Technische Universität Dortmund Fakultät für Mathematik Proseminar Analysis Prof. Dr. Röger Benjamin Czyszczon Satz von Heine Borel Gliederung 1. Zellen und offene Überdeckungen 2. Satz von Heine Borel 3. Anwendungsbeispiel: Nullmengenkriterium Es werden nun zunächst die Voraussetzungen für den Satz von Heine Borel bzw. für dessen Anwendung gelegt. Dazu soll ein Verständnis über Zellen und offene Überdeckungen aufgebaut werden. 1 1.1 Zellen und offene Überdeckungen Definition: Unter einer Zelle im Rn verstehen wir das karthesische Produkt Z = I1 × I2 × ... × In (1) von Intervallen I1 , I2 , ..., In in R. Offene bzw. abgeschlossene Zellen im Rn sind von der Form Z = n Q Ik mit k=1 Ik = (ak , bk ) bzw. Ik = [ak , bk ], für 1 ≤ k ≤ n, also (≤) (≤) Z = {(x1 , ..., xn ) : ak < xk < bk , 1 ≤ k ≤ n} 1.2 (2) Definition: Der (n-dimensionale) Inhalt |Z| einer Zelle aus (1) ist |Z| := n Q |Ik |. k=1 Für Z mit der Form (2) ergibt sich also |Z| = n Y lk mit lk = bk − ak (3) k=1 Folgender Satz ist nun eine Verallgemeinerung des Intervallschachtelungsprinzips und wird für den Beweis des Satzes von Heine Borel ein wichtige Rolle spielen: 1 1.3 Satz: (Schachtelungsprinzip) Sei {Zk }k∈N eine Folge von abgeschlossenen Zellen mit Z0 ⊃ Z1 ⊃ ... und lim diam(Zk ) = 0. Dann gibt es genau einen Punkt x0 ∈ Rn der in allen Zk k→∞ liegt: ∞ \ Zk = {x} (4) k=1 Beweis: Nach (1) besteht das karthesische Produkt von jedem Zk aus abgeschlossenen j ⊂ Ikj für k ∈ N, 1 ≤ j ≤ n und Intervallen Ik1 , Ik2 , ..., Ikn mit mit Ik+1 lim |Ik1 | = lim |Ik2 | = ... = lim |Ikn | = 0 k→∞ k→∞ k→∞ ⇒ Intervallschachtelungsprinzip: Es gibt n Intervallschachtelungen {Ikj }, 1 ≤ j ≤ n und jede erfasst genau ein xj . Folglich erfasst {Zk }k∈N genau einen Punkt x := (x1 , x2 , ..., xn ) 1.4 Definition: (Offene Überdeckungen) Sei M ⊂ Rn und I eine (Index-)Menge. Unter einer offenen Überdeckung der Menge M verstehen wir eine Familie U = {Ωa }a∈I von offenen Mengen Ωa des Rn und der Eigenschaft: M ⊂ ∪ Ωa a∈I Sie heißt endliche offene Überdeckung, wenn I endlich ist. 1.5 Beispiel: 1 99 1 Sei K := [ 100 , 100 ] ∪ {3} und V0 := (2.9, 3.1), Vj := ( j+2 ,1 − I ∈ N0 . Dann ist {Vj }j∈I eine Überdeckung von K. 1.6 1 ) j+2 für j ∈ N mit Korollar: (1.) Jede nicht leere Menge M des Rn besitzt eine offene Überdeckung durch Kugeln vom Radius r > 0, nämlich U = {Br (x)}x∈M (2.) Ist Ω offen, so ist U = {Ω} eine endliche offene Überdeckung von Ω (3.) Ist M ⊂ Rn beschränkt, so gibt es eine Kugel B = BR (0) mit M ⊂ B als endliche offene Überdeckung Im Prinzip hätte es bei dem Beispiel 1.5 schon genügt die Mengen V0 und V101 zu nehmen, da diese K vollständig überdecken. Also ist auch in diesem Beispiel eine endliche Überdeckung enthalten. Der im nächsten Abschnitt behandelte Satz von Heine Borel garantiert nun sogar, dass sich aus jeder Überdeckung einer kompakten Menge im Rn immer eine endliche Überdeckung auswählen lässt. Dabei wird nun im folgenden immer vorausgesetzt, dass die betrachteten Mengen Teilmengen des Rn sind und es sich um n-dimensionale Zellen handelt. 