Vol. 4 No. 2 生物規範工学 Engineering Neo-Biomimetics 文部科学省 科学研究費 新学術領域 「生物多様性を規範とする革新的材料技術」 CONTENTS 文部科学省 科学研究費 新学術領域 「生物多様性を規範とする革新的材料技術」 *************************************************************************** 1) 巻頭言: ・ 異分野連携とバイオミメティックスに託す私の夢 友国 雅章(国立科学博物館名誉館員・名誉研究員) ···································· 8 2) 産業界からのメッセージ: ・ 「生物規範工学」への期待 井須 3) 紀文((株)LIXIL R&D 本部 分析・評価センター) ·························· 12 研究紹介 【2015 年 10 月 22 日(木)∼23 日(金)】 Engineering Neo-Biomimetics Ⅵ and Satellite Workshop at Lake Biwa ・ プログラム ·································································································· 16 要旨集 < Oral > ・ Standardization in the Field of Biomimetics An International Challenge Prof. Dr. Heike Beismann (Westfälische Hochschule, Germany) ··········· 21 ・ Biomimetic Bonding Technology Dr. Naoe Hosoda (NIMS, Japan) ····························································· 23 ・ Biomimetics Image Retrieval:Connecting Biology and Engineering Prof. Miki Haseyama (Hokkaido University, Japan) ································ 25 ・ Challenge to anhydro-preservation of cell line inspired by a desiccation tolerant African insect. Dr. Takashi Okuda (National Institute of Agrobiological Sciences, Japan) ····································· 27 ・ FungiUp Cities like Forests: From Coffee Waste Recycling to Sustainability! Dr. Stephan Hoornaert (Morpho-Biomimicry.Be, Belgium) ···················· 29 1 ・ Biomimetic thin membrane, the NanoSuit®, enhancing surface shield effect for living organism in high vacuo Prof. Takahiko Hariyama (Hamamatsu University School of Medicine, Japan) ································ 31 ・ Trade-offs, Evolution and Biomimetics Prof. Julian Vincent (University of Oxford, United Kingdom) ················· 33 ・ A Study of Lily Flower Bud from Mechanical Point of View Prof. Hidetoshi Kobayashi (Osaka University, Japan) ······························ 35 ・ Introduction of the Structural Biomimetic Design Method Dr. Yael Helfman Cohen (Tel Aviv University, Israel) ······························· 37 ・ Aerodynamic characteristics of flat-plate wings with serrated leading edges modeled on an Ural owl s primary feather Dr. Hiroto Tanaka (Teruaki Ikeda, Tetsuya Ueda, Takeo Fujii, Hao Liu) (Chiba University, Japan) ·········································································· 39 ・ Biomimetic Design of Hip Joint Replacement Prof. Matej Daniel (Czech Technical University in Prague, Czech Republic) ························· 41 ・ Sliding friction on shape-tunable wrinkles Dr. Takuya Ohzono (AIST, Japan) ···························································· 43 ・ Bio-inspired Innovation Implementation in R&D Strategies ‒ A French Landscape Overview Dr. Kalina Raskin (CEEBIOS, France) ······················································· 45 < Poster > ・ Preliminary Study on 3D Data Sampling for Internal Morphology of Insects Shuhei Nomura, Yuta Nakase (National Museum of Nature and Science) ···················································· 47 ・ The surface structures of suckers and paired-fin pads in teleostean fishes Eri Katayama, Gento Shinohara and Keiichi Matsuura (National Museum of Nature and Science) ··············································· 48 2 ・ Development of Antifouling Functional Surface using Biomimicking Microstructure Yasuyuki Nogata (Central Research Institute of Electric Power Industry) ·························· 49 ・ Self-Adjustable Adhesion of Polyampholyte Hydrogels Takayuki Kurokawa (Hokkaido University)················································ 50 ・ Multi-Functionalities of Moth-eye Film Yoshihiro Uozu (Mitsubishi Rayon Co., Ltd, Yokohama Research Laboratories) ············· 51 ・ Formation of corneal nipples in insects Ken-ichi Kimura (Hokkaido University of Education, Sapporo Campus) ···························· 52 ・ Induction of resistance response of soybean by chemical in the oral secretion of insects Ryu Nakata (Kyoto University)·································································· 53 ・ Chemical sensing system learned from ant sensillum Mamiko Ozaki, Masaru K Hojo, Yusuke Takeichi (Kobe University) ······················································································· 54 ・ Development of Functional Material「SLUG」Artificially Mimicking Biological Secretion System Chihiro Urata and Atsushi Hozumi (National Institute of Advanced Industrial Science and Technology) ·························································· 55 ・ Surface design for improving the heat transfer Hirotaka Maeda (Nagoya Institute of Technology) ·································· 56 ・ Flexible wing-and body-based strategies for bio-inspired flight system: aerodynamics and flight stability Hao Liu (Chiba University) ········································································ 57 ・ Construction of a database supporting development of biomimetic products Takeshi Yamauchi (Niigata University), Hidetoshi Kobayashi (Osaka University), Toru Kobayashi (Nagasaki University) ·································· 58 3 ・ Biomimetics R&D and Standardization Mizuki Sekiya (AIST) ················································································· 59 ・ Water transportation system of sponges Mirei Tsubaki (Japan Agency for Marine-Earth Science and Technology) ···················· 60 ・ Pressure-Sensitive Adhesive Powder Syuji Fujii (Osaka Institute of Technology) ··············································· 61 ・ The NanoSuit® method to observe the living mammalian tissue and cell Chinatsu Nakane*, Yasuharu Takaku, Masatsugu Shimomura, Takahiko Hariyama (Hamamatsu University School of Medicine, Chitose Institute of Science and Technology) ·········································································· 62 【2015 年 10 月 30 日(金)】 4th Nagoya Biomimetics International Symposium (NaBIS) ・ プログラム ·································································································· 63 要旨集 < Oral > ・ Merging synthetic polymers with functional groups from Nature Prof. Todd Emrick (UMass, USA) ····························································· 66 ・ PEM-coated Meshes for Oil/Water Separation Prof. Su Zhaohui (Chinese Academy of Sciences, China) ························ 69 ・ Soft Materials Under Extreme Conditions Mimicking Deep-sea Hydrothermal Vents Dr. Shigeru Deguchi (JAMSTEC, Japan) ·················································· 72 ・ Synthesis of Novel Nanoporous Materials Based on a Self-assembly of Functional Molecules Prof. Yusuke Yamauchi (NIMS, Japan) ····················································· 74 ・ Smart Interfacial Materials from Super-Wettability to Binary Cooperative Complementary Systems Prof. Lei Jiang (Chinese Academy of Sciences, China)···························· 77 4 ・ Mussel-inspired Adhesive Polymers: Five-year Story of Chitosan-catechol Prof. Haeshin Lee (KAIST, Korea) ···························································· 79 ・ Do you know what PDMS is? Prof. Thomas J. McCarthy (UMass, USA)················································ 81 ・ Potential of Hydroxyapatite as a Scaffold Material for Microorganisms for Water Purification Prof. Masanobu Kamitakahara (Tohoku University) ································· 83 ・ Biotemplated 3D Microstructures for Unique Electromagnetic Responses Prof. Kaori Kamata (TITech, Japan)····················································· 85 < Poster > ・ Structural Color Materials based on Biomimetic Core-Shell Particles that Mimic Melanin Granules Michinari Kohri* and Ayaka Kawamura (Graduate School of Engineering, Chiba University) ································ 87 ・ Anti-Stick Coatings Using Liquid-impregnated Chihiro Urata, Gary Dunderdale, Matt England, and Atsushi Hozumi* (National Institute of Advanced Industrial Science and Technology) ······························································································· 88 ・ Surface Properties of Clay-containing Transparent Nanocomposite Thin Films Matt W. England*, Chihiro Urata, Gary J. Dundersale, Avinash Patil, Stephan Mann and Atsushi Hozumi (National Institute of Advanced Industrial Science and Technology, Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol) ·············································· 89 ・ Novel Biomimetic Surfaces Based on Metal-Polymer Hybrid Materials Prepared by Self-Organization Ryo Kohsaka*, Yoshinori Fujihira, Ryuzo Furukawa, Takeshi Yamauchi, Hidetoshi Kobayashi, Daisuke Ishii, Yuta Uchiyama, Frank Ebinger (Kanazawa University, Tohoku University, Niigata University, Osaka University, Nagoya Institute of Technology, Technische Hochschule Nürnberg) ·································································································· 90 5 ・ Relationship between the Inner Structure of Feathers and Color Change: Structural Coloration in the Peach-faced Lovebird Gen Morimoto*, Naoko Sanada and Yasuyuki Sanada (Yamashina Institute for Ornithology, Rikkyo University, Bird s hospital-BIRD HOUSE) ··································································· 91 ・ Gas Barrier Properties of Plasma-polymerized Film Nanosuits Made of Amphiphilic Molecules Hideto Shibagaki*, Shingo Ito, Ryohei Kawamura, Daisuke Ishii (Nagoya Institute of Technology) ···························································· 92 ・ Control of Friction on Shape-Tunable Wrinkless Takuya Ohzono*, Kosuke Suzuki, Yuji Hirai (Research Institute for Sustainable Chemistry, AIST, Department of Applied Chemistry and Bioscience, Chitose Inst. Sci. Tech.) ························································· 93 ・ Fabrication and Friction Measurement of Durable Shark Skin Mimicking Surfaces Aki Sato, Yuji Hirai, Takuya Ohzono, Masatsugu Shimomura (Chitose Institute of Science and Technology, The National Institute of Advanced Industrial Science and Technology) ·························································· 94 ・ Wettability on the Snail s Shells with Various Surface Layers Ryota Yamagishi, Hirotaka Maeda*, Daisuke Ishii, Toshihiro Kasuga and Yasutaka Matuo (Nagoya Institute of Technology, Hokkaido University) 95 4) トピックス (PEN より) ・ 鳥類における色彩と機能 公益財団法人山階鳥類研究所 ・ モミジの葉の展開特性 大阪大学基礎工学部 森本 元························································· 97 小林 秀敏、新潟大学工学部 ・ カブトムシにやどる「匠」 国立科学博物館動物研究部 山内 健 ························ 101 野村 周平······················································· 107 6 5) 国内外研究動向紹介 ・ 平成 27 年 7 月 7 日(火) 15-1 バイオミメティクス研究会 「生態系バイオミメティクス持続可能性に向けた新しいトレンド」に参加して 国立研究開発法人産業技術総合研究所 ナノチューブ実用化研究センター 関谷 瑞木··································································································· 115 ・ 平成 27 年 7 月 16 日(木) 科学研究費「生物規範工学」画像検討会(1日目 7/16)について 浜松医科大学 医学部 生物学 高久 康春 ················································· 117 ・ 平成 27 年 7 月 17 日(金) 科学研究費「生物規範工学」全体会議(2 日目 大阪工業大学 工学部 応用化学科 7/17)に参加して 藤井 秀司 ············································· 119 ・ 平成 27 年 7 月 16 日(木)̶17 日(金) 生物規範工学全体会議に参加して 旭川医科大学医学部化学教室 室崎 喬之 ···················································· 121 6) 新聞・報道 ································································································ 124 7) アウトリーチ活動 ······················································································ 126 8) 各種案内 ··································································································· 128 7 (1)巻頭言 8 異分野連携と バイオミメティックスに託す私の夢 総括班 評価グループ 友国雅章(国立科学博物館名誉館員・名誉研究員) この大型プロジェクトの研究期間も余すところ1年半を切り,各研究班の皆さんは 最終報告に向けて各自の研究を加速させておられることと思う.