ein
Minimum und bleiben im definierten Zeitplan.
Flottentest
Sind die neu entwickelten Komponenten serienreif? Diese Frage
beantworten wir für Sie im Flottendauerlauf. Wir wickeln ganze
Flottenprojekte im Detail für Sie ab. Ob es dabei einfach nur um die
Organisation des Fahrbetriebs geht oder um die systematische Auslegung des gesamten Fahrprofils – unsere Spezialisten haben eine
internationale Infrastruktur geschaffen und nutzen ihre Erfahrungen
aus zahlreichen Projekten.
134
IPEengineering THERMOMANAGEMENT
Effiziente Kühlung
Die „Klimabilanz“ eines Fahrzeugs entscheidet in Zukunft immer mehr
über Akzeptanz und Nachfrage. Mit unseren Entwicklungen rund um
Fahrzeug-Klimatisierung und Thermomanagement verschaffen Sie
sich in dieser Hinsicht einen entscheidenden Vorsprung. Denn die
aktuellen politischen und gesellschaftlichen Diskussionen zum Schutz
unserer Umwelt fordern die schnelle Umsetzung neuer Technologien.
Hybrid-Systeme waren der Anfang, Elektrofahrzeuge werden in
fernerer Zukunft eine bedeutende Rolle spielen. Die Klimatisierung
und das Thermomanagement in solchen Konzepten spielen neben dem
Antrieb die wichtigste Rolle bei der Effizienzbetrachtung. IPETRONIK
entwickelt komplette Systeme und konzentriert sich auf wichtige
Themen wie alternative Kältemittel, Batterietechnologien und optimierte Klimaaggregate für die Auslegung von effizienten Fahrzeugen.
Aufbau von Versuchsfahrzeugen
Nach einer genauen Bedarfsanalyse rüsten wir Ihr Fahrzeug mit der
nötigen Messtechnik aus. Wir arbeiten zum Beispiel schon an innovativen Kühlsystemen für Batterien in der Konzeption und Erprobung
sowie an einer speziellen Klimaanlage für Elektrofahrzeuge auf Basis
des natürlichen Kältemittels R744.
IPEengineering KLIMAAKUSTIK-UNTERSUCHUNGEN
Akustische Optimierung der Fahrgastzelle
Untersuchungen zur Ermittlung von Geräuschquellen im Fahrgastraum
und deren Verhalten abhängig von Umgebungsbedingungen nehmen
in der aktuellen Fahrzeugentwicklung an Bedeutung zu. Mit neuen
Prüfkammern und der Fachkompetenz im Entwicklungsbereich ist
IPETRONIK in der Lage, individuelle Projektanforderungen kosten- und
zeitoptimiert zu erfüllen. Leistungsfähige Klimakammern mit der messtechnischen Ausstattung für Akustikmessungen sorgen für verlässliche und aussagekräftige Daten zur Optimierung des Geräuschverhaltens.
135
▸ A/C-Komponenten Prüfstände
▸ A/C System Kalorimeter
▸ Klima-Akustik-Kammer
▸ Umbau von bestehenden Anlagen
▸ Prüfstand Engineering & Consulting
▸ Prüfstand-Service
▸ Umweltsimulationen
▸ Medienversorgungsmodule
▸ Belastungseinheiten für Kältemittelkompressoren
▸ Kompressorprüfstände
136
PRÜFSTÄNDE UND UMWELTSIMULATIONSANLAGEN
IPEtec schafft perfekte Prüfbedingungen vor Ort
Optimale Erprobungsbedingungen vor Ort, in Ihrer Anlage oder Ihrer
Fertigungshalle. IPETRONIK ist der Spezialist in Entwicklung und Bau
von Prüfständen. Von der Idee über die Konzeption und Konstruktion
bis hin zum fertigen Prüfstand.
