3 運動量測定 飛跡検出器 3.1 ガス検出器 3.2 - SAGA-HEP

3
運動量測定
飛跡検出器
3.1
ガス検出器
3.2
シリコン測定器
運動量測定
磁場中の荷電粒子の運動
F = qv × B
遠心力
mv = qrB
PT
x B
ρ
ローレンツ力
v2
F =m
r
pc = mc2 βγ
pc
β=
mvcγ = pc = qcrB
E
相対論的な効果としてγをかける
E
γ=
mc2
B=1T,
r=1m の場合を考えよう!
pc = 1.6 × 10−19 (C) · 3 × 108 (m/sec) · 1(m) · 1(T esla)
1T esla = 1N A−1 m−1
1C = 1As
= 1.6 × 10−19 · 3 × 108 (N m)
1N m = 1J = 1/(1.6 × 10−19 )eV
= 3 × 108 eV = 0.3GeV
PT(GeV/c)=
0.3
B(Tesla)ρ(m)
運動量を測定するには飛跡の半径を測る!
運動量測定には磁場が必要だ!
高エネルギー実験の歴史 ー>電磁石の開発
加速器はもちろん、 ダイポール(2極:偏向)電磁石
4極(収束、逆収束)電磁石
6極、8極など 様々な電磁石
測定器でも
固定ターゲット実験
ダイポール電磁石
衝突型加速器実験
ソレノイド電磁石 アクセプタンスの増大
超伝導電磁石 低物質化、MultipleScattering
showe
cal.
の分解能向上
1
~
1.5
T
->
3
~
5
T
at
ILC
飛跡検出器
大昔は、シンチレーションカウンター(ホドスコープ)で飛跡検出
位置分解能 数cm
かつ 磁場中では使用不可
ガスを使った検出器
ガイガー計数管
円筒電極ないに芯線を張り、希ガスを満たしたものに
高電圧を印加
スパークチェンバー
平行電極版間にガスを満たし、荷電粒子が通った時に高電圧を印加する
比例計数管(ワイヤーチェンバー)
MWPC
ドリフトチェンバー
スモールセル
ジェットセル
TPC
Time
Expansion
Chamber
MPGD
ガス検出器の中で何が起こっているか?
Introduction of Gas Detector
1. Primary Ionization ( interaction of charged/photonic particle with matter )
2. Drift of ionized electrons/ions
3. Gas multiplication
Charged particle
++1 +- +-
++-
2
1. is the most basic part for any detector and common to all.
charged particle dE/dx, Cerenkov, Trans. radiation
photon
Photo-electric effect, Compton, Pair creation
2. and 3. are unique to gas detector
yield variety of gas detectors
3
Amp.
Charged particle in gas
Z ρ
dE
2mc2 β 2 EM
2
=K
−
2β
−
[ln
]
dx
A β2
I 2 (1 − β 2 )
2πN z 2 e4
K=
mc2
EM
2mc2 β 2
=
1 − β2
non-relativistic region ∝
1
β2
relativistic rise
pol. effect/density effect
Gas : Noble gas (Ar, Ne, Xe, Kr, (He)) is used as main component of gas ( not always )
as noble gas doesn’t have any vibration/rotation modes for energy absorption
quencher is also necessary to absorb photon from electron avalanche process.
basic parameter of typical gas
He
Ar
Kr
CH4
C4H10
Z
A
4
18
36
16
34
2
ρ
0.17
I0
24.6
Wi
41
1.94
39.9
83.8
1.66
3.49
15.8
14.0
26
24
16
58
0.67
2.42
13.1
10.8
x10-3g/
eV
cm3
dE/dx
0.32
nP
5.9
nT
1.47
1.32
2.44
4.60
29.4
22
94
192
28
23
2.21
1.86
1.48
4.50
16
46
53
195
eV
MeV/
keV/
cm
/cm
/cm
gcm-2
7.8
M.I.P. drop energy to medium ~2 MeV/density
produce 30 primary ion pairs / 100 total ion pairs in Ar every cm.
ion pair is produced discretely
primary process sometime produces energetic electron
-- delta ray(a few keV)
produce large number of secondary -> deteriorate dE/dx info.
emitted perpendicular to incident
-> deteriorate position info.
2. Drift of electron
electrons are drifted by E field
macro view
accelerated by E field and collide to atom microscopic
τ: mean time between collisions
drift velocity(w) is average velocity of electron
E
mv =
1
eEτ
w =< v >= vmax =
2
2m
CH4
electron get energy from E
-> σ becomes large
-> τ becomes shorter
=> drift velocity saturation
Drift Vel.(cm/usec)
e
w is proportional to E ( smaller E )
w is ~constant
( E > Eo)
eEdt = eEτ
C2H6
Ar
E field(kV/cm)
Diffusion
electron is not at rest even without E field, due to thermal energy (3/2kT)
electron can move to transverse direction randomly determined in each coll..
electron spatial distribution
x2
1
dN
− 4Dt
dx follows Gaussian low
e
=√
N
4πDt
√
√
σx = 2Dt = 2D/w L
L: drift length
defocusing effect for position information
3. Gas multiplication
In high E field, electron can receive enough energy to ionize atom before collision
e
dn = nαdx
n = n0 exp[
e
x2
e
α(x)dx]
x1
α:
Geiger-Muller
streamer
10^6
proportional
e
e
e
first Townsend coefficient
semiproportional
e
10000
100
1
gain
e
during avalanche, excited/ionized atom emit photon
when it become stable state. This photon may ionize
another atom around avalanche. Never stopping avalanche
(Geiger-Muller mode) happen without quenching these
photon. Quencher( CnHm,,,) gas has a role to absorb these
photon by vibration/rotation mode.
