「混ぜるだけ」で合成可能! 中空コアを持つ星形分岐高分子 京都大学 物質–細胞統合システム拠点 (iCeMS) 特定助教 細野 暢彦 Institute for Integrated Cell-Material Sciences, Kyoto University 1 Institute for Integrated Cell-Material Sciences, Kyoto Unive 星形分岐高分子(スターポリマー) 1. Star Polymers 1. Star Polymers 1. Star Polymers 2.5 nm 2.5 nm 2.5 nm 2. Coo Co 2. 2. Coor 3-Arm Star Mikto(Hetero)-Arm Star 3-Arm Star Mikto(Hetero)-Arm Star 3-Arm Star Mikto(Hetero)-Arm Star 1個の分岐点を持つ分岐高分子:星形高分子(スターポリマー) Unique physical properties and functions. Unique physical propertiesand andfunctions. functions. Unique physical properties Industrial applications hampered by the synthetic difficulties. 一般的な紐状ポリマーでは得られない機能・性質を持つ素材 Metal- Met Me Industrial applications hampered thesynthetic syntheticdifficulties. difficulties. Industrial applications hampered bybythe 3. Synthesis: Divergent Route 3. Synthesis: Divergent Route 3. Synthesis: Divergent Route 4. Synth RAFT: Reversible Addition-Fragmentation Chain Transfer 4. Syn 4. Sy RAFT: Reversible Addition-Fragmentation Chain Transfer RAFT: Reversible Addition-Fragmentation Chain Transfer Cu O O S SO S O S O S S 塗料・コーティング S O S S n O n O O CuO Cu Cu O O Cu O O n Cu Cu インクジェットインク O O S Cu 薬物輸送PtBA54: RAFT (DDS) Mn,AC: 66 エンジンオイル Chain Elongation PtBA5 RAFT .) 造影剤 Cu Cu Time (min) O O RAFT Chain Elongation MOP(2)-PtBA 15 Cu Cu Chain Elongation Time 45(min) MOP(2) Institute for Integrated Cell-Material Sciences, Kyoto University MOP(2)-PtBA 15 75 PtBA5 M n,AC: Mn,AC MOP 2 星形分岐高分子(スターポリマー) review is miktoarm this deca simulatio elucidate will instea Synthet Chlorosila 015 10:37:10. One of th stars invo a core, wi Fig. 1 Somedifferent typesof miktoarm polymers, whosepolymer arms living an ミクトアーム星形高分子(異種・異鎖長の腕を持つ星形高分子)は、 vary by the chemical identity or molecular weight. have used その合成が極めて難しい高分子化合物のひとつ toarm po b-polyiso where the greatest promise and poteA. ntial lieset . To this end, Kakkar al, Polym. Chem.the 2010, 1, 1171. polystyre work summarized in thisreview isoriented towardsa specificclass Institute for Integrated Cell-Material Sciences, Kyoto University 3 10 chlorosila 従来の星形高分子の合成法 3分岐ミクトアーム星形高分子の合成手法例 review is to focus on work done within the past decade o miktoarm polymers. An excellent review of work done prior this decade can be found elsewhere. 10 While computation simulations and theoretical chemistry have been combined elucidate the morphology of miktoarm polymers, 11 this revie will instead focus on experimental work. Synthetic strategies Chlorosilane compounds Fig. 1 Somedifferent typesof miktoarm polymers, whosepolymer arms vary by the chemical identity or molecular weight. where the greatest promise and potential lies. To this end, the work summarized in thisreview isoriented towardsa specificclass of star polymerscalled miktoarm star polymers.10 Miktoarm star polymers(sometimescalled asymmetricstar polymers, heteroarm star polymers, or simply miktoarm polymers) are star-shaped polymers where any number of various types of polymer arms emanate from a core. These polymer arms should vary by chemical identity and/or molecular weight (Fig. 1). Thisspecificclassof polymers should not be confused with other classes of polymers, such as graft copolymers, H-shaped copolymers, etc., which lack Institute for Integrated Cell-Material Sciences, Kyoto University a star-shaped architecture with polymer arms emanating from One of the most established synthetic strategies for miktoar stars involves linking