Mit IPEtec-Prüfständen bieten wir Ihnen vorwiegend komplexe thermodynamische Prüfstandlösungen für Wärmeübertrager und Klimasysteme. Denn die Verlagerung der Straßenerprobung auf eine
reproduzierbare Prüfstandumgebung trägt zu einer deutlichen Verkürzung der Entwicklungszeiten neuer Fahrzeuge bei.
Prüfstandlösungen
▸
Sekundärkalorimeter
▸
Klimasystemprüfstand
▸
Prüfkältekreis
▸
Klimakammern
▸
Medienversorgung
▸
Umweltsimulation
▸
Umbau/Erneuerung,
Service/Wartung
Unser kompetentes Ingenieur- und Techniker-Team arbeitet in allen
Disziplinen rund um die Entwicklung von Prüfständen. Von der Kältetechnik und thermodynamischen Verfahrenstechnik über Anlagenbetriebstechnik und Maschinenbau bis hin zu SPS Steuerungstechnik.
Die ausgereifte IPETRONIK Infrastruktur garantiert Ihnen einen
hohen Reifegrad der Prüfanlage bereits bei Anlieferung und beschleunigt so die schnelle Installation und Inbetriebnahme der Prüfstände.
Von der Konzeption bis zur Montage.
Präzise und professionell.
137
MASSGESCHNEIDERTE LÖSUNGEN ZUM
THERMOMANAGEMENT
IPEtec Prüfstandtechnik projektiert und liefert maßgeschneiderte
Prüfstandlösungen zur Entwicklung und Validierung von Komponenten und Systemen im Entwicklungs-, Erprobungs- und Produktionsbereich. Unser erfahrenes Team bietet das komplette Spektrum
an Prüfständen und Medienversorgungsmodulen für die Thermomanagemententwicklung von Kraftfahrzeugen.
Systemprüfstände für Klima- und Kühlsysteme
Das Leistungsspektrum umfasst dabei Prüfstandlösungen sowohl für
die Fahrzeugkühlung (Kühlmittel-, Ladeluft- und Ölkühler, Batterieund E-Motorkühlung, Abgaskühlung) als auch für das breite Anwendungsgebiet der Fahrzeugklimatisierung. Hierzu zählen System-,
Komponenten- und Kalorimeterprüfstände für vollständige Kältekreisläufe oder einzelne Komponenten wie Kältemittelkondensatoren, Verdampfer, Kompressoren, Gebläse und Expansionsventile.
Wir berücksichtigen die Belange des aktuell noch verwendeten
Kältemittels R134a sowie die zukünftigen Alternativen 1234yf und
auch CO2 (R744) unter individuell nach Entwicklungsschwerpunkten
ausgelegten Prüfstandausführungen.
Kühlkomponenten und Medienversorgung
Kompressorprüfstände für mechanische und elektrisch angetriebene
Kältemittelverdichter, Prüfstandkreisläufe für Ventil- und Pumpenversuche, Medienversorgungsmodule wie z. B. für Kältemittel, Kühlmittel, Ladeluft und Öl komplettieren den Lieferumfang mittlerweile
mit Standardprodukten auf hohem technischen Funktions- und
Qualitätsniveau.
Klimakammern
IPETRONIK bietet befahrbare Temperatur- und Klimakammern für
verschiedenste Umweltsimulationstests an Kraftfahrzeugen.
138
IPEload-01
Product information
Load unit for testing refrigerant compressors
for vehicles
In the development process of vehicle air conditioning
systems, the refrigerant compressors need to be impinged
on test benches (engine test benches, endurance test
benches, EMV tests, NVH tests, etc.) in a realistic and
reliable environment under thermodynamic conditions.
Therefore, special load devices which meet the latest and
high requirements have been developed. Besides the
usability of the test bench, reliability, size, weight and energy
consumption play an essential role here.
Due to many years of experience with large endurance test
benches for the validation process of refrigerant
compressors in the automotive industry, IPETRONIK
develops and builds user-friendly devices, which meet these
high requirements. This type allows fast load changes along
with precise adjustment possibilities in the automatic as in
the manual mode as well.
