リコネクションと 電離非平衡プラズマ Shinisuke Imada (Nagoya Univ., STEL) Plasmas condi>ons in solar corona Weak Collision Plasma Difference from collisionless plasma • Momentum transfer by coulomb collision 衝突による運動量交換 • Thermal conduc>on along magne>c field 衝突による熱伝導 • Ioniza>on and recombina>on 衝突による電離・再結合 • Radia>ve energy loss (not synchrotron radia>on) 衝突による輻射 Difference Summary Solar Flare Typical Spatial Scale = 100 Mm Same Substorm Typical Spatial Scale = 100 Mm 希薄なプラズマ 濃いプラズマ Macro > Collision >> Micro Collision >> Macro > Micro Collision-Macro Coupling Micro-Macro Coupling 太陽物理学が解明すべき点 1. Sweet-‐Parker .vs. Petschek RX Bhattacharjee+, 2009 Sweet-Parker like RX Heating occur inside CS Yokoyama&Shibata, 1997 1. "Color online# Time-sequence of the nonlinear evolution of the current density Jy of a Sweet–Parker current sheet in a large system of Lundquist er SL = 6.28! 105. The black lines represent surfaces of constant ". s to settles down to a plateau, until about t ! 9. At this of the third nonlinear phase, some of the small islands uced by the secondary instability coalesce to form larger ds that are convected toward the boundaries. "If the iss grow to large size but are constrained to stay fixed at enter of the computational domain by reason of symmeimposed in the simulations, the third nonlinear phase be short-lived, and the reconnection rate may fall rapAt about this point in time, the extended current sheet ws yet another burst of secondary tearing activity producmultiple plasmoids, and a consequent enhancement in the nnection rate, which at about t ! 12 attains nearly an order of magnitude higher than the Sweet–Parker rate at this value of SL. Due to insufficient spatial resolution, caused by the slow drift of the current sheet away from the region where the grid points along z are clustered, we are not able to carry these simulations forward longer in time. The plasmoid instability of Sweet–Parker sheets occurs after SL exceeds a critical value, determined numerically to be approximately 3 ! 104 in the present study. Like the black curve, the blue dashed curve in Fig. 2 corresponds to another value of SL "=2.51! 105# above the threshold and shows generically similar behavior, while the red dashed curve corresponds to a value "=3.14! 104# at about the threshold. We Petschek RX Heating region is larger by Slow-mode Shock etc. s copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 133.47.145.22 On: Sun, 03 Aug 2014 04:20:26 熱的非平衡プラズマでのリコネクション Because RX is highly dynamic, plasma may not reached to Equilibrium stage! This is new regime for Solar physics obs. • Non-‐Gaussian Distribu>on func>on ガウス分布でない → Power-‐law distribu>on, beam plasma >me scale for equilibrium is very short (kine>c regime or e-‐e or i-‐i collision) • Different temperature in different species → Ti>Te >me scale for equilibrium is rela>vely long (e-‐i collision) プラズマ種で平衡でない • Ioniza>on non-‐equilibrium → strong hea>ng or flare 電離非平衡 >me scale for equilibrium is long Target of MRX obs. • Hea>ng associated with/without slow-‐shock. Electron hea>ng Ion hea>ng (Possible???) • Alfvenic flow Doppler shiW measurement Ioniza>on informa>on • Par>cle accelera>on Supra-‐thermal & High energy electron acc. 8 Standard model for Solar Flare Hot & Fast Flow should be observed! CHAPTER 10. MAGNETIC RECONNECTION with Solar-C with Yohkoh and Hinode Yokoyama&Shibata 2001 gure 10.21: Elaborate version of the standard 2D X-type reconnection model that also