Turbulenzmodelle in der Strömungsmechanik: RANS & LES Turbulence modelling: RANS & LES (VNr. 6221913) WS 2015/16 Prof. Dr. Markus Uhlmann Stand 29. September 2015 1 Zeit und Ort/Time and location Zeit: Kursbeginn: Ort: 2 Mittwochs 11:30–13 Uhr 21.10.2015 HS 93, Gebäude 10.81 Wednesday 11:30–13 h 21.10.2015 HS 93, Bldg. 10.81 Kontakt/Contact Sprechstunden: Ort: Telefon: Email: 3 Time: Start: Location: nach Vereinbarung Raum 122, Geb. 10.81 0721-608 47245 (Sekretariat) [email protected] Consultation: Location: Phone: by appointment Room 122, Bldg. 10.81 0721-608 47245 Ziele der Vorlesung/Aim and scope of the course • Einführung in die Problematik der Berechnung turbulenter Strömungen/ Introduction to computational approaches for turbulent flows • Detaillierte Beschreibung der gängigen statistischen Turbulenzmodelle (basierend auf ReynoldsMittelung)/ Discussion of the RANS approach • Einführung in die Grobstruktursimulation/ Introduction to LES • Detaillierte Beschreibung der Feinstrukturmodelle für LES/ Discussion of subgrid-scale models for LES • Diskussion der Leistungsfähigkeit und Grenzen besprochener Modelle/ Discussion of applicability and limitations of RANS and LES models 4 Vorlesungs- und Übungsmaterialien, Skript/Supporting material Werden unter ILIAS zur Verfügung gestellt. Bitte treten Sie dort diesem Kurs bei. Die URL ist wie folgt: https://ilias.studium.kit.edu/goto produktiv crs 414447.html Please register under the above indicated URL. 5 Notwendige Vorkenntnisse/Prerequisites • Grundkenntnisse in Strömungsmechanik/Basic fluid mechanics • Grundkenntnisse in Mathematik (partielle DGLs, Statistik, Fourieranalyse) / Mathematics (PDEs, statistics, Fourier analysis) 1 • Englischkenntnisse • Besuch der Veranstaltung “Fluidmechanik turbulenter Strömungen”/ having passed the course “Fluid mechanics of turbulent flows” (VNr. 6221806) 6 Prüfung/Exam Der Leistungsnachweis besteht aus einer 30 minütigen mündlichen Prüfung. Der Termin der Prüfung wird noch bekanntgegeben. Anmeldung bis spätestens letzte Vorlesungswoche. / Oral exam, 30 minutes, date to be announced. 7 Zeitliche Planung, Inhalt der Vorlesung/Planning KW 43 44 45 46 47 48 49 50 51 2 3 4 5 6 Nr. V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 Thema General information Introduction DNS – an overview Introduction to RANS Eddy viscosity models Reynolds stress transport models Boundary conditions Algebraic stress models (buffer date) Introduction to LES LES equations Subgrid-scale modelling Wall models for LES (buffer date) DNS–LES–RANS (DNS) (RANS) (RANS) (RANS) (RANS) (RANS) (RANS) (LES) (LES) (LES) (LES) (LES) Datum 21.10. 28.10. 4.11. 11.11. 18.11 25.11. 2.12. 9.12. 16.12. 13.1.2016 20.1.2016 27.1.2016 3.2.2016 10.2.2016 General information: Presentation of the general aims of this course, course attendance V1: General introduction to the computation of turbulent flows Introduction to modelling and simulation, approaches of DNS, LES and RANS – criteria for appraising turbulence models V2: Direct numerical simulation (DNS) as a numerical experiment Computational requirements for DNS – examples of simulations in idealized geometries – homogeneous flows – inhomogeneous flows – scaling V3: Introduction to Reynolds-averaged Navier-Stokes (RANS) models General approach – classification of models/hierarchy – eddy viscosity approach – algebraic models – one- and two-equation models V4: k-ε and other eddy viscosity models Description – model assumptions – model equation for the dissipation rate – determining the model constants – variants of the basic model V5: Transport models for the Reynolds stress Disadvantages of the eddy viscosity approach – advantages of transport models for the Reynolds stress – closure assumptions for the transport equations – modelling the pressure/rate-of-strain term – examples 2 V6: Boundary conditions and wall treatment Basic approaches for imposing boundary conditions in RANS – problems associated with modelling the near-wall region – wall function approach – extension of RANS models to low-Reynolds number zones V7: Algebraic stress models Disadvantages of Reynolds stress transport models – derivation of algebraic models – non-linear eddy-viscosity models V8: (buffer date for RANS) V9: Introduction to Large Eddy Simulation (LES) Basic principles – filtering – decomposition of the velocity field V10: LES equations Derivation of the filtered Navier-Stokes equations – closure problem V11: Subgrid-scale modelling I Models in the RANS tradition – eddy viscosity models: Smagorinsky model, dynamic procedure – other models: scale-similarity approach, deconvolution models, implicit LES V12: Wall models for LES Problems when describing the wall region with LES – wall models – hybrid approaches (LESRANS) V13: (buffer date for LES) Literatur/References [1] S.B. Pope. Turbulent flows. Cambridge University Press, 2000. [2] P.A. Durbin and P.A. Petterson Reif. Statistical theory and modeling for turbulent flows. Wiley, 2001. [3] D.C. Wilcox. Turbulence Modeling for CFD. DCW Industries, second edition, 1998. [4] J. Fröhlich. Large Eddy Simulation turbulenter Strömungen. Teubner, 2006. [5] W. Rodi, G. Constantinescu, and T. Stoesser. Large-Eddy Simulation in Hydraulics. IAHR Monographs. CRC Press, 2013. 3
© Copyright 2024 ExpyDoc