LASER Scintillator

Response property between fiber
and MPPC on ECAL Prototype
2011年 03月 03日
High Energy Physic Laboratory
Choi Weon Seok
1
Purpose:Problem of ECAL Prototype
Effective pixels contacted with WLS
Scintillator
MPPC
MPPC
1mm
WLS-fiber
1mm
Surface of MPPC
 Location of hole is not fixed
Hole for WLS-fiber
 This effect might cause change of
effective pixel number for every MPPC
on ECAL prototype.
2
Purpose: Response Curve of MPPC

Maximum photon number which MPPC can detect in an event, is limited by
pixel number of MPPC itself.
⇒MPPC response looses linearity to incident photon number

Response Curve would be affected by MPPC/fiber mismatch
Detected Photon number of MPPC
It is needed to search saturation
curve for every MPPC on ECAL
prototype.
Real Photon number(PMT response)
3
Experiment: Setting
PMT
Scintillator
glass lense
Polarlizing
plate x2

Pico-second LASER is
used as light source.

Intensity is adjusted by
two polarizing plate.

PMT is applied to estimate
real photon number.

Light source for PMT is
the LASER reflected by
glass .
WLS- fiber
Pico-sec
LASER
λ: 408nm
PMT
MPPC
4
Experiment:Response Curve (effect of MPPC/fiber mismatch)
Photon number of MPPC detected
scintillator
MPPC
before
Before
WLS-fiber
after
After
Lifting up
PMT response

The effective number of pixels decreases as MPPC/fiber mismatch increases
N pixbefore : 2873  9
N pixafter : 2547  13
5
Experiment:Response Curve (effect of MPPC/fiber mismatch)
[0](1  exp( [1]  x /[ 0]))
Fitting Function
y  N pix (1  exp(   x / N pix ))
x:
Real photon number
(PMT response)
y : Photon detected by MPPC
N pix : Effective pixel number of MPPC
 : Photon Detection efficiency
Fitting function above doesn’t fit well the data in the whole x range.
⇒ use the function above in low x range, and evaluate N pix
6
Experiment:Response Curve(36 MPPCs on ECAL prototype )
7
Experiment: Correlation of Npix &MIP const
 Possible reasons for
data dispersion are,
• accuracy of N pix
estimated by fitting
• change of the state of
MPPC/fiber mismatch
r  0.58
Yaxis: MIP calibration constant (at 2008/2009 Fermi Lab)
8
Conclusions&Tasks
Conclusions

I’ve measured MPPC response curve with pico-second LASER.
⇒It seems like time structure of incident light affects a lot.

The effect of MPPC/fiber mismatch on response curve has been measured.
⇒ It is needed to find response curve for each MPPC on ECAL prototype.

By evaluating N pix with fitting function and comparing it with MIP const, it
seems like there is correlation between them.
Tasks

Research to understand response curve more deeply.

Confirming the state of MPPC/fiber mismatch by measuring cosmic muon and
compare with FNAL data.
9
The Way of Estimation

When you differentiate ideal fitting function、you will get

dy
x 

  exp  

dx
N pix 

log y  log  
 log e
N pix
x
:linear equation
Thus, I determined the fitting range by searching linear data range
when plotting difference quotient data.
元のslideに戻る(Click)
10
The Way of Estimation

理想の fitting 関数を微分してみると、

dy
x 

  exp  

dx
N pix 

log y  log  
 log e
N pix
x
:xに対する1次関数
もし、測定結果の分布の差分を取って直線的な傾向があるように見えるとこ
ろがあれば、そこでは時間構造の影響が少ないと思われる。
⇒この範囲でfitting.
元のslideに戻る(Click)
11
The Way of Estimation
[0](1  exp( [1]  x /[ 0]))
元のslideに戻る(Click)
12
Reforming Fitting Function
 It is obvious that the gradient changes gradually. (slide 11)
 There are two parameters which can affect gradient, εand Npix.(slide10)
 Assuming εdepends on x like ,
 ( x )   0 e  a x   l
and replace this function with 
元のslideに戻る(Click)
13
Correlation of new Npix/MIP const (72 MPPCs)
r: 0.55
元のslideに戻る(Click)
14
BACK-UP
15
16
Experiment: Setting
Scintillator
PMT
LASER
元のslideに戻る(Click)
17
Purpose: Response Curve
linear
y  N pix (1  exp(   x / N pix ))
x : 入射光子数
y : MPPCの検出光子数
真の光子数
N pix : MPPCの有効 pixel数
 :光子検出効率
実際にはPMTの応答を用いる
MPPCの検出光子数

Geiger modeで動作させるMPPCの各pixelは、同時に光子が入射しても
一定の信号を出す。
⇒入射光子数が多くなくと、応答の線形性が落ちる
元のslideに戻る(Click)
18
Experiment:Response Curve
元のslideに戻る(Click)
19
Simulation results: when incidence light has time structure

入射光が時間的構
造を持っているとき、
理想的なsaturation
は起こらない.

このときは理想的な
saturation の式では
fittingできない.
By Mr. Sudou (Tsukuba Univ.-2008)
元のslideに戻る
20
Scintillatorを通したときの応答曲線
1600pixel
400pixel
By Hiroko Koike
(tsukuba-2010)
 高い領域でよりは Fittingできているように見えるが、(x軸)低領域では
時間構造 の影響が少ないからだと思われる.
元のslideに戻る
21
MPPCに直接入れて見たとき

MPPCに直接LASERを入れたときの分布。 Scintillatorのときに比べては小さい
が、徐々に上がる成分は少し見える。
⇒LASERそのものの時間構造によるものと思われる。
元のslideに戻る
22
Response Curve with non fiber scintillator(kuraray)
元のslideに戻る(Click)
23
PMTの印加電圧設定
PMTの増倍率
A  Vb
log A  log    log Vb


真の光子数に対応させるPMTの応答が入射光子数に対して線形性を失
うと扱えない.
LASERの強度を最大にしたときの印加電圧によるPMTの増倍率の様子
を調べて印加電圧を設定
元のslideに戻る(Click)
24
反射光&WLSを用いるときのPMTの応答

これまでは、応答曲線
を調べるときには、
scintillatorの光をfiber
で集め、両端をそれぞ
れMPPC,PMTに入れ
て測定

しかし本実験ではそれ
ができないため、反射
波を用いる。
⇒反射波とfiberに対
してのPMTの反応が線
形性を持つかを見る必
要がある
元のslideに戻る(Click)
25
LASER

The LASER used is Picosecond
Injection LASER(PiLAS) of Advanced Laser Diode Systems

It is possible to adjust intensity by
changing “Tune” parameter. Every
data are measured under Tune 50%.
元のslideに戻る(Click)
26
MPPCの検出光子数の計算
High gain mode
d
1 光子に対する積分電荷量(d)を測定
ampの増倍率を補正して、ampなしの時
の1光子に対する積分電荷量( d new )を
計算
Low gain mode (ampなし)
D
光源に対する応答の積分電荷量( D )を測定
N photon  D / d new
27
Contents

Backgrounds

Purpose



Experiment



Problems
Response Curve of MPPC
Setting
Response Curve
Conclusion&Tasks
28