in- Tsuneta et al., 1996 des the slow and fast shocks in the outflow region, the upward-ejected plasmoid, and the ations of the soft X-ray bright flare loops (Tsuneta 1997). erating particles in a downward direction and producing shock waves and plasmoid Fast Flow・リコネクション 領域の長さ (a) 9 1.5×10 cm Takasao et al. 2012 The Astrophysical Journal, 741:107 (20pp), 2011 November 10 (b) 太陽 表面 10 Mmくらい? Hara et al. 2011 ApJ RX flows (a) (b) (c) (d) 矢印:プラズマの流れ 電流シート (e) Line-of-sight direction W t ~20 deg Direction of EIS raster scan N 細かい構造の発生 Figure 10. Spatial relationships among (a) Fe xii 195 line-of-sight Doppler velocity VD showing an inflow structure to a site near S1, (b) enhancem 192 linewidth index as a signature of hot outflows, and (c) electron density from the intensity line ratio of Fe xii 186/Fe xii 195. (d) Schematic pictu in the EIS velocity observations near the loop-top region with the RHESSI 4–6 keV thermal source at 12:50:30–12:52:30 UT in green contours. (e) AIA Observa>on 193 A (1.5 and 15MK) 10 Mmくらい? Spectroscopic obs: EIS Line Profiles -400 km/s 0 km/s FeXXIV強度はa few 1000くらい? Imada et al., 2013 ApJL 400 km/s 観測的な要求 • 強度 a few 1000 erg/str (FeXXIVで) • 長さ 10 Mm 位 • 10^4 km / 1000 km s-‐1 = 10 s 以内で • EISの10倍のeffec>ve areaがあればOKか? • 先ほどの観測 2arcsec slit, 5s exposure 10秒で2.5Mm(4秒角)くらいスキャンできる 単純にはeffec>ve area10倍なら0.5s露出でOK なので、25Mmくらいスキャンできる。 Thermal Non-‐Equilibrium Plasma Because RX is highly dynamic, plasma may not reached to Equilibrium stage! This is new regime for Solar physics obs. • Non-‐Gaussian Distribu>on func>on ガウス分布でない → Power-‐law distribu>on, beam plasma >me scale for equilibrium is very short (kine>c regime or e-‐e or i-‐i collision) • Different temperature in different species → Ti>Te >me scale for equilibrium is rela>vely long (e-‐i collision) プラズマ種で平衡でない • Ioniza>on non-‐equilibrium → strong hea>ng or flare 電離非平衡 >me scale for equilibrium is long Ioniza>on Process Fe13+ FeXIV Fe14+ FeXV Fe15+ FeXVI ionization α S Fe16+ Fe17+ FeXVII FeXVIII recombination collisional and dielectronic recombination collisional ionization We can discuss the history of heating! Example of Ioniza>on Calcula>on ournal, 742:70 (11pp), 2011 December 1 time-dependent ionization in magneticInitial reconnection (Run1). TimeEquilibrium starts from shock crossing. The calculation was carri : Ionization Te: 1.5 MK à 31.3 MK @ t=0 Ne: 2.45 x 10^9 /cc figure is available in the online journal.) Table 1 ow-Mode Shock Jump Conditions The continuity equations for iron are expres How to diagnose MRX region? Slow-mode Shock Ionization process with line spectroscopy Spatial resolution is enough to resolve. Scanning time <100s Fast scanning (<Alfven time~100s) with high throughput spectrometer. Wide temperature coverage. Diagnose velocity, temperature, density with spectroscopic observation! Imada et al., 2011 ApJ How to diagnose MRX region? 10sec:L2 1sec:L1 Density: Line ra>o (L2-‐L1)/9=v1 (L3-‐L2)/70=v2 80sec:L3 Assume V1~V2 Te and V can be inverted. Density Ne=10^9 /cc The Astrophysical Journal, 742:70 (11pp), 2011 December 1 Slow Shock Imada et al. X-‐point Figure 3. Intensities of Fe xii, Fe xviii, Fe xix, Fe xx, Fe xxi, Fe xxii, Fe xxiii, and Fe xxiv from the magnetic reconnection region (Run1). The time-dependent Imada et al., APJ, ionization results are shown in y > 0,2011 and the results with ionization equilibrium are shown in y < 0. Note that the aspect ratio of the figure is different from the real