「混ぜるだけ」で合成可能! 中空コアを持つ星形分岐高分子

「混ぜるだけ」で合成可能!
中空コアを持つ星形分岐高分子
京都大学 物質–細胞統合システム拠点 (iCeMS) 特定助教
細野 暢彦
Institute for Integrated Cell-Material Sciences, Kyoto University
1
Institute for Integrated Cell-Material Sciences, Kyoto Unive
星形分岐高分子(スターポリマー)
1. Star
Polymers
1. Star
Polymers
1. Star
Polymers
2.5 nm
2.5 nm
2.5
nm
2. Coo
Co
2.
2. Coor
3-Arm
Star
Mikto(Hetero)-Arm Star
3-Arm
Star
Mikto(Hetero)-Arm
Star
3-Arm
Star
Mikto(Hetero)-Arm
Star
1個の分岐点を持つ分岐高分子:星形高分子(スターポリマー)
Unique physical properties and functions.
Unique
physical
propertiesand
andfunctions.
functions.
Unique
physical
properties
Industrial applications hampered by the synthetic difficulties.
一般的な紐状ポリマーでは得られない機能・性質を持つ素材
Metal-
Met
Me
Industrial
applications
hampered
thesynthetic
syntheticdifficulties.
difficulties.
Industrial
applications
hampered
bybythe
3. Synthesis: Divergent Route
3.
Synthesis:
Divergent
Route
3. Synthesis: Divergent Route
4. Synth
RAFT: Reversible Addition-Fragmentation Chain Transfer
4.
Syn
4. Sy
RAFT: Reversible Addition-Fragmentation Chain Transfer
RAFT: Reversible
Addition-Fragmentation
Chain Transfer
Cu
O O
S
SO S O
S
O
S S
塗料・コーティング
S
O
S
S
n
O
n
O
O
CuO Cu
Cu
O
O Cu
O
O
n
Cu Cu
インクジェットインク
O O
S
Cu
薬物輸送PtBA54:
RAFT
(DDS) Mn,AC: 66
エンジンオイル
Chain
Elongation
PtBA5
RAFT
.)
造影剤
Cu
Cu
Time
(min)
O O
RAFT
Chain Elongation
MOP(2)-PtBA
15
Cu Cu
Chain Elongation
Time
45(min)
MOP(2)
Institute for Integrated Cell-Material Sciences, Kyoto University
MOP(2)-PtBA
15 75
PtBA5
M
n,AC:
Mn,AC
MOP
2
星形分岐高分子(スターポリマー)
review is
miktoarm
this deca
simulatio
elucidate
will instea
Synthet
Chlorosila
015 10:37:10.
One of th
stars invo
a core, wi
Fig. 1 Somedifferent typesof miktoarm polymers, whosepolymer arms
living an
ミクトアーム星形高分子(異種・異鎖長の腕を持つ星形高分子)は、
vary by the chemical identity or molecular weight.
have used
その合成が極めて難しい高分子化合物のひとつ
toarm po
b-polyiso
where the greatest promise and poteA.
ntial
lieset
. To
this end,
Kakkar
al, Polym.
Chem.the
2010, 1, 1171.
polystyre
work summarized in thisreview isoriented towardsa specificclass
Institute for Integrated Cell-Material Sciences, Kyoto University
3
10
chlorosila
従来の星形高分子の合成法
3分岐ミクトアーム星形高分子の合成手法例
review is to focus on work done within the past decade o
miktoarm polymers. An excellent review of work done prior
this decade can be found elsewhere. 10 While computation
simulations and theoretical chemistry have been combined
elucidate the morphology of miktoarm polymers, 11 this revie
will instead focus on experimental work.
Synthetic strategies
Chlorosilane compounds
Fig. 1 Somedifferent typesof miktoarm polymers, whosepolymer arms
vary by the chemical identity or molecular weight.
where the greatest promise and potential lies. To this end, the
work summarized in thisreview isoriented towardsa specificclass
of star polymerscalled miktoarm star polymers.10 Miktoarm star
polymers(sometimescalled asymmetricstar polymers, heteroarm
star polymers, or simply miktoarm polymers) are star-shaped
polymers where any number of various types of polymer arms
emanate from a core. These polymer arms should vary by chemical identity and/or molecular weight (Fig. 1). Thisspecificclassof
polymers should not be confused with other classes of polymers,
such as graft copolymers, H-shaped copolymers, etc., which lack
Institute for Integrated Cell-Material Sciences, Kyoto University
a star-shaped architecture with polymer arms emanating from
One of the most established synthetic strategies for miktoar
stars involves linking chlorosilane compounds which serve
a core, with polymers with reactive chain endssynthesized usin
1 Somedifferent
typesof
miktoarm polymers,
living Fig.
anionic
polymerization.