IPEload R134a mechanical equipment
All available parameters (pV1, pV2, tV1h) can be regulated and adjusted manually with mechanic control valves.
Compressor speed (nv) is given by external devices.
Presence of qualified personal at the test benches is required at any time!
Thanks to their compactness each IPEload unit can be transported easily.
Each model only needs a cooling water connection.
With the high-/low pressure regulator (top center) the suction or high pressure of the compressor can be
configured. The medium pressure regulator enables the control of the brine mass flow.
During an exchange the compressor can be evacuated on the service connections with an appendant hose.
With the sight glass, the ideal filling level of the refrigerant is monitored. The pressure gages installed on the
right side of the device indicate high pressure, middle pressure and low pressure.
Technical data
Controller
Pressure range high pressure side
8 ... 28 bar
Pressure range low pressure side
1.5 ... 6 bar
Superheat (low pressure side)
5 ... 30 K
Refrigerant massflow
30 ... 250 kg/h
Supply
Cool water inlet temperature
6 °C
Required cool water massflow
180 kg/h
Required cool water differential pressure
ǻp > 0.5 bar
Electrical supply
none
General
Refrigerant types
R134a
HFO-1234yf
Dimensions W x H x D (base frame included)
500 mm x 600 mm x 500 mm
139
IPEload-02
Product information
Load unit for testing automotive refrigerant
compressors
In the development process of vehicle air conditioning
systems, the refrigerant compressors need to be impinged
on test benches (engine test benches, endurance test
benches, EMV tests, NVH tests, etc.) in a realistic and
reliable environment under thermodynamic conditions.
Therefore, special load devices which meet the latest and
high requirements have been developed which meet the
latest and high requirements. Besides the usability of the
test bench, reliability, size, weight and energy consumption
play an essential role here.
Due to many years of experience with large endurance
test benches for the validation process of refrigerant
compressors in the automotive industry, IPETRONIK
develops and builds user-friendly devices, which meet
these high requirements. This type allows fast load
changes along with precise adjustment possibilities in the
automatic as in the manual mode as well.
IPEload R744 mechanical equipment
All available parameters (pV1, pV2) can be regulated and adjusted manually with mechanic control valves.
Compressor speed (nv) is given by external devices. A PWM signal for regulation of the compressor can be
implemented; however, it is preset manually with the PWM converter.
Presence of qualified personal at the test benches is required at any time !
Thanks to their compactness each IPEload unit can be transported easily.
Each model only needs a cooling water connection and a power supply.
Using manually operated control valves, low pressure (blue) and high pressure (red) can be adjusted.
Superheat is provided at the expansion control valve with display (top center). Optional the swashplate
adjustment of the compressor can be controlled as well. With a small potentiometer the control current shown
on the top right corner of the display can be adjusted. The frequency of the PWM signal can be configured with
the frequency generator on the left of the display.
During an exchange the compressor can be evacuated on the service connections with an appendant hose.
The intermediate pressure is configured over a control valve, a grey hand wheel (middle right side). In the
bottom right corner is a switching valve by which you can either change to low pressure control mode (blue
valve) or fix throttle control mode (black hand wheel). On the right side next to the brine ports the needle valve
is installed as fix throttle. Therefore, the refrigerant flow rate can be set and the low pressure can be
configured with the swashplate.
The pressure gages installed on the right side of the device display high pressure, middle pressure and low
pressure.
