RUHR ECONOMIC PAPERS David Card Jochen Kluve Andrea Weber What Works? A Meta Analysis of Recent Active Labor Market Program Evaluations #572 Imprint Ruhr Economic Papers Published by Ruhr-Universität Bochum (RUB), Department of Economics Universitätsstr. 150, 44801 Bochum, Germany Technische Universität Dortmund, Department of Economic and Social Sciences Vogelpothsweg 87, 44227 Dortmund, Germany Universität Duisburg-Essen, Department of Economics Universitätsstr. 12, 45117 Essen, Germany Rheinisch-Westfälisches Institut für Wirtschaftsforschung (RWI) Hohenzollernstr. 1-3, 45128 Essen, Germany Editors Prof. Dr. Thomas K. Bauer RUB, Department of Economics, Empirical Economics Phone: +49 (0) 234/3 22 83 41, e-mail: [email protected] Prof. Dr. Wolfgang Leininger Technische Universität Dortmund, Department of Economic and Social Sciences Economics – Microeconomics Phone: +49 (0) 231/7 55-3297, e-mail: [email protected] Prof. Dr. Volker Clausen University of Duisburg-Essen, Department of Economics International Economics Phone: +49 (0) 201/1 83-3655, e-mail: [email protected] Prof. Dr. Roland Döhrn, Prof. Dr. Manuel Frondel, Prof. Dr. Jochen Kluve RWI, Phone: +49 (0) 201/81 49 -213, e-mail: [email protected] Editorial Office Sabine Weiler RWI, Phone: +49 (0) 201/81 49 -213, e-mail: [email protected] Ruhr Economic Papers #572 Responsible Editor: Jochen Kluve All rights reserved. Bochum, Dortmund, Duisburg, Essen, Germany, 2015 ISSN 1864-4872 (online) – ISBN 978-3-86788-658-1 The working papers published in the Series constitute work in progress circulated to stimulate discussion and critical comments. Views expressed represent exclusively the authors’ own opinions and do not necessarily reflect those of the editors. Ruhr Economic Papers #572 David Card, Jochen Kluve, and Andrea Weber What Works? A Meta Analysis of Recent Active Labor Market Program Evaluations Bibliografische Informationen der Deutschen Nationalbibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über: http://dnb.d-nb.de abrufbar. http://dx.doi.org/10.4419/86788658 ISSN 1864-4872 (online) ISBN 978-3-86788-658-1 David Card, Jochen Kluve, and Andrea Weber1 What Works? A Meta Analysis of Recent Active Labor Market Program Evaluations Abstract We present a meta-analysis of impact estimates from over 200 recent econometric evaluations of active labor market programs from around the world. We classify estimates by program type and participant group, and distinguish between three different post-program time horizons. Using meta-analytic models for the effect size of a given estimate (for studies that model the probability of employment) and for the sign and significance of the estimate (for all the studies in our sample) we conclude that: (1) average impacts are close to zero in the short run, but become more positive 2-3 years after completion of the program; (2) the time profile of impacts varies by type of program, with larger gains for programs that emphasize human capital accumulation; (3) there is systematic heterogeneity across participant groups, with larger impacts for females and participants who enter from long term unemployment; (4) active labor market programs are more likely to show positive impacts in a recession. JEL Classification: J00, J68 Keywords: Active labor market policy; program evaluation; meta-analysis July 2015 1 David Card, UC Berkeley; Jochen Kluve, Humboldt University and RWI; Andrea Weber, University of Mannheim. – We are extremely grateful to Diana Beyer, Hannah Frings and Jonas Jessen for excellent research assistance. Financial support from the Fritz Thyssen Foundation and the Leibniz Association is gratefully acknowledged.– All correspondence to: Jochen Kluve, RWI - Büro Berlin, Invalidenstr. 112, 10115 Berlin, Germany, e-mail: jochen. [email protected] I.Introduction IntheaftermathoftheGreatRecessionthereisrenewedinterestinthe potentialforactivelabormarketpolicies(ALMP’s)tohelpeaseawiderangeoflabor marketproblems,includingyouthunemploymentandpersistentjoblessnessamong displacedadults(e.g.,Martin,2014).Althoughtrainingprograms,employment subsidies,andother“active”policieshavebeeninuseforwellover50years,credible evidenceontheircausalimpactshasonlybecomeavailableinrecentdecades(see Lalonde2003forabriefhistory).Withinarelativelyshortperiodoftimethenumberof scientificevaluationshasexploded,holdingouttheprospectofbeingabletolearnfrom paststudieswhattypesofprogramsworkbest,inwhatcircumstances,andforwhom. InthispaperweundertakeametaanalysisoftherecentALMPevaluation literature,lookingforsystematicevidenceonthesequestions.1Buildingonanearlier efforttotrackdowntherelevantliterature(Card,Kluve,Weber,2010;hereafterCKW), weassembleasampleof207studiesthatprovide857separateestimatesoftheeffect ofaspecificprogramonaparticularsubgroupofparticipantsatagivenpostͲprogram timehorizon.Oursampleincludesestimatesfordifferenttypesofprogramsandmany differentparticipantsubgroups,providingtheopportunitytotestwhethercertain programstendtoworkbetter(orworse)forspecificgroups.Inmanycaseswealso observeimpactsforthesameprogramatshorterandlongerhorizons,allowingusto characterizetheprofileofpostͲprogramimpactsfordifferentALMPpolicies. Wesummarizetheestimatesfromdifferentstudiesintwocomplementaryways. Extendingthetraditionalvotecountapproach,weclassify"signandsignificance"based onwhethertheestimateissignificantlypositive,statisticallyinsignificant,orsignificantly 1 PreviousreviewsincludeHeckman,LalondeandSmith(1999),whosummarize75microeconometric evaluationsfromtheU.S.andothercountries,Kluve(2010),whoreviewscloseto100studiesfrom Europe,andFilgesetal.(2015),whoanalyzeanarrowersetof39studies.Greenberg,Michalopoulosand Robins(2003)reviewU.S.programstargetedtodisadvantagedworkers.IbarraránandRosas(2009) reviewprogramsinLatinAmericasupportedbytheInterͲAmericanDevelopmentBank.Relatedmeta analysesfocusingonlabormarketinterventionsinlowandmiddleincomecountriesincludeChoand Honorati(2014)andGrimmandPaffhausen(2015). 4 negative.Thisclassificationcanbeappliedtoalltheestimatesinoursample,regardless oftheoutcomevariableoreconometrictechniqueusedintheevaluation.Our preferredapproach,whichweuseforthelargesubsetofstudiesthatmeasurethe impactofaprogramontheprobabilityofemployment,modelstheeffectsizeofthe estimateդtheimpactontheemploymentrateoftheprogramgroup,dividedbythe standarddeviationofemploymentinthecomparisongroup.Aneffectsizeapproachis favoredinthemetaanalysisliterature(e.g.,Hedges,1981;HedgesandOlkin,1985), sinceeffectsizesarenotmechanicallyrelatedtothenumberofobservationsusedinthe study,whereasstatisticalsignificanceis(inprinciple)sampleͲsizedependent. Fortunately,thetwoapproachesyieldsimilarconclusionswhenappliedtothesubsetof studiesforwhicheffectsizesareavailable,givingusconfidencethatourmainfindings areinvarianttohowwesummarizetheliterature. Wereachfourmainsubstantiveconclusions.First,onaverageALMP'shave relativelysmalleffectsintheshortrun(lessthanayearaftertheendoftheprogram), butlargerpositiveeffectsinthemediumrun(1Ͳ2yearspostprogram)andlongerrun (2+years).TheaverageshortruneffectsizeforALMP'sthatmeasureimpactson employmentis0.04ʍ's(standarddeviationunits)andisnotsignificantlydifferentfrom zero.Theaveragemediumruneffectsize,bycomparison,is0.12ʍ's,whiletheaverage longerruneffectsizeis0.19ʍ's,andbotharehighlysignificant(t>3). Second,thetimeprofileofimpactsinthepostͲprogramperiodvarieswiththe typeofALMP.Jobsearchassistanceandsanctionprogramsthatemphasize"workfirst" haverelativelylargeshorttermimpacts,onaverage.Trainingandprivatesector employmentprogramshavesmallershorttermimpactsbutlargereffectsinthe mediumandlongerruns.Publicsectoremploymentsubsidiestendtohavenegligibleor evennegativeimpactsatallhorizons. Third,wefindthattheaverageimpactsofALMP'svaryacrossgroups,withlarger effectsforfemalesandparticipantsdrawnfromthepooloflongtermunemployed,and smallereffectsforolderworkersandyouths.Wealsofindsuggestiveevidencethat 5 certaintypesofprogramsworkbetterforspecificsubgroupsofparticipants.Jobsearch assistanceandsanctionprogramsappeartoberelativelymoresuccessfulfor disadvantagedparticipants,whereastrainingandprivatesectoremploymentsubsidies tendtoworkbetterforthelongtermunemployed.Finally,weinvestigatetheroleof labormarketconditionsontherelativeefficacyofALMP's,andconcludethatprograms havelargerimpactsinperiodsofslowgrowthandhigherunemployment. Animportantdevelopmentintherecentevaluationliteratureistheincreasing useofrandomizedcontrolledtrials(RCT's):oneͲfifthofoursampleisobtainedfrom randomizeddesigns.Reassuringly,RCTͲbasedprogramestimatesarenotmuch differentfromthenonͲexperimentalestimatesinoursample,noraretheresignificant differencesbetweenpublishedandunpublishedstudies,orbetweenhighlyͲcitedand lessͲcitedstudies.Nevertheless,thechoiceofoutcomevariableandeconometric methodhassomeinfluenceonthesignandsignificanceoftheimpactestimates,witha tendencytofindmorepositiveestimatesinstudiesthatmodelendpointslikethetime toexitfromthebenefitsystemorthetimetoanewjob. II.SampleConstruction a.SamplingImpactEvaluationStudies OursampleofstudiesextendsthesampledevelopedinCKW,usingthesame criteriatoselectinͲscopestudiesandthesameprotocolstoextractinformationabout theprogramsandtheirimpacts.TheCKWsamplewasderivedfromresponsestoa2007 surveyofresearchersaffiliatedwiththeInstitutefortheStudyofLabor(IZA)andthe NationalBureauofEconomicResearch(NBER).Toextendthissamplewebeganby reviewingtheresearchprofilesandhomepagesofIZAresearchfellowswithadeclared interestin“programevaluation”,lookingforALMPevaluationswrittensince2007.We alsosearchedtheNBERworkingpaperdatabaseusingthesearchstrings“training”, “active”,“publicsectoremployment”,and“searchassistance.” 