Hadjichristidis
and whosepoly
coworke
vary by the chemical identity or molecular weight.
have used tetrachlorosilane to synthesize an A(AB)3-type mi
toarm polymer, composed of polystyrene (PS) and polystyren
b-polyisoprene
1).12 In
order
tontial
ensure
thatthis
o
where the(Scheme
greatest promis
e and
pote
lies. To
polystyrene
arm was attached
to isoriente
the core,
excess tetr
work summarized
in thisreview
d towardsa
spe
chlorosilane
reacted withmiktoarm
the anionic
end.10of
pol
of starwas
polymerscalled
star chain
polymers
Mikto
styrene,polymers(sometimescalled
and any unreacted tetrachlorosilane
was
then rs,
easi
asymmetricstar
polyme
h
removed
vacuum. or
A 20%
excess
of PS-bPILi wasare
used
starbypolymers,
simply
miktoarm
polymers)
sta
replacepolymers
the remaining
chlorine
on types
the core,
th
where any
numberatoms
of various
of polym
completing
the from
final miktoarm
star.
Size exclusion
chromato
emanate
a core. These
polymer
arms should
vary
A. Kakkar
et al,
Polym.
Chem.
2010,
1,
1171.
raphy
(SEC)
of
this
star
polymer
revealed
impurities
who
ical
identity
and/
or molecular
we
ight
(Fig.
1).
Thisspecifi
resolution
was much
temperature
gradie
polymers
shouldbetter
not beresolved
confusedby
with
other classe
s of p
interaction
(TGIC).
In fact,
TGIC allowed
suchchromatography
as graft copolymers,
H-shape
d copolymers
, etc.,ea
w
4
eluted peak
toshaped
be characterized
aswith
either
the product
a stararchitecture
polymer
armsmiktoar
emanat
金属–有機多面体(中空有機金属錯体)
直径:2.5 nm
内径:1.5 nm
窓サイズ:〜 8 Å
ケージ(籠)状構造を持つ有機金属錯体 MOP
合計24個の有機配位子がCu2+イオンで架橋された中空錯体
M. Eddaoudi, O. M. Yaghi, et al. J. Am. Chem. Soc. 2001, 123, 4368; J.-R. Li, H.-C. Zhou, Nat. Chem. 2010, 2, 893.
Institute for Integrated Cell-Material Sciences, Kyoto University
5
星形高分子が「混ぜるだけ」で合成可能
モノマー
方法A
ダイバージェント法
ラジカル開始剤
溶媒
スターポリマー
MOP
Cu2+
方法B
コンバージェント法
溶媒
ポリマー配位子
スターポリマー
方法Bを使えば任意の高分子を持った星形高分子が
「混ぜるだけ」で合成可能
Institute for Integrated Cell-Material Sciences, Kyoto University
6
腕高分子の分岐本数も調整可能
Institute for Integrated Cell-Material Sciences, Kyoto University
7
原子間力顕微鏡(AFM)による単分子観察像
Institute for Integrated Cell-Material Sciences, Kyoto University
8
バルク状態での内部構造
Institute for Integrated Cell-Material Sciences, Kyoto University
9
想定される用途
1.種々の星形高分子の簡便な合成手法として
星形高分子合成(異種混合型含む)の大幅なコスト削減
インク等の低粘度化剤としての利用
ドラッグデリバリーシステムの高分子キャリアとしての利用
2.成形加工が可能な新しい中空錯体として
新しい「成形加工可能な」多孔性素材として
フィルム化することでガス分離膜への応用が可能と思われる
Institute for Integrated Cell-Material Sciences, Kyoto University
10
実用化に向けた課題
1.銅イオンを含有する点
中空錯体コアに銅イオンを有するため、青色の素材になってしまう
生体適合性に問題有り
他の金属種を利用可能か検討中
2.化学的な耐性
酸や塩基で腕高分子へと容易に分解する(熱的には安定)
3.製造技術・コスト
高分子の片末端修飾技術が必要(既存のリビング重合法が利用可)
合成プロセスのコスト削減が期待できる
4.ガス分離膜への応用可能性
フィルム化技術の開発、ガス分離試験を通した性能評価の必要あり
Institute for Integrated Cell-Material Sciences, Kyoto University
11
企業への期待
高分子物性、フィルム化、およびガス分離膜の開発、
およびその事業化に興味のある企業に用途開拓を希望
Institute for Integrated Cell-Material Sciences, Kyoto University
12
本技術に関する知的財産権
発明の名称:単孔性または多孔性配位高分子
出願番号:2015-047768
出願人:京都大学
発明者:細野暢彦、松田亮太郎、北川進
発明の名称:スターポリマー
出願番号:2015-243639
出願人:京都大学
発明者:細野暢彦、北川進
Institute for Integrated Cell-Material Sciences, Kyoto University
13
問い合わせ先
京都大学 産官学連携ライセンスアソシエイト
関西TLO株式会社 田部博康
TEL 075-753-9150
FAX 075-753-9169
E-mail [email protected]
Institute for Integrated Cell-Material Sciences, Kyoto University
14