FeXVIII~FeXXIVまで撮るのが大事 scale. (A color version of this figure is available in the online journal.) by the fast outflow (∼1500 km s−1 ) toward the deep downstream although the dynamical timescale does not change. Therefore, Density Ne=10^10 /cc The Astrophysical Journal, 742:70 (11pp), 2011 December 1 Figure 4. Result of Run2 (high-density condition, N1 = 1010 cm−3 ). The figure format is the same as Figure 3. (A color version of this figure is available in the online journal.) Imada et al. Density Ne=10^8 /cc Figure 4. Result of Run2 (high-density condition, N1 = 1010 cm−3 ). The figure format is the same as Figure 3. (A color version of this figure is available in the online journal.) Figure 5. Result of Run3 (low-density condition, N1 = 108 cm−3 ). The figure format is the same as Figure 3. (A color version of this figure is available in the online journal.) Sweet-‐Parker .vs. Petschek RX 電離進行 Bhattacharjee+, 2009 V = Va~1000km/s Nをmagne>c islandsの数 Δt = L / Va /N ~ 0.1s 仮にN=100 D =tends (L/N)^2/Δt ~ 10^5 km^2/sの拡散方程式となって to settles down to a plateau, until about t ! 9. At this order of magnitude higher than the Sweet–Parker rate at this of the third nonlinear phase, some of the small islands value of S . Due to insufficient spatial resolution, caused by L ~stage σ なるのに100秒 produced by the secondary instability coalesce to form larger the slow drift of the current sheet away from the region islands that are convected toward the boundaries. "If the iswhere the grid points along z are clustered, we are not able to lands grow to large size but are constrained to stay fixed at carry these simulations forward longer in time. 電離平衡な成分を含む分光屋さんが言うmul>-‐thermal状態 FIG. 1. "Color online# Time-sequence of the nonlinear evolution of the current density Jy of a Sweet–Parker current sheet in a large system of Lundquist number SL = 6.28! 105. The black lines represent surfaces of constant ". L the center of the computational domain by reason of symmetries imposed in the simulations, the third nonlinear phase may be short-lived, and the reconnection rate may fall rapidly.# At about this point in time, the extended current sheet shows yet another burst of secondary tearing activity producing multiple plasmoids, and a consequent enhancement in the reconnection rate, which at about t ! 12 attains nearly an The plasmoid instability of Sweet–Parker sheets occurs after SL exceeds a critical value, determined numerically to be approximately 3 ! 104 in the present study. Like the black curve, the blue dashed curve in Fig. 2 corresponds to another value of SL "=2.51! 105# above the threshold and shows generically similar behavior, while the red dashed curve corresponds to a value "=3.14! 104# at about the threshold. We L = 10 Mm This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 133.47.145.22 On: Sun, 03 Aug 2014 04:20:26 まとめ • • • • Solar-‐Cでは格段にeffec>ve area が大きくなる 高時間分解能で観測が可能になる 多波長での分光観測(FeXVIII~FeXXIV) 迷光・散乱光等のノイズを極力軽減 • 電離過程から加熱の履歴(時間)を診断する事 を目指す • Forward modeling または inversionから短い時間 スケールの現象を診断可能に! リコネクションと 弱電離プラズマ 京都大学附属天文台 中村 尚樹 名大STE 今田晋亮 部分電離プラズマにおけるMHD 完全電離プラズマにはない部分電離プラズマによ るMHD効果 Ambipolar diffusion 中性粒子が存在することにより生じる磁場の拡散 電離・再結合 中性粒子と荷電粒子が入れ替わる R2 = −m #! e ne νen (v"e − vn!) = mn nn νne"(vn −$ve ) me ni e ni ne e 1 + m E + v + v ×B − ! e mi ne mi ne i" me" ! me ∂j " ! = ∇ · P − P + Pn + e e m ∂te mei i ∂(nn Vn ) m ∂(n V ) 1#!