140
IPEload-02
Product information
Technical data
Controller
Pressure range high pressure side
80 ... 140 bar
Pressure range low pressure side
15 ... 40 bar
Superheat (low pressure side)
5 ... 30 K
Refrigerant massflow
30 ... 250 kg/h
Supply
Cool water inlet temperature
6 °C
Cool water outlet temperature
12 °C
Required cool water massflow
400 kg/h
Required cool water differential pressure
ǻp > 0.8 bar
Electrical supply
230 VAC / 16 A
General
Refrigerant type
R744
Dimensions W x H x D (base frame included)
600 mm x 700 mm x 400 mm
141
IPEload-03
Product information
Load unit for testing automotive refrigerant compressors
In the development process of vehicle air conditioning systems,
the refrigerant compressors need to be impinged on test benches
(engine test benches, endurance test benches, EMV tests, NVH
tests, etc.) in a realistic and reliable environment under
thermodynamic conditions. Therefore, special load devices which
meet the latest and high requirements have been developed.
Besides the usability of the test bench, reliability, size, weight and
energy consumption play an essential role here.
Due to many years of experience with large endurance test
benches for the validation process of refrigerant compressors in
the automotive industry, IPETRONIK develops and builds userfriendly devices, which meet these high requirements. This type
allows fast load changes along with precise adjustment
possibilities in the automatic as in the manual mode as well.
IPEload R134a automatic equipment
All parameters (pV1, pV2, tV1h, nV, cooling water flow rate, PWM,
etc.) are controlled via a mobile panel (touchpad) or analog inputs
(signal input from external devices). Controlled process variables
are output to stepper valves.
Qualified personal is only needed to start-up the test bench.
All changes can be done by remote or from the measuring station.
Worldwide access is available as an option.
Dynamic conditions like operation cycles can be predefined.
Each model only needs a connection to cooling water and a power supply.
Optional components: Air cooling by climate control unit, massflow measurement, oil circulation rate
For a quick and easy compressor exchange, a refrigerant recycling unit and a vacuum pump is optionally
integrated.
Technical data
Controller
Pressure range high pressure side
8 ... 28 bar
Pressure range low pressure side
1.5 ... 6 bar
Superheat (low pressure side)
5 ... 30 K
Refrigerant massflow
30 ... 250 kg/h
Supply
Cool water inlet temperature
6 °C
Required cool water massflow
180 kg/h
Required cool water differential pressure
ǻp > 0.5 bar
Electrical supply
230 VAC / 16 A
General
Refrigerant types
R134a
HFO-1234yf
Dimensions W x H x D
600 mm x 800 mm x 600 mm
142
IPEload-03
Product information
Panel (Touchpad)
Display of schematic representation of the refrigerant circuit in
extracts
For high pressure, medium pressure and low pressure the set
value can be entered (green field) and the actual value can be
displayed.
Superheat can be configured with the minimum stable signal.
There are multiple user accounts with different permissions
available.
The configuration possibilities might be limited due to type of user
account.
It is possible to switch into the optional manual operation mode.
In this mode instead of pressure, the percentage of the opening
angle of the stepper valves is controlled.
Using a second PLC, the IPEload unit can be controlled also by
its provided analog inputs from a measuring station. All control
parameters and actual values are available as analog output of
the measuring station.
The swashplate can be controlled in two operating modes:
1. The maximal hub for the swashplate is set and the low
pressure is controlled with the low pressure valve.
2. A fixed value for the opening angle of the low pressure
stepper valve is set and with the PWM signal the angle of
the swashplate is altered, so that the requested preset
low pressure parameter is obtained
The progression of pressure and superheat can be displayed
in a progression chart, shown in the image on the right.
Dynamic controllers which are able to regulate high pressure,
medium pressure and low pressure to ±0.2 bar and superheat to
±0.5 K within minutes, are used.
143
IPEload-04
Product information
Load unit for testing automotive refrigerant
compressors
In the development process of vehicle air conditioning
systems, the refrigerant compressors need to be impinged
on test benches (engine test benches, endurance test
benches, EMV tests, NVH tests, etc.) in a realistic and
reliable environment under thermodynamic conditions.
Therefore, special load devices which meet the latest and
high requirements have been developed. Besides the
usability of the testbench, reliability, size, weight and energy
consumption play an essential role here.