6 InasecondstepweusedaGoogleScholarsearchtoidentifyallpapersciting CKWortheearlierreviewbyKluve(2010).WealsosearchedthroughtheInternational InitiativeforImpactEvaluation's"RepositoryofImpactEvaluationPublishedStudies," theonlineprojectlistoftheAbdulLatifJameelPovertyActionLab(JͲPAL),andthelistof LatinAmericanprogramevaluationsreviewedbyIbarraránandRosas(2009). Afteridentifyinganinitialsampleofstudiesusingthesesteps,wereviewedthe citationsinallthestudiestoverifywhethertherewereanyotherstudiesthatwehad notyetincluded.Finally,weidentifiedfouradditionalpaperspresentedataconference inearlyfall2014.ThesearchprocesslastedfromApriltoOctober2014andyielded154 newstudiesthatweconsideredforinclusioninourALMPimpactevaluationdatabase. b.InclusionCriteria Inordertogenerateaconsistentdatabaseacrossthetwowavesofdata collection(2007and2014)weimposedthesamerestrictionsadoptedinCKW.First,the program(s)analyzedintheevaluationhadtobeoneoffollowingfivetypes: x classroomoronͲtheͲjobtraining x jobsearchassistance x sanctionsforfailingtosearch,includingthreatofassignmenttoaprogram x subsidizedprivatesectoremployment x subsidizedpublicsectoremployment. Second,welimitedtheemploymentsubsidiestoindividuallytargetedsubsidies, excludingprogramsthatallowfirmstoselecttheemployeeswhoreceiveasubsidy. Third,werestrictedattentiontotimeͲlimitedprograms,eliminatingopenͲended entitlementslikeeducationgrantsorchildcaresubsidies.Fourth,weexcludedpublic programswithnoexplicitly“active”component,suchasthemanipulationofbenefit levelsforunemploymentinsurancerecipients. 7 Methodologically,weincludeonlywellͲdocumentedstudiesthatuseindividual microdataandincorporateacounterfactual/controlgroupdesignorsomeformof selectioncorrection. Applyingtheseinclusioncriteria,weretained110ofthe154studiesidentifiedin thesearchprocess.2Weaddedthesetothe97studiesfromCKW,resultinginatotalof 207ALMPimpactevaluationsinourfinaldatabase.Acompletelistofthesestudiesis containedinanAppendixavailableonrequestfortheauthors. c.ExtractingImpactEstimatesandInformationonProgramsandParticipants Thenextstepinourdatacollectionprocesswastoextractinformationaboutthe programsandparticipantsanalyzedineachstudy,andthecorrespondingprogram estimate.UsingthesameclassificationsystemasinCKW,wegatheredinformationon thetypeofALMP,theageandgenderoftheparticipantpopulation,thetypeof dependentvariableusedtomeasuretheimpactoftheprogram,andtheeconometric methodology.3Wealsogatheredinformationonthe(approximate)datesofoperation oftheprogram;onthetypesofprogramparticipants(longtermunemployed, disadvantagedworkers,orregularunemploymentinsurancerecipients),onthesource ofthedatausedintheevaluation(administrativerecordsoraspecializedsurvey),and ontheapproximatedurationoftheprogram. Ifastudyreportedseparateimpactestimateseitherbyprogramtypeorby participantgroup,weidentifiedtheprogram/participantsubgroup(PPS)andcodedthe impactestimatesseparately.Overall,wehaveinformationon526separatePPS'sfrom the207studies,withaminimumof1andamaximumof10PPS'sineachstudy.We alsoidentifieduptothreeimpactestimatesforeachPPS,correspondingtothree differentpostͲprogramtimehorizons:shortͲterm(approximatelyoneyearafter 2 Themainreasonsforexclusionwere:overlapwithotherpapers(i.e.estimatingimpactsforthesame program);programoutofscope;andnoexplicitcounterfactualdesign. 3 AsinCKW,weextractedtheinformationfromthestudiesourselves,sincewefoundthatevenadvanced graduatestudentswereoftenunabletointerpretthestudies. 8 completionoftheprogram);mediumterm(approximatelytwoyearsafter);andlongerͲ term(approximately3yearsafter).Intotal,wehave857separateprogramestimates forthe526program/participantsubgroups,withbetweenoneandthreeestimatesof theeffectoftheprogramatdifferenttimehorizons.4 Weusetwocomplementaryapproachestoquantifytheestimatedprogram impacts.First,weclassifytheestimatesassignificantlypositive,insignificantlydifferent fromzero,orsignificantlynegative.Thismeasureofeffectivenessisavailableforevery estimateinourdatabase.Forthesubsetofstudiesthatmeasureprogrameffectson theprobabilityofemployment,wealsoextractanestimatedeffectsize,definedasthe estimatedimpactontheemploymentrateoftheprogramgroup,dividedbythe standarddeviationoftheemploymentrateofthecomparisongroup.5Asdiscussedin moredetailinsectionIVa,below,theeffectsizeestimatesareunaffectedbythesizeof thesampleusedintheestimationprocedure,whereasthesignificancelevelsarein principaldependentonthesamplesize.Inthestudiesreviewedhere,however,thereis littleornoassociationbetweensamplesizeandthelikelihoodofasignificantpoint estimate(eitherpositiveornegative).Asaresultthetwowaysofquantifyingprogram impactsleadtoverysimilarconclusions.6 Afinalstepinourdataassemblyprocedurewastoaddinformationonlabor marketconditionsatthetimeofoperationoftheprogram.Specifically,wegathered countryͲspecificinformationonGDPgrowthratesandunemploymentratesfromthe OECD,theWorldBank,andtheILO.Weusetheaveragegrowthrateandtheaverage unemploymentrateduringtheperiodtheprogramgroupparticipatedintheALMPto proxyforcyclicalconditionsduringtheevaluation. 4 ForaspecificPPSandtimehorizonwetrytoidentifyandcodethemainestimateinthestudy.Wedo notincludemultipleestimatesforthesamePPSandtimehorizon. 5 Notethattomeasuretheeffectsizeweneedbothanimpactestimateandthemeanemploymentrate ofthecomparisongroup,whichisnotalwaysavailable.Wealsoextractedeffectsizesforonestudythat measuredprogramimpactsonthedurationoftimetothestartofthefirstjob. 6 ThesamefindingwasobtainedinCKW.Asdiscussedbelow,webelievethatthisarisesbecauselarger samplesizestendtobeusedwithmorecomplexresearchdesigns. 9 III.DescriptiveOverview a.ProgramTypes,ParticipantCharacteristics,EvaluationDesign Table1presentsanoverviewoftheprogramestimatesinourfinalsample.As noted,wehaveatotalof857differentimpactestimatesfor526differentPPS's (programͲtype/participantsubgroupcombinations)extractedfrom207separate studies.Todealwithpotentialcorrelationsbetweentheprogramestimatesfroma givenstudy,throughoutthispaperwecalculatestandarderrorsclusteringbystudy. Column1ofthetablepresentsthecharacteristicsofouroverallsample,while columns2Ͳ6summarizetheestimatesfromfivesubgroupsofcountries:Austria, GermanyandSwitzerland(the"Germanic"countries),whichaccountforaboutone quarterofallstudies;Denmark,Finland,NorwayandSweden(the"Nordic"countries), whichaccountforanotherquarterofstudies;Australia,Canada,NewZealand,U.K.and U.S.(the"AngloSaxon"countries),whichaccountforjustover10%ofstudies;andtwo nonͲmutuallyexclusivegroupsoflowerandmiddleincomecountriesͲͲ"nonͲOECD" countries(10%ofstudies),andLatinAmericanandCaribbean(LAC)countries(10%of studies).Forreference,AppendixFigure1showsthenumbersofestimatesbycountry. ThelargestsourcecountriesareGermany(253estimates),Denmark(115estimates), Sweden(66estimates),theU.S.(57estimates)andFrance(42estimates). AsshowninthesecondpanelofTable1weclassifyprogramsintobroadtypes. TrainingprogramsͲͲincludingclassroomandonͲtheͲjobtrainingͲͲaccountforabout onehalfoftheprogramestimates,withbiggersharesinthenonͲOECDandLAC countries,andasmallershareintheNordiccountries.Jobsearchassistance(JSA) programs,privatesubsidyprograms,andsanction/threatprogramseachaccountfor aboutoneͲsixthoftheprogramestimates,thoughagainthereisvariabilityacross countrygroups,withJSAandsanction/threatprogramsbeingparticularlyprevalentin theNordicandAngloSaxoncountries.Subsidizedpublicsectorjobprogramsare relativelyrareinallcountygroups. 10 Thenextthreepanelsofthetableshowthecharacteristicsoftheprogram participantgroups,classifiedbyagegroup,gender,and"type"ofparticipant.About oneͲhalfoftheestimatesareformixedagegroupsandmixedgendergroups,butwe alsohaverelativelylargesubsetsofestimatesthatarespecifictoeitheryoungeror olderworkers,orfemalesormales.Themajorityofprogramestimatesarefor participantswhoenterfromtheregularunemploymentinsurance(UI)system.Typically theseparticipantsareassignedtoaprogramandrequiredtoattendasaconditionfor continuingbenefiteligibility.7Theremainingestimatesaresplitbetweenprogramsthat servethelongtermunemployed(LTU)andthosethatserve"disadvantaged"participant groups.Inmanycases,LTUanddisadvantagedparticipantsarerecruitedfromthe overallpopulationandenrollvoluntarily.Suchvoluntaryprogramsaremorecommonin theAngloSaxoncountriesandinlessdevelopedcountriesthatlackaformalUIsystem.8 Nextweshowtheoutcomevariablesusedtomeasuretheprogramimpactand thetimehorizonsoftheestimate.ThemostcommonoutcomeͲͲparticularlyinthe GermanicandnonͲOECDcountriesͲͲistheprobabilityofemployment,whilethelevelof earningsisthemostcommonmetricintheAngloSaxoncountries.Aboutonesixthof theprogramestimatesͲͲbut40%oftheestimatesfromNordiccountriesͲͲmeasurethe exitratefromthebenefitsystem,typicallyfocusingontherateofexittoanew (unsubsidized)job.Finally,asmallsubsetofestimatesͲmostlyfromAngloSaxon countriesͲͲfocusontheprobabilityofunemployment.Aboutonehalfoftheestimates areforashorttermhorizon(<1year)afterprogramcompletion,35%foramedium term(1Ͳ2years),and18%foralongerterm(morethan2yearafter). ThelastrowoftheTableshowsthefractionofprogramestimatesthatarebased onanexperimentaldesign.Inmostofourcountrygroupsabout30%ofestimatescome fromrandomizedcontrolledtrials(RCT's)thathavebeenexplicitlydesignedtomeasure 7 ThistypeofprogramrequirementiswidespreadinEuropeͲͲseeSianesi(2004)foradiscussion. TheU.S,jobtrainingprogramsanalyzedintheseminalpapersofAshenfelter(1978),Ashenfelterand Card(1985),Lalonde(1986),Heckman,Ichimura,Smith,andTodd(1998)areallofthistype. 