Some TPC project @Nuclear experiment in Japan Base on the two domestic Workshop for the nuclear experiment detectors. •Detector Workshop for RIBF experiments 2009 Dec 21-22 @Wako •Workshop on detection and readout method for nuclear physics experiments 2010 June 04 @ J-Parc Atsushi Taketani RIKEN Nishina center Detector Team CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different missing mass spectroscopy with RI beams Normal Kinematics Multi-layered active target (to be made) Inverse Kinematics CNS active gas target → Akimoto's talk Missing Mass Spectroscopy Spectroscopic information is (primarily) extracted from properties of probe particle(s). Normal kinematics: projectile/scattered particles Inverse kinematics: target/recoiled particles has been a basis of major activities at stable-beam facilities. Inelastic scattering (p,p'), (d,d'), (a,a') . . . Charge exchange (p,n), (d,2He), (3He,t) . . . . Transfer (d,p), (p,d), (3He,d). . . KEYWORDS: Selectivity & Sensitivity Our (tentative) solution: CNS (``In-'') Active Target R. Akimoto, Top-view S. Ota et al. a Beam-view field shaping wires a GEMs Design of Active Target GEM-TPC Beam Active Target TPC Reaction occurs inside TPC. (Target is gas.) → Material budget can be smaller Recoil Gas 25cm Depend on target → 4He, 3He, d2 etc. Mask the beam track area TPC can be operated in high rate beam condition (~ 106 cps). Pad Use of GEM GEM GEM can multiply electron at higher rate than wire. (10cm×10cm) (Recoiled particle : ~ 103 cps) Pad shape : rectangular triangle (16.45×16.45mm2 ) • Charge ratio of the neighboring pads 16.45mm (perpendicular to drift direction) • Arrival time(drift direction) 4cm Beam Field cage Wire Double layered, 2.5mm pitch. 5 16.45 beam 16.45 Setup • Gas : He(95%) / CO2(5%) (1 atm) •Edrift : 700 [V/cm] Drift velocity : 2 [cm/ms] Diffusion (transverse) : 250 [mm/1cm drift] Diffusion (longitudinal) : 180 [mm/1cm drift] • Voltage applied to GEM : 450 V, 420 V, 390 V → Gas gain : 102 - 103 • Pad size : 16.45×16.45 mm2 (Only 36 pads are used) • Readout : FADC (SIS3301; 100MHz) • Trigger system : TPC (self-trigger; signal sum for 4 pads) 6 Typical event Beam Beam Inclined incidence Position resolution 3 Dependence of the gas gain Perpendicular to drift direction Drift direction Preliminary Preliminary Position resolution is improved as gas gain become larger. 8 Energy resolution 1 layer Particle : a with ~ 5.8 MeV/u → Energy deposit for 1 layer : ~120 keV (720 keV for all layers) 1 layer All layers s~9% s~4% Preliminary Preliminary Energy resolution ~ 4 % < 10 % 9 Angular resolution s ~ 13.6 mrad s ~ 10.5 mrad Preliminary Preliminary angle(1st and 6th layer) angle(2nd to 5th layer) – angle(1st and 6th layer) Angular resolution using 4 layers : ~ 8.5 mrad 10 Summary • We are developing Active-Target TPC for study of nuclear property using unstable nuclei. Detect track and energy of recoiled particle with very low energy. (~ 1MeV/u) • Position difference in high beam rate condition : < 0.3mm → Can be used in high beam rate condition • Performance test has done. Position resolution - Perpendicular to drift direction : < 700mm - Drift direction : ~ 50mm Angular resolution : ~ 8.5 mrad (using 4 layers) Energy resolution: < 4 % (s) for a with 5.8MeV/u 11 Potential of technical collaboration by Tokyo Metropolitan Industrial Technology Research Institute 2009-12-22 Detector Workshop for RIBF experiments @RIKEN Tokyo Metropolitan Industrial Technology Research Institute Electronics Group Kohei Fujiwara [email protected] 1. Our Mission We support small and medium-sized enterprises (SME) in 7 elements. Support for product development • Open use of instruments • Custom-made development support Research & development • Collaborative research • Base research Publication of industrial information Support for technology management • Technical review • Using Intellectual Property Technical Assistance • Requested test • Technical Consultation Industrial human Resource development • Custom-made seminar Cooperation and collaboration for industry • Industry-Government-Academia cooperation Increase competitiveness of goods and services 3. 研究内容 理研側 • 原子核実験用シミュレータで装置の設計を行なう。 – 信号パッド配置、生成される信号レベル等の計算 • 産技研で基礎設計した伝送線路の製作 – 中小企業へ製作依頼 • 性能を検証する為に実験装置へ組み込み評価 産技研側 • 伝送線路のシミュレーションと評価 • 伝送波形、クロストークの予想 • S-NAP、MAGNA等の利用 • Time Domain Reflectometory を用いた測定評価 • 入射パルスと反射パルスからインピーダンス等を測定 • 伝送線路パラメータの抽出→伝送線路のシミュレーション 25 J-PARC実験標的周り 飛跡検出器の開発 日本原子力研究開発機構 先端基礎研究センター ハドロン物理研究Gr 佐藤 進 謝辞:足立智さん、今井憲一さん、小沢恭一郎さん 佐甲博之さん、杉村仁志さん、新山雅之さん、 からご助言・ご指導を頂いています(あいうえお順)。 「原子核ハドロン実験のための検出器と大規模読み出しに関するワークショップ」 “Workshop on detection and readout method for nuclear physics experiments” On 2010.Jun.4th At 日本原子力研究開発機構(東海) 先端基礎研究交流棟 生成ハイペロンの運動量は、数100Mev/c “p”(K-,K+)Ξでは、pΞ〜600Mev/c なので、 Ξ p --> ΛΛで半分の運動量を持ったとすると、pΛ 〜300MeV/c 。 前方に〜300MeV/cを持ちうる粒子の検出の為に、 「ビームに垂直な磁場」をもつスペクトロメータにおける、 3次元飛跡検出を検討・開発する。 読出用パッド面 信号増幅用”GEM” B (運動量解析用) , E (信号ドリフト用) “上部TPC” beam 標的 “下部TPC” B, E 信号増幅用”GEM” 読出用パッド面 大アクセプタンスGEM検出 器に用いる読み出し回路の 開発 検討 東大・理 小沢 恭一郎 Example: E16 Detector Tracker ~100μm の分解能 ハイレートへの耐性(5kHz/mm2) 少ない物質量 (1チャンバーにつき~0.1% ) Electron identification Large acceptance High pion rejection @ 90% e-eff. 100 @ Gas Cherenkov 25 @ EMCal 2010/06/04 K. Ozawa 34 Develop 1 detector unit and make 26 units. GEM Tracker Items CsI + GEM photo-cathode 50cm gas(CF4) radiator ~ 32 p.e. expected CF4 also for multiplication in GEM Ionization (Drift gap) + Multiplication (GEM) High rate capability + 2D strip readout 2010/06/04 Hadron Blind detector 35 K. Ozawa Gas Cherenkov for e-ID Collaboration with KEK GEM Tracker Gas: p10 or Ar/CO2 Currently, p10 gas is used due to a large diffusion. 700 mm pitch (350 mm x 2) for both side 2010/06/04 K. Ozawa 36 Prof. S. Uno @ MPGD WS Easy signal Pulse shape handling GEM Response function No magnetic Field/ No Drift region σ=359.7±0.4 μm Signal from GEM foil 150mV P10 σ=181.2±0.3 μm Ar-CO2 (70/3 0) Signal from Readout pad 80ns Response function Time constant is from the drift Width of signal spread is consistent with time in the last gap. (No ion tail) transverse diffusion in GEM (along It can be reduced to ~20ns. 3layers ). 2010/06/04 K. Ozawa 37 Summary and Issue? • GET may take little longer than people’s immediate needs. – But GET is quite attractive system • Rate, dynamic range… – How to replace to existing system • Pin compatibility? • DAQ connection
© Copyright 2025 ExpyDoc