先の中間評価は我々 にとって非常に厳しいものであったが,その後の下村代表をはじめとする関係各位の ご努力や,外部評価委員の研究現場視察の際の適切なご説明などが功を奏して,進捗 状況確認では予想以上の高い評価が得られたことは誠に喜ばしい.一方,その所見で は,総括班がより一層の指導力を発揮して,異分野の融合・連携を一層深めること, A01 班のデータベースを B01 各班が有効に活用すること,および領域として統一的 な学理や方法論にまとめあげることが強く求められている.これらの項目は当プロジ ェクトの当初からの目標でもあるし,次期プロジェクトに繋げるためにもきわめて重 要なテーマである.これらの達成を目指した各位のさらなるご努力を大いに期待する. 私自身は具体的な研究にほとんどタッチせず,文句を言ったり発破をかけたりするば かりで誠に心苦しいが,それがこのプロジェクトにおける私の役目なのでお許し頂き たい. 外部評価委員の指摘にもあるように,「異分野連携」は本プロジェクトの最も重要 なキーワードである.期待されているような成果を上げられるかどうかは,この異分 野連携が目論見どおり機能するかどうかにかかっている.このことについて,私には 9 本プロジェクトの発足当初から強い危惧の念があり,ニュースレター Vol.2, No.1 の 評価委員からのメッセージに私見を書かせていただいた.非常に重要なことだと思う ので,もう一度ここで簡単に触れておきたい. 異分野連携を目指して励んでおられる皆さんのご努力に水を差すようで申し訳な いが,私の見解を有り体に言えば,出来上がった異分野の研究者が共同研究をしても, 本当の意味での異分野連携はうまく機能しないだろうということである.これは皆さ んも大なり小なり実感されているのではないか.では,異分野連携は絵に描いた餅に 過ぎないのだろうか.私はそうは思わない.つまり,すでに独り立ちしている研究者 が,これまで余り意識してこなかった分野の研究に手を出すのは大変辛く,また余り 効率的でもないだろう.それなら,これから独り立ちしようとしている若い研究者を 異分野に通じるように養成すれば良いではないか.それが私の結論である.このこと は他の方もこのニュースレターに書いておられるし,若手研究者の養成は本プロジェ クトの目的のひとつでもある.自分が出来なかったことを次世代の若人に託すのはご く当たり前のことであろう.これを次期プロジェクトの主要課題にして欲しいと私は 考えている. 私には次世代のバイオミメティックスに関してひとつの大きい夢がある.といって も,私はすでに研究の第一線をリタイアした身分であるし,その夢を叶える力もない ので,これは上に述べたような,一人で異分野連携の素養を備えた若い研究者に託す 夢である.それが人工光合成だ. 世界の人口が 70 億を超え,それによりさまざまな地球規模の環境問題が引き起こ されている.この喫緊の課題に対処するため,国連では 1972 年に国際連合環境計画 (UNEP)を設立し,世界の国の政府が「将来の世代の生活の質を損なうことなく自ら の生活の質を改善できるように,環境の保全に指導的役割を果たすこと」を目的に活 動を始めた.その枠組みの中で 1988 年に設立されたのが気候変動に関する政府間パ 10 ネルで,おもに地球温暖化に関する研究の集約とその評価がなされている.さらに, 地球生態系の重要を強く意識した国連は,ワシントン条約やラムサール条約などの先 行取り決めを補完し,生物多様性を保全するために,1992 年に生物多様性条約を採 択した.これらの枠組みの基本理念が,地球の資源や生態系を含めた「持続可能な利 用(sustainable use)」である.これを実現するための最重要の課題はエネルギー問題 だろう.もちろん,そのエネルギーは再生可能なものでなければならない.これが解 決できれば地球温暖化や食料問題など,いくつもの懸案事項がクリアーできそうであ る. 現在,我々が利用しているエネルギー資源の大部分は有限の地球資源である.枯渇 の心配がないにも拘わらず,十分活用されてはいない有望なエネルギー資源が太陽エ ネルギーであることは論を待たない.これを利用するためのアイデアのひとつが人工 光合成だ.今から 27 億年ほど昔の始生代に地球上に現れたとされる酸素発生型の光 合成をするシアノバクテリアから,高等植物に繫がる進化の過程で,光合成のメカニ ズムは高度に発達した.とくに原生の緑色植物は実に効率よく太陽の光エネルギーを 利用して有機物を生産している.この仕組みを模倣することこそバイオミメティック スの最たるものだと思う.まさに植物に学べである. 人工光合成の研究はすでにあちこちで行われており,企業ベースでも真剣に取り組 まれている.しかし,研究資金と人材がまったく足りていないのが現状のようだ.お 金のある所に人も集まる.研究者とて例外ではないだろう.日本政府がこれまで原発 の開発と運用に投資してきた予算の全額とは言わないが,せめて 3 割程度でも人工光 合成を含めた再生可能エネルギーの研究と開発に振り向けてくれれば,状況は一挙に 好転すると私は信じている.そして原発を過去の技術にして貰いたい. 11 (2)産業界からのメッセージ 12 「生物規範工学」への期待 所属班:産学連携グループ 所属機関:(株)LIXIL R&D 本部 分析・評価センター 氏名:井須紀文 「なぜバイオミメティクスですか?」と折々に聞かれる事がある。個人的な見解で はあるが、その回答も含め3つの観点から「生物規範工学」への期待を述べたい。 1.環境負荷低減技術としての体系確立:筆者らは、石田秀輝先生が在社されてい た当時から、環境負荷を下げながら、同時に、商品価値を上げるモノづくりを実現す る研究開発に取り組んでいる。その一つのヒントとして、低いエネルギーをカスケー ド利用しながら物質を非常に効率よく循環している自然や生物の仕組みについて研 究を行っているのであり、生物研究は目的ではなく(冒頭の質問はバイオミメティク ス=生物研究という誤解にある)、環境負荷低減のための手段としてとらえている。 また、研究開発は、ユーザーが単に「つかう」モノだけに留まるのではなく、企業責 任として「つくる」、 「もどす」の各場面においても必要であると考えている。生物規 範工学には、単にモノをつくる工学だけでなく、物質循環、エネルギー循環という観 点も入れた環境負荷低減技術としての体系確立を期待したい。 ISOTC266 の国内委員会では、環境負荷低減に関する評価軸を入れ無ければ ISO の意義が薄れるとして、国際委員会へ提案したものの却下された。しかし、下村先生 はじめ委員の先生方のご尽力で、2015 年 10 月開催の京都での国際委員会において サステナビリィーに関する作業課題が議論される事になった。今後、大いに期待して います。 13 2.生命に学ぶレジリエンス:生物はある環境の中で、住み家、食、天敵という生 態的地位(ニッチ)を得ており、様々なスケールで、ニッチ同士が絶妙なバランスを とって共生しており、環境が変化すればそのバランスは脆くも崩れる。地球が直面し ている人口爆発、温暖化、森林破壊など、極めて短期間のうちに人間により引き起こ された急激な環境変化は、多くの生物種のニッチを危機にさらしており、地球史上6 度目の大量絶滅期に入ったという指摘もある。ただ、生命は 5 度の大量絶滅の危機を 越えて、現在もなお、つなぎ続けられており、そこには何らか生命が持つレジエリエ ンスが働いたものと考えられる。大量絶滅を防ぐためにも、大震災を経験した日本な らではの生命に学ぶレジリエンスな技術創出を期待したい。 3.センス・オブ・ワンダーの伝道:レイチェル・カーソンは幼少の頃に、母親に よる自然の中での教育によって「センス・オブ・ワンダー -自然や生命の神秘さや 不思議さに目をみはる感性-」を身に着け、その後、世界の環境政策を変える事にな る「沈黙の春」を著した。彼女は、世界中の子供にこの感性を身に着けて欲しいと願 い、地球の破滅を免れ自然との共存する「べつの道」を歩むための希望を託していた。 もう 10 年前になるが、沖永良部コンフェレンス(議長:故・柳田博明東大名誉教 授、実行委員長:石田秀輝先生)で、海ガメの生態調査を行っていた沖永良部高科学 部を訪問した。その時の、目をキラキラと輝かせて海ガメや海を語る高校生の姿が今 でも忘れられない。是非とも、研究成果(できればフィールドで)で子供たちにセン ス・オブ・ワンダーの伝道をして頂きたい。 冒頭に戻るが、「バイオミメティクス」とは聞かれても「生物規範工学」と聞かれ る事は少ない。ドイツが先導するバイオミメティクスとは異なる、地球と共生するた めの生物規範工学体系となる事を期待しています。 14 (3)研究紹介 15 Engineering Neo-Biomimetics Ⅵ and Satellite Workshop at Lake Biwa -------------------------------- October 22th (Thu) - 23rd (Fri), 2015 -------------------------------- October 22th (Thu) 島津製作所三条工場内 新本館1F セミナーホール 京都市中京区西ノ京桑原町1 Sanjo Works, Shimadzu Corporation, seminar hall 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan October 23rd (Fri) 滋賀県立琵琶湖博物館 滋賀県草津市下物町1091番地 Lake Biwa Museum 1091 Oroshimo, Kusatsu, Shiga 525-0001, Japan ラ コリーナ近江八幡 滋賀県近江八幡市北之庄町615-1 La Collina Omihachiman 615-1 Kitanosho-cho, Omihachiman, Shiga 523-0806, Japan -------------------------------Organized by Innovative Materials Engineering Based on Biological Diversity, Ministry of Education, Culture, Sports, Science and Technology (MEXT, Japan) 共催:文部科学省 科学技術研究費補助金(新学術領域)「生物規範工学」 Co-organized by Ask Nature Japan 協賛:アスクネイチャー・ジャパン 16 PROGRAM *************************************************************************** October 22th (Thu) 09:30-09:35 Opening Remarks Prof. Masatsugu Shimomura (Chitose Institute of Science and Technology, Japan) 09:35-10:00 Prof. Dr. Heike Beismann (Westfälische Hochschule, Germany) ·································· 21 「Standardization in the Field of Biomimetics An International Challenge」 10:00-10:25 Dr. Naoe Hosoda (NIMS, Japan) ············································································ 23 「Biomimetic Bonding Technology」 10:25-10:50 Prof. Miki Haseyama (Hokkaido University, Japan) ···················································· 25 「Biomimetics Image Retrieval:Connecting Biology and Engineering」 10:50-11:00 Coffee Break 11:00-11:25 Dr. Takashi Okuda (National Institute of Agrobiological Sciences, Japan) ······················· 27 「Challenge to anhydro-preservation of cell line inspired by a desiccation tolerant African insect.」 11:25-11:50 Dr. Stephan Hoornaert (Morpho-Biomimicry.Be, Belgium) ·········································· 29 「FungiUp Cities like Forests: From Coffee Waste Recycling to Sustainability!」 11:50-12:35 Plenary Prof. Takahiko Hariyama(Hamamatsu University School of Medicine, Japan) ·············· 31 「Biomimetic thin membrane, the NanoSuit®, enhancing surface shield effect for living organism in high vacuo」 12:35-14:00 Lunch and Tour of Shimazu 14:00-14:45 Plenary Prof. Julian Vincent (University of Oxford, United Kingdom) ········································ 33 「Trade-offs, Evolution and Biomimetics」 14:45-15:10 Prof. Hidetoshi Kobayashi (Osaka University, Japan) ················································· 35 「A Study of Lily Flower Bud from Mechanical Point of View」 15:10-15:35 Dr. Yael Helfman Cohen (Tel Aviv University, Israel) ··················································· 37 「Introduction of the Structural Biomimetic Design Method」 17 15:35-15:5Ω Coffee Break 15:50-16:15 Dr. Hiroto Tanaka (Teruaki Ikeda, Tetsuya Ueda, Takeo Fujii, Hao Liu) ······················ 39 (Chiba University, Japan) 「Aerodynamic characteristics of flat-plate wings with serrated leading edges modeled on an Ural owl’s primary feather」 16:15-16:40 Prof. Matej Daniel (Czech Technical University in Prague, Czech Republic) ····················· 41 「Biomimetic Design of Hip Joint Replacement」 16:40-17:05 Dr. Takuya Ohzono (AIST, Japan) ··········································································· 43 「Sliding friction on shape-tunable wrinkles」 17:05-17:30 Dr. Kalina Raskin (CEEBIOS, France) ······································································ 45 「Bio-inspired Innovation Implementation in R&D Strategies – A French Landscape Overview」 17:30-18:30 Poster Session October 23rd (Fri) Satellite Workshop of "Engineering Neo Biomimetics VI" at Lake Biwa Museum and "La Collina" 13:30-15:30 Lake Biwa Museum Science tour of the Lake Biwa Museum and discussion on "role of natural history museum for biomimetics" 15:30- leave to "La Collina" by bus 16:30-18:00 "La Collina" A round table discussion on "international collaboration of biomimetics for education, industrial development, and sustainability" 18:00-20:00 Banquet at "La Collina" 18 Poster Session *************************************************************************** October 22th (Thu) 17:30-18:30 1. Preliminary Study on 3D Data Sampling for Internal Morphology of Insects ······················ 47 Shuhei Nomura & Yuta Nakase (National Museum of Nature and Science) 2. The surface structures of suckers and paired-fin pads in teleostean fishes ························ 48 Eri Katayama, Gento Shinohara and Keiichi Matsuura (National Museum of Nature and Science) 3. Development of Antifouling Functional Surface using Biomimicking Microstructure ············· 49 Yasuyuki Nogata (Central Research Institute of Electric Power Industry) 4. Self-Adjustable Adhesion of Polyampholyte Hydrogels ·················································· 50 Takayuki Kurokawa (Hokkaido University) 5. Multi-Functionalities of Moth-eye Film ········································································ 51 Yoshihiro Uozu (Mitsubishi Rayon Co., Ltd, Yokohama Research Laboratories) 6. Formation of corneal nipples in insects ······································································ 52 Ken-ichi Kimura (Hokkaido University of Education, Sapporo Campus) 7. Induction of resistance response of soybean by chemical in the oral secretion of insects ································································· 53 Ryu Nakata (Kyoto University) 8. Chemical sensing system learned from ant sensillum ··················································· 54 Mamiko Ozaki, Masaru K Hojo, Yusuke Takeichi (Kobe University) 9. Development of Functional Material「SLUG」 Artificially Mimicking Biological Secretion System ························································· 55 Chihiro Urata and Atsushi Hozumi (National Institute of Advanced Industrial Science and Technology) 10. Surface design for improving the heat transfer ····························································· 56 Hirotaka Maeda (Nagoya Institute of Technology) 11. Flexible wing-and body-based strategies for bio-inspired flight system: aerodynamics and flight stability ········································ 57 Hao Liu (Chiba University) 12. Construction of a database supporting development of biomimetic products ······················ 58 Takeshi Yamauchi (Niiigata University), Hidetoshi Kobayashi (Osaka University), Toru Kobayashi (Nagasaki University) 13. Biomimetics R&D and Standardization ······································································· 59 Mizuki Sekiya (AIST) 19 14. Water transportation system of sponges····································································· 60 Mirei Tsubaki (Japan Agency for Marine-Earth Science and Technology) 15. Pressure-Sensitive Adhesive Powder ········································································ 61 Syuji Fujii (Osaka Institute of Technology) 16. The NanoSuit® method to observe the living mammalian tissue and cell ··························· 62 Chinatsu Nakane*, Yasuharu Takaku, Masatsugu Shimomura, Takahiko Hariyama (Hamamatsu University School of Medicine, Chitose Institute of Science and Technology) 20 Dr. Heike Beismann, Prof. Department of Mechanical Engineering Biology and Biomimetics Westfälische Hochschule Gelsenkirchen Bocholt Recklinghausen (Westphalian University of Applied Sciences) E-mail: [email protected] Telephone: +49 (0)2871-2155-944 Website: http://www.w-hs.de Address: Münsterstraße 265, 46397 Bocholt, Germany Education & Academic Background 1993 Diploma in Biology, Albert-Ludwigs-University Freiburg, Germany 1994 Research assistant, Albert-Ludwigs-University Freiburg, Germany 1998 Dissertation, Albert-Ludwigs-University Freiburg, Germany 1998-2000 Research assistant, Botanic Intitute, University of Basel, Switzerland 2000-2004 Research assistant, Chair of Vegetation Ecology, Department for Ecology and Ecosystem Management, Weihenstephan, Technische Universität München, Freising. 