Toward Construction of the Unified Lepton-Nucleus Interaction Model from tens of MeV to GeV region Makoto Sakuda (Okayama) Feb. 10, 2012@J-PARC Hadron and Computational Physics Workshop In Collaboration with Koichi Saito(SUT), Hiroyuki Kamano(RCNP), Masanori Hirai (SUT), Yoshinari Hayato(ICRR), Shunzo Kumano* (KEK) and Toru Sato*(Osaka) Content 1. Motivation For a Precise Lepton-Nucleus Reaction Model Neutrino experiments need precision Nuclear interactions (1p-1h,2p-2h) and V&A structure 2. We have good models (QE, p, DIS) Why not integrate? 3. Summary 10 Feb., 2012 First meeting on this title at JPARC center on 18 December, 2011 Today, I will use most of the slides from this meeting. 「レプトン原子核反応模型の構築に向けて」第一回検討会 開催日: 12月17・18日 (土・日曜日) 場所: KEK東海キャンパス・東海1号館227号室 世話人:佐藤 透、熊野俊三 URL http://j-parc-th.kek.jp/collabo/2011/12-17/12-17.html 出席者: 鎌野寛之(RCNP),熊野俊三(KEK),齋藤晃一(東京理科大), 作田 誠(岡大),佐藤 透(KEK、阪大),奈良 寧(国際教養大 学),平井正紀(東京理科大),早戸良成(東大宇宙線研) 10 Feb, 2012 Makoto Sakuda@JPARC Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt) (1) NuInt01 (KEK,Dec., 2001) Nucl.Phys.B(Proc.Suppl.)112, 2002 (2) NuInt02 (UC Irvine,Dec., 2002) (5) NuInt07 (Fermilab,May, 2007) AIP Proc.967(2008) (6) NuInt09 (Barcelona, May,2009) AIP Proc.1189(2010) (3) NuInt04 (7) NuInt11 (India, March, 2011) (GranSasso,March,2004) Nucl.Phys.B(Proc.Suppl.)139, 2005 (8) NuInt12-13 (Brasil, 2012-13) (4) NuInt05 (Okayama,Sep,2005) Nucl.Phys. (Proc.Suppl.) 159,2006 AIP Proc.1405(2011) 1. Motivation For Precise Lepton-Nucleus Interaction Model Neutrino experiments (LBL, Astrophysics) need better precision Better accuracy than 10% in the neutrino cross sections (GeV region) is needed to establish sin22q13 , while 30% accuracy was enough to discover nmnt oscillations (sin22q23~1). Better accuracy in NC cross sections (atmospheric n background) is needed in detecting Supernova Relic Neutrinos (SRN) (5-50MeV). nmne appearance (T2K) nm disappearance (T2K) <10% accuracy in BKG nm x-sections is needed 10 Feb, 2012 Makoto Sakuda@JPARC Nearly 100% reduction Status of neutrino-nucleus models (E>200MeV) Experiments have already their own good neutrino interaction models. NEUT (SK,T2K), Nuance, Genie, NEUGEN (MINOS),,,,,. They are clever enough to know the precision that is required for producing the result. Neutrino community has the most accurate neutrinonucleus reaction models including e-N, p-N, p-N reactions. They care not only the primary neutrinonucleus interactions, but also the secondary hadron interactions including absorption. Now, we are seeing much progress in nuclear-physics problems: meson exchange current and 2p-2h. 10 Feb, 2012 Makoto Sakuda@JPARC At E=200MeV, NC nA elastics (coherent) saturates and NC/CC QE begins to dominate. NC quasi-elastic NC Elastic(Coherent) n+16O→n+p/n+X n+16O→n+16O E>100MeV NC Elastic (E<200MeV) Features of n-A cross sections above 100MeV Reaction types at E>100MeV NC Elastic (coherent)+Inelastic CC/NC Quasi-elastic CC/NC 1p production Resonant 1p production Non-resonant 1p production Coherent 1p production CC/NC mp production CC/NC DIS QE,p (-nucleon 10 Feb, 2012 Makoto Sakuda@JPARC I skip the recent progress in improved shell model calculation (E<100MeV) JPS Journal “Buturi” (January Issue). SFO model: 10 Feb, 2012 Makoto Sakuda@JPARC 1) DIS (Deep Inelastic Scattering) on nuclear target From Kumano’s slides 10 Feb, 2012 Makoto Sakuda@JPARC Nuclear PDF (EMC effects) 10 Feb, 2012 Makoto Sakuda@JPARC -Kumano 2) Resonance production in e-N and the constraint on the n-N modelling The e-N experiments have recently determined the helicity amplitudes for Resonances, P33(1232), P11(1440), D13(1530), and S11(1535) which contribute below W=2GeV. Your n-model must be consistent with e-N data. Lalakulich-Paschos et al.