8 11 theeffectivenessoftheALMPofinterest.AnimportantexceptionistheGermanic countries,wherenoexperimentallybasedestimatesareyetavailable. Thedistributionofprogramestimatesovertime(definingtimebytheearliest intakeyearoftheprogram)isshowninFigure1,withseparatecountsforthe experimentalandnonͲexperimentalestimates.Oursampleincludesprogramsfromas farbackas1980,thoughthemajorityofestimatesarefromthe1990sandearly2000s. Thetrendtowardincreasinguseofexperimentaldesignsisclearlyevident:amongthe 210estimatesfrom2004andlater,61%arefromrandomizeddesigns. b.MeasuresofProgramImpactͲOverview Table2givesanoverviewofourtwomainmeasuresofprogramimpact, contrastingresultsfortheshortterm,mediumterm,andlongterm.Columnone summarizesthesignandsignificanceofalltheavailableprogramestimates.Amongthe 415shorttermestimates,40%aresignificantlypositive,42%areinsignificant,and18% aresignificantlynegative.Thepatternofresultsismorepositiveinthemediumand longerterms,withamajorityofestimates(52%)beingsignificantlypositiveinthe mediumterm,and61%beingsignificantlypositiveinthelongerterm. Column2showsthedistributionofsignandsignificanceforthesubsetofstudies thatusepostͲprogramemploymentratestoevaluatetheALMPprogram.These111 studiesaccountfor490programestimates(57%ofourtotalsample).Theshortterm programestimatesfromthissubsetofstudiesaresomewhatlesspositivethaninthe overallsample:only31%aresignificantlypositive,while22%aresignificantlynegative, and47%areinsignificantlydifferentfromzero.Inthemediumandlongerterms, however,thediscrepancydisappears.Indeed,thelongertermestimatesfrom evaluationsthatstudytheprobabilityofemploymentareslightlymorepositivethan estimatesfromstudiesthatuseotheroutcomevariables.Asdiscussedbelow,these patternsarenotexplainedbydifferencesinthetypesofALMPprogramsanalyzedin differentstudies,orbydifferencesinparticipantcharacteristics.Instead,theyreflecta 12 systematictendencyforstudiesbasedonhazardmodelsforprogramexittoexhibit morepositiveshorttermimpactsthanstudiesbasedonemploymentorearnings. Column3ofTable2showsthedistributionsofsignandsignificanceassociated withtheimpactestimatesthatwecanactuallyconvertintoeffectsizes.9The distributionsareverysimilartothoseincolumn2,suggestingthatthereisnosystematic biasassociatedwiththeavailabilityofaneffectsizeestimate,onceweconditiononthe outcomeusedintheevaluation. Finally,column4showsthemeaneffectsizesforthesubsampleincolumn3, alongwithrobuststandarderrorsthattakeaccountofcorrelationamongtheprogram estimatesfromthesamestudy.Themeanshorttermeffectsizeestimateis0.04ʍ'sand isatbestonlymarginallysignificant(t=1.65).Bycomparisontheaverageeffectsizesin themediumandlongertermsare0.12ʍ'sand0.19ʍ's,respectively,andbothare significantlydifferentfromzerowithahighdegreeofconfidence.Theseestimates reinforcetheconclusionthatonaverage,ALMP'shavearelativelysmallimpactinthe shortrun,butmorepositiveeffectsinthemediumandlongerruns. Distributionsofeffectsizeestimatesintheshort,medium,andlongerrunsare showninFigures2a,2b,and2c,whichgive"forestplots"oftheeffectsizeestimates, alongwiththeirassociatedconfidenceintervals,forstudiesfromourmostrecentwave ofdatacollection.10AssuggestedbythemeansinTable2,theoveralldistributionof effectsizeestimatesclearlyshiftstotherightasthetimehorizonisextended.Another interestingfactisthatthewidthoftheconfidenceintervalsisuncorrelatedwiththe magnitudeoftheeffectsizeestimates.Thereisnoevidencethatmorepositiveeffect sizeestimatestendtobelesspreciseͲͲasmightbefearedifauthorstendtosearchfor 9 Themainreasonwhywecannotextractaneffectsizeestimatefromastudythatmodelstheprobability ofemploymentisthatthereisnoinformationontheemploymentrateofthecomparisongroupinthe relevanttimeframe. 10 InformationtoconstructconfidenceintervalswasnotextractedinCKW.Thus,theestimatesreportedin Figures2a,2b,and2carefromthelateststudiescollectedinoursecondround. 13 specificationsthatshowapositiveimpact,orifsmallscalestudiesaremorelikelytobe writtenupiftheresultsarepositive(thesoͲcalled"filedrawer"biasproblem). ReturningtoTable2,column4alsoshowsthemeaneffectsizesamongprogram estimatesthatareclassifiedassignificantlypositive,insignificant,orsignificantly negative.Aswouldbeexpectediftheclassificationofsignandsignificanceismainly drivenbyvariationinthemagnitudeofaparticulareffectsizeestimateͲͲandnotby variationinthestandarderrorsoftheestimatesͲͲthemeaneffectsizeforsignificant positiveestimatesisrelativelylargeandpositive,themeaneffectsizeforsignificant negativeestimatesisrelativelylargeandnegative,andthemeaneffectsizefor insignificantestimatesiscloseto0.ThispatternisillustratedinAppendixFigures2a,2b, and2d,whereweplotthehistogramsofeffectsizeestimatesateachtimehorizon, highlightingthecontributionsofestimatesineachcategoryofsignandsignificance.At allthreetimehorizons,thethreesubgroupsofestimatesappeartobedrawnfrom distributionsthatarecenteredondifferentmidpoints.Thisseparationsuggeststhatthe signandsignificanceofanestimatecanserveas(noisyindicator)ofitseffectsize. c.VariationinProgramImpacts Tables3aand3bprovideafirstlookatthequestionofhowALMPimpactsvary acrossdifferenttypesofprogramsanddifferentparticipantgroups.Foreachsubsetof estimatesweshowthemeaneffectsizesateachtimehorizonandthecorresponding fractionofprogramestimatesthatissignificantlypositive. Focusingfirstoncomparisonsacrossprogramtypes(Table3a),noticethat trainingandprivatesectoremploymentprogramstendtohavesmalleffectsintheshort run,coupledwithmorepositiveimpactsinthemediumandlongerruns.Incontrast, JSAandsanction/threatprogramshavemorestableordecliningimpactsovertime. Theseprofilesareconsistentwiththenatureofthetwobroadgroupsofprograms. Trainingandprivatesubsidyprogramsrequireparticipantstopassupregularjob opportunitieswhileintheprogram.Thistemporarywithdrawalfromtheregularlabor 14 marketwouldbeexpectedtodepressoutcomesintheperiodimmediatelyafter completionoftheprogramͲͲasoͲcalled"lockͲin"effect(e.g.,HamandLalonde,1996). Assumingthatinvestmentsmadeduringtheprogramperiodarevaluable,however,the outcomesofparticipantswillgraduallycatchupwiththoseofthecomparisongroup.11 Bycomparison,JSAandsanction/threatprogramsaredesignedtopushparticipantsinto thelabormarketquickly,withlittleornoinvestmentcomponent.Intheabsenceof largereturnstorecentexperience,itisunlikelythattheseprogramscanhavelargelong runeffects.12 AnotherclearfindinginTable3aistherelativelypoorperformanceofpublic sectorprogramsͲͲaresultthathasbeenfoundinotherpreviousanalyses(e.g., Heckmanetal.,1999)andinourearlierstudy.Thispatternsuggeststhatprivate employersplacelittlevalueontheexperiencesgainedinapublicsectorprogramͲͲ perhapsbecausemanyoftheseprogramshavelittleornoskillͲbuildingcomponent,and onlyservetoslowdownthetransitionofparticipantstounsubsidizedjobs. Thelowerpanelofthetablecomparesestimatesfordifferentintakegroups.An interestingconclusionhereisthatprogramsthatservethelongtermunemployedand disadvantagedindividualsappeartohavemorepositiveshortrunoutcomesthan programsforUIrecipients.Inthemediumandlongerruns,UIrecipientsappeartocatch upsomewhatrelativetotheothertwogroups. Table3bshowsthecontrastsbyage,genderandexperimentaldesign.The comparisonsbyageshowamixedpattern,withsomewhatlargeraverageeffectsizes foryouththantheothergroupsintheshortrun,butworseoutcomesforbothyouth andolderparticipantgroupsinthemediumandlongerruns.Thecontrastsby experimentaldesignarealsomixed,withtheeffectsizecomparisonssuggestingmore 11 AsnotedbyMincer(1974)asimilarcrossͲoverpatternisobservedinthecomparisonofearnings profilesofhighschoolgraduatesandcollegegraduates. 12 Evidenceonthevalueoflabormarketexperienceforlowerskilledworkers(GladdenandTaber,2000; CardandHyslop,2005)suggeststhatthereturnsaremodestandunlikelytoexceed2or3percentper yearofwork. 15 positiveresultsforexperimentaldesignsintheshortrunandmorenegativeresultsin thelongrun.Thecomparisonsbygenderaremoreconsistentandsuggestthatfemale participantsbenefitmorethanmalesormixedgendergroups. Wenotethatthesesimplecontrastsmustbeinterpretedcarefullybecausethere aremultiplesourcesofpotentialheterogeneityintheprogramimpacts.Forexample, thefractionsoftrainingprogramsevaluatedbyRCT'sisrelativelylow.Themetaanalysis modelsinSectionIVdirectlyaddressthisissueusingamultivariateregressionapproach. d.ProfileofPostͲProgramImpacts Simplecomparisonsacrosstheimpactestimatesinoursamplesuggestthat ALMP’shavemorepositiveeffectsinthemediumandlongerterms.Toverifythatthisis actuallytrueforagivenprogramandparticipantsubgroup–andisnotsimplyan artefactofheterogeneityacrossstudies–weexaminethewithinͲPPSevolutionof impactestimatesinTable4. Columns1Ͳ3showthechangesinestimatedeffectsizeforthesubsetofstudies forwhichweobservebothshortandmediumtermestimates,mediumandlongterm estimates,andshortandlongtermestimates,respectively.Estimatedeffectsizestend toincreaseasthetimehorizonisextendedfromtheshortruntothemediumrun.The averagechangebetweenthemediumandlongerrunsisslightlynegative,butoverall theshortͲruntolongͲrunchangeisstillpositive. Comparingacrossprogramtypesitisclearthatthepatternofrisingimpactsis drivenalmostentirelybytrainingͲbasedprograms,whichshowarelativelylargegainin effectsizesfromtheshorttermtothemediumtermandonlyasmalldeclinebetween themediumandlongerruns.Thepatternsfortheothertypesofprogramssuggest relativelyconstantordecliningeffectsizesoverthepostͲprogramtimehorizon.In particular,incontrasttothepatternsinTable3a,thereisnoindicationofarisein impactsforprivatesubsidyprogramsovertime,suggestingthatthegainsinTable3a maybedrivenbyheterogeneitybetweenstudies.Wereturntothispointbelow. 