2004-2009 Scientific employee and leader of Technical Division III, Commission on Air Pollution Prevention of VDI and DIN, VDI - The Association of German Engineers, Düsseldorf, Germany 2009-2012 Secretary VDI-Society Technologies of Life Sciences, VDI – The Association of German Egineers, Düsseldorf, Germany since 2012 Professor, Department of Mechanical Engineering, Westphalian University of Applied Sciences Standardization Work Participant of ISO/TC 266 Biomimetics Convenor of Working Group1 Terminology and methodology of ISO/TC 266 Biomimetics Published International Standards: ISO 18458: 2015 Biomimetics - Terminology, concepts and methodology, ISO 18459:2015 Biomimetics - Biomimetic structural optimization Member of German Standards Committee NA 062-08-60 AA "Bionik”, DIN e.V. Member of Advisory Board Biomimetics, VDI e.V. Published VDI Guidelines for Biomimetics: VDI 6220 – 6226 Recent Publications Züghart W, Beismann H, Schröder W (2013): Tools for a scientifically rigorous and efficient monitoring of genetically modified organisms (GMOs) – VDI Guidelines to ensure high quality of GMO-monitoring data. BioRisk 8: 3-13. Beismann H., M. Finck, H. Seitz (2007): Standardisation of methods for GMO Monitoring on a European level. Journal of Consumer Protection and Food Safety 2, Supplement 1: 76-78. Beismann H. (2006): Measuring the effect of air pollution on the environment with standardized methods. Report of the commission on air pollution prevention of VDI and DIN. In: International Journal of Hygiene and Environmental Health 209 (2): 207–208. Beismann H., Franzaring J. (2006): Standardization of bioindication methods for air quality control in Germany. Environmental Bioindicators 1: 217–222. Finck, M.; Seitz, H.; Beismann, H. (2006): Concepts for General Surveillance: VDI Proposals Standardisation and Harmonisation in the Field of GMO-Monitoring. Journal of Consumer Protection and Food Safety 1, Supplement 1:11–14. 21 Standardization in the Field of Biomimetics An International Challenge Heike Beismann Westphalian University of Applied Sciences Gelsenkirchen, Bocholt, Recklinghausen, Germany E-mail:[email protected] The systematic monitoring of nature and the transfer of complex principles from biology to engineering (biomimetics) has become increasingly important over the last few years. The highly innovative potential of biomimetics makes it extremely attractive to companies. Biomimetics relies on the interaction between biological and technical knowledge, and that is where two different worlds collide. It is obvious that the transfer of knowledge from biomimetics research to technical implementation is key to the companies who have expressed an interest in this area. Successfully transferring knowledge about structures, processes, and the properties of living systems to technical systems requires clear communication, correspondence, and transparency across the disciplines. One way of achieving this goal is to transfer knowledge via standards and guidelines. Standards and guidelines are formulated in a technical language that makes it easier for the engineers involved in the implementation of the idea to grasp the biological aspects. Definitions and common terminology in recognized regulations are a way of establishing biomimetic procedures and manufacturing methods. As a result, standards can represent key elements of the corporate strategy that can be used to demonstrate process and product quality, meet safety standards, and comply with quality standards. Currently the standardization process on an international scale via ISO is underway and is attempting to develop a mutual understanding of the concepts and methods of biomimetics. Collaboration from business representatives is expressly encouraged, as this is the only way that the needs of the industry can be incorporated into the standards. The first ISO standards relating to biomimetics are already published. Additional standards relating to specific topics are in the pipeline. ISO 18458:2015 “Biomimetics Terminology, concepts and methodology” provides an overview of the various areas of application and describes how biomimetic methods differ from classic forms of research and development. This standard also helps to determine from what point a product is to be regarded as biomimetic. ISO 18459: 2015 “Biomimetics - Biomimetic structural optimization” specifies the functions and scopes of biomimetic structural optimization methods. Alltogether, regulations are an important aid in securing the appeal of biomimetics and developing it for companies. 22 Dr. Naoe HOSODA, Prof. Hybrid Materials Unit, Interconnect Design group, Group leader *National Institute for Materials Science (NIMS) **The University of Tokyo E-mail: [email protected] • • • • Telephone: +81 (0)29-860-4529 Fax: +81 (0)29-860-4697 Website: http://www.nims.go.jp/idg Address: 1-1, Namiki, tsukuba, Ibaraki 305-0044, Japan Education & Academic Background • • • • • • Ph.D from Stuttgart University Max-Plank Institute for Metal Research (Germany), (researcher) The University of Tokyo, Research Center for Advanced Science and Technology, (research associate) The University of Tokyo, Department of Precision Engineering (associate professor) National Institute for Materials Science (2003 – present) The University of Tokyo, Department of Precision Engineering (professor/ additional post) Award • • 2000, Micro Electronics Symposium, Best Paper Award 1996, 8th Japan Institute of Metals International Symposium Interface Science and Materials Interconnection, Best Poster Award Recent Publications • R. Tsubaki, N. Hosoda, H. Kitajima, T. Takanashi, “Substrate-Borne Vibrations Induce Behavioral Responses in the Leaf-Dwelling Cerambycid, Paraglenea fortunei”, ZOOLOGICAL SCIENCE Vol.31, (2014) 789–794. • N.Hosoda, "The Mechanisms of Organisms as Eco-Materials Design Tools", J.Kauffman, K.-M.Lee(eds),Handbook of Sustainable Engineering, Springer, 1249-1261, 2013 Naoe Hosoda and Stanislav N.Gorb , “Underwater locomotion in a terrestrial beetle:combination of surface de-wetting and capillary forces”, Proceedings of the Royal Society B, 279, pp.4236-4242, 2012 • Naoe Hosoda and Stanislav N.Gorb,”Friction force reduction triggers feet grooming behaviour in beetles”, Proceedings of the Royal Society B, doi:10.1098/rspb.2010.1772, Published online, 2010, [Proc.R.Soc.B (2011) 278,1748-1752] • Dagmar Voigt, Naoe Hosoda, Jan Schuppert, Stanislav Gorb “On the laboratory rearing of green dock leaf beetles Gastrophysa viridula (Coleoptera: Chrysomelidae)”, 00, 1–6, INSECT SCIENCE, 2010 • E.V.Gorb, N.Hosoda, C.Miksch, S.N.Gorb, “Slippery pores: anti-adhesive effect of nanoporous substrates on the beetle attachment system”, Journal of the royal society interface, 7, 1571-1579, 2010 • P.P. Goodwyn, Y. Maezono, N.Hosoda and K.Fujisaki, “Waterproof and translucent wings at the same time: problems and solutions in butterflies”, Naturwissenschaften, Springer, vol. 96, no. 7, pp. 781-787, 2009 • Naoe Hosoda, “Gecko’s wonder world”, Expected materials for the future, Vol.7,no.4,pp5-7 (2007) • Gerrit Huber, Stanislav N.Gorb, Naoe Hosoda, Ralph Spolenak and Eduard Arzt, “Influence of surface roughness on gecko adhesion”, Acta Biomaterialia,3.4,pp.607-610,2007 • N.Hosoda, T.Suga, S.Obara and K.Imagawa, “UHV-Bonding and Reversible Interconnection”, Transactions of the Japan Society for Aeronautical and Space Sciences,49.166, pp.197-202,2007 • Naoe Hosoda and Stanislav N.Goeb, “Influence of surface energy and roughness on adhesion of the beetle Gastrophysa viridula”, Journal of Biomechanics,391,s349,2006 A.G.Peressadko, N.Hosoda and B.N.J.Persson, ”Influence of Surface Roughness on Adhesion between Elastic Bodies”, Physical Review Letters,95,pp.124301-1 - 124301-4,2005 • • 23 Biomimetic Bonding Technology Naoe Hosoda Hybrid Materials Unit, National Institute for Materials Science Namiki 1-1, Tsukuba, Ibaraki,305-0044 Japan, E-mail:[email protected] A design which enables easy disassembly is an important requirement for environment-friendly products, and interconnection disassembly techniques are the key technology for this purpose. In many cases, conventional joining techniques were developed with importance placed only on high joint strength, resulting in joints which are difficult to disassemble. Thus, while the reliability of the joint in use must be assured, environment-friendly next-generation joining techniques must also consider joint separation. This means that joining methods which combine the apparentlycontradictory elements of resistance to separation and easy disassembly are required. Moreover, with progressive micro-scaling of parts, the development of new joining techniques which do not result in unnecessarily high strength and allow easy disassembly is also required in micro-assembly. The natural world offers valuable suggestions for this purpose. In particular, our attention was drawn to small animals, which are similar in size to micro-machines. Single setae of the attachment device at the tip of the legs of insects such as flies and beetles are several microns in size and has evolved to attach to surfaces by adhesion. Moreover, it is an excellent mechanism for quick, precise, and reversible attachment. We investigated the adhesive characteristics of the attachment device of the terrestrial leaf beetles Gastrophysa viridula. Limit of adhesive ability was found on a surface structure with a nano scale. we have discovered the remarkable ability of the beetle to walk on solid substrates under water. These beetles use air bubbles trapped between their adhesive setae to walk on flooded, inclined substrata or even under water. Inspired by this idea, we designed an artificial silicone polymer structure with underwater adhesive properties. Fig.1 Beetle Gastrophysa viridula. Beetle walking under water. Fig.2 Plastic toy bulldozer adhering to the substrate using structured polymer with trapped air bubbles under water. (a) Air bubbles trapped between pillars of the structured polymer. (b)Substrate slope of 30°. (c).Substrate slope of 90°. 