Due to many years of experience with large endurance test
benches for the validation process of refrigerant
compressors in the automotive industry, IPETRONIK
develops and builds user-friendly devices, which meet these
high requirements. This type allows fast load changes along
with precise adjustment possibilities in the automatic as in
the manual mode as well.
IPEload R744 automatic equipment
All parameters (pV1, pV2, tV1h, nV, cooling water flow rate,
PWM, etc.) are controlled via a mobile panel (touchpad) or analog inputs (signal input from external devices)
and are output to stepper valves.
Qualified personal is only needed to start-up the test bench.
All changes can be done by remote or from the measuring station.
Worldwide access is available as an option.
Dynamic conditions like operation cycles can be predefined.
Each model only needs a connection to cooling water and a power supply.
Optional components: Air cooling by climate control unit, massflow measurement, oil circulation rate
For a quick and easy compressor exchange, a refrigerant fluid suction is supported as option. This means
re-filling of R744 refrigerant fluid is required not until 20 … 30 compressor exchange cycles.
Technical data
Controller
Pressure range high pressure side
80 ... 140 bar
Pressure range low pressure side
15 ... 40 bar
Superheat (low pressure side)
5 ... 30 K
Refrigerant massflow
30 ... 250 kg/h
Supply
Cool water inlet temperature
6 °C
Required cool water massflow
400 kg/h
Required cool water differential pressure
ǻp > 0.8 bar
Electrical supply
230 VAC / 16 A
General
Refrigerant type
R744
Dimensions W x H x D
600 mm x 800 mm x 600 mm
144
IPEload-04
Product information
Panel (Touchpad)
Display of schematic representation of the refrigerant circuit in
extracts
For high pressure, medium pressure and low pressure the set
value can be entered (green field) and the actual value can be
displayed.
Superheat can be configured with the minimum stable signal.
There are multiple user accounts with different permissions
available.
The configuration possibilities might be limited due to type of user
account.
It is possible to switch into the optional manual operation mode.
In this mode instead of pressure, the percentage of the
opening angle of the stepper valves is controlled.
Using a second PLC, the IPEload unit can be controlled also by
its provided analog inputs from a measuring station. All control
parameters and actual values are available as analog output of
the measuring station.
The swashplate can be controlled in two operating modes:
1. The maximal hub for the swashplate is set and the low
pressure is controlled with the low pressure valve.
2. A fixed value for the opening angle of the low pressure
stepper valve is set and with the PWM signal the angle of
the swashplate is altered, so that the requested preset
low pressure parameter is obtained
The progression of pressure and superheat can be displayed
in a progression chart, shown in the image on the right.
Dynamic controllers which are able to regulate high pressure,
medium pressure and low pressure to ±0.2 bar and superheat to
±0.5 K within minutes, are used.
145
IPEflush
Product information
Cleaning device for flushing
air-conditioning systems
The flushing procedure of air-conditioning systems
serves the purpose of removing dirt particles within the
system. Additionally, the process facilitates a detachment
of the oil from the refrigerant and a removal out of the
system.
Refrigerant-,
compressorand
AC-oil
manufacturers demand a clean system since dirt
particles can cause failure of components such as
magnetic valves and compressors.
Furthermore, IPEflush is well suited for oil management
tests in automotive AC-systems. Within only one hour, it
is possible to flush approximately 95% of the refrigerator
oil out of a system. The high flushing pressure of up to
12 bars even allows to clean complex structured oil out
of refrigeration circuits without leaving residue.
Characteristics
Recovery of flushed systems with up to 1 bar absolut pressure.
Evacuation of the system with a pressure of up to 0,003 bars.
Flushing of approximately 99% refrigerant oil.
Self-sufficient flushing operation, only start and finish of the flushing
process need to be initialized by the user.
Flushing procedure
The repeating flushing procedure consists of the following sub processes:
Filling the system with R134a until the liquid physical state of the refrigerant is entirely reached.