2 2 2.1 Satz von Heine Borel Satz: Eine Menge K des Rn ist genau dann kompakt, wenn sich aus jeder offenen Überdeckung eine endliche Überdeckung von K auswählen lässt. Beweis: (Im Nachfolgenden wird die Auswahleigenschaft immer abkürzend mit (AE) bezeichnet.) 0 ⇐0 Zu zeigen: (1.) K ist beschränkt (2.) K ist abgeschlossen Zu 1: Sei K eine Menge die (AE) erfüllt. Da sich der Rn durch eine Folge {Br (0)}r∈N von Kugeln um Null überdecken lässt, ist dies vor allem auch für jede Teilmenge des Rn möglich. Somit ist sicherlich U = {BN (0) : N ∈ N} eine offene Überdeckung von K. Mit Definition 1.4 gilt: Es gibt Zahlen N1 , N2 , ..., Np für die gilt N1 < N2 < ... < Np p S und K ⊂ BNj (0) = BNp (0) j=1 ⇒ K ist beschränkt Zu 2: Annahme: K ist nicht abgeschlossen Dann existiert ein x0 ∈ ∂K\K. Sei ΩN := {x ∈ Rn : |x − x0 | > N1 } für N ∈ N also U := {ΩN }N ∈N wäre eine offene Überdeckung von K. Nach Voraussetzung lässt sich eine endliche Überdeckung auswählen. Wegen Ω1 ⊂ Ω2 ⊂ ... gäbe es also ein N ∈ N, (?) so dass K ⊂ ΩN und |x − x0 | > N1 ∀x ∈ K und N < ∞ Andererseits ist x0 ∈ ∂K\K ⇒ K lässt sich beliebig durch ein x ∈ K approximieren. ⇒ Widerspruch zu (?) 0 ⇒0 Sei K kompakt im Rn . ⇒ Es gibt eine abgeschlossene Zelle Z mit K ⊂ Z dessen Kantenlänge wir als gleich voraussetzen. Annahme: K erfülle nicht die (AE), d.h. es gäbe offene Überdeckung von K aus der sich keine endliche Überdeckung von K auswählen lässt. Solch eine nicht endliche offene Überdeckung soll nun schrittweise untersucht werden: Schritt 1: Sei also U eine Überdeckung von K die (AE) nicht erfüllt. Zerlege Z in N := 2n kongruente abgeschlossene Zellen Z1? , Z2? , ..., ZN? mit N S Z := Z0 = Zj? durch halbieren jeder Kantenlänge von W . j=1 ⇒ U ist offene Überdeckung von Kj? := K ∩ Zj? für 1 ≤ j ≤ N und für mind. ein j lässt sich aus U keine endliche Überdeckung von Kj? auswählen. Definiere ein solches als Kj := K ∩ Zj? und bezeichne zugehörige Zelle Zj? mit Z1 . N S Zj?? . Bezeichne ein Zj?? für Schritt 2: Erneutes Anwenden auf Z1 liefert Z1 = j=1 das U zwar offene Überdeckung von K ∩ Wj?? ist, sich aber keine endliche offene Überdeckung von K ∩ Zj?? aus U auswählen lässt mit Z2 . 3 Durch wiederholtes anwenden erhält man eine Folge {Zl }l∈N für die gilt: (1.) Für jedes l ∈ N ist U offene Überdeckung von K ∩ Zl für die sich keine endliche Überdeckung von K ∩ Zl auswählen lässt (??) ∞ T (2.) Nach Satz 1.3 gilt: Zl = {x0 } l=1 Aufbauend auf diesen Eigenschaften soll nun ein Widerspruch erzeugt werden. Dazu wird nun zuerst gezeigt, dass der Punkt x0 in K liegt und so von einer offenen Menge Ω mit Ω ⊂ U überdeckt wird: Aus (1.) folgt K ∩ Zl ist nicht leer für jedes l ∈ N ⇒ Es existiert eine Folge {xl }l∈N von Punkten xl ∈ K ∩ Zl mit |xl − x0 | ≤ diam Zl → 0 ⇒ lim xl = x0 l→∞ l→∞ Da zudem xl ∈ K ∀ l ∈ N und K abgeschlossen ist gilt auch: x0 ∈ K ⇒ Es gibt eine offene Menge Ω mit x0 ∈ Ω und Ω ⊂ U Nun muss nur noch gezeigt werden, dass diese offene Menge eine Überdeckung von K ∩ Zl ab einem gewissen Index l0 ist, was den gewünschten Widerspruch zu folge hat: Nach der Definition einer offenen Menge gibt es eine Kugel Br (x0 ) mit Br (x0 ) ⊂ Ω. Weiterhin gilt, dass ab einem Index l0 ∈ N diam(Zl ) < r ist, also Zl ⊂ Br (x0 ) ∀ l > l0 gilt. ⇒ K ∩ Zl ⊂ Ω ∀ l > l 0 Korollar 1.6 ⇒ U 0 = {Ω} ist endliche Überdeckung von K ∩ Zl ∀ l > l0 und aus U gewählt ⇒ Widerspruch zu (??) Beachten sollte man noch, dass der Satz von Heine Borel nicht besagt, dass M kompakt ist, wenn M eine endliche offene Überdeckung besitzt, da so eine Überdeckung immer existiert! 