24 Dr. Miki Haseyama, Prof. Graduate School of Information Science and Technology Laboratory of Media Dynamics Hokkaido University E-mail: [email protected] Telephone: +81 (0)11-706-6077 Fax: +81 (0)-706-6077 Website: http://www-lmd.ist.hokudai.ac.jp/ Address: N-14, W-9, Kita-ku, Sapporo, 060-0814, Japan Education & Academic Background 1988 Master of Engineering the Graduate School of Engineering, Hokkaido University 1989-1993 Research Associate, Research Institute for Electronic Science, Hokkaido University 1994-2004 Associate Professor at the Graduate School of Information Science and Technology, Hokkaido University 1995-1996 Visiting Associate Professor, Washington University, USA 2006 Professor, Graduate School of Information Science and Technology, Hokkaido University 2007- Associate member of Information and Communications Council, Ministry of Internal Affairs and Communications, Japan 2008-2010 A Board member/Chief Technical Adviser of the Information Grand Voyage Project, Ministry of Economy, Trade and Industry, Japan 2008- A member of NHK Broadcasting Technology Council, Japan Broadcasting Corporation (NHK) 2011-2013 Vice-President of ITE, Japan 2011- Member of the Science Council of Japan 2013-2014 Director, International Coordination and Publicity, IEICE 2013- Adviser to the President, Hokkaido University Award: Info-Communications Promotion Month Commendations by Director-General of Hokkaido Bureau of Telecommunications, the Ministry of Internal Affairs and Communications in 2014, The Institute of Image Information and Television Engineers, Niwa & Takayanagi Achievement Award in 2015 Recent Publications Miki Haseyama: " Biomimetics Image Retrieval Platform for Enhancing Serendipity," Taxa : proceedings of the Japanese Society of Systematic Zoology, vol. 38, pp. 22-25 (2015) Miki Haseyama: "Biomimetics Data Retrieval Platform for Enhancing Serendipity," Joint international symposium on “Nature-inspired Technology (ISNIT) 2014” and “Engineering Neo-biomimetics V”, pp. 56-57 (2014) Ryosuke Harakawa, Takahiro Ogawa, and Miki Haseyama: "An Efficient Extraction Method of Hierarchical Structure of Web Communities for Web Video Retrieval," ITE Transactions on Media Technology and Applications, vol. 2, no. 3, pp. 287-297 (2014) T. Ogawa, D. Izumi, A. Yoshizaki, M. Haseyama, “Super-resolution for simultaneous realization of resolution enhancement and motion blur removal based on adaptive prior settings”, EURASIP Journal on Advances in Signal Processing 2013, vol. 2013:30, DOI: 10.1186/1687-6180-2013-30 (2013). T. Ogawa, M. Haseyama, “Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme”, IEEE Transactions on Image Processing, 22(3), 1252-1257 (2013). M. Haseyama, T. Ogawa, “Trial Realization of Human-Centered Multimedia Navigation for Video Retrieval” International Journal of Human-Computer Interaction, 29(2), 96-109 (2013). M. Haseyama, T. Ogawa, N. Yagi, “A Review of Video Retrieval Based on Image and Video Semantic Understanding” ITE Transactions on Media Technology and Applications, 1(1), 2-9 (2013). R. Harakawa, T. Ogawa, M. Haseyama, “An Extraction Method of Hierarchical Web Communities for Web Video Retrieval”, 2013 IEEE International Conference on Image Processing (ICIP 2013), 4397-4401 (2013). M. Haseyama, D. Matsuura, “A Filter Coefficient Quantization Method With Genetic Algorithm, Including Simulated Annealing” IEEE Letters on Signal Processing, 13(4), 189-192 (2006). 25 Biomimetics Image Retrieval:Connecting Biology and Engineering Miki Haseyamaa a Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo, 060-0814, Japan, E-mail: [email protected] Biomimetics is a new research area that creates innovation through the collaboration of different existing research fields. Biomimetics therefore brings together expert researchers with deep knowledge of various research fields, and there is a need to facilitate the mutual exchange of their knowledge to create new research areas. However, this exchange is difficult due to several reasons, e.g., differences in technical terms between different fields. In order to overcome this problem, we began the development of a new image retrieval platform. A biological database contains a large number of images, and by taking advantage of this data, we are able to overcome limitations of text-only information retrieval. If such an image retrieval which does not depend on text data is realized, individual biological databases of various species (insects, fish, etc.) will be integrated. This will allow not only the study of the various species by researchers in different biological fields, but also access for a wide range of researchers in fields such as material science and manufacturing. In practice, our “Biomimetics Image Retrieval Platform” is implemented as shown below. The platform enables retrieval without relying on any keywords, and researchers can retrieve novel information from biological image databases by using their own image data. In the presentation, the latest version of the Biomimetics image retrieval platform is introduced, and the actual retrieval results are shown. Based on the results, we will discuss whether the synergy of different research fields is created by Biomimetics Image Retrieval Platform. (b) Example of the retrieved results (a) Interface of the Biomimetics image retrieval Platform Fig. 1 Biomimetics Image Retrieval Platform 26 Dr. Takashi OKUDA, Senior researcher Insect Biomimetics Research Unit National Institute of Agrobiological Sciences E-mail: [email protected] Telephone: +81 (0) 29-838-6157 Fax: +81 (0) 29-838-6157 Website: http://www.nias.affrc.go.jp/anhydrobiosis/Sleeping%20Chironimid/index.html Address: 1-2, Ohwashi, Tsukuba, Ibaraki, 305-8634 Japan Education & Academic Background 1981 Department of Agriculture, Faculty of Agriculture, Gifu University (MSc) 1984 Czechoslovak Academy of Sciences, Institute of Entomology (PhD) 1985 Lecturer at Nagoya Gakuin University 1986 Research fellow at Medical School of Mie University 1987-88 Visiting Research Fellow at International Center of Insect Physiology and Ecology (ICIPE), Kenya 1989 Post-doctoral fellow at Mitsubisi-kasei Life Sciencei Research Institute 1989-present National Institute of Agrobiological Sciences Award: 2001 The Takeda Techno-Entrepreneurship Recent Publications ・ R. Cornette , Kanamori Y, Watanabe M, Nakahara Y, Gusev O, Mitsumasu K, Kadono-Okuda K, Shimomura M, Mita K, Kikawada T, Okuda T “Identification of anhydrobiosis-related genes from an expressed sequence tag database in the cryptobiotic midge Polypedilum vanderplanki (diptera; chironomidae)” Journal of Biological Chemistry 285 (46) : 35889-35899. (2010) ・ O.Gusev, Cornette R, Kikawada T, Okuda T “Expression of heat shock protein-coding genes associated with anhydrobiosis in an African chironomid Polypedilum vanderplanki” Cell Stress & Chaperones (2010) ・ O. Gusev, Nakahara Y, Vanyagina V, Malutina L, Cornette R, Sakashita T, Hamada N, Kikawada T, Kobayashi Y, Okuda T “Anhydrobiosis-associated nuclear DNA damage and repair in the sleeping chironomid: Linkage with radioresistance” PLoS ONE 5(11): e14008 (2010) ・ K. Mitsumasu, Kanamori Y, Fujita M, Iwata K, Tanaka D, Kikuta S, Watanabe M, Cornette R, Okuda T, Kikawada T “Enzymatic control of anhydrobiosis-related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki “FEBS Journal 277(20): 4215–4228 (2010) ・ Y. Kanamori, Saito A, Hagiwara-Komoda Y, Tanaka D, Mitsumasu K, Kikuta S, Watanabe M, Cornette R, Kikawada T, Okuda T “The Trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues” Insect Biochemistry and Molecular Biology 40(1): 30-37 (2010) ・ Y. Nakahara, Imanishi S, Mitsumasu K, Kanamori Y, Iwata K, Watanabe M, Kikawada T, Okuda T “Cells from an anhydrobiotic chironomid survive almost complete desiccation” Cryobiology 60(2): 138-146 (2010) ・T.Shimizu, Kanamori Y, Furuki T, Kikawada T, Okuda T, Takahashi T, Mihara H, Sakurai M “Desiccation-induced structuralization and glass formation of Group 3 late embryogenesis abundant protein model peptides” Biochemistry 49(6) : 1093–1104 (2010) ・ M.Sakurai, Furuki, T., Akao, K., Tanaka D., Nakahara, Y., Kikawada, T, Watanabe M. and Okuda, T. “Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki”Proceedings of the National Academy of Sciences of the United States of America 105(13):5093-5098 (2008) ・ Y.Nakahara, Watanabe M, Fujita A, Kanamori Y, Tanaka D, Iwata K, Furuki T, Sakurai M, Kikawada T, Okuda T “Effects of dehydration rate on physiological responses and survival after rehydration in larvae of the anhydrobiotic chironomid” Journal of Insect Physiology 54(8): 1220-1225 (2008) ・ T.Kikawada, Saito, A., Kanamori, Y., Fujita, M., Snigórska, K., Watanabe, M. Okuda, T.”Dehydration-inducible changes in expression of two aquaporins in the sleeping chironomid, Polypedilum vanderplanki” Biochimica et Biophysica Acta1778 (2): 514-520(2008) ・ T. Kikawada, Saito A., Kanamori, Y., Nakahara, Y., Iwata, K., Tanaka D., Watanabe M. and Okuda, T. “Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells” Proceedings of the National Academy of Sciences of the United States of America 104(28): 11585-11590 (2007) 27 Challange to anhydro-preservation of cell line inspired by a desiccation tolerant African insect Takashi Okuda National Institute of Agrobiological Sciences 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan, E-mail:[email protected] Upon dehydra on 60 80 50 70 Water content (%) Glycogen or trehalose content (µg / individual) “Life and death are mutually exclusive states”. But some organisms which can be completely desiccated, and show no signs of living are nevertheless able to resume active life upon rehydration. This peculiar biological state is termed “anhydrobiosis”. Larvae of the Sleeping Chironomid Polypedilum vanderplanki, living in temporary rock pools in Africa are able to achieve anhydrobiosis. We have been elucidating the mechanism and found several molecules responsible for the extreme desiccation tolerance such as trehalose, LEA proteins, anti-oxidative molecules, DNA repair enzymes and so on (Fig.1). Now we are under challenge to establish a anhydro-preservation method of cells or tissues inspired by the desiccation tolerance mechanism of the African midge. As the first step we generated a cell line originated from P. vanderplanki embryo, i.e. Pv11 cells which also can stand complete desiccation to such an extent that some cells had survived after rehydration, but none of the cells proliferated. Lately we improved the dehydration method so that we could achieve storage of the Pv11 cells for about 200 days at room temperature and followed by the perfect proliferation upon rehydration (Fig.2). The Pv11 cell line could be an excellent tool for further analysis of desiccation tolerance mechanism and also contributing to applied sciences including establishment of the anhydro-preservation technology. 