16 Incolumns4Ͳ6weexaminethewithinͲstudychangesinsignandsignificancefor abroadersetofstudies.Here,weassignavalueof+1toPPSestimatesthatchange frominsignificanttosignificantlypositiveorfromsignificantlynegativetoinsignificant; Ͳ1toestimatesthatchangefromsignificantlypositivetoinsignificantorfrom insignificanttosignificantlynegative;and0toestimatesthathavethesame classificationovertime.ThissimplewayofsummarizingthewithinͲstudypatterns pointstogenerallysimilarconclusionsasthechangesineffectsize,thoughjobsearch assistanceprogramsshowmoreevidenceofariseinimpactsfromtheshortͲruntothe mediumrunincolumn4thancolumn1,andprivateemploymentsubsidiesshowamore positivetrendinimpactsfromtheshorttolongrun. AppendixTable1presentsfullcrossͲtabulationsofsign/significanceatthe variouspostͲprogramtimehorizons.Assuggestedbythesimplesummarystatisticsin Table4,mostprogramestimateseitherremaininthesamecategory,orbecome"more positive"overtime. IV.MetaAnalyticModelsofProgramImpacts a.ConceptualFramework ConsideranALMPevaluationthatmodelsanoutcomeyobservedformembers ofbothaparticipantgroupandacomparisongroup.Letbrepresenttheestimated impactoftheprogramontheoutcomesoftheparticipants,letNrepresentthe combinedsamplesizeofparticipantsandcomparisons,letɴrepresenttheprobability limitofb(i.e.,theestimatethatwouldbeobtainedifNwereinfinite)andletʍ representthestandarddeviationofyinthecomparisongrouppopulation.Assuming thatbhasastandardasymptoticdistribution,theestimatorobtainedwithasamplesize ofNisapproximatelynormallydistributedwithmeanɴandvariancev,where v=K2ʍ2/N (1) 17 andKisadesignfactorreflectingthedesignfeaturesofthestudy.13Theactualestimate obtainedinthestudycanbewrittenas: b=ɴ+KʍNͲ1/2z, wherezisarealizationfromanapproximatelynormaldistribution. Assumingthatʍisknown(orcanbeestimatedwithhighprecision),the associatedestimateoftheeffectsizeis: b/ʍ=ɴ/ʍ+KNͲ1/2z, (2) 2 whichdiffersfromthelimitingeffectsizeɴ/ʍbyasamplingerrorwithvarianceK /N. AssumethatthelimitingeffectsizeinagivenstudydependsonavectorXofobserved characteristicsofthestudy,(includingfeaturesoftheprogram,theparticipants,andthe evaluationdesign)andonunobservedfactorsɸ: ɴ/ʍ=Xɲ+ɸ. (3) whereɲisavectorofcoefficients.Thisleadstoametaanalysismodelfortheobserved effectssizeestimatesoftheform: b/ʍ=Xɲ+u, wheretheerroru=ɸ+N (4) Ͳ1/2 Kzincludesboththesamplingerrorintheestimateband theunobserveddeterminantsofthelimitingeffectsizeforagivenstudy. Weusesimpleregressionmodelsbasedonequation(4)toanalyzetheeffect sizesthatareavailableinoursample.Forthebroadersampleweuseorderedprobit (OP)modelsforthe3Ͳwayclassificationofsignandsignificance.Tounderstandthe interpretationoftheOPmodels,notethatequations(1)and(2)implythatthetͲstatistic associatedwiththeestimatedimpact(b)is: t=b/v1/2=(ɴ/ʍ)N1/2/K+z. Usingequation(3): t=[N1/2/K]Xɲ+z+[N1/2/K]ɸ. (5) 13 Forexample,inanexperimentwith50%ofthesampleinthetreatmentgroupandnoaddedcovariates, K2=2(ɷ2+1),whereɷisafactorrepresentingtheratioofthestandarddeviationoftheoutcomeafter exposuretotreatmenttothestandarddeviationintheabsenceoftreatment.Inmorecomplexdesigns suchasdifferenceindifferencesorinstrumentalvariablesKwillbebigger. 18 IfN/K2ͲͲthe"effectivesamplesize"ofagivenstudy,takingaccountoftheresearch designͲͲisconstantacrossstudiesandtherearenounobserveddeterminantsofthe limitingeffectsize(i.e.,ɸ=0)thetͲstatisticwillbenormallydistributedwithmeanXɲ' whereɲ'=[N1/2/K]ɲ.14InthiscasethecoefficientsfromanOPmodelforwhetherthet statisticislessthanͲ2,betweenͲ2and2,orgreaterthan2(i.e.,thesignandsignificance oftheestimatedprogrameffects)willbestrictlyproportionaltothecoefficients obtainedfromaregressionmodelofthecorrespondingeffectsizes.Onereasonforthe effectivesamplesizetoremainroughlyconstantacrossstudiesistheendogenous selectionofresearchdesigns.Mostanalystswillonlypursueacomplexresearchdesign ifthereisabigenoughsampletoensuresomeminimumstatisticalpower. EvenifN/K2variesacrossstudies,orthereareunobserveddeterminantsofthe limitingeffectsizeindifferentstudies,theimplieddatageneratingprocessmaybe reasonablyapproximatedbyasimpleorderedprobit.Indeed,asweshowbelow,inour sampleofstudiesthecoefficientsfromeffectsizemodelsandOPmodelsareverynearly proportionalsowebelievetheapproximationisreasonable. b.BasicEffectSizeModels Table5presentstheestimatesfromaseriesofregressionmodelsfor352effect sizeestimatesobservedfor200program/participantsubgroupsin83differentstudies. WepooltheeffectsizesfordifferentpostͲprogramhorizonsandincludedummies indicatingwhethertheprogramestimateisforthemediumorlongterm(withshort termestimatesintheomittedgroup).Thebasicmodelincolumn1includesonlythese controlsandasetofdummiesforthetypeofprogram(withtrainingprogramsinthe omittedcategory).ConsistentwiththesimplecomparisonsinTable3a,wefindthatthe 14 Ascanbeseenfromequation(2),thesamplingvarianceoftheeffectsizeestimatefromagivenstudyis proportionaltoK2/N.Fromthesampleofeffectsizesandassociatedsamplingerrorssummarizedin Figures1a,1band1cwecanestimatethevariabilityofN/K2acrossstudies.Thisexercisesuggeststhat theeffectivesamplesizevariesfairlywidelyacrossstudies,butisnothighlycorrelatedwithN. 19 effectsizeestimatesarelargerinthemediumandlongrun,andthatpublicsector employmentprogramsareassociatedwithsmallereffectsizes. Themodelincolumn2introducesadditionalcontrolsforthetypeofparticipant (UIrecipientsversuslongtermunemployedordisadvantaged),theirageandgender, thecountrygroupinwhichtheprogramwasoffered,thedurationoftheprogram,and fourfeaturesoftheevaluation:whetherithadanexperimentaldesign,thesquareroot ofthesamplesize,whetherthestudywaspublished,andthestudy'scitationpercentile relativetoallstudiesinoursamplereleasedinthesameyear.15Thesecontrolsslightly attenuatethegrowthineffectsizesoverlongerpostͲprogramhorizonsbuthavelittle effectontheprogramtypedummies. Columns3and4introduceaparallelsetofmodelsthatallowthetimeprofilesof postͲprogramimpactstovarywiththetypeofprogram.Inthesespecificationsthe "maineffects"foreachprogramtypeshowtheshorttermimpactsrelativetotraining programs(theomittedtype),whiletheinteractionsofprogramtypewithmediumterm andlongtermdummiesshowhowtheimpactsevolverelativetotheprofilefortraining programs(whicharesummarizedbythemaineffectsinthefirsttworows).Threekey conclusionsemergefromthesemoreflexiblespecifications.First,assuggestedbythe patternsinTable4,theeffectsizesfortrainingprogramstendtoriseovertimewhile theeffectsforjobsearchassistanceandsanction/threatprogramsarenearlyconstant.. Second,publicsectoremploymentprogramsappeartoberelativelyineffectiveatall timehorizons.Third,theprofileforprivatesectortrainingprogramsisrelativelysimilar totheprofilefortrainingprograms. Theestimatedcoefficientsfortheextracontrolvariablesincludedinthemodels incolumns2and4ofTable5arereportedinthefirsttwocolumnsofTable7.The coefficientestimatesfromthetwospecificationsarequitesimilarandsuggestthatthe 15 WeconductedaGoogleScholarsearchforcitationsofallthestudiesinourfinalanalysissamplein October2014.Weconstructthecitationrankofeachstudyrelativetootherstudieswiththesame publicationdateinoursampleasourmeasureofcitations.Wealsofitmodelsthatincludethedateof thestudyandthedatasource.Theseareverysimilartothemodelspresentedinthetable. 20 impactofALMP'svariessystematicallywiththetypeofparticipant(withlargereffects forthelongtermunemployed),theiragegroup(morenegativeimpactsforolderand youngerparticipants),andtheirgender(largereffectsforfemales).Ontheotherhand thereisnoindicationthatthecountrygroup,thedurationoftheprogram,orthe featuresoftheevaluationmatter.Inparticular,theestimatedcoefficientofthe experimentaldesigndummyisrelativelysmallinmagnitudeandinsignificantlydifferent from0(t=0.63incolumn1and0.55incolumn2). c.BasicModelsforSignandSignificance Effectsizesareavailableforonly40%ofouroverallsample.Tosupplement thesemodelsweturntoorderedprobitmodelsforsignandsignificance.Thefirst4 columnsofTable6presentaseriesofOPmodelsthatareparalleltothoseinTable5, butfittoouroverallsampleofprogramestimates.Thespecificationsincolumns1and 3havenocontrolsotherthandummiesformediumandlongtermhorizonsandthe typeofALMPͲͲinthelattercaseinteractingthetypeofprogramwiththetimehorizon dummies.Columns2and4reportexpandedspecificationsthataddthecontrol variablesreportedincolumns3and4ofTable7.Finally,column5ofTable6repeats thespecificationfromcolumn4,butfittothesubsampleof352programestimatesfor whichwehaveaneffectsizeestimate. TheOPmodelsyieldcoefficientsthatareveryhighlycorrelatedwiththe correspondingcoefficientsfromtheeffectsizemodels,but4Ͳ5timesbiggerin magnitude.Forexample,thecorrelationofthe14coefficientsfromthespecificationin column4ofTable6withcorrespondingcoefficientsfromthespecificationincolumn4 ofTable5is0.84.16Thus,theOPmodelsconfirmthattheimpactsofjobsearch assistanceandsanction/threatprogramstendtofaderelativetotheimpactsoftraining 16 Theregressionmodelis:OPͲcoefficient=0.00+4.64×EffectͲsizeͲcoefficient;standarderror=0.85. 21 programs,andthatpublicsectoremploymentprogramsarerelativelyineffectiveatall timehorizons.17 TheOPmodelsalsoconfirmmostofourconclusionsaboutthedifferential impactsofALMP'sacrossdifferentparticipantgroupsandindifferentcountries.18 ComparingthecoefficientsinTable7,boththeeffectsizemodelsandthe sign/significancemodelsshowsmallerimpactsofprogramsonyoungparticipantsand olderparticipants,relativetotheimpactsonmixedagegroups,andlargerimpactsfor longͲtermunemployedparticipants.Usingtheoverallsampleofprogramestimatesthe OPmodelsalsopointtoasignificantlypositiverelativeimpactfordisadvantaged participants.Incontrast,theeffectsizemodels(andtheOPmodelsfittotheeffectsize sample)yieldaninsignificantcoefficient,arguablyasaconsequenceofthesmall numberofstudiesthatfocusonthisgroup. OneimportantdifferencebetweentheeffectsizemodelsandtheOPmodels concernstherelativeimpactofALMP'sonfemaleparticipants.Intheeffectsizemodels theestimatedcoefficientsforfemaleparticipantsarearound0.11inmagnitude,and statisticallysignificantatconventionallevels(withtstatisticsaround2).IntheOP models,bycomparison,thecorrespondingcoefficientsarerelativelysmallinmagnitude, andfarfromsignificant.Furtherinvestigationrevealsthatthisdivergenceisdrivenby theuppertailofeffectsizeestimatesforfemaleparticipants(seeAppendixFigure3), andinparticularbytherelativelylargeeffectsizeestimatesforprogramsthatshowa significantlypositiveeffect.19Thisuppertailofeffectsizesdoesnotappeartobedriven 17 Wealsofittwosimplerprobitmodelsfortheeventsofreportingapositiveandsignificantornegative andsignificantestimate,reportedinAppendixTable2.Aswouldbeexpectediftheorderedprobit specificationiscorrect,thecoefficientsfromthemodelforasignificantlypositiveeffectarequitecloseto theOPcoefficients,whilethecoefficientsfromthemodelforasignificantlynegativeeffectareclosein magnitudebutoppositeinsign.Interestingly,neitheroftheprobitmodelsyieldsasignificanteffectfor thesquarerootofthesamplesize,confirmingthatvariationinthesignificanceoftheprogramestimates acrossdifferentstudiesisonlyweaklyrelatedtothesamplesizeusedinthestudy. 