3 Anwendungsbeispiel: Nullmengenkriterium Als Anwendungsbeispiel des Satzes von Heine Borel soll nun im folgenden ein neues Kriterium für Nullmengen hergeleitet werden, nämlich über sogenannte dünne Mengen. Dünne Mengen wollen wir dabei zunächst auf zwei Weisen definieren: 1.) Mengen vom Inhalt Null 2.) Mengen vom Maße Null Die erste Frage wird nun sein, wie diese Definitionen in Zusammenhang stehen. 4 3.1 Definition: (i) M hat den Inhalt Null (in Zeichen |M | = 0), wenn es zu jedem ε > 0 eine endliche Überdeckung von M durch offene Zellen Z1 , Z2 , ..., ZN gibt, sodass N P |Zj | < ε gilt. j=1 (ii) M hat das Maß Null (in Zeichen λ? (M ) = 0), wenn es zu jedem ε > 0 eine endliche P oder abzählbare Überdeckung {Zj }j∈J von M durch offen Zellen Zj gibt mit |Zj | < ε. j∈J Aus i) folgt offensichtlich ii), aber die Umkehrung gilt im allgemeinen nicht, wie folgendes Beispiel zeigt: 3.2 Beispiel: Sei n = 1 und M := Q ∩ [0, 1] Dann ist M eine Nullmenge, denn M ist abzählbar, also gibt es eine bijektive Abbildung j 7→ xj von N nach M . ε ε Wir setzen Ij := (xj − 2j+1 , xj + 2j+1 ). Dann ist {Ij }j∈N abzählbare Überdeckung ∞ ∞ P P ε von offene Zellen Ij mit |Ij | = = ε ⇒ M ist Nullmenge 2j j=1 j=1 Behauptung: M hat nicht den Inhalt Null. M liegt dicht in [0, 1] ⇒ M = [0, 1] N S ⇒ [0, 1] ⊂ Z j für irgendeine Überdeckung {Z1 , Z2 , ..., ZN } von M durch offene j=1 Intervalle Z1 , Z2 , ..., ZN ⇒ 1 ≤ N P |Zj | ⇒ Behauptung j=1 3.3 Korollar: (i) Jede abzählbare Menge des Rn ist eine Nullmenge. (ii) Jede endliche Menge des Rn hat den Inhalt Null. Nachfolgender Satz gibt nun Aufschluss darüber, wann eine Menge sowohl eine Nullmenge ist als auch den Inhalt Null hat. 3.4 Satz: Jede kompakte Nullmenge hat den Inhalt Null. Beweis: Sei K kompakt und λ? (K) = 0. Def.3.1 ⇒ Es existiert zu ε > 0 beliebig eine endliche bzw. höchstens abzählbare 5 Überdeckung U = {Zj }j∈N von K durch offene Zellen Zj mit ∞ P |Zj | < ε j=1 Satz 2.1 ⇒ Es existiert ein N ∈ N mit K ⊂ N S j=1 Zj und N P |Zj | < ε j=1 Nun wollen wir aus dem jetzt erhalten Wissen über die Zusammenhänge der beiden am Anfang des Abschnitts beschriebenen Definitionen eine neue Definition des Begriffes der dünnen Mengen vornehmen. Diese soll am Ende beide Definitionen erfüllen, also sowohl eine Menge vom Inhalt Null als auch eine Nullmenge sein. 3.5 Definition: Eine kompakte Menge des Rn heißt dünn, wenn es zu jedem x0 ∈ K eine Kugel Br (x0 ) und eine stetige reelle Funktion φ(y) mit y = (x1 , ..., xj−1 , xj+1 , ..., xn ) ∈ Q derart gibt, dass M := K ∩ B r (x0 ) = {(x1 , ..., xn ) : xj = φ(y), y ∈ Q} und Q eine kompakte Teilmenge von Rn−1 ist. Anders ausgedrückt: Eine kompakte Menge K des Rn heißt dünn, wenn