60 40 50 Glycogen Trehalose Water 30 20 40 30 20 10 10 0 Rehydra on 0 8 16 24 32 Desiccation (h) 40 48 70 Content (µg/individual) Dehydra on 0 Upon rehydra on 60 50 40 30 Trehalose Glycogen 20 10 0 0 8 16 24 32 40 Hours after rehydration Fig.1 Anhydrobio c African Chironomid Significance of trehalose as a compa ble solu on 28 48 Fig.2 Anhydro-preservable Pv11 Image: 3hrs a er rehydra on Stephan Hoornaert Morpho-Biomimicry; FungiUp Project E-mail: [email protected] Telephone: +32 (0) 486 477 015 Fax: +32 (0) 425 966 600 Website: http://www.morpho-biomimicry.be Address: 23 Avenue Francisco Ferrer, B-4030 liege Education, Academic Background and professional experiences 1996 Licence in Zoological Sciences; End of Study work: « Caractérisation de l’apoptose induite par le virus de l’herpes Bovin-1» (Département d’Immunologie, Faculté de médecine vétérinaire, Liège University, Belgium) 1997-1999 Research assistant. Study of the effect of EMF on foetal rat hippocampus neuron primary culture. (European Graduate School of Neuroscience (EURON) de Maastricht, NL and Neuropharmacology unit, Institut de Pathologie, Liege University, Be) 2000 Certifications in network management: Microsoft Certified Engineer & database management (Centre Corail & IBT, Liège,Be) 2000-2003 Research assistant. Study of the potential inhibitory effect of anti-inflammatory drugs on IL1b production (Unité de recherche sur l’Os et le Cartilage, Institut de Pathologie, Liege University, Be) 2004 Certification in environmental management, End of Study work: « Guide pour un développement durable en milieu urbain» (Haute Ecole Commerciale, Liège) 2005 Creation of the first Apollo prototype “water for all” to produce drinkable water (Matara, Sri Lanka). 2005-2006 Agregation of the superior secondary school (AESS) (University of Liège, Be) 2006 Feasibility study to install a water treatment at the "colline des projets" (NGO Alliance pour un Développement Durable, Kinshasa, R.D.Congo) 2006-2007 Professor of Biology at the secondary level, Collège D.I.C. de Liège 2007-2008 Professor of Sciences at the secondary level, Institut Marie-Thérèse Liège 2009 Formation in communication for environment and sustainable development at the Centre d’Enseignement et de Recherche pour l’Environnement et la Santé (CERES, University of Liège) 2009-2010 Professor at the secondary level, Institut St Remacle Stavelot 2010 English intensive courses, Kaplan International College (Level Advanced, London) 2011 CreaPME Formation: Redaction of a business plan : Apollo & Morpho project in relation with biomimicry 2011-2012 Research assistant at the chemical oceanography unit (department astrophysics, Geomatic and Oceanography (Liege University) 2011-2013 Certification: Help in relationship using touch (Espace de ressourcement, Liege, Be) 2012 Biomimicry consultancy for the Belgian Owl (www.belgianwhisky.com,) 2012 Biomimicry consultancy for Sarah Santin, eco-designer (sarahsantin.be, award from the Walloon region) 2013-2014 Professor of Sciences and Social sciences in immersive courses at the St Louis College (Liege, Be) 2014 Development of the FungiUp project at the Centre de Technologie Agronomique de Stree Congress and presentations 1996 S. Hoornaert, E. Hanon, M. Lambot & P.P. Pastoret. Congress: “Characterization of Bovine Herpesvirus-1 Induced Apoptosis”. Third Benelux congress of zoology (Namur, Be) 1997 S. Hoornaert, D. Terwel, D. Delapierre, H.W.M. Steinbusch & A. Dresse. Presentation: “Effect of electromagnetic fields on brain cells: Study of the expression of c-fos in primary culture”. Second scientific meeting of Belgian Bioelectromagnetic group (Bruxelles, Be) 1998 Seminaries: Autumn School Prion’s Disease, Alzheimer’s Disease, Apoptosis and Cell Death (MRC Cambridge Centre for Brain Repair, Cambridge, UK) 1998 EKN Symposium: Regulation of Synaptic Transmission (Amsterdam, NL) 2005 S. Hoornaert. Exposition: “Sri Lanka: Ceci cela”. To finance water analysis in SriLanka (Liège, Be) 2005 O. Bonfond & S. Hoornaert. Presentation: “Le Développement Durable : du Global au Local” (Liège, Be) 2009 S. Hoornaert & S. Dupont. Conference: Introduction à des notions de techniques de relaxation: Le massage cervico-facial et autres techniques de relaxation en rapport avec la respiration et la phonation. (Haute Ecole Robert Schuman, Libramont, Be) 2013 S. Hoornaert & J. Engerisser: Biomimicry and the Blue Economy (Liege, Be) 2014 S. Hoornaert, J.Engerisser & JF Pecheur: FungiUp (Liege, Be) 29 FungiUp Cities like forests: From coffee waste recycling to sustainability! Stephan Hoornaert, Jurgen Engerisser, Guillaume Lamon & Jean-François Pecheur Centre de Technologie Agronomique de Stree 16 rue de la Charmille 4577, Stree, Belgium [email protected] In a world of less energy and resources, Biomimicry uses Nature as a Mentor to solve actual problems. Cities may be considered as organisms and the study of its metabolism may lead to systems optimization and sustainability using an ecosystemic approach. The objective is to establish complete ecosystem fulfilling human basic needs (food, drinkable water, energy, oxygen…). Coffee waste is actually used for the production of high quality mushroom (Pleurotus ostreatus). Production may be diversified and other organic waste tested. Champost (rest of mushroom production) is also actually tested for biomethanization, compost production and treatment of polluted soils. The firsts results are promising. Next step is the recycling of containers as urban mushroom production unit toward establishment of complete ecosystems. This will lead to a better comprehension on how ecosystems works, will help rehabilitating polluted soils and promote sustainability. The positive side effects will be the establishment of innovative processes in urbanization and will also help our comprehension about deep space ecology. We are looking for partners and funds. 30 Dr. Takahiko HARIYAMA, Prof. Department of Biology, Faculty of Medicine, Hamamatsu University School of Medicine E-mail: [email protected] Telephone: +81 (0)53-435-2317 Fax: +81 (0)53-435-2317 Website: http://www.hama-med.ac.jp/uni_education_igakubu_igaku_seibutsu.html Address: 1-20-1, Handayama, Higashi-ku, Hamamatsu 43103192, Japan Education & Academic Background 1979 Graduated from Department of Biology at Yokohama City University 1982 Master of Biology, Marine Biology, Graduate School of Biology, Okayama University 1983 Research Associate, Research Center for Applied Information Sciences, Tohoku University 1989 Visiting Research Fellow of Institute of Australian National University 1990 Doctor of Science, Kyushu University 1990 Visiting Research Fellow of Waikato University (New Zealand) Research Fellow in Antarctica (Scott Base) 1993 International Centre of Insect Physiology and Ecology (Kenya) 1994 Visiting Research Fellow of Helsinki University (Finland) 1998 Visiting Research Fellow of Groningen University (Nederland) 2001 Associate Professor, Department of Biology, Faculty of Medicine, Hamamatsu University 2002 Visiting Professor of Firenze University (Italy) 2004 Professor, Department of Biology, Faculty of Medicine, Hamamatsu University Recent Publications Y. Takaku, H. Suzuki, I. Ohta, T. Tsutsui, H. Matsumoto, M. Shimomura, T. Hariyama “A 'NanoSuit' surface shield successfully protects organisms in high vacuum: observations on living organisms in an FE-SEM”, Proc. Biol. Sci., 282(1802), pii: 20142857, (2015). I. Ohta., Y. Takaku, H. Suzuki, D. Ishii, Y. Muranaka, M. Shimomura, T.Hariyama, “Dressing living organisms in a thin polymer membrane, the NanoSuit, for high-vacuum FE-SEM observation”, Microscopy, 1-6 (2014) T. Ueta, G. Fujii, G. Morimoto, K. Miyamoto, A. Kosaku, T. Kuriyama, T. Hariyama “Numerical study on the structural color of blue birds by a disordered porous photonic crystal model”, EPL, 107(3), 34004 (2014) M. Tani, D. Ishii, S. Ito, T. Hariyama, M. Shimomura, K. Okumura “Capillary rise on legs of a small animal and on artificially textured surfaces mimicking them”, PLoS One, 9(5), e96813 (2014) H. Suzuki, Y. Takaku, I. Ohta, D. Ishii, Y. Muranaka, M. Shimomura, T. Hariyama “In situ preparation of biomimetic thin films and their surface-shielding effect for organisms in high vacuum” PLoS ONE, 8(11): e78563. doi:10.1371/journal.pone.0078563 (2013) Y. Takaku, A. Suzuki, I. Ohta, D. I shii, Y. Muranaka, M. Shimomura, T. Hariyama “A thin polymer membrane, nano-suit, enhancing survival across the continuum between air and high vacuum” Proc. Natl. Acad. Sci. USA. 110(19): 7631-7635 (2013) D. Ishii, H. Horiguchi, Y. Hirai, H. Yabu, Y. Matsuo, K . Ijiro, K. Tsujii, T. Shimozawa, T. Hariyama, M. Shimomura “Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces” Scientific Reports 3 : 3024 | DOI: 10.1038/srep03024(2013) D. G. Stavenga, H.L. Leertouwer, T. Hariyama, H. A. De Raedt, B. D. Wilts “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins” Plos one, 7(11) (2012) S. Yoshioka, S. Kinoshita, H. Iida, T. Hariyama “Phase-Adjusting Layers in the Multilayer Reflector of a Jewel Beetle” J. Phys. Soc. Jpn., 81(5), 054801-7 (2012) D. G. Stavenga, Bodo D. Wilts, Hein L. Leertouwer, T.Hariyama, “Polarized Iridescence of the Multilayered Elytra of the Japanese Jewel Beetle, Chrysochroa fulgidissima” Phil. Trans. R. Soc. B 366, 709–723 (2011) A. Ugolini, G. Borgioli, G. Galanti, L. Mercatell, T. Hariyama, “Photoresponses of the Compound Eye of the Sandhopper Talitrus saltator (Crustacea, Amphipoda) in the ultraviolet-blue range” Biol. Bull. 219, 77–79 (2010) 31 Biomimetic thin membrane, the NanoSuit®, enhancing surface shield effect for living organism in high vacuo Takahiko Hariyamaa,, Hideya Kawasakib, Hiroshi Suzukic, Chinatsu Nakanea, Satoshi Hirakawad, Isao Ohtae, Daisuke Ishiif,, Masatsugu Shimomura,g, and Yasuharu Takakua Departments of aBiology, bRegenerative and Infectious Pathology, cChemistry, Dermatology and eLaboratory for Ultrastructure Research, Research Equipment Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu 431-3192, Japan f Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan g Faculty of Photonic Science, Chitose Institute of Science and Technology, 75865 Bibi, Chitose, Hokkaido 066-8655, Japan d E-mail: [email protected] Scanning electron microscopy (SEM) has made remarkable progress, and has become an essential tool for observing biological materials. However, they are required to be completely dry, since the specimen chamber is at high vacuum. The living softbodied organisms require chemical fixation and following various complex procedures to preserve and stabilize their structure. Here we demonstrate a new method with which living organisms can be observed by a field emission SEM. Using this method, active movements of living animals were observed in vacuo (10-3-10-7 Pa) by protecting them with a coating of “biomimetic thin membrane”, the NanoSuit®, and it was found that the surface fine structure of living organisms is very different from that of traditionally treated samples. The “biomimetic thin membrane” acts as a flexible ‘Nano-spacesuit’ barrier to the passage of gases and liquids and thus protects the organism. After observation of living organisms, despite the high vacuum it was possible to rear many of them subsequently in normal culture conditions. This method will be useful for numerous applications, particularly for electron microscopic observations in the life sciences. A living Drosophila larva was exposed in high vacuo and showed active movement for 60 min (a-c). Before SEM observation, a different larva (light micrograph in (f)) was introduced into the observation chamber without electron-beam irradiation. It was collapsed thoroughly when observed by SEM subsequently (g). TEM images of vertical sections through the surface of each animal are shown in (d) and (h). The layer between the arrowheads in (d) shows the newly formed outer membrane, not present in (h). 