(05,06) Sato-Lee model MAID model Definition of helicity amplitudes (A3/2, A1/2, S1/2) Tiator et al., EPJ.A17,357(03);A19,55(04) MAID helicity amplitudes for W<2GeV. P33(1232) , D13(1520) 24 Oct. 2010 S11(1535), P11(1440) M.Sakuda@NuFact10 Sato-Lee Model of neutrino-nucleon reaction in the nucleon resonance region Isobar model Rein Sehgal Alvarez-Ruso et al. Lin et al. Paschos et al. Lalakulich et al. Leitner et al. AP133(80) PRC57(98) PRC52(95) PRD65(02) PRD71(05), PRD74(06) PRC79(09) + non-res. (chiral Lagrangian) Hernandez et al. PRD76 (07),PRD81(10) Lalakulich et al. arXiv 1007.0925 + non-res + unitarity Sato-Lee PRC67(03),PRC72(05) E < 1GeV, D(33) dominance Detail of mechanism should be tested by extensive data of pion electroproduction p production (Sato-Lee Model) Model describes very well p production in e-N, g-N and n-N reaction. N=nucleon. X-axis= p angle. d (ep epp 0 )( mb / sr ) dd d (g p pp 0 )( mb / sr ) dd 10 Feb, 2012 Makoto Sakuda@JPARC SL PRC67(03) Leitner et al. RPC79(09) Hernandez et al PRD76(07) fu Delta ll _33 Results from NuInt -Quantitative comparison of calculation and data Quasi-Elastic is understood to 10% for E=700MeV-2000MeV (and Q2>0.2 (GeV/c)2) 1p (D) production Sato-Lee, Lalakulich Understood to 20-30%? DIS (Kumano-san) 3) CC Quasi-elastic interaction -Hayato Quasi-elastic interaction We thought that Impulse Approximation with Spectral Function plus FSI describes QE to 10% level. Benhar, MS et al., PRD72,053005, ’05 NC/CC QE events accompany g-rays (6MeV) at 40% level for O. Ankowski,Benhar,MS et al, PRL 108,052505,’12. g-rays (Eg>5MeV) in NC QE reaction n O n N X n O n N X Br~40% Br~40% n O n O* n g X by Kolbe etal.( NC Inelastic ) MiniBooNE QE Anomaly (PRD81,092005,’09) Is theory (IA calculation) underestimates quasi-elastic cross section data C(n,m), while it agrees with C(e,e’) data?? MA:MA=1.0-1.2GeV 1.6GeV?? 2p-2h/MEC large?? Benhar-Meloni, PRL105,132301,2010 C(e,e’) C(n,m) 2p-2h/MEC or Contribution from the high energy tail Martini, Nieves, Donnelly …estimates 2p-2h/MEC contribution (~20%) and proposes a solution to MiniBooNE QE anomaly. Nieves et al., PRC83,045501,2011;Meucci et al., PRL107,172501,2011;Amaro et al.,PRD84,033004,2011 Benhar (hep-th/1110.1835) points out a big difference between A(e,e’) and A(n,m), where En spead is large. MiniBooNE anomaly quasi-elastic 10 Feb, 2012 Makoto Sakuda@JPARC 2. We have good models (QE, p, DIS) Why not integarate? Sato-Lee model (QE+1p,2p), CC/NC. Add to it: 16N* resonances, Coherent p. non-resonant background. Spectral function S(p,E) FSI DIS (Nuclear PDF a la Kumano) We hope that 2p-2h contribution will be checked and resolved. 10 Feb, 2012 Makoto Sakuda@JPARC Summary We have good models (QE, p, DIS) separately. We are discussing how to make a first merged leptonnuleus model (a toy model) (being organized by Kumano/Sato). Next meeting on March 18-20. Poster at n2012 10 Feb, 2012 Makoto Sakuda@JPARC
© Copyright 2024 ExpyDoc