CNS Active Targets for Missing Mass Spectroscopy with RI

Some TPC project @Nuclear
experiment in Japan
Base on the two domestic Workshop for the
nuclear experiment detectors.
•Detector Workshop for RIBF experiments 2009 Dec 21-22 @Wako
•Workshop on detection and readout method for nuclear
physics experiments 2010 June 04 @ J-Parc
Atsushi Taketani
RIKEN Nishina center
Detector Team
CNS Active Targets for
Missing Mass Spectroscopy with RI
beams
Tomohiro Uesaka
CNS, University of Tokyo
・
Missing Mass Spectroscopy
・ Two different missing mass spectroscopy with RI beams
Normal Kinematics
Multi-layered active target (to be made)
Inverse Kinematics
CNS active gas target → Akimoto's talk
Missing Mass Spectroscopy
Spectroscopic information is (primarily) extracted
from properties of probe particle(s).
Normal kinematics:
projectile/scattered
particles
Inverse kinematics:
target/recoiled
particles
has been a basis of major activities at stable-beam facilities.
Inelastic scattering
(p,p'), (d,d'), (a,a') . . .
Charge exchange
(p,n), (d,2He), (3He,t) . . . .
Transfer
(d,p), (p,d), (3He,d). . .
KEYWORDS: Selectivity & Sensitivity
Our (tentative) solution: CNS
(``In-'') Active Target R. Akimoto,
Top-view
S. Ota et al.
a
Beam-view
field shaping wires
a
GEMs
Design of Active Target GEM-TPC
Beam
 Active Target TPC
Reaction occurs inside TPC. (Target is gas.)
→ Material budget can be smaller
Recoil
 Gas
25cm
Depend on target → 4He, 3He, d2 etc.
 Mask the beam track area
TPC can be operated in high rate beam
condition (~ 106 cps).
Pad
 Use of GEM
GEM
GEM can multiply electron at higher rate than wire. (10cm×10cm)
(Recoiled particle : ~ 103 cps)
 Pad shape : rectangular triangle (16.45×16.45mm2 )
• Charge ratio of the neighboring pads
16.45mm
(perpendicular to drift direction)
• Arrival time(drift direction)
4cm
Beam
 Field cage
Wire
Double layered, 2.5mm pitch.
5
16.45
beam
16.45
Setup
• Gas : He(95%) / CO2(5%) (1 atm)
•Edrift : 700 [V/cm]
 Drift velocity : 2 [cm/ms]
 Diffusion (transverse) : 250 [mm/1cm drift]
 Diffusion (longitudinal) : 180 [mm/1cm drift]
• Voltage applied to GEM : 450 V, 420 V, 390 V
→ Gas gain : 102 - 103
• Pad size : 16.45×16.45 mm2 (Only 36 pads are used)
• Readout : FADC (SIS3301; 100MHz)
• Trigger system : TPC (self-trigger; signal sum for 4 pads)
6
Typical event
Beam
Beam
Inclined incidence
Position resolution 3
Dependence of the gas gain
Perpendicular to
drift direction
Drift direction
Preliminary
Preliminary
Position resolution is improved as gas gain become larger.
8
Energy resolution
1 layer
Particle : a with ~ 5.8 MeV/u
→ Energy deposit for 1 layer : ~120 keV (720 keV for all layers)
1 layer
All layers
s~9%
s~4%
Preliminary
Preliminary
Energy resolution ~ 4 % < 10 %
9
Angular resolution
s ~ 13.6 mrad
s ~ 10.5 mrad
Preliminary
Preliminary
angle(1st and 6th layer)
angle(2nd to 5th layer) – angle(1st and 6th layer)
Angular resolution using 4 layers : ~ 8.5 mrad
10
Summary
• We are developing Active-Target TPC for study of nuclear
property using unstable nuclei.
 Detect track and energy of recoiled particle with very
low energy. (~ 1MeV/u)
• Position difference in high beam rate condition : < 0.3mm
→ Can be used in high beam rate condition
• Performance test has done.
 Position resolution
- Perpendicular to drift direction : < 700mm
- Drift direction : ~ 50mm
 Angular resolution : ~ 8.5 mrad (using 4 layers)
 Energy resolution: < 4 % (s)
for a with 5.8MeV/u
11
Potential of technical collaboration by
Tokyo Metropolitan Industrial Technology
Research Institute
2009-12-22
Detector Workshop for RIBF experiments @RIKEN
Tokyo Metropolitan Industrial Technology Research Institute
Electronics Group
Kohei Fujiwara
[email protected]
1. Our Mission
We support small and medium-sized enterprises (SME)
in 7 elements.