32 Julian FV Vincent, Professor HochSchüle Rhein-Waal (Hon. Prof.) University of Oxford (Senior Research Assoc.) Clemson University (Adjunct Prof.) e-mail: [email protected] tel: +44 1225 835076 Education & Academic Background 1965 1968 1968 1970 1971 1982 1987 1990 1991 1993 1998 1997 1999 2000 2001 2004 2007 Natural Sciences, University of Cambridge BA (2i) Insect Physiology, University of Sheffield PhD Lecturer in Zoology, University of Reading Elected Fellow of the Royal Entomological Society FRES University of Cambridge MA Studies on Insect Cuticle, University of Sheffield DSc 3 MIM Professional Member, Member of The Institute of Materials Prince of Wales Environmental Innovation Award Established Centre for Biomimetics (with G Jeronimidis) Senior Lecturer, University of Reading Part-time Lecturer, Royal College of Art Elected Fellow of the Royal Society of the Arts FRSA Professor of Biomimetics, University of Reading Professor of Mechanical Engineering, University of Bath Director, Centre for Biomimetic and Natural Technologies, U. Bath Honorary Professor of the University of Jilin, China Avocational Lecturer at the Steinbeis University, Berlin Appointed as a Chartered Engineer CEng Admitted to Fellowship of the Institute of Mechanical Engineers FIMechE 2010 First President of the International Society of Bionic Engineering 2011 Mount Changbai Friendship Award, Jilin Province, China 2014 Honorary Professor of Bionics, HochSchüle Rhein-Waal Senior Research Associate in Zoology, University of Oxford Adjunct Professor, Dept of Engineering and Materials, Clemson University Recent Publications P Riggs, A Bowyer & JFV Vincent (2010). Advantages of a biomimetic stiffness profile in pitching flexible fin propulsion. J. Bionic Engng. 7, 113-119. JFV Vincent (2010). New materials and natural design. In Bulletproof Feathers (ed. R Allen). University of Chicago Press, pp. 132-171. L Frasson, SY Ko, A Turner, T Parittotokkaporn, JFV Vincent, & F Rodriguez y Baena (2010). STING: a soft-tissue intervention and neurosurgical guide to access deep brain lesions through curved trajectories. Proc. I. Mech. E., Part H, 224, 775-788 Vincent, JFV (2012) Structural Biomaterials. (3rd Edn.) Princeton: University Press JFV Vincent (2012). How can biology inform architects? In Design Innovation for the Built Environment (ed. Michael U Hensel). Routledge, Oxford. pp. 161-170. JFV Vincent (2013). Building Bio-Ornaments. In What is the architect doing in the Jungle? Biornametics (ed. B Imhof, P Gruber) pp. 54-58. Vincent, JFV (2014). Biomimetics in architectural design Intelligent Buildings International. Vincent, JFV (2014). Biomimetic materials. Materials Experience (ed. E Karana, O Pedgley, V Rognoli). Elsevier, Amsterdam. pp. 235-246 Vincent, JFV (2014). An Ontology of Biomimetics. In: Biologically Inspired Design: Computational Methods and Tools. (ed. AK Goel et al.) New York:. p. 269-285. Sunguroğlu Hensel, D and Vincent, JFV (2015). Evolutionary inventive problem-solving in biology and architecture: ArchiTRIZ and Material-Ontology Intelligent Buildings International 1-20. 33 Trade-offs, evolution and biomimetics Julian Vincent Dept of Zoology, University of Oxford The idea of a trade-off goes back to the ancient Greeks, when Heraclitus pointed out that it was the basis of defining a problem. Hegel called it the dialectic, Engels used the idea to model evolution and Marx applied it to economics. At some point Pareto pointed out that it was something to do with optimisation, and Genrich Altshuller used the same notion in his formulation of TRIZ (Theory of Solving Problems Inventively). The Pareto set is being introduced into ecological theory to model adaptive evolution and (almost) to define “ecological niches” as a series of mutually exclusive trade-offs, which can co-exist in any number. With such a broad set of applications, it should come as no surprise that the trade-off can form the basis of a means of equating biology and engineering, yielding a tool to describe and analyse biomimetics. I’m doing this by generating an ontology, based on TRIZ. Part of the outcome is a series of recommendations for making engineering ‘greener’. 34 Dr. Hidetoshi KOBAYASHI, Prof. Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University E-mail: [email protected]. ac.jp Telephone: +81 (0) 6-6850-6200 Fax: +81 (0) 6-6850-6204 Website: http://fracmech.me.es.osaka-u.ac.jp/days/days.htm Address: 1-3, Machikaneyama, Toyonaka, 560-8531, Japan Education & Academic Background 1980 Master course of Aeronautical Engineering, Kyoto University 1980-1988 Research Associate, Department of Aeronautical Engineering, National Defense Academy 1983-1987 PhD course in Department of Engineering, Reading University, U.K. 1987 PhD from Reading University 1988-2003 Associate Professor, Department of Mechanical Systems Eng., Muroran Institute of Technology 1996 Visiting Researcher, Biomimetics Centre of Reading University, U.K. 2003Professor, Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University Award: 2010 Award of JSMS Committee on Impact 2006 Light Metal Paper Prize, The Japan Institute of Light Metals Recent Publications H. Kobayashi, K. Horikawa, K. Ogawa, K. Watanabe, “Impact compressive and bending behavior of rocks accompanied by electromagnetic phenomena”, Phil. Trans. R. Soc. A, 372, 20130292 (2014) H. Kobayashi1, T. Yamauchi, K. Horikawa, “Mechanical Characteristics of Materials and Structure of Giant Water Lilly Leaf”, 15th IUMRS-Int. Conf. in Asia (IUMRS-IC2014), Fukuoka, August 24-30, 2014 H. Kobayashi, F. Okada, K. Ogawa, K. Horikawa and K. Watanabe, “Strength and Temperature Increase of β -Ti Alloy during Quasi-static and Impact Compressive Deformation”, J. of the Soc. of Mategrials Sci. Jpn., Vol.62, No.9, pp.562-568 (2013). M. Daimaruya and H. Kobayashi, “Impact Behaviour of the Japanese Sword”, Engineering Transactions, Vol.60 Issue 2 (2012), pp.101-112 H. Kobayashi, K. Ogawa, K. Horikawa and K. Watanabe, “Fracture Behavior Accompanying Electromagnetic Waves of Granite in Dynamic Three Point Bending”, J. of Solid Mech. Mater. Eng., Vol.5, No.12 (2011), pp.873-881 K. Horikawa, K. Yamaue and H. Kobayashi, “Response of Hydrogen- Induced Deformation in ZrNi Amorphous Membranes”, Mater. Trans., Vol.51, No.12, (2010), pp.2181-2187. H. Kobayashi, and K. Horikawa, “Deployable Structures in Plants”, Advances in Science and Technology, 58 (2008), pp.31-40 H. Kobayashi, “Deployable Structure Observed in Leaves and Flowers of Plants”, German-Japanese Workshop on Boinics and Nature-Inspired Technology, Nagoya (2005) CD-ROM H. Kobayashi, M. Daimaruya and H. Fujita, “Unfolding of morning glory flower as a deployable structure”, Solid Mechanics and Its Applications, Vol.106, 207-216 (2003) H. Kobayashi, M. Daimaruya and J. F.V. Vincent, “Folding/Unfolding Manner of Tree Leaves as Deployable Structures”, Solid Mechanics and Its Applications, Vol.80, 211-220 (2000) H. Kobayashi, M. Daimaruya and J.F.V. Vincent, “Effect of Crease Interval on Unfolding Manner of Corrugated Tree Leaves”, JSME International Journal (Ser.C), Vol.42 No.3, pp.759-767 (1999) H. Kobayashi, B. Kresling and J.F.V. Vincent, “The Geometry of Unfolding Tree Leaves”, Proceedings of Royal Society London Ser.B, Vol.256, pp.147-154 (1998) 35 A Study of Lily Flower Bud from Mechanical Point of View Hidetoshi Kobayashi*a,d, Takeshi Yamauchib, Keitaro Horikawaa,d and Hirokatsu Aramakic a Graduate School of Engineering Science, Osaka University, b Niigata University and cToyota Industries Corporation, d Machikaneyama, Toyonaka, Osaka, 560-8531, Japan, *E-mail:[email protected] The bud of lily flower has two contradicting roles, one is the role to protect firmly the inside stamen and pistil from the outside environment, the other is to expose them to outside safely at flowering. It is very interesting how lily flower performs these contradicting roles. In this study, the bud of lily was observed by using X-ray CT and optical microscope and projecror, as shown in Fig.1. One of the most interesting things is that the edges of sepals run into the tiny space between petal rib and petal surface. This petal-sepal assembly structure seems to give a good hermetic sealing and to make the protection strong against external environment forces. From the observation, it was found that the sepal is wrapped up inward when it was artificially removed from the fixation parts before flowering (see Fig. 1 Bud of lily flower: (a) side view of bud, Fig.1(c)). This phenomenon gradually (b) cross section of bud and (c) shape change becomes small when the bud grows in length. of sepal cross section from situation in the bud to situation removed from bud. In order to examine the meanings of this change, FEM analysis was carried out. The mechanical characteristics of peral and sepal were investigated by tensile tests to use the data in FEM analysis. Two types of tensile specimen were prepared. One is Lspecimen whose longer side is parallel to the longitudinal direction of petal, and the other one is T-specimen whose longer side is parallel to the transverse direction of petal. From Fig.2, it can be clearly found that the stiffness of petals in the L-direction is more than twice of that of T-pecimen. Fig.2 Stress-strain curves of sepal and petal of lily. 36 Dr. Yael Helfman Cohen Biomimicry IL – Cofounder and CEO Biomimicry Lab, Tel Aviv University - Manager E-mail: [email protected] Telephone: 972-52-2811107 Website: (1) www.findstructure.org (1) www.biomimicry.org.il Address: 54 Hashomer st, Zichron Yacov, POB 1048, 30900, Israel Education & Academic Background 1998 B.Sc in industrial engineering and management, Technion, Israel Institute of Technology 2006 M.Sc. in Management Science, Tel Aviv University 2008 Cofounder and CEO of Biomimicry IL (NGO) 2010 Lecturer of the course "Biomimicry and Organizations", The IDC Interdisciplinary academic center, Herzliya 2010-15 Editor of the Israeli biomimetic on-line journal 2012-15 Member of the Biomimetic ISO international committee, representative of Israel 2013 Seminar "From Bio-Engineering to Biomimetics, Some contributions of Design theory", MINES ParisTech 2014 Head of biomimicry Lab, Tel Aviv University 2014-15 Initiator and organizer or the yearly conference: "Biomimicry-Academy and Industry" 2015 Ph.D in Biomimetic Design, The porter school of environmental studies, Tel-Aviv University. Research title: "Biomimicry design method for innovation and sustainability" 2015 Lecturer of the course "Bioinspired Innovation", ECAST- East China University of Science and Technology, School of Business Recent Publications Helfman, C.Y., Reich, Y., Introduction of the ideality tool for sustainable design. The 20th International Conference on Engineering Design (ICED), Milano, 2015. Weiss, A., Iko, A., Helfman Cohen, Y., Das Amarendra, K., Mazor, G., The ideality what model for product design, in 17th International conference on engineering and product design education, Loughborough, 2015 Helfman, C.Y., Reich, Y., Greenberg. S., Biomimetics: Structure-function patterns approach. Journal of Mechanical Design, 2014. Helfman, C.Y., Reich, Y., Greenberg. S., Sustainability strategies in nature, in 7th Design & nature conference, Opatja, 2014. Helfman, C.Y., Reich, Y., Greenberg. S., Substance field analysis and biological functions, in ETRIA TRIZ future conference, Lisbon, 2012. Helfman, C.Y., Reich, Y., Greenberg. S., What can we learn from biological systems when applying the law of system completeness?. in ETRIA TRIZ future conference, Dublin, 2011. 