Wire Chamber
principle of wire chamber: Proportional Counter
using sense wire (diameter 20-30 micron) to make high E field
wire can make uniform symmetric field
gas multiplication starts @very close to sense wire (<100um)
gain doesn’t depend on where electron produced
dE/dx measurement
-+
-+
-+
-+
MWPC sense wire is aligned on the same layer
cathode plane sandwich sense plane
individual many pc
wire provide discrete position information
(depend on wire spacing; 1mm is minimum)
Drift Chamber
more accurate position information can be provided by drift time
when drift velocity is known.
btw. trk thr and sig.
Today’s Wire Chamber
small cell type DC
BELLE, Babar
good for high rate exp.
typ. res. ~150um
Jet chamber
SLD,JLC
high resolution
~80um
Merit and weak point of Wire Chamber
TPC
Limitation of wire
length is limited (gravitational sag, tension ,, )
high rate capability ( cell size is limited )
1-dim. readout
ExB effect
MPGD( Micro Pattern Gas Detector )
MPGD development has been initiated from ~1990
MSGC ( Micro strip gas detector )
analogy of wire chamber
narrow anode electrode produce high E field
shape of anode
200um pitch
Si substrate
|
\/
PCB tech.
difficulties
stability
fatal discharge
E field in MSGC
very high!!
>>20~30kV/cm
Field produced by ions will
not be decreased
streamer evolution
Micro Gap Chamber
1 dim. structure
-> 2 dim. structure
Micro dot Chamber
Gas Electron Multiplier
GEM
50 micron thick Kapton
covered by 5 micron copper both sides
75 micron holes are made in 140 micron
pitch( by chemical etching )
5 um Cu
50 um Kapton
insulator
50 μm
5 um Cu
75
μm
45
μ
m
140
μm
triple GEM operation
10MΩ
E3
GEM3
E2
VGEM
HV3
HV2
GEM2
E1
GEM1
E0
Readout Pad
HV1
it’s better to use 6 indiv. HV
and prec. current monitors
but too many HV sys. are compli.
and not easy to control.
GEM gas gain depends on not only
VGEM but E0,E1,,,
typical En is 1 ~ 2 kV/cm
GEM is transparent @ VGEM> 250 V
E3
drift gap
E2,E1 transfer gap ~2kV/cm
E0
induction gap ~3kV/cm
Signal from Fe 5.9keV X-ray
Gain vs. VGEM
triple GEM
P-10
double GEM
100000
Ar-CO2
Gain vs. HV
10000
1000
saturation
due to amp.
100
10
260
300
340
VGEM
380
(Volts)
Micromegas Chamber
35 micron
First Results
Ar:DME=9:1 gas
feb4_04gaincurve, Ar:DME=9:1, Drift=-500 V
10
5
Gas gain
Gas gain
104
1000
100
280
300
320
340
360
380
Mesh voltage (-V)
400
420
GEM and Micromegas are the most probable candidates for ILC TPC sensor
GEM can provide small gain/foil O(10) to avoid discharge
multiple layers are necessary
less sensitive to geometrical alignment
Micromegas can give us large signal ( as it is like a controlled discharge )
sometime signal is too large ( damage to readout electronics )
sensitive to gap
Readout pad for both
2 dim determination
-> large number of channel
THis is new thing for this year !!!
We had a experience of Micromegas for this year !!
that is more than we expected
The gap between foil and readout is matter
if the distance between foil and readout
small ; E->large ==> high gain @ shorter distance
large ; E->small
There are optimums for each gases .
They are more durable than we expected
may have more ability
μPIC
this is like a Microdot detector made by micro-electronics tech.
PCB technology
large scale
cheap
Application to ILC detector
DHCAL with GEM
Tracker/TPC senser
Absorber strong back
Gas inlet/outlet
(example)
Cathode layer
Non-porous,
double-sided
adhesive strips
1 mm
1 mm
9-layer readout pc-board
TESLA design
Fishing-line spacer
schematic
3 mm
(NOT TO SCALE)
UTA
Application to other fields
Scintillating GEM
for medical imaging
detect photon emitted from Gas
multiplication
alpha track
neutron detector
Single photon detector
using CsI converter
X-ray polarimeter
Astrophysics
photo-electron emitted to E field dir.
What I am recently interested in
is
Dark Matter search using MPGD TPC
We have spent much time for ILC TPC
Do we have any other use of this kind of TPC ?
Dark Matter:
exist everywhere in the galaxy like “ether”
earth moving around the sun : relative motion of the earth to dark matter
modulation must be observed
Merit of tracking device for Dark Matter search
direction of recoiled particle(nuclei) by Dark Matter collision
=> modulation ! is a big evidence as Dark Matter
but
we need large volume to detect DM
-> long drift distance -> large diffusion -> smear direction
MPGD
+
Negative Ion Drift
has been studied with wire chamber
very low diffusion !