Support for product development
• Open use of instruments
• Custom-made development support
Research & development
• Collaborative research
• Base research
Publication of
industrial
information
Support for technology
management
• Technical review
• Using Intellectual Property
Technical Assistance
• Requested test
• Technical Consultation
Industrial human Resource
development
• Custom-made seminar
Cooperation and collaboration
for industry
• Industry-Government-Academia
cooperation
Increase competitiveness of goods and services
3. 研究内容
理研側
• 原子核実験用シミュレータで装置の設計を行なう。
– 信号パッド配置、生成される信号レベル等の計算
• 産技研で基礎設計した伝送線路の製作
– 中小企業へ製作依頼
• 性能を検証する為に実験装置へ組み込み評価
産技研側
• 伝送線路のシミュレーションと評価
• 伝送波形、クロストークの予想
• S-NAP、MAGNA等の利用
• Time Domain Reflectometory を用いた測定評価
• 入射パルスと反射パルスからインピーダンス等を測定
• 伝送線路パラメータの抽出→伝送線路のシミュレーション
25
J-PARC実験標的周り
飛跡検出器の開発
日本原子力研究開発機構
先端基礎研究センター
ハドロン物理研究Gr 佐藤 進
謝辞:足立智さん、今井憲一さん、小沢恭一郎さん
佐甲博之さん、杉村仁志さん、新山雅之さん、
からご助言・ご指導を頂いています(あいうえお順)。
「原子核ハドロン実験のための検出器と大規模読み出しに関するワークショップ」
“Workshop on detection and readout method for nuclear physics experiments”
On 2010.Jun.4th
At 日本原子力研究開発機構(東海)
先端基礎研究交流棟
生成ハイペロンの運動量は、数100Mev/c
“p”(K-,K+)Ξでは、pΞ〜600Mev/c なので、
Ξ p --> ΛΛで半分の運動量を持ったとすると、pΛ 〜300MeV/c 。
前方に〜300MeV/cを持ちうる粒子の検出の為に、
「ビームに垂直な磁場」をもつスペクトロメータにおける、
3次元飛跡検出を検討・開発する。
読出用パッド面
信号増幅用”GEM”
B (運動量解析用) ,
E (信号ドリフト用)
“上部TPC”
beam
標的
“下部TPC”
B,
E
信号増幅用”GEM”
読出用パッド面
大アクセプタンスGEM検出
器に用いる読み出し回路の
開発 検討
東大・理 小沢 恭一郎
Example: E16 Detector
Tracker
~100μm の分解能
ハイレートへの耐性(5kHz/mm2)
少ない物質量
(1チャンバーにつき~0.1% )
Electron identification
Large acceptance
High pion rejection @ 90% e-eff.
100 @ Gas Cherenkov
25 @ EMCal
2010/06/04
K. Ozawa
34
Develop 1 detector unit and make 26 units.
GEM Tracker
Items
CsI + GEM
photo-cathode
50cm gas(CF4) radiator
~ 32 p.e. expected
CF4 also for
multiplication in GEM
Ionization (Drift gap)
+ Multiplication (GEM)
High rate capability
+ 2D strip readout
2010/06/04
Hadron Blind detector
35
K. Ozawa
Gas Cherenkov for e-ID
Collaboration with KEK
GEM Tracker
Gas: p10 or Ar/CO2
Currently, p10 gas is used
due to a large diffusion.
700 mm pitch
(350 mm x 2)
for both side
2010/06/04
K. Ozawa
36
Prof. S. Uno @ MPGD WS
Easy
signal
Pulse
shape
handling
 GEM Response function
No magnetic Field/ No Drift region
σ=359.7±0.4 μm
Signal from GEM foil
150mV
P10
σ=181.2±0.3 μm
Ar-CO2
(70/3
0)
Signal from
Readout pad
80ns
Response function
Time constant is from the drift
Width of signal spread is consistent with
time in the last gap. (No ion tail) transverse diffusion in GEM (along
It can be reduced to ~20ns. 3layers ).
2010/06/04
K. Ozawa
37
Summary and Issue?
• GET may take little longer than people’s
immediate needs.
– But GET is quite attractive system
• Rate, dynamic range…
– How to replace to existing system
• Pin compatibility?
• DAQ connection