18 Thecorrelationbetweenthecoefficientsincolumns2and4ofTable7is0.69. 19 Themedianand75thpercentilesoftheeffectsizedistributionforfemaleparticipantgroups, conditionalonapositiveimpact,are0.25,and0.46respectively.Bycomparison,thecorresponding statisticsformaleandmixedgenderparticipantgroupsare0.15,and0.27. 22 byafewoutliers,butinsteadreflectsasystematicallyhigherprobabilityofestimatinga largepositiveeffectsizewhentheparticipantgroupislimitedtofemales.20 AfinalinterestingaspectoftheOPmodelsisthepatternofcoefficients associatedwiththechoiceofdependentvariable,reportedinthetoprowsofTable7. Thesecoefficientsshowthatstudiesmodelingthehazardrateofexitingthebenefit systemortheprobabilityofunemploymentaresignificantlymorelikelytoreport positivefindingsthanstudiesmodelingemployment(theomittedcategory)orearnings. Studiesthatmodelthehazardtoanewjobarealsosomewhatmorelikelytoobtain positivefindings.21Weinferthatsomecautioniswarrantedininterpretingtheshort termimpactestimatesfromstudiesthatuseoutcomesotherthanemploymentor earnings. d.AreSomeProgramsBetter(orWorse)forDifferentParticipantGroups? AlongstandingquestionintheALMPliteratureiswhethercertainparticipant groupswouldhavebetteroutcomesiftheywereassignedtospecifictypesofprograms. WeaddressthisinTable8,whichpresentsseparatemetaanalysismodelsfortheeffect sizesfromdifferenttypesofALMP's. Asabenchmarkcolumn1presentsabaselinespecificationfittoall5program types,withdummiesfortheprogramtypes(notreported)andcontrolsfortheintake group,thegendergroup,andtheagegroup.22The(omitted)basegroupiscomprisedof mixedgenderandagegroupsfromtheregularUIrolls.Inthispooledspecificationthe estimatedeffectsforfemalesandlongtermunemployedparticipantsaresignificantly 20 WealsoestimatedseparateeffectsizemodelsfordifferenttypesofparticipantsͲͲthosefromthe regularUIsystemversuslongtermunemployedordisadvantagedgroups.Wefoundasignificantpositive coefficientforfemaleparticipantsinthemodelsforbothUIrecipientsandthelongtermunemployed. 21 Estimatesfrominteractedmodelsthatallowdifferenteffectsofthedependentvariableatdifferent timehorizons(notreportedinthetable)showthatthepositivebiasassociatedwiththeuseofexit hazardsislargelyconfinedtoshorttermimpacts. 22 Thisisasimplifiedversionofthespecificationreportedincolumn2ofTable5andcolumn1ofTable7. 23 positive,whilethecoefficientforolderparticipantsissignificantlynegative,andthe coefficientforyoungparticipantsisnegativeandmarginallysignificant. Columns2Ͳ6reportestimatesforthesamespecification(minusthecontrolsfor thetypeofprogram)fitseparatelytoeffectsizesforeachofthe5programtypes. ComparisonsacrossthesemodelssuggestthatlongͲtermunemployedparticipants benefitrelativelymorefrom"humancapital"programs(i.e.,trainingandprivatesector employment),andrelativelylessfrom"workfirst"programs(i.e.,jobsearchand sanction/threatprograms).Incontrast,disadvantagedparticipantsappeartobenefit morefromworkfirstprogramsandlessfromhumancapitalprograms.Female participantsalsoappeartobenefitrelativelymorefromhumancapitalprograms,while therelativeeffectsforyouthsandolderparticipantsarenotmuchdifferentacrossthe programtypes. Overalltheseresultssuggestthattheremaybepotentialgainstomatching specificparticipantgroupstospecifictypesofprograms,thoughthesmallsamplesizes formostoftheprogramtypesmustbenoted.Attemptstoexpandthepowerofthe analysisbyusingOPmodelsforthesignandsignificanceoftheprogramestimateslead togenerallysimilarconclusionsastheeffectsizemodelsreportedinTable8withonly modestgainsinprecision. e.EffectsofCyclicalConditions AnotherlongstandingquestionintheALMPliteratureiswhetherprogramsare more(orless)effectiveindifferentcyclicalenvironments.23Oneviewisthatactive programswilltendtohavesmallereffectsinadepressedlabormarketbecause participantshavetocompetewithother,moreadvantagedworkersforalimitedsetof jobs.AnalternativeviewisthatALMP'saremoreeffectiveinweaklabormarkets 23 Arelatedquestioniswhetherprogramexternalitiesarebiggerorsmallerinweakorstronglabor markets.ThisisaddressedinaninnovativeexperimentconductedbyCreponetal.(2013). 24 becauseemployersbecomemoreselectiveinaslackmarket,increasingthevalueofan intervention(particularlythosethatraisehumancapital). ThreepreviousstudieshaveinvestigatedALMPeffectivenessoverthebusiness cycle:Kluve(2010)usesbetweenͲcountryvariationinasmallEuropeanmetadataset, whileLechnerandWunsch(2009)andForslundetal.(2011)specificallyanalyze programsinGermanyandSweden,respectively.Allthreestudiessuggestapositive correlationbetweenALMPeffectivenessandtheunemploymentrate. Toprovidesomenewevidenceweaddedtwoalternativecontextualvariablesto ouranalysis,representingtheaveragegrowthrateofGDPandtheaverage unemploymentrateduringtheyearsthetreatmentgroupparticipatedintheprogram. Sincegrowthratesandunemploymentratesvarywidelyacrosscountries,wealso introducedasetofcountrydummiesthatabsorbanypermanentdifferencesinlabor marketconditionsacrosscountries.Theeffectofthesedummiesisinterestinginitsown rightbecausethesharesofdifferentprogramtypesandparticipantgroupsalsovary widelyacrosscountries,leadingtothepossibilityofbiasinthemeasuredeffectsof programtypesandparticipantgroupsifthereareunobservedcountryspecificfactors thataffecttheaveragesuccessofALMP'sindifferentcountries. TheresultsofouranalysisaresummarizedinTable9.Forreferencecolumn1 presentsabenchmarkspecificationidenticaltothesimplifiedeffectsizemodelin column1ofTable8.Column2presentsthesamespecificationwiththeadditionof37 countrydummies.Theadditionofthesedummiesleadstosomemodestbutinteresting changesintheestimatedcoefficientsinthemetaanalysismodel.Mostnotably,the coefficientsassociatedwithjobsearchassistance(JSA)andsanction/threatprograms bothbecomemorenegative,indicatingthat"workfirst"programstendtobemore widelyusedincountrieswhereallformsofALMP'sarerelativelysuccessful. Column3presentsamodelthatincludesthecontrolforaverageGPDgrowth rateduringtheprogramperiod.Thecoefficientisnegativeandmarginallysignificant (t=1.78)providingsuggestiveevidencethatALMP'sworkbetterinrecessionarymarkets. 25 Amodelthatcontrolsfortheaverageunemploymentrateshowsthesametendency (coefficient=0.014,standarderror=0.016)thoughtheeffectislessprecise. Aconcernwiththespecificationincolumn3isthattheaveragenumberof programestimatespercountryissmall(manycountrieshaveonly2or3estimates) leadingtopotentialoverͲfitting.Toaddressthis,weestimatedthemodelsincolumns 4Ͳ6,usingonlydatafromthefourcountriesthataccountforthelargestnumbersof effectsizeestimatesͲDenmark(17estimates),France(20estimates),Germany(147 estimates)andtheU.S.(16estimates).Asshownincolumn4,ourbaselinespecification yieldscoefficientestimatesthatarequitesimilartotheestimatesfromtheentire sample,thoughtherelativeimpactsofJSAandsanction/threatprogramsaremore negativeinthese4countries. Columns5and6presentmodelsthataddtheaverageGDPgrowthrateandthe averageunemploymentrate,respectively,tothisbaselinemodel.Thesespecifications suggestrelativelyimportantcyclicaleffectsonALMPeffectiveness.Forexample, comparingtwosimilarprogramsoperatinginlabormarketswitha3percentagepoint gapingrowthrates,theprogramintheslowergrowthenvironmentwouldbeexpected tohavea0.2largereffectsize. Whilenotreportedinthetable,wealsoestimatedmetaanalysismodelsfor thesefourcountriesthatincludeaninteractionbetweenthecyclicalvariableandan indicatorforhumancapitaltypeprograms(i.e.trainingorprivateemployment programs).UsingGDPgrowthasthecyclicalindicatortheestimatedcoefficientsare Ͳ0.048(standarderror=0.023)forthemaineffectandͲ0.028(standarderror=0.017) fortheinteraction.Usingunemploymentasthecyclicalindicatorthepatternsofthe maineffectandtheinteractionaresimilarbutlessprecise.24Bothmodelstherefore suggestthattheimpactsoftrainingandprivatesectoremploymentprogramsaremore 24 Theestimatedmaineffectofaverageunemploymentis0.053(standarderror=0.038),theestimated interactioneffectis0.0230(standarderror=0.036). 