計測法 詳細 Gravimetric Method 重量法 Principle: Weighing the H2 tank before and after the test 試験前後に水素タンクの重量を計測 その差から水素燃料の消費量を求める W g1 g 2 Here, W = Fuel consumption g1 = Mass of H2 tank before test , g2 = Mass of H2 tank after test H2 H2 Precision balance Before and after the test Advantages FCS Fuel bypass line 長所:水素の質量を直接測定(高い信頼性) - H2 mass is directly measured (reliability). Disadvantages 短所:水素タンクの着脱が必要 - Need to disconnect H2 tank from fuel line for weighing 1 Reference: JARI presentation Test Equipment for Gravimetric Method 重量法の試験機器 Windshield 精密重量計 Fuel tank Precision balance Fuel tank setting device - setting of a tank on the center of balance - shock absorber for tank setting 重量計中央への設置、制振、風除け Vibration-proof stand Picture from JARI presentation Precision Balance A B Full scale 64100 g 64100 g Minimum reading 0.1 g (approx. H2 1.0L) 0.01 g (approx. H2 0.1L) Repeatability 0.1g * 0.025 g Others Windshield, Vibration-proof stand, Fuel tank setting device Change of H2 mass(tens g) in H2 tank(tens kg) can be measured by 水素消費量(数十 グラム)の計測可能 precision balance. 2 Consideration for Gravimetric method 考察 (重量法) Principle : Weighing a hydrogen tank before and after a test - Simplest among 3 methods 最も実績のある、信頼できる方法 Most proven and reliable method 精密重量計が入手可能 Sufficiently precise balance is available. Lフェーズの推定水素消費量(RCB=0)に対して精度を規定可能 Measurement accuracy can be specified for expected H2 consumption in L-phase of WLTC. 重量法を提案 JAMA proposes “Gravimetric method” 3 Pressure Method 圧力法 Principle: Measure pressure and temperature of H2 gas and Derive mass of H2 from equation of state before and after a test V P P2 W m ( 1 ) R z1 T1 z2 T2 Here, 試験前後に水素の圧力と温度を計測 状態方程式により水素重量を計算し 水素消費量を求める W = Fuel consumption [g], m = Molecular weight of H2 2.016 [g/mol] V = Volume of H2 tank [m3], R = Gas constant 8.314 [J/mol·K] P1 = H2 pressure before test [Pa], P2 = H2 pressure after test [Pa] T1 = H2 temperature before test [K], T2 = H2 temperature after test [K] z1 = Compressibility factor at P1, T1, z2 = Compressibility factor at P2, T2 Advantages - No need to disconnect H2 tank 長所:水素タンクの着脱不要 Disadvantages Pressure gauge Temp. gauge H2 - Difficult to measure H2 gas temp. (Alternatively tank surface is measured) 短所:水素ガス温度把握が難しい (代わりにタンク表面温度計測) 4 FCS H2 Fuel bypass line Reference: JARI presentation Test Equipment for Pressure Method Pressure gauge 圧力法の 試験機器 Temperature gauge Range 0 to 16 MPa(abs) Range 10 to 30 ℃ Error 0.05 %F.S.(8kPa) Error 0.01 to 0.03 ℃ 高圧測定可 Applicable to high pressure 十分な精度 Sufficient accuracy 十分な精度 Sufficient accuracy • • WLTC-L3(約3km)の水素消費を30gと想定すると 誤差8kPaは燃費の1%相当。誤差0.03℃は同0.15%相当 8kPa of error is equivalent to approx. 1 % of hydrogen consumption 30g. 0.03℃ of error is equivalent to approx. 0.15 % of hydrogen consumption 30g. Condition: Tank Volume :47L, Initial Pressure: 14MPa, Temperature: 23℃ 30g of H2 consumption is assumed for phase-L3 of WLTC 5 Pictures/Tables from JARI presentation Temperature Trend after Test T1 T2 T3 T4 T5 T6 T7 Tank surface temperature[℃] Tank Surface Temperature - during H2 gas discharge and soak 10cm 26 Discharge T1 T2 T3 T4 T5 T6 V7 22 20 18 -20 0 20 40 60 Time [min] Measurement Error after soak 80 Error of Pressure method [%] Soak • The lower part reached lower temp. than upper part. • Temp. increased again during soak. ・水素放出時にタンク温度低下 ・ソーク時にタンク温度上昇(環境温度に戻る) (reference: gravimetric method) T1 T2 T3 T4 T5 T6 T7 0.5 0.0 -0.5 -1.0 60 Time [min] 80 • Errors were reduced during