第48 回(平成27 年度)日本原子力学会賞受賞概要 技術開発賞4809 「複雑な組成・形状の核燃料を計量管理する中性子共鳴濃度分析法の開発」 日本原子力研究開発機構 原子力基礎工学研究センター NRD合同開発チーム, EC-JRC-IRMM NRD合同開発チーム 日本原子力研究開発機構 核不拡散・核セキュリティー総合支援センターNRD合同開発チーム 原子炉事故で発生する核燃料デブリのように,組成・形状ともに複雑で,高線量の物質に含まれる核燃料 物質を定量する技術は,世界的にも未開拓であった。本課題を解決するため,候補者らは,中性子飛行時間 測定(TOF)法を適用する2 つの分析法である中性子共鳴透過分析(NRTA) 法と中性子共鳴捕獲分析(NRCA)法 に着目し,互いの長所を活かした新たな分析法として中性子共鳴濃度分析(NRD)法を考案し,国際共同研究 プロジェクトとして本技術を開発した。 核燃料物質は,低エネルギー領域に中性子共鳴ピークが存在するため,短い中性子飛行距離でのNRTA 法 を適用することができ,実用化で求められる装置の小型化が可能である。一方,NRTA 法により核物質を定 量するためには,試料に含有される核物質以外の核種を予め同定し,NRTA 解析に反映する必要がある。し かし、例えばボロンや構造材等の核種同定には,それらの核種には低エネルギー領域に中性子共鳴ピークが 存在しないため、長い中性子飛行距離が必要であった。 NRCA 法は,短い飛行距離であっても,ガンマ線エネルギーにより核種を識別できる利点があるものの, 高線量の試料分析に適用するためには,大強度パルス中性子源を必要とするという実用上の欠点があった。 候補者らは,本課題を解決する新たなNRCA 法用ガンマ線スペクトロメータ概念を考案し,高線量下での NRCA 法に適用可能なように設計・開発した。IRMM 研究所(ベルギー)の電子線加速器施設GELINAに整備した 短い中性子飛行距離の試験室において,開発した装置の性能試験を行い,不特定物質としてボロンや構造材 等の核種が同定できることを実証した。 次に,従来核データ測定におけるデータ処理に適用されてきた中性子共鳴解析コードを改良することによ って,平板状試料のみならず,形状が不特定に分布する粒子状試料についても定量可能とし,粒子状試料を 用いた実測定により,その有効性を検証した。また,大きな塊状試料も扱えるようNRTA の解析法を大幅に 一般化し,NRTA 法による不特定形状試料の定量分析に道を拓いた。 さらに,測定の高精度化を図るため,試料中のボロンや構造材の含有割合の組成比を変化させた統計誤差 評価や,核燃料物質も含めた系統的な試験研究等を遂行した。完成したNRD 法の有用性をIAEA 等の専門家 に示すとともに,大量の試料を迅速に定量できることを,実証試験データに基づき定量的に示した。また, 実用化に向けて,装置のコンパクト化が可能であることを示した。 The 48th (2015FY) AESJ Awards Award for Distinguished Technology Development (No. 4809) “Development of Neutron Resonance Densitometry for Accounting Nuclear Materials with Complex Geometries and Compositions” NRD joint development team: - Japan Atomic Energy Agency (JAEA), Nuclear Science and Engineering Center - European Commission (EC), Joint Research Centre (JRC), Institute for Reference Materials and Measurements (IRMM) - Japan Atomic Energy Agency (JAEA), Integrated Support Center for Nuclear Nonproliferation and Nuclear Security Quantifying the amount of uranium (U) and plutonium (Pu) in complex nuclear materials, such as high radioactive fuel debris of melted fuel that is formed in a severe nuclear accident, is very challenging due to the lack of an accurate technique. Therefore, a group of researchers of the JAEA and JRC proposed a new analytical technique called Neutron Resonance Densitometry (NRD). NRD relies on the neutron Time-Of-Flight (TOF) technique and combines the strengths of two non-destructive methods, i.e. Neutron Resonance Transmission Analysis (NRTA) and Neutron Resonance Capture Analysis (NRCA). This new technique has been jointly developed by JAEA and JRC. The progress made within this research project is the result of an intense international collaboration. Both NRTA and NRCA rely on the resonance structures that are present in cross sections for neutron induced reactions. These structures are specific for each nuclide and can be investigated by applying the neutron TOF technique. NRTA is an absolute non-destructive method which relies on an analysis of characteristic dips in a transmission spectrum that is obtained from a measurement of the attenuation of the neutron beam by the sample. More specifically, the amount of U and Pu can be accurately determined by measurements at a short neutron-flight path. In practice however, an accurate determination of the U and Pu content can be hampered by the presence of matrix material, e.g. structural materials and neutron poisons 10 like B, which attenuate the neutron beam but which do not have resonances in the low energy region. As such, these materials cannot be identified and quantified by NRTA measurements at a short flight path. To account for the presence of these materials, NRCA was proposed in combination with a spectroscopic measurement of prompt gamma-rays. In principle, such measurements can be performed at a relatively short flight path. Unfortunately, due to the high radioactivity of nuclear materials that need characterization, a very intense pulsed neutron source is required. This has a direct impact on the dimensions of the facility. To enable the use of a compact accelerator and ensure a high signal-to noise ratio, a new gamma-ray spectrometer was developed. To assess the performance of NRD based on a compact industrial system, a new measurement station was constructed at a short flight path of the GELINA facility, a neutron TOF facility installed at the JRC Geel (Belgium). In addition to the new measurement station, new analysis algorithms were developed to apply NRTA on particle- and rock-like samples and samples with an irregular shape. These algorithms were implemented in the analysis code REFIT which is routinely used for neutron resonance analysis applications. Measurements were performed on nuclear material and materials of different shape, size and composition, including inhomogeneous powder mixtures containing 10 B and other light elements as matrix materials. The results of these measurements revealed that the amount of special nuclear material, i.e. U and Pu, can be determined accurately even in the presence of a strong neutron absorbing matrix material. Finally, the potential of NRD was demonstrated at a workshop that brought together specialists from the International Atomic Energy Agency, the US Department of Energy, the European Commission's Directorate-General for Energy and other European and international bodies and institutes. It was shown that elemental composition of complex nuclear materials can be determined accurately by NRD at a compact TOF facility.
© Copyright 2025 ExpyDoc