Flushing the system with repetitive pulsations in a frequency range of 5 Hz.
Recovery of the system until a gaseous state of the refrigerant is entirely reached.
Once again flushing of the system with pressures up to 12 bars.
Collecting and boiling the refrigerant oil.
The user can drain the already separated refrigerant into a vessel at any time and abort the process.
Technical data
General
Usable volume of the oil collector
700 ml
Flushing cycles
approx. 18 1/h
Jetting pressure
12 bar
Vacuum pump
Flow rate
42 l/h
Minimal pressure
0.05 mbar
Electrical supply
Required power supply
146
230 VAC / 16 A
147
IPEcomp-01
Product information
Load system for testing automotive refrigerant compressors
In the development process of vehicle air
conditioning systems, the refrigerant compressors
need to be tested under specific validation
procedures. Therefore, specific compressor test
benches which meet the highest requirements
have been developed. Besides the usability of the
test bench, a high repeatability at various load
conditions is a core feature in order to acquire
reliable characteristic values
Due to many years of experience in designing,
manufacturing and operating compressor test
benches, IPETRONIK offers user-friendly devices,
which meet these high requirements.
Furthermore, IPETRONIK acquired comprehensive experiences during recent years as
automotive development partner in the field of
refrigerant
cycle
systems
and
thermal
management. This fact is leading to continuous
improvement of IPETRONIK products in relation to
customers requirements. Load characteristics and
edge conditions of compressor test procedures are
based on the latest VDA standards.
R134a / HFO-1234yf Compressor Test Bench for VDA validation tests
Simulating operation conditions for refrigerant circuits
Thermodynamic load of the compressor unit
Supporting manual operation (setpoint setting by user) and automatic operation (executing predefined test
procedures)
Automated raffer tests, FAT (Factory Acceptance Test), VDA 20 / 25-point matrix, ...
Tests of electrically and mechanically driven compressors supported
Signal conditioning and data acquisition of all relevant physical variables (temperature, pressure, rotational
speed, torque, voltage, current, ...)
Oil management analysis and online OCR measurement
Standard carrier for compressors acc. to VDA (seismic mass fixation) provides a quick mounting
Vibration and pulsation (NVH) measurement
Convenient belt-tensioning system
Software IPEmotion with special add-on for thermodynamic cycles for intuitive user operation
COP determination and calorimetric analysis
Integrated refrigerant recycling enables an easy exchange of the compressor
Modular system construction provides high flexibility
148
IPEcomp-01
Product information
Technical data
Controller
Pressure range high pressure side
7 ... 28 bar
Pressure range low pressure side
1 ... 7 bar
Superheat (low pressure side)
5 ... 50 K
Refrigerant massflow
25 ... 300 kg/h
Mechanical drivetrain
Rotation speed
0 ... 10000 rpm
Swashplate control
0 ... 1000 mA resp. 0 ... 100 %
Magnetic clutch
12 V / 24 V
Electrical supply
Power unit
0 … 500 V / 0 … 90 A
0 … 80 V / 0 … 340 A
Compressor environment
Air speed
0 ... 8 m/s (VDA standard 6 m/s)
Temperature
-30 °C (-40 °C) ... 150 °C
Software
IPEmotion
IPEmotion 2015 Professional
incl. Option Climate
incl. Option Control
Infrastructure
Brine volume flow
40 l/min
Brine temperature
6 °C ± 2 K
Main supply
2 x 63 A, 400 V AC / 50 Hz
149
IPEcomp-02
Product information
Load unit for testing automotive refrigerant compressors
In the development process of vehicle air conditioning
systems, the refrigerant compressors need to be
tested under specific validation procedures.
Therefore, specific compressor test benches which
meet highest requirements have been developed.
Besides the usability of the test bench, a high
repeatability at various load conditions is a core
feature in order to acquire reliable characteristic
values
Due to many years of experience in designing,
manufacturing and operating compressor test
benches, IPETRONIK offers user-friendly devices,
which meet these high requirements.