sie lokal der Graph einer stetigen Funktion φ : Q → R ist mit Q kompakt und Q liegt in der Hyperebene {x ∈ Rn : xj = 0}. Da diese Definition für kompakte Mengen bestimmt ist, haben wir also schon einmal die Voraussetzungen dafür gelegt, dass sie sowohl eine Menge vom Inhalt Null als auch eine Nullmenge sein kann. Nun muss nur noch gezeigt werden, dass diese Definition eine von beiden erfüllt. Um das zu zeigen sollen die nachfolgenden Sätze beziehungsweise das nachfolgende Korollar als Hilfe dienen. 3.6 Satz: (i) Die Vereinigung endlich vieler Mengen vom Inhalt Null ist eine Menge vom Inhalt Null. (ii) Die Vereinigung höchstens abzählbar vieler Nullmengen ist eine Nullmenge. Beweis: (i) Sei N := n S Nj die endliche Vereinigung von Mengen Nj mit |Nj | = 0 für j=1 j = 1, ..., n. Nach Def. 3.1ii) findet man für j = 1, ..., n eine endliche ÜberN P deckung durch offene Zellen Zj1 , Zj2 , ..., ZjN mit N ∈ N, sodass gilt: |Zjk | < nε k=1 ⇒ {Zjk : j ∈ {1, 2, ..., n}, k ∈ {1, 2, ..., N }} ist endliche Überdeckung von N und n P N n P P ε |Zjk | < =ε n j=1 k=1 j=1 ∞ S (ii) Dazu sei ε > 0 und Mj für j ∈ N Mengen vom Inhalt Null mit M := Mj . Zu j=1 j ∈ N finde Folge von offenen Zellen {Zjk }j,k∈N mit Mj ⊂ ∞ S Zjk und k ⇒ {Zjk : j.k ∈ N} ist abzählbare Menge von Zellen und M ⊂ ∞ P |Zjk | < k=1 ∞ S ∞ S j=1 k=1 6 ε 2j Zjk und ∞ P ∞ P |Zjk | < j=1 k=1 3.7 ∞ P j=1 ε 2j =ε Satz: Ist n ≥ 2 und φ ∈ C0 (Q), wobei Q eine kompakte Menge des Rn−1 bezeichnet, so hat der Graph φ den Inhalt Null. Beweis: Wir konstruieren Würfel W = {x ∈ Rn−1 : kxkmax ≤ r} in Rn−1 mit Q ⊂ W . Wir setzen q := |W | = (2r)n−1 (?) Wähle ε > 0 beliebig und bestimme η > 0 derart, dass 4qη < ε (??) Da φ gleichmäßig stetig ist, gibt es δ > 0 mit |φ(x) − φ(x0 )| < η ∀x, x0 ∈ Q für die |x − x0 | < δ gilt. Zerlege W in N = pn−1 kongruente abgeschlossene Würfel W10 , W20 , ..., WN0 durch teilen jeder Kante von W in p ∈ N gleichgroße Intervalle mit diam Wj0 < δ für j = 1, ..., N . Definiere Zellen Zj0 = Wj0 × Ij mit Ij := (φ(εj ) − η, φ(εj ) + η) und εj als jeweiliger Mittelpunkt von Wj0 N N P S |Wj0 | ⇒φ⊂ Zj0 und |Zj0 | = |Wj0 |2η sowie |W | = j=1 j=1 ⇒ N P |Zj0 | = 2η [ N P (??) (?) |Wj0 |] = 2η|W | = 2ηq < ( 2ε ) (? ? ?) j=1 Wj0 durch j=1 offene achsenparallele Würfel Wj mit Wj0 ⊂ Wj und Ersetze jedes 0 |Wj | < 2|Wj | für j = 1, 2, ..., N ⇒ Z1 := W1 × I1 , Z2 := W2 × I2 , ..., ZN := WN × IN ist offene endliche ÜberN (???) P deckung vom Graph φ und es gilt Zj < ε j=1 ⇒ Behauptung Als Ergebnis erhält man nun die Bestätigung, dass die eingeführte Definition der dünnen Menge eine Menge vom Inhalt Null als auch eine Nullmenge ist und damit einhergehend ein weiteres Nullmengenkriterium, was nachfolgender Satz zum Ausdruck bringt: 3.8 Satz: Eine dünne kompakte Menge K hat den n-dimensionalen Inhalt Null und ist damit eine Nullmenge. Beweis: Nach Heine Borel kann K durch endlich viele Kugeln Br (x0 ) von der in Def. 3.5 beschriebenen Art überdeckt werden. Wegen Satz 3.7 ist also K eine endliche Vereinigung von Mengen des Inhalts Null und nach Satz 3.6 gilt |K| = 0 ⇒ Behauptung 7
© Copyright 2024 ExpyDoc