chlorosilane compounds which serve a core, with polymers with reactive chain endssynthesized usin 1 Somedifferent typesof miktoarm polymers, living Fig. anionic polymerization. Hadjichristidis and whosepoly coworke vary by the chemical identity or molecular weight. have used tetrachlorosilane to synthesize an A(AB)3-type mi toarm polymer, composed of polystyrene (PS) and polystyren b-polyisoprene 1).12 In order tontial ensure thatthis o where the(Scheme greatest promis e and pote lies. To polystyrene arm was attached to isoriente the core, excess tetr work summarized in thisreview d towardsa spe chlorosilane reacted withmiktoarm the anionic end.10of pol of starwas polymerscalled star chain polymers Mikto styrene,polymers(sometimescalled and any unreacted tetrachlorosilane was then rs, easi asymmetricstar polyme h removed vacuum. or A 20% excess of PS-bPILi wasare used starbypolymers, simply miktoarm polymers) sta replacepolymers the remaining chlorine on types the core, th where any numberatoms of various of polym completing the from final miktoarm star. Size exclusion chromato emanate a core. These polymer arms should vary A. Kakkar et al, Polym. Chem. 2010, 1, 1171. raphy (SEC) of this star polymer revealed impurities who ical identity and/ or molecular we ight (Fig. 1). Thisspecifi resolution was much temperature gradie polymers shouldbetter not beresolved confusedby with other classe s of p interaction (TGIC). In fact, TGIC allowed suchchromatography as graft copolymers, H-shape d copolymers , etc.,ea w 4 eluted peak toshaped be characterized aswith either the product a stararchitecture polymer armsmiktoar emanat 金属–有機多面体(中空有機金属錯体) 直径:2.5 nm 内径:1.5 nm 窓サイズ:〜 8 Å ケージ(籠)状構造を持つ有機金属錯体 MOP 合計24個の有機配位子がCu2+イオンで架橋された中空錯体 M. Eddaoudi, O. M. Yaghi, et al. J. Am. Chem. Soc. 2001, 123, 4368; J.-R. Li, H.-C. Zhou, Nat. Chem. 2010, 2, 893. Institute for Integrated Cell-Material Sciences, Kyoto University 5 星形高分子が「混ぜるだけ」で合成可能 モノマー 方法A ダイバージェント法 ラジカル開始剤 溶媒 スターポリマー MOP Cu2+ 方法B コンバージェント法 溶媒 ポリマー配位子 スターポリマー 方法Bを使えば任意の高分子を持った星形高分子が 「混ぜるだけ」で合成可能 Institute for Integrated Cell-Material Sciences, Kyoto University 6 腕高分子の分岐本数も調整可能 Institute for Integrated Cell-Material Sciences, Kyoto University 7 原子間力顕微鏡(AFM)による単分子観察像 Institute for Integrated Cell-Material Sciences, Kyoto University 8 バルク状態での内部構造 Institute for Integrated Cell-Material Sciences, Kyoto University 9 想定される用途 1.種々の星形高分子の簡便な合成手法として 星形高分子合成(異種混合型含む)の大幅なコスト削減 インク等の低粘度化剤としての利用 ドラッグデリバリーシステムの高分子キャリアとしての利用 2.成形加工が可能な新しい中空錯体として 新しい「成形加工可能な」多孔性素材として フィルム化することでガス分離膜への応用が可能と思われる Institute for Integrated Cell-Material Sciences, Kyoto University 10 実用化に向けた課題 1.銅イオンを含有する点 中空錯体コアに銅イオンを有するため、青色の素材になってしまう 生体適合性に問題有り 他の金属種を利用可能か検討中 2.化学的な耐性 酸や塩基で腕高分子へと容易に分解する(熱的には安定) 3.製造技術・コスト 高分子の片末端修飾技術が必要(既存のリビング重合法が利用可) 合成プロセスのコスト削減が期待できる 4.ガス分離膜への応用可能性 フィルム化技術の開発、ガス分離試験を通した性能評価の必要あり Institute for Integrated Cell-Material Sciences, Kyoto University 11 企業への期待 高分子物性、フィルム化、およびガス分離膜の開発、 およびその事業化に興味のある企業に用途開拓を希望 Institute for Integrated Cell-Material Sciences, Kyoto University 12 本技術に関する知的財産権 発明の名称:単孔性または多孔性配位高分子 出願番号:2015-047768 出願人:京都大学 発明者:細野暢彦、松田亮太郎、北川進 発明の名称:スターポリマー 出願番号:2015-243639 出願人:京都大学 発明者:細野暢彦、北川進 Institute for Integrated Cell-Material Sciences, Kyoto University 13 問い合わせ先 京都大学 産官学連携ライセンスアソシエイト 関西TLO株式会社 田部博康 TEL 075-753-9150 FAX 075-753-9169 E-mail [email protected] Institute for Integrated Cell-Material Sciences, Kyoto University 14
© Copyright 2024 ExpyDoc