26 countercyclicalthantheimpactsofJSA,sanction/threatandpublicsectorprograms, thoughtheinteractiontermsarenotsignificantatconventionallevels. WhiletheevidenceinTable9suggestsacountercyclicalpatternofprogram effectiveness,itisworthemphasizingthattheexplanationforthispatternislessclear.It ispossiblethatthevalueofagivenprogramishigherinarecessionaryenvironment.It isalsopossible,however,thatthecharacteristicsofALMPparticipants,orofthe programsthemselves,changeinawaythatcontributestoamorepositiveimpactina slowͲgrowth/highͲunemploymentenvironment. V.SummaryandConclusions Wehaveassembledandanalyzedanewsampleofimpactestimatesfrom207 studiesofactivelabormarketpolicies.Buildingonourearlierstudy(CKW),weargue thatitisimportanttodistinguishbetweenimpactsatvarioustimehorizonssince completionoftheprogram,andtoconsiderhowthetimeprofileofimpactsvariesby thetypeofALMP.Wealsostudytheimportanceofparticipantheterogeneity,andlook forevidencethatspecificsubgroupsmaybenefitmoreorlessfromparticulartypesof programs.Finally,westudyhowthestateofthelabormarketaffectsthemeasured effectivenessofALMP's. WithregardtotheimpactsofdifferenttypesofALMP's,wefindthatthetime profilesof"workfirst"stylejobsearchassistanceandsanction/threatprogramsdiffer fromtheprofilesof"humancapital"styletrainingandprivatesectoremployment subsidies.Workfirstprogramstendtohavelargershorttermeffects,whereashuman capitalprogramshavesmall(orinsomecasesevennegative)shorttermimpacts, coupledwithlargerimpactsinthemediumorlongerrun(2Ͳ3yearsaftercompletionof theprogram).Wealsoconfirmthatpublicsectoremploymentprogramshave negligible,orevennegativeprogramimpactsatalltimehorizons. Withregardtodifferentparticipantgroups,wefindthatfemaleparticipantsand thosedrawnfromthepooloflongtermunemployedtendtohavelargerprogram 27 effectsthanothergroups.Incontrast,theprogramestimatesforyouthsandolder workersaretypicallylesspositivethanforothergroups.Wealsofindindicationsof potentialgainstomatchingdifferentparticipantgroupstospecificprograms,with evidencethatworkfirstprogramsarerelativelymoresuccessfulfordisadvantaged participants,whereashumancapitalprogramsaremoresuccessfulforthelongterm unemployed. Withregardtothestateofthelabormarket,wefindthatALMP'stendtohave largerimpactsinperiodsofslowgrowthandhigherunemployment.Inparticular,we findarelativelylargecyclicalcomponentintheprogramestimatesfromfourcountries thataccountforoneͲhalfofoursample.Wealsofindsuggestiveevidencethathuman capitalprogramsaremorecyclicallysensitivethanworkfirstprograms. Ourfindingsontherelativeefficacyofhumancapitalprogramsforlongterm unemployed,andonthelargerimpactsoftheseprogramsinrecessionary environments,pointtoapotentiallyimportantpolicylesson.AsnotedbyKrueger,Judd andCho(2014)andKroftetal.(forthcoming),thenumberoflongtermunemployed risesrapidlyasarecessionpersists.Thisgrouphasahighprobabilityofleavingthe laborforce,riskingpermanentlossesintheproductivecapacityoftheeconomy.One policyresponseiscountercyclicaljobtrainingprogramsandprivateemployment subsidies,whichareparticularlyeffectiveforthelongerͲtermunemployedina recessionaryclimate. Methodologically,wefindanumberofinterestingpatternsintherecentALMP literature.Mostimportantly,wefindthattheestimatedimpactsderivedfrom randomizedcontrolledtrials,whichaccountforoneͲfifthofoursample,arenotmuch differentonaveragefromthenonͲexperimentalestimates.Wealsofindnoevidenceof "publicationbias"intherelationshipbetweenthemagnitudeofthepointestimates fromdifferentstudiesandtheircorrespondingprecision.Theestimatedimpactsare alsoverysimilarfrompublishedandunpublishedstudies,andfrommoreandlesscited studies.Wedofindthatthechoiceofoutcomevariableusedintheevaluationmatters, 28 withatendencytowardmorepositiveshorttermimpactestimatesfromstudiesthat modelthetimetofirstjobthanfromstudiesthatmodeltheprobabilityofemployment orthelevelofearnings. Finally,weconcludethatmetaanalyticmodelsbasedonthesignand significanceoftheprogramimpactsleadtogenerallysimilarconclusionsasmodels basedoneffectsizes.Thisarisesbecausemuchofthevariationinthesignand significanceofestimatedimpactsacrossstudiesintheALMPliteratureisdrivenby variationinestimatedeffectsizes,ratherthanbyvariationinthecorresponding samplingerrors. 29 References Ashenfelter,Orley(1978).“EstimatingtheEffectofTrainingProgramsonEarnings” ReviewofEconomicsandStatistics60(1):47Ͳ57. Ashenfelter,OrleyandDavidCard(1985).“UsingtheLongitudinalStructureofEarnings toEstimatetheEffectofTrainingPrograms.”ReviewofEconomicsandStatistics67(4): 648Ͳ660. Card,DavidandDeanR.Hyslop(2005)."EstimatingtheEffectofaTimeͲLimitedEarnings SubsidyforWelfareRecipients."Econometrica73(6):1723Ͳ1770. Card,D.,J.KluveandA.Weber(2010)."ActiveLabourMarketPolicyEvaluations:A MetaͲanalysis."EconomicJournal120(548):F452ͲF477. Cho,Y.andM.Honorati(2014).“EntrepreneurshipProgramsinDevelopingCountries:A MetaRegressionAnalysis.”LabourEconomics28(C):110Ͳ130. Crépon,Bruno,EstherDuflo,MarcGurgand,RolandRathelot,andPhilippeZamora (2013)."DoLaborMarketPolicieshaveDisplacementEffects?EvidencefromaClustered RandomizedExperiment."QuarterlyJournalofEconomics128(2):531Ͳ580. Filges,Trine,GeirSmedslund,AnneͲSofieDueKnudsen,andAnneͲMarieKlintJørgensen (2015)."ActiveLabourMarketProgrammeParticipationforUnemploymentRecipients: ASystematicReview."CampbellSystematicReviews2015(2). Forslund,A.,P.FredrikssonandJ.Vikström(2011).“WhatActiveLaborMarketPolicy WorksInaRecession?”.NordicEconomicPolicyReview1:171Ͳ207. Gladden,TriciaandChristopherTaber(2000)."WageProgressionAmongLessSkilled Workers."InRebeccaM.BlankandDavidCard,editors,FindingWork:JobsandWelfare Reform.NewYork:RussellSageFoundation. Greenberg,DavidH.,CharlesMichalopoulosandPhilipK.Robins(2003).“AMetaͲ AnalysisofGovernmentͲSponsoredTrainingPrograms.”IndustrialandLaborRelations Review57():31Ͳ53. Grimm,M.andA.L.Paffhausen(2015).“DoInterventionsTargetedatMicroͲ EntrepreneursandSmallandMediumͲsizedFirmsCreateJobs?ASystematicReviewof theEvidenceforLowandMiddleIncomeCountries”.LabourEconomics32:67Ͳ85. 30 Ham,JohnC.andRobertJ.Lalonde(1996)."TheEffectofSampleSelectionandInitial ConditionsinDurationModels:EvidencefromExperimentalDataonTraining." Econometrica64(1):175Ͳ205. Heckman,JamesJ.,HidehikoIchimura,JeffreyA.Smith,andPetraTodd(1998). “CharacterizingSelectionBiasUsingExperimentalData.”Econometrica66(5):1017Ͳ 1098. Hedges,LarryV.(1981)."DistributiontheoryforGlass'estimatorofeffectsizeand relatedestimators".JournalofEducationalStatistics6(2):107–128. Hedges,LarryV.andIngramOlkin(1985).StatisticalMethodsforMetaͲAnalysis. Orlando:AcademicPress. Ibarrarán,P.andD.Rosas(2009),EvaluatingtheImpactofJobTrainingProgramsin LatinAmerica:EvidencefromIDBfundedoperations,JournalofDevelopment Effectiveness1:195Ͳ216. Kluve,J.(2010)."TheEffectivenessofEuropeanActiveLaborMarketPrograms."Labour Economics17:904Ͳ918. Kroft,Kory,FabienLange,MatthewJ.Notowidigdo,andLawrenceF.Katz. (forthcoming)."LongͲtermUnemploymentandtheGreatRecession:TheRoleof Composition,DurationDependence,andNonͲParticipation.JournalofLaborEconomics. Krueger,AlanB.,JuddCramer,andDavidCho(2014)."AretheLongͲTermUnemployed ontheMarginsoftheLaborMarket?"BrookingsPapersonEconomicsActivitySpring: 229Ͳ280. Lalonde,RobertJ(1986).“EvaluatingtheEconometricEvaluationsofTrainingPrograms withExperimentalData.”AmericanEconomicReview76(4):604Ͳ620. Lalonde,RobertJ(2003)."EmploymentandTrainingPrograms."InRobertA.Moffit, editor,MeansTestedTransferProgramsintheUnitedStates.Chicago:Universityof ChicagoPress. Lechner,MichaelandConnieWunsch(2009).“AreTrainingProgramsMoreEffective whenUnemploymentisHigh?”JournalofLaborEconomics27(4):653Ͳ692. Martin,JohnP.(2014)"ActivationandActiveLabourMarketPoliciesinOECDCountries: StylizedFactsandEvidenceonTheirEffectiveness."IZAPolicyPaperNo.84. 31 Mincer,Jacob.(1974).Schooling,ExperienceandEarnings.NewYork:NationalBureauof EconomicResearch. 32 NumberofProgramEstimates 0 10 20 30 40 50 60 70 80 90 100 1980 1989 1994 YearofProgramStart 1999 2004 2009 NonͲexperimentalDesign ExperimentalDesign Figure1:NumberofProgramEstimates,ByYearofProgramStart Ͳ0.8 Ͳ0.6 Ͳ0.4 0 0.2 ShortTermEffectSize Ͳ0.2 Note:3largepositiveestimatedeffectsizesnotshown. Ͳ1 0.4 0.6 Figure2a:ShortTermEffectSizesandConfidenceIntervals 0.8 1 Ͳ1 Ͳ0.8 Ͳ0.6 Ͳ0.4 0 0.2 MediumTermEffectSize Ͳ0.2 0.4 0.6 Figure2b:MediumTermEffectSizesandConfidenceIntervals 0.8 1 Ͳ1 Ͳ0.8 Ͳ0.6 Ͳ0.4 Ͳ0.2 0 0.2 LongTermEffectSize 0.4 0.6 Figure2c:LongTermEffectSizesandConfidenceIntervals 0.8 1 Table1:DescriptionofSampleofProgramEstimates Austria, Germany, Fullsample Switzerland (1) (2) CountryofStudy: U.S.,U.K, Nordic Aust.,N.Z., Countries Canada (3) (4) LatinAmer. and NonͲOECD Carribean (5) (6) Numberofestimates NumberofPPS's Numberofstudies 857 526 207 290 163 52 212 127 48 87 45 24 132 86 33 72 54 19 Typeofprogram(%): Training JobSearchAssistance PrivateSubsidy PublicEmployment Sanctions/Threat 49 15 13 8 16 62 8 17 9 5 17 26 15 10 32 45 22 5 3 25 79 2 11 6 2 97 0 3 0 0 Ageofprogramgroup(%): Mixed Youth(<25years) Older(ш25years) 56 21 23 54 12 33 61 20 19 72 15 13 40 53 8 25 69 6 GenderofProgramgroup(%): Mixed 51 Malesonly 24 Femalesonly 24 53 24 23 67 18 16 43 25 32 43 23 31 11 44 44 TypeofProgramParticipants(%): Registeredunemployed 64 LongͲtermunemployed 10 Disadvantaged 26 86 8 6 67 10 23 33 25 41 24 7 69 0 0 100 OutcomeofInterest(%): Employmentstatus Earnings Hazardtonewjob Otherhazard Unemploymentstatus 56 23 11 6 5 83 8 7 0 2 31 25 25 16 4 26 47 3 2 21 63 36 0 0 1 54 43 0 3 0 EffectMeasuredat(%): ShortTerm MediumTerm LongTerm 47 35 18 42 34 23 54 31 16 37 40 23 47 45 8 57 42 1 ExperimentalDesign(%) 19 0 39 31 28 26 Note:seetextfordescriptionofsample.Studyreferstoanarticleorunpublishedpaper.PPSreferstoa programandparticipantsubgroup(e.g.,ajobsearchassistanceprogramformixedgenderyouths). EstimatereferstoanestimateoftheeffectoftheprogramontheparticipantsubgroupateitherashortͲ term(<1yearaftercompletionoftheprogram),mediumterm(1Ͳ2yearspostcompletion)orlongterm(2+ yearspostcompletion)timehorizon. 