soak. • Temp. at T4, T5 showed high accuracy even in short soak time. Soak after a test is needed to eliminate error due to temperature measurement. -2.0 40 試験後のソークにより誤差が縮小 試験後のソークが必要(温度による誤差解消のため) -1.5 20 Temp. decrease during H2 discharge (H2 discharge : 30L/min, 5min) 100 2.0 0 • 16 ソーク後の計測誤差(重量法に対する) 1.0 タンク表面温度 (ガス放出およびソーク時) Soak 24 47L tank (Length 1350cm) 1.5 試験後のタンク温度 100 6 Reference : JARI presentation Consideration of Pressure Method 考察(圧力法) Principle: Measure pressure and temperature of H2 tank. Calculate mass of hydrogen by using an equation of state before and after a test. 重量法より容易な計測(適切に設定すれば) Easier to measure than gravimetric methods if setting is provided appropriately. 高精度の圧力計が入手可能 Sufficiently precise pressure gauge is available. 温度による誤差はソークにより解消可能 Error due to temperature measurement is eliminated by soak(at least 1 hour) after a test. Lフェーズの想定水素消費量に対して精度を規定可能 Measurement accuracy can be specified for expected H2 consumption in phase-L of WLTC. 圧力法を提案 JAMA proposes “Pressure method”. 7 Flow Method 質量法 Principle: Measure H2 flow rate and Integrate during a test W q(t )dt test Here, m 22.414 水素燃料の流量を計測、積算し、水素消費量を求める W = Fuel consumption [g] = Integrated flow of hydrogen at normal conditions (273.15K, 101.3kPa) [L] m = Molecular weight of hydrogen 2.016 [g/mol] FCS H2 Flow meter H2 supply フェーズ間を連続して計測可能 Advantages - Continuous measurement for series of phases 流量計、計測系の設定を事前に確認する必要がある Disadvantages - Need to examine suitable flow meter and settings for FCV test 8 Reference: JARI presentation Verification of Flow Meter Type 流量計の検証 Thermal 4~500 [NL/min] Coriolis 10~750 [NL/min] Volumetric 1.6~116 [L/min] Ultrasonic 9~2000 [NL/min] ±1 [%FS] ±1.07 [%RD] ±2 [%RD] (400~500NL/min) ±0.58 [%RD](500NL/min) ±0.66 [%RD](250NL/min) ±0.87 [%RD](100NL/min) ±4.49 [%RD](10NL/min) Response 10 [ms] - - 50 [ms] Pressure Range 0~0.98 [MPaG] 0~10 [MPaG] 0~0.5 [MPaG] 0~1 [MPaG] Range Accuracy (~400NL/min) ±2 [%FS] (±0.2 [%RD])※1 Photo [%FS] :[% of Full Scale], [%RD] :[% of Reading] ※1:In super highly accurate sensor use 9 Reference: JARI presentation Characteristic of Flow Meter 流量計の特徴 精度とレスポンスを評価 Accuracy and response of flow meters were tested in transient flow. 流量計により異なる結果 (誤差は流量計の再補正により低減) Flow meters showed different trends and different integrated values. Those errors were reduced by re-calibration of flow meters with sonic nozzle (JARI). Flowrate [NL/min] 80 Coriolis Sonic Nozzle Error of Integrated flow [%] T hermal Volumetric (Reference) 70 60 50 40 30 20 0 100 200 300 SampleT ime [sec] 6 4 2 0 Thermal Coriolis Volumetric -2 -4 -6 400 Error of integrated flow vs. gravimetric method Trend data of instant flow rate 瞬時の流量の誤差 積算流量の誤差(重量法比) 10 Figures from JARI presentation Issue of Flow Method - FCV test 流量法の課題 5車種のFCVの燃費を3つの方法で測定。一部のFCVでは流量法の誤差が大きかった In 2004, fuel consumption of five FCVs were measured by three methods , “Pressure”, ”Flow” and “Gravimetric(as reference)”. Flow method showed large error for two FCVs. 流量法の誤差の大きさは 車両モデルに依存 Error range depends on vehicle model Reference : JARI presentation 11 Application to FCV 車両への適用 車両に由来する誤差を解消するために 流量変動の吸収の効果を評価 Oscillation absorber was examined to reduce error relating to FCV. Flowmeter [Flow Method] Regulator Silencer Oscillation absorber Test cycle Test Number Japanese 10-15mode, US HWFET, UDDS 2 in each test cycle FCV Vehicle that showed significant oscillations in hydrogen flow Flow meter Thermal, Ultrasonic, Diff. pressure. Pulsation absorber Silencer (volume 4L), Regulator Reference: JARI presentation 12 Error of Flow Method - FCV Test 流量法の 誤差 流量変動の吸収により誤差は減少 Errors were reduced by using an oscillation absorber. 