R.Hajima, et al., J. Nucl. Sci. Tech. 45, 441 (2008). - ELI-NP

Photo-Nuclear Physics Experiments
by using an Intense Photon Beam
Toshiyuki Shizuma
Gamma-ray Nondestructive Detection Research Group
Japan Atomic Energy Research Institute
Nondestructive Isotope Detection
Nuclear resonance fluorescence (NRF)
Fingerprint of isotopes
WANTED
High energy g rays are used; High penetrability
Applicable for identification of materials such as specific nuclear
materials, explosives, etc. shielded by heavy metals
R.Hajima, et al., J. Nucl. Sci. Tech. 45, 441 (2008).
Laser Compton Scattering g Rays
LCS g rays can be generated by scattering of high energy
electrons with laser light.
M1
Laser light
Electron
E1
LCS g ray
Highly monochromatic
Highly polarized (linearly/circularly)
Energy variable
Small divergent
Vertical polarization: q=90°
E1: Horizontally scattered
M1: Vertically scattered
Physics with LCS Photon Beams
Nuclear physics
Fundamental collective motions via E1 and M1 excitation
Pygmy dipole resonance, spin-flip M1, scissors mode, etc
PNC observation with circularly polarized photons
A. I. Titov and M. Fujiwara, J. Phys. G 32, 1097 (2006)
Long-standing question in nuclear physics
Interference between weak-bosons and nucleons
Nuclear astrophysics
Nucelosynthesis (g process and n process)
Inelastic neutrino scattering cross sections
nn   BGT0 
Reliable nuclear model, e.g, shell model predicting M1 response
K. Langanke et al., PRL 20501 (2004)
Strength Distribution of Dipole Excitation
GDR
Strength
NRF
(g,g')
(g,n)
Eth~8MeV
p
n
GDR
n
PDR
Sc
0
p
M1 PDR
En
~15MeV
Eg
M1
p n
p n
GDR: Electric giant dipole resonance
PDR: Electric pygmy dipole resonance
Sc
M1: Magnetic spin-flip dipole mode
Sc: Magnetic dipole scissors mode (orbital part)
p n
NRF Measurements with LCS Photon Beam
Obtained by using LCS g rays at AIST, Tsukuba, Japan
 =M1
0
parallel
Parallel
Counts / 2 keV
400
Asym. 
M1 transitions
 0.85 for M1 transiton
 0.85 for E1 transition
200
M1
0
1000
perpendicular
Perpendicular
 = 90
E1
E1
500
0
6500
6.5
7000
7.0
Energy (MeV)
(keV)
7500
7.5
T. Shizuma et al., Phys. Rev. C 78 061303(R) (2008)
•Clear difference observed between different polarization setups
•Unambiguous determination of multipole orders (E1/M1)
•Observation of the detailed level structure below En in 208Pb --- Tensor force
Measurements above Neutron Emission Energy
3+
11/2+
0 -,1-
197
n
s-wave
E1
186W
314
3/2 -,5/2-,7/2174
3-
99
s-wave
186Re
Sn=7395keV
185W
p-wave
4-
1Sn=7194keV
3/2-
Duration between g pulses and neutron signals
0+
Neutron
E1
Neutron emission
Neutron time-of-flight (TOF) method
187Re
5/2+
Neutron
Neutron TOF Spectrum
Obtained by using LCS g rays at NewSUBARU
10 5
10 3
Structures are observed
g
10 2
10 1
Neutrons
Counts per Channel
10 4
Neutrons
10 0
2600
2700
2800
2900
Energy
Time
Neutron energy
LCS g
Polarization Effects
Neutron
K. Horikawa et al., JPS meeting, Sep. 2010
Summary
•Small DE/E (10-6~10-4):
Selective excitation of levels
•Short pulse duration:
High resolution measurements
•High intensity :
Increased flight distance
→High resolution measurements
Rare isotope measurements
Less amount of target materials
The information on the states above the neutron emission energy
can be optained through the neutron TOF measurement.
- Dipole strength distribution, parity, excitation energy etc.
TOF Energy Resolution
1
0.9
0.8
DE/E (%)
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
0.2
0.4
0.6
0.8
1
1.2
En (MeV)
Assuming detector time resolution = 1 ns and distance = 3m
Estimation
Scattering cross section
2J  1
Is 
2J 0  1
2
 c 

 G0
 E 
g 

Is=1.2x10-22 cm2 eV for Eg=10 MeV and G0=1eV
Production yield
Y  INt
Y=3.4x105 /sec for I=106 /sec/eV and Nt=1g/cm2
Counting rate
R  NY
R~60 cps for ~10-5 (3m, 1%) and N=20