207 NumberofPPS's Numberofstudies 40 42 18 SignificantpositiveSTestimateͲͲpct.ofSTsample InsignificantSTestimateͲͲpct.ofSTsample SignificantnegativeSTestimateͲͲpct.ofSTsample 40 8 InsignificantMTestimateͲͲpct.ofMTsample SignificantnegativeMTestimateͲͲpct.ofMTsample 35 4 InsignificantLTestimateͲͲpct.ofsample SignificantnegativeLTestimateͲͲpct.ofsample 3 32 65 91[19] 9 41 50 194[40] 22 47 31 205[42] 111 274 490 Potentially HaveEffectSize (2) 3 32 65 68[19] 10 43 47 143[41] 23 44 33 141[40] 83 200 352 Have EffectSize (3) Ͳ9.7(0.1) 2.7(1.2) 27.6(6.1) 18.5(5.0) Ͳ10.9(2.3) 2.5(0.8) 24.2(4.3) 11.5(2.8) Ͳ14.4(2.4) 0.5(1.2) 21.4(3.3) 3.8(2.3) ͲͲ ͲͲ ͲͲ MeanEffectSize forCol.3Sample (robuststd.error)a (4) a Entriesinthiscolumnaremeaneffectsizesforthesubsetindicatedbyrowheading.Standarderrorofmeanisclusteredbystudy. Notes:seenotetoTable1.Shorttermprogramestimatesarefortheperiodupto1yearafterthecompletionoftheprogram.Mediumterm estimatesarefortheperiodfrom1to2yearsaftercompletionoftheprogram.Longtermestimatesarefortheperiod2ormoreyearsafter completionoftheprogram.Effectsizesareonlyavailableforstudiesthatmodeltheprobabilityofemploymentastheoutcomeofinterest,and provideinformationonmeanemploymentrateofcomparisongroup. 61 SignificantpositiveLTestimateͲͲpct.ofsample AllLTestimatesͲͲnumber[pct.oftotalestimates] 141[16] 52 SignificantpositiveMTestimateͲͲpct.ofMTsample LongTerm(LT)Estimates 301[35] AllMTestimatesͲͲnumber[pct.oftotalestimates] MediumTerm(MT)Estimates 415[48] AllSTestimatesͲͲnumber[pct.oftotalestimates] ShortTermEstimates 857 526 Numberofestimates Fullsample (1) Table2:SummaryofProgramEstimatesbyAvailabilityofEffectSize 418 129 118 76 116 554 106 197 ByProgramType: Training JobSearchAssist. PrivateSubsidy PublicSectorEmp. Sanction/Threat ByIntakeGroup: UIRecipients LongTermUnem. Disadvantaged 7,027 8,900 11,000 17,391 17,084 10,000 4,648 7,700 10,709 Median Sample Size (2) 27.4 16.0 17.1 31.0 0.0 8.5 51.2 12.9 19.4 Percent RCT's (3) 17.1 (17) Ͳ0.6 (93) 17.8 (8) Ͳ4.2 (14) 3.2 (13) 4.1 (16) 3.9 (90) 3.8 (141) 29.9 (16) 8.7 (101) 14.6 (9) Ͳ2.2 (12) 11.7 (17) 4.4 (13) 14.0 (92) 11.5 (143) 30.7 (10) 17.3 (50) 3.6 (4) 2.5 (6) 45.9 (16) 2.3 (7) 13.6 (35) 18.5 (68) MeanEffectSizes(×100) Short Medium Longer Term Term Term (4) (5) (6) 50 (50) 34 (258) 52 (56) 32 (41) 37 (49) 53 (68) 35 (201) 40 (415) 65 (40) 47 (193) 38 (37) 25 (24) 65 (37) 63 (40) 54 (163) 52 (301) 63 (16) 59 (103) 43 (23) 27 (11) 88 (32) 43 (21) 67 (54) 61 (141) Pct.withSig.PositiveImpact Short Medium Longer Term Term Term (7) (8) (9) 9.8 11.1 10.4 50 59 68 (31) (26) (8) (107) (68) (22) Notes:seeTables1and2.Numberofprogramestimatesassociatedwitheachtableentryisreportedinparentheses.Effectsizesareonly availableforstudiesthatmodeltheprobabilityofemploymentastheoutcomeofinterest. 857 All Number Est's. (1) Table3a:ComparisonofImpactEstimatesbyProgramTypeandParticipantGroup 505 180 172 466 191 200 166 691 ByAge: MixedAge Youth(<25) NonͲYouth ByGender: MixedGender MalesOnly FemalesOnly ByEvaluationDesign: Experimental NonͲexperimental 16,000 1,471 8,345 10,000 11,000 25,850 3,000 10,000 10,709 Median Sample Size (2) 0.0 100.0 22.5 15.2 19.7 12.8 33.3 16.6 19.4 Percent RCT's (3) 2.1 (113) 10.6 (28) 9.4 (28) Ͳ2.8 (24) 3.9 (89) 0.3 (36) 7.5 (34) 3.8 (71) 3.8 (141) 12.7 (118) 5.6 (25) 16.5 (30) 12.4 (28) 9.4 (85) 8.9 (30) 5.9 (29) 14.4 (84) 11.5 (143) 23.5 (53) 0.8 (15) 34.5 (14) 29.2 (9) 11.3 (45) 9.6 (12) 0.1 (5) 22.4 (51) 18.5 (68) MeanEffectSizes(×100) Short Medium Longer Term Term Term (4) (5) (6) 40 (337) 40 (78) 41 (96) 41 (95) 39 (224) 31 (85) 32 (92) 47 (238) 40 (415) 55 (243) 41 (58) 55 (74) 50 (72) 52 (155) 51 (59) 41 (64) 57 (178) 52 (301) 68 (111) 37 (30) 70 (30) 58 (24) 59 (87) 43 (28) 67 (24) 65 (89) 61 (141) Pct.withSig.PositiveImpact Short Medium Longer Term Term Term (7) (8) (9) Notes:seeTables1and2.Numberofprogramestimatesassociatedwitheachtableentryisreportedinparentheses.Effectsizesareonly availableforstudiesthatmodeltheprobabilityofemploymentastheoutcomeofinterest. 857 All Number Est's. (1) Table3b:AdditionalComparisonsofImpactEstimatesbyParticipantGroupsandDesign Ͳ0.055 (0.126) 9 PrivateSubsidy 0.013 (0.035) 6 Sanction/Threat Ͳ0.048 (0.021) 4 Ͳ0.299 (0.299) 2 Ͳ0.006 (0.156) 2 Ͳ0.005 (0.003) 7 0.087 (0.035) 28 Ͳ0.029 (0.012) 4 Ͳ0.039 (0.039) 2 Ͳ0.005 (0.031) 6 Ͳ0.004 (0.006) 7 Ͳ0.010 (0.011) 28 0.000 (0.108) 27 0.158 (0.170) 19 0.083 (0.150) 24 0.265 (0.095) 34 0.314 (0.072) 121 0.158 (0.182) 19 Ͳ0.143 (0.494) 7 0.167 (0.267) 12 0.143 (0.167) 21 0.439 (0.085) 41 0.211 (0.092) 19 Ͳ0.143 (0.285) 7 Ͳ0.062 (0.068) 16 Ͳ0.111 (0.144) 18 0.048 (0.049) 42 ChangeinSign/Significance shorttermto shorttermto mediumterm mediumterm longterm tolongterm (4) (5) (6) 0.231 0.250 0.020 (0.055) (0.103) (0.052) 225 100 102 Notes:Changeineffectsizeincolumn1representsthedifferencebetweenthemediumtermandshorttermeffectsizesforagivenprogramand participantsubgroup(PPS).Changesincolumns2and3aredefinedanalogously.Changeinsign/significanceincolumn4isdefinedas+1iftheshortterm estimateissignificantlynegativeandthemediumtermestimateisinsignificant,oriftheshorttermestimateisinsignificantandthemediumtermestimate issignificantlypositive;0ifthesignandsignificanceoftheshorttermandmediumtermestimatesisthesame;andͲ1iftheshorttermestimateis significantlypositiveandthemediumtermestimateisinsignificant,oriftheshorttermestimateisinsignificantandthemediumtermestimateis significantlynegative.Changesincolumns5and6aredefinedanalogously.Standarddeviations(clusteredbystudynumber)inparenthesis. NumberStudies NumberStudies Ͳ0.007 (0.070) 10 PublicSectorEmp. NumberStudies NumberStudies 0.009 (0.019) 10 0.070 (0.018) 70 JobSearchAssist. NumberStudies ByProgramType Training NumberStudies All ChangeinEffectSize shorttermto shorttermto mediumterm mediumterm longterm tolongterm (1) (2) (3) 0.043 0.037 Ͳ0.012 (0.020) (0.035) (0.007) 105 43 47 Table4:TransitionsinProgramImpactsforaGivenProgramandParticipantSubgroup Table5:EstimatedEffectSizeModels (1) EffectTerm(Omitted=ShortTerm) MediumTerm 0.071 (0.027) LongTerm 0.131 (0.044) ProgramType(Omitted=Training) JobsearchAssist. Ͳ0.059 (0.027) DependentVariable=EstimatedEffectSize (2) (3) (4) 0.056 (0.021) 0.091 (0.038) 0.101 (0.037) 0.097 (0.040) 0.088 (0.025) 0.099 (0.040) Ͳ0.012 (0.043) 0.002 (0.026) 0.029 (0.044) PrivateSubsidy 0.094 (0.068) 0.086 (0.057) Ͳ0.007 (0.091) 0.044 (0.099) PublicSectorEmp. Ͳ0.120 (0.034) Ͳ0.152 (0.044) Ͳ0.081 (0.055) Ͳ0.084 (0.062) 0.036 (0.071) InteractionwithMediumTerm: JobsearchAssist. 0.007 (0.094) 0.139 (0.068) 0.108 (0.098) Ͳ0.098 (0.043) Ͳ0.092 (0.041) PrivateSubsidy Ͳ0.016 (0.102) Ͳ0.055 (0.104) PublicSectorEmp. Ͳ0.081 (0.070) Ͳ0.09 (0.073) Sanction/Threat Ͳ0.133 (0.048) Ͳ0.105 (0.045) Ͳ0.115 (0.041) Ͳ0.083 (0.052) 0.329 (0.142) 0.182 (0.127) Sanction/Threat InteractionwithLongTerm: JobsearchAssist. PrivateSubsidy PublicSectorEmp. Ͳ0.030 Ͳ0.156 (0.081) (0.108) Sanction/Threat Ͳ0.239 Ͳ0.273 (0.073) (0.092) AdditionalControls No Yes No Yes RSquared 0.13 0.33 0.21 0.37 Notes:Standarderrors(clusteredbystudy)inparentheses.Modelsarelinearregressions withtheeffectsizeasdependentvariable.Coefficientsofadditonalcontrolvariables includedinmodelsincolumns2and4reportedinTable7.Samplesizeis352. Table6:OrderedProbitModelsforSign/SignificanceofEstimatedProgramImpacts DependentVariable=OrdinalIndicatorforSign/Significance (1) (2) (3) (4) (5) EffectTerm(Omitted=ShortTerm) MediumTerm 0.372 0.483 0.563 0.639 0.491 (0.088) (0.099) (0.130) (0.138) (0.145) LongTerm 0.597 0.742 0.901 1.053 1.030 (0.157) (0.167) (0.175) (0.171) (0.206) ProgramType(Omitted=Training) JobsearchAssist. 0.274 (0.156) 0.286 (0.168) 0.531 (0.180) 0.532 (0.197) 0.569 (0.459) PrivateSubsidy 0.139 (0.189) 0.076 (0.210) Ͳ0.04 (0.224) Ͳ0.132 (0.263) Ͳ0.166 (0.438) PublicSectorEmp. Ͳ0.677 (0.219) Ͳ0.758 (0.228) Ͳ0.383 (0.276) Ͳ0.489 (0.279) Ͳ1.399 (0.496) Sanction/Threat Ͳ0.110 (0.172) Ͳ0.205 (0.184) 0.318 (0.206) 0.202 (0.236) 1.148 (0.653) Ͳ0.289 (0.235) Ͳ0.283 (0.249) Ͳ0.004 (0.343) PrivateSubsidy 0.138 (0.289) 0.226 (0.311) 0.353 (0.486) PublicSectorEmp. Ͳ0.645 (0.285) Ͳ0.573 (0.288) 0.051 (0.477) Sanction/Threat Ͳ0.764 (0.226) Ͳ0.705 (0.245) Ͳ0.662 (0.278) Ͳ1.017 (0.313) Ͳ1.022 (0.294) Ͳ0.832 (0.313) PrivateSubsidy 0.611 (0.375) 0.58 (0.387) 1.274 (0.798) PublicSectorEmp. Ͳ0.643 (0.490) Ͳ0.675 (0.497) 0.131 (0.832) Sanction/Threat Ͳ0.999 (0.353) Ͳ1.021 (0.375) Ͳ1.638 (0.430) InteractionwithMediumTerm: JobsearchAssist. InteractionwithLongTerm : JobsearchAssist. AdditionalControls No Yes No Yes Yes NumberofObservations 857 857 857 857 352 LogLikelihood Ͳ801 Ͳ765 Ͳ786 Ͳ752 Ͳ283 Notes:Standarderrors(clusteredbystudy)inparentheses.Modelsareorderedprobits,fittoordinaldata withvalueof+1forsignificantlypositive,0forinsignificant,Ͳ1forsignificantlynegativeestimate.Estimated cutpoints(2permodel)arenotreportedintheTable.Modelincolumn5isfittosubsampleofestimatesfor whichaneffectsizeestimateisavailable.Coefficientsforadditionalcontrolvariablesformodelsincolumns 2,4and5arereportedinTable7. Table7:EstimatedCoefficientsforAdditionalControlVariablesforModelsReportedinTables5and6 EffectSizeOLSModels (1) (2) OutcomeofInterest(Omitted=ProbabilityofEmployment) Earnings OrderedProbitModelsforSign/Significance (3) (4) (5) Ͳ0.003 (0.130) Ͳ0.01 (0.132) HazardtoNewJob 0.275 (0.211) 0.264 (0.212) OtherHazard 0.613 (0.275) 0.598 (0.293) 0.547 (0.263) 0.591 (0.285) UnemploymentStatus AgeofProgramGroup(Omitted=Mixed) Youths(<25) Ͳ0.062 (0.045) Older(>=25) Ͳ0.151 (0.044) Ͳ0.05 (0.045) Ͳ0.135 (0.045) Ͳ0.368 (0.151) Ͳ0.423 (0.157) Ͳ0.348 (0.153) Ͳ0.425 (0.160) Ͳ0.518 (0.287) Ͳ0.671 (0.297) GenderofProgramGroup(Omitted=Mixed) Malesonly 0.029 (0.049) 0.020 (0.049) Ͳ0.007 (0.149) Ͳ0.006 (0.149) Ͳ0.328 (0.266) 0.107 (0.052) 0.094 (0.051) 0.064 (0.144) 0.053 (0.146) 0.000 (0.250) 0.107 (0.073) 0.082 (0.072) 0.250 (0.192) 0.176 (0.196) 0.910 (0.488) Ͳ0.07 (0.081) 0.04 (0.072) Ͳ0.078 (0.076) 0.055 (0.065) 0.177 (0.241) 0.131 (0.201) 0.14 (0.236) 0.096 (0.202) 1.231 (0.579) 0.618 (0.378) 0.019 (0.060) Ͳ0.01 (0.129) 0.009 (0.059) Ͳ0.003 (0.130) 0.125 (0.187) 0.108 (0.338) 0.088 (0.189) 0.1 (0.338) 0.738 (0.483) 1.012 (0.826) Ͳ0.063 (0.281) Ͳ0.064 (0.286) 1.124 (0.529) 0.542 (0.228) 0.388 (0.181) 0.527 (0.228) 0.404 (0.179) 0.356 (0.623) 0.392 (0.332) Ͳ0.135 (0.179) Ͳ0.122 (0.177) Ͳ0.55 (0.232) Femalesonly CountryGroup(Omitted=Nordic) Germanic Anglo EastEurope RestofEurope LatinAmerica RemainingCountries 0.084 0.089 (0.091) (0.092) TypeofProgramParticipant(Omitted=RegisteredUnemployed) Disadvantaged 0.06 0.049 (0.089) (0.088) LongͲtermUnemployed 0.217 0.212 (0.076) (0.074) OtherControls: Progam>9Months Ͳ0.056 Ͳ0.043 (0.041) (0.042) Experiment Ͳ0.031 (0.049) Ͳ0.027 (0.049) Ͳ0.065 (0.170) Ͳ0.095 (0.170) Ͳ0.314 (0.332) SquareRootofSamplesize Ͳ0.039 (0.086) Ͳ0.028 (0.077) 0.159 (0.184) 0.098 (0.191) 0.484 (0.706) PublishedArticle Ͳ0.056 (0.043) Ͳ0.063 (0.043) Ͳ0.203 (0.133) Ͳ0.213 (0.132) Ͳ0.41 (0.254) CitationsRankIndex Ͳ0.003 (0.004) Ͳ0.002 (0.003) 0.007 (0.012) 0.005 (0.012) Ͳ0.005 (0.024) NumberofObservations 352 352 857 857 352 Notes:Standarderrors(clusteredbystudy)inparentheses.Tableentriesarecoefficientestimatesforadditionalcontrols includedinmodelsinTables5and6.Modelsincolumns1Ͳ2correspondtomodelsincolumns2and4ofTable5.Models incolumns3Ͳ5correspondtomodelsincolumns2,4,and5ofTable7. 