37 Introduction of the Structural Biomimetic Design Method a Helfman, C.Y. , Reich, Y. a a Tel-Aviv University, E-mail:[email protected] Understanding the relationships between structures and functions is important for engineering design in general and for biomimetic design specifically. In nature, different structures provide a wide range of functions efficiently and with minimal costs. Based on the analyses of 140 biological systems that are derived from biomimetic sources by a TRIZ based method, we provide a list and examples of structure–function patterns that repeat in biomimetic applications. These patterns are presented through a technical lens and a complete system model, serving as engines or brakes of the biological system, exploiting energy sources or blocking them, respectively. This list of structure-function patterns in nature is the core of the structural biomimetic design method, a platform to lead a systematic biomimetic design process. The list provides both keywords for search in general biological databases and mainly leads the search in the FindStructure database, a unique and novel biomimetic database that organizes biological systems not only by functions but also by structures. These structure-function patterns are integrated in a TRIZ system modeling tool, the law of system completeness, providing an abstraction platform for biological knowledge. Sustainability patterns that are also addressed by this design method are beyond the scope of this presentation. Altogether, the structural biomimetic design method suggests a clear design algorithm and tools to transfer knowledge form biology to technology and to promote innovative sustainable designs. Table 1 The patterns table: list of structure–function patterns 38 Dr. Hiroto TANAKA, Research Assistant Professor Shanghai Jiao Tong University and Chiba University International Cooperative Research Center, Chiba University E-mail: [email protected] Telephone: +81 (0)43-290-2945 Fax: +81 (0)43-290-2944 Website: http://icrc.chiba-u.jp/ Address: 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba-ken 263-8522, Japan Education & Academic Background 2003 BS, Department of Mechanical Engineering, Faculty of Engineering, The University of Tokyo 2005 MS, Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo 2008 PhD, Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo 2006-2009 Research Fellow of the Japan Society for the Promotion of Science (DC1), Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo 2009-2011 Postdoctoral Fellow, Harvard School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering at Harvard 2011-Present Research Assistant Professor, Chiba University Award: 2008 Young Scientist Award 2nd Prize in SEB2008, Marseille, France. 2008 Student Presentation Award in 40th Fluid Dynamics Conference/Aerospace Numerical Simulation Symposium (in Japanese), Sendai, Japan 2013 General Biomechanics Best Poster 3rd Prize in SEB2013, Valencia, Spain Recent Publications H. Tanaka, H. Okada, Y. Shimasue, H. Liu, “Flexible flapping wings with self-organized microwrinkles,” Bioinspiration & Biomimetics, 10, 046005, (2015). H. Tanaka, M. Nakamura, Y. Uchida, G. Li, H. Liu, “Hydrodynamics and Energetics in Rapid Acceleration of a Pacific White-sided Dolphin, Lagenorhynchus Obliquidens,” The 6th International Symposium on Aero-aqua Bio-Mechanisms (ISABMEC 2014), Honolulu, Hawaii, USA, 6 pages, (2014) H. Tanaka, H. Suzuki, I. Kitamura, M. Maeda, H. Liu, “Lift generation of hummingbird wing models with flexible loosened membranes,” 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), Tokyo, Japan, pp. 3777-83, (2013) H. Takahashi, H. Tanaka, K. Matsumoto, I. Shimoyama, “Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing,” Bioinspiration & Biomimetics, 7, 036020 (2012). H. Tanaka, J. P. Whitney, R. J. Wood, “Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight,” Integrative and Comparative Biology, 51, 142-150 (2011). H. Tanaka, R. J. Wood, “Fabrication of corrugated artificial insect wings using laser micromachined molds,” Journal of Micromechanics and Microengineering, 20, 075008 (2010). H. Tanaka, I. Shimoyama, “Forward flight of swallowtail butterfly with simple flapping motion,” Bioinspiration & Biomimetics, 5, 026003 (2010). H. Takahashi, Y. Aoyama, K. Ohsawa, H. Tanaka, E. Iwase, K. Matsumoto, I. Shimoyama, "Differential Pressure Measurement Using A Free-Flying Insect-Like Ornithopter with A MEMS Sensor," Bioinspiration & Biomimetics, 5, 036005 (2010). E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, R. J. Wood, “Programmable matter by folding,” Proceedings of the National Academy of Sciences, 107, 12441-12445 (2010). H. Tanaka, K. Matsumoto,I. Shimoyama, “Fabrication of a three-dimensional insect-wing model by micromolding of thermosetting resin with a thin elastmeric mold,” Journal of Micromechanics and Microengineering, 17, 2485-2490, (2007). 39 Aerodynamic characteristics of flat-plate wings with serrated leading edges modeled on an Ural owl's primary feather Hiroto Tanakaa,b, Teruaki Ikedab,c, Tetsuya Uedab, Takeshi Yamasakid, Yasuko Iwamid, Takeo Fujiib,c, Hao Liua,b a SJTU-CU ICRC, Chiba University Graduate School & Faculty of Engineering, Chiba University c Teral Inc. d Yamashina Institute for Ornithology a,b 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan, b E-mail: [email protected], [email protected] Owls are birds of prey well known for their capablitiy of silent flight. The wings posess distinctive serrations at the leading edge, which are frequently assumed to be a key-appratus for the silent flight. The leading-edge serrations, however, could control airflow around the wings for flight behavior rathar than noise reduction, and the actual functions of the leading-edge serrations are still controversial. In this study, aerodynamic force measurement and PIV (Particle Image Velocimetry) of the 10th primary feather (the leading-edge feather of the wing) of an Ural owl and artificial feather models were performed in a wind tunnel to investigate the aerodynamic effects of the leading-edge serrations of the owl wings. The mean chord length of the owl feather used here was 28.6 mm and that of the models was 30 mm. The lengths of the artificial serrations were 0, 3, 6 mm and the spacing was 1 mm (figure 1). The wind velocity was set at 3 and 5 m/s. The force measurements revealed that lift slopes (a slope of a lift coefficient to angle of attack curve) of both the owl feather and the artificial models with serrations were moderate, while that of the model without serrations showed rapid change around 10-degrees angle of attack. The PIV results demonstrated that the serrations suppressed velocity fluctuations in separated flow when the angle of attack was larger than 10 degrees (figure 2). These results indicate that the leading-edge serrations are likely capable to enhance the robustness of the lift generation at large angle of attack. Figure 1 10th primary feather of an ural owl and artificial feathers Figure 2 Velocity fluctuations around the artificial feather with 0-mm and 6-mm serrations. Angle of attack was 20°. 40 Dr. Matej DANIEL, Assoc. Prof. Department of Mechanics, Biomechanics and Mechatronics Faculty of Mechanical Engineering Czech Technical University in Prague E-mail: [email protected] Telephone: +420 224-352-518 Fax: +420 233-322-482 Website: http://biomechanics.cz Address: Technicka 4, 16600 Prague, Czech Republic Education & Academic Background 2001, M.Sc in Biomedical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Slovakia 2004, Ph.D. in Biomechanics, Czech Technical University in Prague, Prague, Czech Republic 2004-2006, Research and Teaching Assistant, Technical University of Ko sice, Ko sice, Slovakia 2006, Junior Researcher, University of Ljubljana, Ljubljana, Slovenia 2006-2009, Senior researcher, Laboratory of Biomechanics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic 2009, Senior researcher, Laboratory of Biomechanics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic 2011, Fullbright Visiting Scholar, University if Iowa, Iowa, USA 2014-, head of Laboratory of Biomechanics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic 2009-, Bulletin of Applied Mechanics, editor-in-chief 2011-2014, Principal investigator, Project of Technological agency of Czech Republic: New materials and surface layers for bionic design of joint replacement Awards: Slovak Medical Society, Medal for biomechanics development, Bratislava, Slovakia, 2011 Societe Internationale de Recherche Orthopedique et de Traumatologie, Poster Award, Buenos Aires, Argentina, 2006 Siemens AG, Werner von Siemens Excellence Award, Prague, Czech Republic, 2005 Zvonicek Foundation, 1st prize of the Zvonicek Foundation for the best doctoral thesis, Prague, Czech Republic, 2005 Human Biomechanics Foundation, Prize of Prof. Valenta and Prof. Cihak for a young researcher in biomechanics, Prague, Czech Republic, 2004 Recent Publications Horný, L. - Netušil, M. - Daniel, M.: Limiting extensibility constitutive model with distributed fibre orientations and ageing of abdominal aorta. Journal of the Mechanical Behavior of Biomedical Materials. 2014, vol. 38, p. 39-51. Daniel, M. - Řezníčková, J.: Energy of Quantum Dots Encapsulated in Biological Membrane. Procedia Engineering. 2014, vol. C, no. 79, p. 137-142. ISSN 1877-7058. Hikov, T. - Mitev, D. - iglic, A. - Presker, R. - Daniel, M. - et al.: Studying the influence of nanodiamonds over the elasticity of polymer/nanodiamond composites for biomedical application. Journal of Physics: Conference Series. 