+Rmi = R + 1 + R + m n n ! mi− ∇ 3· Pn"−n R3∂t $ 1" 2 me−m n ∂t ni me ni n e 1 + E + v + × B− v −) e e i (v R3 = −mi nimνiinne(vi − vn ) = mmninnenv νni n i ! " ! " ∂(nn Vn ) me e 1+ m R + 1 + R + m 1 3 n mi mi ∂t ! " ∂j me Pn ) P + + me ∂j e ∂t = ∇ · (Pem+ n Ion + ele Fluid e ∂t = ∇ · Pe − mei Pi + ∂(nn Vn ) ! " $ ne e#! (E +∂ve(m ×" B) − R + R + m 1 3 n n v + m n v ) ∂t e e e i i i me ni e ni ne e 1 +m∂tm E + v + v ×B − e mi ne i i ne em∂j = −∇ ·!(Pe + P" ) += (n∇ ne )e eE +nj) × · (P +"P + B + R2 + R3 i!− ei ∂t ∂(nV me me n Vn ) ∂(n n n) 1 + R + 1 + R + m 1 3 n ne e (E m +i ve × B) − R1m+i R3 + mn ∂t∂t Ion + ele Fluid j × B ∼ −R3 = mi νin ni (vi − vn ) Generalized Ohm’s law ∂ (m n v + mi ni vi + mn nn vn ) Generalized Ohm’s ∂tlaw emee ∂je = ∇)·m (P(n Pnni))− + vn+) j × B e+ × eB+∼ −R eP∂t = −∇ ·j(P inin− i (v i + 3P= n +i ν e eE n Vn ) ×−B) R1v+ R3(v+i − mnv∂(n vnee e×(E B+ = v[v (v− ×B en n− i) − e )]∂t j = vn × B + mnj×B × B − ×B nn νni ne e ve × B = [vn − (vn − vi ) − (vi − ve )] × B BB∼+−R3j×B = m× i νin i (vji −×vB n) = jv×× Bn− n mn nn νni ne e ρ = eAmbipolar (ni − ne ) ∼ 0 Hall j = e (ni vi − ne ve ) me n +n ( ( ( ( me ∂j = ∇ · Pe + ne e (E + ve × B) − R1 me ∂j e ∂t = ∇ · Pe + ne e (E + ve × B) − R1 e ∂t = ∇ · Pe + ne e (E + v × B) − j × B − R1 = ∇ · Pe + ne e (E + v × B) − j × B − R1 Intui>ve Understanding of Ambipolar term Ion Fluid R1 R2 ∂ 1 ne e (n v ) = − ∇ · P − (E + v × B) + + e e e e ∂t ∂ me 1 mene e meR1 meR2 (n v ) = − ∇ · P − (E + v × B) + + me e e e e ∂t me me me Electron ni e R1 R3 ∂ Fluid 1 (n v ) = − ∇ · P + (E + v × B) − + i i i i ∂t ∂ mi 1 mini e miR1 miR3 ∂t (ni vi ) = − mi ∇ · Pi + mi (E + vi × B) − mi + mi R2 R3 ∂ 1 (n v ) = − ∇ · P − − n n n ∂t ∂ mn 1 mnR2 mnR3 (n v ) = − ∇ · P − − mn n n n ∂t mn mn Loretz force (ele) Loretz force (ion) R1 = −me ne νei (ve − vi ) = mi ni νie (vi − ve ) 1 = −me ne νei (ve − vi ) = mi ni νie (vi − ve ) neutral VeR Vi e-‐ B ( p+ R2 = −me ne νen (ve − vn ) = mn nn νne (vn − ve ) R2 = −me ne νen (ve − vn ) = mn nn νne (vn − ve ) J neutral drag ( Vn ( 電離・再結合の影響 Vishniac & Lazarian (1997) 電離・再結合のタイムスケールが(アルフベン タイムに対して)十分小さいとき、電離・再結合 過程がリコネクションを速める Sweet-‐Parker current sheet 拡散領 域 Leake et al. 2012 電離・再結合の影響 Vishniac & Lazarian (1997) 電離・再結合のタイムスケールが(アルフベン タイムに対して)十分小さいとき、電離・再結合 過程がリコネクションを速める 電離再結合 current sheet 再結 合 拡散領域でプラズマが再結合 => 中性流体として逃げていく Leake et al. 2012 電流シートの時間発展 電流 電離度 ξn = nn/(nn + np) プラズモイド形成時のドリフト 電流 橙矢印:プラズマ速度 青矢印:中性粒子速度 プラズモイド形成領域で中性粒 子が逃げる リコネクションの観測可能性 -‐ドリフト-‐ 中性流体とプラズマはローレンツ力が働くと ドリフトする (Sweet-‐Parker リコネクションのinflow 領域) 直接中性流体とプラズマの速度差を測定可能か? ドリフト速度 Vd=JxB/acρnρp 〜 VA2/νnpχpΔ 彩層 νnp〜 103 s-‐1, χp〜0.1 (VA,Δ)=(5x10 km/s, 100km) à 0.2 km/s =(5x10 km/s, 10km) à 2 km/s プラズモイド合体と放出 形成されたプラズモイド は合体 電流 電離度 ξn = nn/(nn + np) プラズモイド合体と放出 電流 電離度 ξn = nn/(nn + np) 大プラズモイド放出後 さらに小さなプラズモイド ができる 大プラズモイドと ともに 低電離プラズマ も放出 リコネクションの観測可能性2 -‐電離非平衡-‐ の 領域では電離度が Dynamics >me scale < I R – >me 熱平衡のものからずれる =>荷電粒子(CaII,MgII..)と中性粒子(H)を同じくらいの高 さで観測すればリコネクションポイント(電流シート、プラ ズモイド)の電離度が周辺と違う? 再結合時間 水素(~ 10-‐100 s) とするなら 必要な時間スケールは1-‐10s 空間スケールは10~100km (VA=10km/s)の場合 Birn+ 2001 動機 分散性アルベン波 • どうしてMHDモデルでは運動論モデルに対し てリコネクション率が低くなるのか?? • ホイッスラーが鍵? (Rogers+ 2001) – Vphase∝k1のため、セパラトリックスが傾いて(開い てい)S-PからPetscheck的になる – これが正しいとしたら、MHDシミュレーションの解 像度を上げるだけでは収束しない? 弱電離プラズマのアルベン波 中性が応答できない周波数 アルベン速度増大 イオン-‐中性 衝突周期 0.01-‐0.001sec? まとめ • 彩層は非常にパラメータレンジの大きくプラズ マは部分電離プラズマである • 部分電離効果(ambipolar diffusion)により、電 流シートはプラズモイド不安定性を起こしうる 程度まで薄くなる • 彩層でのパラメータ(イオン-‐中性粒子ドリフト 速度, 電離度, 3成分磁場など)を直接観測す ることで部分電離プラズマにおける磁気リコ ネクションの特徴をとらえられる可能性がある
© Copyright 2025 ExpyDoc