Furthermore, IPETRONIK acquired comprehensive
experiences during recent years as automotive
development partner in the field of refrigerant cycle
systems and thermal management. This fact is
leading to continuous improvement of IPETRONIK
products in relation to customers requirements. Load
characteristics and edge conditions of compressor
test procedures are based on the latest VDA
standards.
R744 Compressor Test Bench for VDA validation tests
Simulating operation conditions for refrigerant circuits
Thermodynamic load of the compressor unit
Supporting manual operation (setpoint setting by user) and automatic operation (executing predefined test
procedures)
Automated raffer tests, FAT (Factory Acceptance Test), VDA 30 point matrix, ...
Tests of electrically and mechanically driven compressors supported
Signal conditioning and data acquisition of all relevant physical variables (temperature, pressure, rotational
speed, torque, voltage, current, ...)
Oil management analysis and online OCR measurement
Standard carrier for compressors acc. to VDA (seismic mass fixation) provides a quick mounting
Vibration and pulsation (NVH measurement)
Convenient belt-tensioning system
Software IPEmotion with special add-on for thermodynamic cycles for intuitive user operation
COP determination and calorimetric analysis
Modular system construction provides high flexibility
150
IPEcomp-02
Product information
Technical data
Controller
Pressure range high pressure side
65 ... 140 bar
Pressure range low pressure side
20 ... 60 bar
Superheat (low pressure side)
5 ... 50 K
Refrigerant massflow
25 ... 300 kg/h
Mechanical drivetrain
Rotation speed
0 ... 10000 rpm
Swashplate control
0 ... 1000 mA resp. 0 ... 100 %
Magnetic clutch
12 V / 24 V
Electrical supply
Power unit
0 … 500 V / 0 … 90 A
0 … 80 V / 0 … 340 A
Compressor environment
Air speed
0 ... 8 m/s (VDA standard 6 m/s)
Temperature
-30 °C (-40 °C) ... 150 °C
Software
IPEmotion
IPEmotion 2015 Professional
incl. Option Climate
incl. Option Control
Infrastructure
Brine volume flow
40 l/min
Brine temperature
6 °C ± 2 K
Main supply
2 x 63 A, 400 V AC / 50 Hz
151
152
153
154
Instrumentation
Headquarters
IPETRONIK GmbH & Co. KG
Im Rollfeld 28
76532 Baden-Baden, Germany
Phone +49 7221 9922 0
[email protected]
www.ipetronik.com
Australia
Melbourne
[email protected]
Brazil
Sao Paulo
[email protected]
China
Beijing
[email protected]
Software
Technical Center
IPETRONIK GmbH & Co. KG
Parsevalstraße 9b
40468 Duesseldorf, Germany
Phone +49 7221 9922 0
[email protected]
www.ipetronik.com
France, Belgium,
Luxembourg
Paris (France)
[email protected]
Germany, Austria,
Switzerland, Czech Republic, Netherlands
Baden-Baden (Germany)
[email protected]
IPETRONIK GmbH & Co. KG
Im Rollfeld 26
76532 Baden-Baden, Germany
Phone +49 7221 9922 0
IPETRONIK Eichstätt GmbH
Industriestraße 10
85072 Eichstätt, Germany
Phone +49 8421 9374 0
[email protected]
www.ipetronik.com
Test Benches
IPETRONIK GmbH & Co. KG
Im Rollfeld 13
76532 Baden-Baden, Germany
Phone +49 7221 9922 0
[email protected]
www.ipetronik.com
India
Bangalore
[email protected]
South Korea
Seoul
[email protected]
UK
Gothenburg (Sweden)
[email protected]
Italy
Roddi d‘Alba
[email protected]
Sweden
Gothenburg
[email protected]
USA, Canada, Mexico
Wixom, MI (USA)
[email protected]
Japan
Tokyo
[email protected]
Turkey
Istanbul
[email protected]