0.046 (0.040) 0.063 (0.022) 0.110 (0.040) 352 83 9.77 0.026 (0.040) 0.092 (0.023) 0.123 (0.039) 217 51 9.73 Training (2) 0.000 (0.034) 0.030 (0.029) 0.006 (0.025) 36 15 3.82 JobSearch Assistance (3) Ͳ0.117 (0.102) 0.037 (0.108) 0.274 (0.148) 46 19 21.17 PrivateSector Job/Subsidy (4) 0.039 (0.073) 0.010 (0.065) Ͳ0.050 (0.089) 32 14 Ͳ2.23 PublicSector Employment (5) 0.213 (0.058) 0.042 (0.067) Ͳ0.019 (0.037) 21 8 13.70 Theat/Sanctions (6) a Fourdummiesfordifferenttypesofprogramsincluded. IntakeGroup(Base=RegularUIRecipients) Disadvantaged 0.003 Ͳ0.046 0.200 0.124 ͲͲ 0.157 (0.043) (0.043) (0.034) (0.068) (0.114) LongTermUnemployment 0.190 0.306 0.060 0.274 0.143 Ͳ0.239 (0.077) (0.138) (0.039) (0.077) (0.049) (0.045) GenderGroup(Base=Mixed) Male 0.040 0.060 (omitted) 0.234 Ͳ0.132 Ͳ0.075 (0.043) (0.054) (0.147) (0.062) (0.063) Female 0.119 0.126 (omitted) 0.365 Ͳ0.081 Ͳ0.312 (0.050) (0.063) (0.113) (0.061) (0.099) AgeGroup(Base=Mixed) ͲͲ Youth Ͳ0.076 Ͳ0.047 0.016 0.100 Ͳ0.155 (0.049) (0.022) (0.092) (0.066) (0.045) OlderParticipants Ͳ0.103 Ͳ0.113 0.029 Ͳ0.244 Ͳ0.134 0.114 (0.041) (0.053) (0.041) (0.119) (0.081) (0.006) ControlsforProgramTypea Yes No No No No No Notes:standarderrors,clusteredbystudy,inparenthesis.SeenotetoTable5.Dependentvariableinallmodelsisestimatedeffectsize. Modelsincolumn1arefittoallavailableeffectsizes.Modelsincolumns2Ͳ6areestimatedonsubsetsofeffectsizeestimatesforprogram typesindicatedincolumnheading. LongTerm MediumTerm Constant NumberofEstimates NumberofStudies MeanEffectSize(×100) All ProgramTypes (1) Table8:ComparisonofRelativeImpactsforDifferentParticipantGroupsbyTypeofProgram Ͳ0.110 (0.055) 0.043 (0.062) Ͳ0.137 (0.053) Ͳ0.141 (0.084) 0.024 (0.073) 0.237 (0.076) 0.117 (0.055) 0.201 (0.067) Ͳ0.047 (0.050) Ͳ0.130 (0.054) Ͳ0.105 (0.057) 0.064 (0.062) Ͳ0.149 (0.057) Ͳ0.093 (0.070) 0.001 (0.074) 0.245 (0.081) 0.103 (0.056) 0.186 (0.067) Ͳ0.047 (0.048) Ͳ0.115 (0.054) Ͳ0.030 (0.064) Ͳ0.150 (0.065) 0.148 (0.058) 0.212 (0.073) 0.132 (0.068) 0.284 (0.080) Ͳ0.149 (0.074) 0.038 (0.063) Ͳ0.199 (0.065) Ͳ0.250 (0.088) Ͳ0.100 (0.056) Ͳ0.202 (0.053) 0.180 (0.051) 0.249 (0.068) 0.262 (0.086) 0.279 (0.068) Ͳ0.207 (0.062) Ͳ0.010 (0.054) Ͳ0.149 (0.053) Ͳ0.448 (0.117) Ͳ0.054 (0.127) Ͳ0.131 (0.054) 0.115 (0.049) 0.180 (0.064) 0.140 (0.078) 0.242 (0.080) 0.051 (0.131) 0.024 (0.065) Ͳ0.208 (0.056) Ͳ0.286 (0.136) Denmark,France,Germany,andU.S.Only Baseline +GDPGrowth +Unemp.Rate (4) (5) (6) 0.095 0.078 0.090 (0.023) (0.020) (0.025) 0.128 0.073 0.109 (0.053) (0.040) (0.054) ͲͲ Ͳ0.070 0.078 (0.019) (0.024) CountryDummies No Yes Yes Yes Yes Yes Notes:standarderrors,clusteredbystudy,inparenthesis.Modelsincolumns1Ͳ3arefitto352programestimatesfrom83studies,withmeanof dependentvariable=0.098.Modelsincolumns4Ͳ5arefitto200studiesfromDenmark,France,Germany,andtheU.S.from38studies,withmeanof dependentvariable=0.089.Modelincolumns6isfitto181studiesfromsamefourcountriesfrom34studies,withmeanofdependentvariable=0.093. Ͳ0.065 (0.039) PrivateSectorJob/Subsidy 0.066 (0.055) PublicSectorEmployment Ͳ0.151 (0.041) Sanctions/Threat Ͳ0.024 (0.088) IntakeGroup(Base=RegularUIRecipients) Disadvantaged 0.003 (0.043) LongTermUnemployed 0.190 (0.077) GenderGroup(Base=Mixed) Male 0.040 (0.043) Female 0.119 (0.050) AgeGroup(Base=Mixed) Youth Ͳ0.076 (0.045) OlderParticipants Ͳ0.103 (0.041) ProgramType(Base=Training) JobSearchAssistance GDPGrowthRate(%) (Unemp.Rateincol.6) LongTerm MediumTerm AllAvailableEffectSizeEstimates Baseline +CountryEffects +GDPGrowth (1) (2) (3) 0.063 0.062 0.057 (0.022) (0.023) (0.022) 0.110 0.097 0.084 (0.040) (0.044) (0.040) ͲͲ ͲͲ Ͳ0.022 (0.013) Table9:ImpactsofMacroConditionsontheEffectivenessofActiveLaborMarketPolicies AppendixFigure1:DistributionofProgramEstimatesbyCountry Argentina Australia Austria Belgium Brazil Bulgaria Canada China Colombia Czech Denmark Dominican Estonia Finland France Germany Hungary India Ireland Israel Italy Jordan Korea Latvia Malawi Mexico Netherlands NZ Nicaragua Norway Panama Peru Poland Portugal Romania Russia Serbia Slovakia Slovenia SouthAfrica Spain SriLanka Sweden Switzerland Turkey UK US 22 4 25 8 3 1 3 2 4 1 115 8 2 6 42 253 11 2 1 2 4 4 3 19 2 6 5 9 1 25 4 24 12 3 8 8 2 13 8 4 16 6 66 12 8 13 57 0 25 50 75 100 125 150 175 200 NumberofProgramEstimates 225 250 275 NumberofEstimates Ͳ0.375 0 5 10 15 20 25 30 Ͳ0.275 Ͳ0.175 0.025 0.125 0.225 0.325 0.425 Effectsize:MidpointofInterval(dashedline=0) Ͳ0.075 SignificantlyPositive Insignificant SignificantlyNegative 0.525 AppendixFigure2a:HistogramofShortTermEffectSizeEstimates 0.625 0.725 NumberofEstimates Ͳ0.375 0 5 10 15 20 25 30 Ͳ0.275 Ͳ0.175 0.025 0.125 0.225 0.325 0.425 Effectsize:MidpointofInterval(dashedline=0) Ͳ0.075 SignificantlyPositive Insignificant SignificantlyNegative 0.525 AppendixFigure2b:HistogramofMediumTermEffectSizeEstimates 0.625 0.725 NumberofEstimates Ͳ0.375 0 2 4 6 8 10 12 Ͳ0.275 Ͳ0.175 0.025 0.125 0.225 0.325 0.425 Effectsize:MidpointofInterval(dashedline=0) Ͳ0.075 SignificantlyPositive Insignificant SignificantlyNegative 0.525 AppendixFigure2c:HistogramofLongerTermEffectSizeEstimates 0.625 0.725 Fraction 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 EffectsizeRange 0.05/ 0.10/ 0.15/ 0.20/ 0.25/ 0.30/ 0.35/ 0.40/ 0.45/ 0.50+ 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 FemalesͲSign.Positive MalesandMixedGenderͲSign.Positive <Ͳ0.25 Ͳ0.25/ Ͳ0.20/ Ͳ0.15/ Ͳ0.10/ Ͳ0.05/ 0/ Ͳ0.20 Ͳ0.15 Ͳ0.10 Ͳ0.05 0 0.05 FemalesͲInsignificant FemalesͲSign.Negative MaleandMixedGenderͲInsignficant MalesandMixedGenderͲSign.Negative AppendixFigure3:EffectsizeDistributionsConditionalonSign/SignificanceͲͲ Femalesvs.OtherParticipantGroups '( * *& ( ** &) ,' )+ (' -&) '' !/(." !/(." !/''" !/*-" !/(*" !/." &% ' -( ( (( )) -) &+ % (, +% ( '% )+ () !/-%" !/.*" !/*%" & 0/ )+ ( +) ./ * )* ,* ,. 0( )+ / +/ .+ ( ** ./ )) 01 )) ( . 00 . ( ./ ++ $2+)% $2,0% $2*.% $2)-% $2)1% $21% $2*/% $2)/% $2*/% )" # ! AppendixTable2:ComparisonsofEffectSize,OrderedProbit,andProbitModels MediumTerm LongTerm EffectSize (OLS) (1) 0.056 (0.021) 0.091 (0.038) OrderedProbit Sign/Significance (2) 0.489 (0.114) 0.969 (0.221) ProgramType(Omitted=Training) JobsearchAssist. Ͳ0.012 0.443 (0.043) (0.436) PrivateSubsidy 0.086 0.252 (0.057) (0.300) PublicSectorEmp. Ͳ0.152 Ͳ1.356 (0.044) (0.287) Other 0.007 0.550 (0.094) (0.542) AgeofProgramGroup(Omitted=Mixed) Ͳ0.062 Ͳ0.614 Youths(<25) (0.045) (0.282) Older(>=25) Ͳ0.151 Ͳ0.735 (0.044) (0.280) GenderofProgramGroup(Omitted=Mixed) Malesonly 0.029 Ͳ0.289 (0.049) (0.273) Femalesonly 0.107 0.043 (0.052) (0.251) CountryGroup(Omitted=Nordic) Germanic 0.107 1.033 (0.073) (0.460) Anglo Ͳ0.07 1.265 (0.081) (0.577) EastEurope 0.04 0.615 (0.072) (0.358) RestofEurope 0.019 0.825 (0.060) (0.469) LatinAmerica Ͳ0.01 1.017 (0.129) (0.826) RemainingCountries 0.084 1.161 (0.091) (0.521) TypeofProgramParticipant(Omitted=RegisteredUnemployed) 0.060 0.428 Disadvantaged (0.089) (0.618) LongͲtermUnemployed 0.217 0.436 (0.076) (0.311) OtherControls: Program>9months Ͳ0.056 Ͳ0.599 (0.042) (0.234) Experiment Ͳ0.031 Ͳ0.312 (0.049) (0.330) SquareRootofSamplesize Ͳ0.039 0.471 (0.086) (0.689) PublishedArticle Ͳ0.056 Ͳ0.374 (0.043) (0.252) CitationsRankIndex Ͳ0.003 Ͳ0.009 (0.004) (0.023) NumberofObservations RSquared/LogLikelihood 352 0.33 352 Ͳ288 ProbitModels Sign.Positive Sign.Negative (3) (4) 0.429 Ͳ0.719 (0.137) (0.173) 0.851 Ͳ1.365 (0.218) (0.437) 0.507 (0.434) 0.733 (0.314) Ͳ1.239 (0.330) 0.987 (0.492) Ͳ0.531 (0.528) 0.475 (0.315) 1.349 (0.335) 0.595 (0.628) Ͳ0.643 (0.322) Ͳ0.657 (0.272) 1.052 (0.499) 0.845 (0.428) Ͳ0.591 (0.310) Ͳ0.196 (0.272) Ͳ0.101 (0.279) Ͳ0.476 (0.315) 1.043 (0.498) 1.312 (0.625) 0.644 (0.447) 0.909 (0.560) 1.334 (0.879) 1.138 (0.618) Ͳ1.351 (0.454) ͲͲ 0.294 (0.588) 0.481 (0.325) Ͳ0.990 (1.022) Ͳ0.512 (0.332) Ͳ0.526 (0.265) Ͳ0.677 (0.395) 0.796 (0.851) Ͳ0.41 (0.277) 0.003 (0.024) 0.563 (0.326) Ͳ0.950 (0.461) 0.817 (0.719) 0.328 (0.298) 0.057 (0.034) 352 Ͳ190 315 Ͳ92 Ͳ0.579 (0.437) Ͳ0.984 (0.456) Ͳ1.075 (1.170) ͲͲ Notes:Standarderrors(clusteredbystudy)inparentheses.Dependentvariablesareasfollows:column(1)=estimatedeffect size;column(2)=classificationofsignandsignficanceoftheprogramestimate;column(3)=indicatorforsignificantlypositive programestimate;column(4)=indicatorforsignificantlynegativeprogramestimate.Modelincolumn(4)isestimatedon subsetof315observationsbecauseofperfectpredictabilityofresponsesforsomeobservations.
© Copyright 2024 ExpyDoc