但し、流量変動の吸収の効果はWLTCで現在のFCVを用いた確認が必要 The effect of an oscillation absorber needs to be examined with present FCVs in WLTC. Figure from JARI presentation Consideration of Flow method 考察(流量法) 原理: 水素流量を計測し積算 Principle: Measure H2 flow rate and Integrate during a test. 計測系を適切に設定すれば、連続的な測定が可能 If settings are provided appropriately, continuous measurement is possible. 燃費の誤差は流量計、車両の燃料システム、試験サイクルに依存。幾つかの事例で変動吸収が有効 Error depends on flow meter, FCV fuel system and test cycle. Oscillation absorber was effective to reduce error in some cases. WLTCで現在のFCVを使った試験なしに、精度に関する規定を作ることは難しい Difficult to specify measurement accuracy without testing present FCVs in WLTC. JAMAはPhase 1bで 流量法を提案しない (試験データの裏付けある提案あれば反対しない) JAMA doesn’t propose “Flow method” in phase 1b. (Acceptable if proposed with test data in WLTC. ) 14 Appendix 圧力法の補足データ Supplement data for Pressure method 温度 - ソーク時間 Temperature / Soak time Error / Soak time 15 誤差 - ソーク時間 Pressure容器試験前圧力 before discharge Temp./ Soak time 8MPaG 放出終了 End of discharge 26 26 24 24 24 22 22 22 20 18 16 14 容器表面温度[℃] 26 12 20 18 16 14 12 試験容器:SRL 104 10 0 20 40 60 80 100 -20 0 経過時間[min] 20 40 60 80 24 22 22 22 18 16 14 容器表面温度[℃] 26 24 20 20 18 16 14 12 試験容器:SRL 99 20 40 60 80 0 26 24 24 22 22 容器表面温度[℃] 26 20 18 16 14 20 40 60 80 100 0 20 40 試験容器:SRL 108 -20 0 20 40 60 経過時間[min] Soak time (min.) 20 18 16 14 試験室温度条件:25℃ Ambient temperature: 25℃ 試験容器:SRL 106 10 -20 14 T1 T2 T3 T4 T5 T6 T7 12 試験容器:SRL 106 10 60 経過時間[min] Soak time (min.) 80 100 100 16 End放出終了 of discharge End of discharge 放出終了 80 18 経過時間[min] Soak time (min.) 経過時間[min] Soak time (min.) 12 60 10 -20 100 40 20 12 試験容器:SRL 108 10 10 20 End of discharge 放出終了 26 0 0 経過時間[min] Soak time (min.) 24 -20 試験容器:SRL 104 -20 100 End of discharge 放出終了 容器表面温度[℃] 容器表面温度[℃] 14 26 12 ボンベ表面温度[℃] 16 経過時間[min] Soak time (min.) End of discharge 放出終了 100NL/min×5min 18 10 Soak time (min.) 200NL/min×5min 20 12 試験容器:SRL 109 10 -20 放出流量 5MPaG End of discharge 放出終了 End of discharge 放出終了 容器表面温度[℃] 容器表面温度[℃] 50NL/min×5min タンク温度/ソーク時間 14MPaG タンク初期圧 -20 0 20 40 60 経過時間[min] Soak time (min.) 80 100 Data :Provided by JARI 16 80 100 Pressure容器試験前圧力 before discharge 5 試験容器:SRL 104 音速ノズルに対する誤差[%] 音速ノズルに対する誤差[%] 50NL/min×5min 5 min. soak ソーク5分 2 1 0 -1 2 0 -1 -2 -3 20 30 40 50 5 min. soak ソーク5分 1 -3 60 10 音速ノズルに対する誤差[%] 音速ノズルに対する誤差[%] 100NL/min×5min 40 50 4 ソーク5分 5 min. soak 2 1 0 0 40 50 ソーク5分 5 min. soak 1 0 -2 60 40 50 60 4 3 ソーク5分 5 min. soak 2 1 0 -1 -2 0 10 20 30 40 50 60 0 10 20 30 40 50 60 ソーク時間[min] ソーク時間[min] Soak time (min.) 6 30 試験容器:SRL 108 5 2 -1 20 6 3 -2 30 10 ソーク時間[min] Soak time (min.) 4 -1 20 0 -1 60 試験容器:SRL 108 Soak time (min.) Soak time (min.) 6 試験容器:SRL 106 4 3 5 min. soak ソーク5分 2 1 0 -1 T1 T2 T3 T4 T5 T6 T7 試験容器:SRL 106 5 音速ノズルに対する誤差[%] 5 音速ノズルに対する誤差[%] 30 5 ソーク時間[min] 200NL/min×5min 20 6 10 5 min. soak ソーク5分 1 ソーク時間[min] Soak time (min.) 試験容器:SRL 99 0 2 -3 0 6 3 3 -2 ソーク時間[min] Soak time (min.) 5 試験容器:SRL 104 4 3 -2 10 5 試験容器:SRL 109 4 3 0 放出流量 5MPaG 音速ノズルに対する誤差[%] 5 4 燃費の誤差/ソーク時間 タンク初期圧 8MPaG 音速ノズルに対する誤差[%] Error / Soak time 14MPaG 4 3 5 min. soak ソーク5分 2 1 試験室温度条件:25℃ Ambient temperature: 25℃ 0 -1 -2 -2 0 10 20 30 40 50 ソーク時間[min] Soak time (min.) 60 0 10 20 30 40 ソーク時間[min] Soak time (min.) 50 60 Data :Provided by JARI 17
© Copyright 2024 ExpyDoc