2014, vol. 1, no. 558, art. no. 012060, p. 1-6. ISSN 1742-6588. Mareš, T. - Daniel, M. - Iglič, A. - Kralj-Iglič, V. - Fošnarič, M.: Determination of the Strength of Adhesion between Lipid Vesicles. The Scientific World Journal. 2012, vol. 2012, no. 1, art. no. 146804, p. 1-6. Daniel, M.: Boundary cartilage lubrication: review of current concepts. Wiener Medizinische Wochenschrift. 2013, vol. 164, p. 88-94. Elkins, J. - Daniel, M. - Pedersen, D. - Singh, B. - Yack, HJ - et al.: Morbid Obesity May Increase Dislocation in Total Hip Patients: A Biomechanical Analysis. Clinical Orthopeadics and Related Research. 2013, vol. 471, no. 3, p. 971-980. 41 Biomimetic design of hip joint replacement Matej DANIEL Department of Mechanics, Biomechanics and Mechatronics Faculty of Mechanical Engineering Czech Technical University in Prague Technicka 4, 16600 Prague, Czech Republic E-mail:[email protected] Primary and revision joint replacement market growth is expected to be driven by increasing demand for joint replacements as the “baby boom” generation nears retirement and an increasing number of younger patients undergo joint replacement procedures. Today orthopedic joint replacement market is at a crossroads between timetested conventional procedures with limited lifetime and advanced implant design and materials to match these socioeconomical changes. The possible way how to address these challenges is to apply methods of biomimetic design. The field of arthroplasty strongly need a multidisciplinary approach based on better understanding the natural design of physiological synovial joint and application of these methods in artificial joint replacement using advanced engineering materials and designs. The aim of this lecture is to present selected problems of hip arthroplasty at various levels: from whole joint replacement to tissue-surface interaction and their possible solutions originating from biomimetic design. Two principal problems of joint replacement are discussed: stress shielding and polyethylene wear. Stress shielding in femur occurs when some of the loads are taken by prosthesis and shielded from going to the bone. Femur bone remodeling and bone loss occurs after hip replacement surgery as a result of bone unloading. Bone loss and cortical thinning eventually lead to joint prosthesis failure. Therefore a prosthesis that would restore normal force transfer in hip joint is required. There exists two principle solutions: either shorter femoral stem that would restore normal load to the rest of the femur or biomimetic material that would match the bone stiffness. Each of the following solution has its disadvantages and the possible solution may be in application of novel design drawn after consideration of healing phenomena in bone. Another great problem in joint replacement is wear. Wear in total joint replacements is caused by relative motion under load at articulating surfaces or at interfaces between modular metal-on-polyethylene components. Osteolysis induced by particulate wear debris from implant materials has been recognized as the major cause of long-term failure in total joint replacements. However, the development of preventive measures for this phenomenon has not been successful because the mechanism in which wear particles cause osteolysis is not quite clear. The possible solution would be in further understanding of natural hip contact mechanics that is far from ball-and socket joint of joint replacement and application of design that would mimic this mechanics. 42 Dr. Takuya OHZONO, Group Leader Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) E-mail: [email protected] Telephone: +81 (0)29-861-2865 Fax: +81 (0)29-861-0000 Website: https://unit.aist.go.jp/ischem/en/en/teams/index.html Address: Cntr.5 1-1-1 Higashi, Tsukuba 305-8565, Japan Education & Academic Background 1995 1997 2000 2000-2001 2001-2007 2007-2010 2010-2014 2014-2015 2015- Graduated from School of Bioscience and Biotechnology, Tokyo Institute of Technology Master of Engineering, School of Bioscience and Biotechnology, Tokyo Institute of Technology Doctor of Engineering, Tokyo Institute of Technology Postdoctoral Researcher, Mechanical Science and Engineering Lab., Surface properties group, National Institute of Standards and Technology (NIST), US Researcher, Frontier Research System, RIKEN Institute, Japan Researcher, Nanotechnology Research Institute (Kansai), National Institute of Advanced Industrial Science and Technology (AIST), Japan Group Leader, Soft Mechanics Group, Nanosystem Research Institute (NRI), AIST, Japan R&D Division, Industrial Science and Technology Policy and Environment Bureau, Ministry of Economy (METI), Japan Group Leader, Dynamic Functional Materials Group, Research Institute for Sustainable Chemistry, AIST, Japan Award: 2013 Honda Memorial Young Researcher Award. Recent Publications T. Ohzono, T. Yamamoto, J. Fukuda, “Liquid Crystalline Chirality Balance for Vapours” Nat. Commun. 5, 3755, 2014. K. Suzuki, Y. Hirai, T. Ohzono, “Oscillating Friction on Shape-Tunable Wrinkles” ACS Appl. Mater. Interface, 6, 10121, 2014. T. Ohzono, Y. Hirai, K. Suzuki, M. Shimomura, N. Uchida, “Reinforced Shape-Tunable Microwrinkles Formed on a Porous-Film-Embedded Elastomer Surface”, Soft Matter, 10, 7165, 2014. T. Ohzono, K. Suzuki, T. Yamaguchi, N. Fukuda “Tunable Optical Diffuser Based on Deformable Wrinkles” Adv. Opt. Mater. 1 374, 2013. T. Ohzono, Y. Takenaka, J. Fukuda, “Focal conics in a smectic-A liquid crystal in microwrinkle grooves” Soft Matter 8, 6438, 2012. T. Ohzono, J. Fukuda, “Zigzag line defects and manipulation of colloids in a nematic liquid crystal in microwrinkle grooves” Nat. Commun., 3, 701, 2012. T. Ohzono, H. Monobe, “Microwrinkles: Shape-tunability and applications” J. Colloid. Interface. Sci., 368, 1, 2012. H. Monobe, T. Ohzono, H. Akiyama, K. Sumaru, Y. Shimizu, “Manipulation of Liquid Filaments on Photoresponsive Microwrinkles” ACS Appl. Mater. Interface, 4, 2212, 2012. T. Ohzono, H. Monobe, K. Shiokawa, M. Fujiwara, Y. Shimizu, “Shaping liquid on a micrometre scale using microwrinkles as deformable open channel capillaries” Soft Matter, 5, 4658, 2009. T. Ohzono, H. Monobe, R. Yamaguchi, Y. Shimizu, H. Yokoyama, “Dynamics of surface memory effect in liquid crystal alignment on reconfigurable microwrinkles” Appl. Phys. Lett., 95, 014101, 2009. T. Ohzono, M. Shimomura, “Ordering of microwrinkle patterns by compressive strain” Phys. Rev. B, 69, 132202, 2004. 43 Sliding Friction on Shape-Tunable Wrinkles Takuya Ohzonoa*, Kosuke Suzukia, Yuji Hiraib a Research Institute for Sustainable Chemistry, AIST Department of Applied Chemistry and Bioscience, Chitose Inst. Sci. Tech. E-mail: [email protected] a The excellent performance of soft-microstructures on living surfaces in terms of their adhesion and friction has attracted considerable attention, as these are key elements in many tribological applications. The enhanced adhesion and reversible control of gripping in living surfaces are attributed to the deformation of the soft-microstructures in the attachment surface (e.g., seta, spatula, hexagonal cell, and fingerprint). Herein, we consider a system, in which a soft-microstructure is dynamically tunable, to further explore the possibility of dynamic controlling of, e.g., friction, adhesion, and lubrication. As a model system of the shape-tunable softmicrostructures found in living systems, the buckling-induced wrinkles are attracted attention, which is generated on a compressed elastomer having a hard top layer. The wrinkles show a wide variety of periodically-undulated structures, depending on the material, while also allowing the alignment direction of the grooves (or crests) and the sinusoidal shape to be varied. On this point of view here we show recent results of friction experiments on two different wrinkled surfaces; wrinkles on a polyimide (PI) film atatched to a polydimethylsiloxane (PDMS) elastomer with the wrinkle wavelength of hundreds of micrometers: PI-system [1], and those on a PDMS surface, underneath which a microporous film is embedded to harden the surface effectively, with the wrinkle wavelength of tens of micrometers: PDMS-system [2,3]. In both cases the anisotropic wrinkles can be induced by adding strain and the amplitude are tunable in a certain range. The main difference of two experimental systems is the scale of the wrinkle periodicity. Using an indentor for the friction tests as the counter slider having a round shape with the diameter of 1 mm for PI-system or of 5 mm for PDMS one, different frictional results are expected on two wrinkle systems because the size of the indentor is comparable to that of the wrinkle periodicity for the PI wrinkles and is much larger for the PDMS wrinkles. The main results of the normal-load-dependent average friction forces on the wrinkled and the flat surfaces are shown in Figure 1. On the PI surface the friction force increases (~+20%) when the surface is wrinkled (Figure 1a). On the other hand, the friction decreases on the PDMS surface (~-20%) when the surface is wrinkled (Figure 1b). On the PI wrinkles, the indenter tip can be stacked between the crests of wrinkles during the sliding and expect the resistance from one crest ahead to lay over it. This may be explained by socalled Coulombic interlocking and/or the elastic plowing mechanism [1 and references therein]. On the PDMS wrinkles, however, the indenter must make contacts with multiple wrinkle crests. Consequently, the total area of contacts decreases and the stick-slip event becomes easy to occur, leading to reduction of friction through the Bowden-Tabor’s adhesive friction model [3]. We believe that these results will be helpful to understanding and analyzing the tribological phenomena associated with soft deformable living surfaces, as well as the development of new mechanically-functional surfaces for soft composite materials. We thank KAKENHI (Grant No. 24120003) for their supports. [1] K. Suzuki, Y. Hirai, T. Ohzono, ACS Appl. Mater. Interface, 6, 10121, 2014. [2] T. Ohzono, Y. Hirai, K. Suzuki, M. Shimomura, N. Uchida, Soft Matter, 10, 7165, 2014. [3] K. Suzuki, Y. Hirai, M. Shimomura, T. Ohzono, submitted 2015. Figure 1. Average friction force Fav vs. normal load P on wrinkled and unrwrinkled (flat) surfaces. (a) PI-surface. (b) PDMS-surface. 44 Dr. Kalina RASKIN-DELISLE Centre Européen d’Excellence en Biomimétisme de Senlis CEEBIOS E-mail : [email protected] Website : ceebios.com telephone : +33 (0)6 62 49 42 72 Address : 62 rue du Faubourg Saint Martin, 60300 Senlis, France EDUCATION AND PROFESSIONAL EXPERIENCE 2002-2006 ECOLE SUPERIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES DE PARIS (ESPCI) – PHYSICS AND CHEMISTRY ENGINEER DIPLOMA IN 2005- 2009 2006. RESEARCH FELLOW – PIERRE ET MARIE CURIE UNIVERSITY - PARIS PhD in Neurosciences 2006-2009 2012-2014 TEACHING Pierre et Marie Curie University & ESPCI Engineering School - Paris BIOMIMICRY AND RESPONSIBLE INNOVATION IN SMES – PARIS REGION INNOVATION CENTER - www.innovation- idf.org Since 2014-02 RESPONSIBLE FOR THE SCIENTIFIC DEVELOPMENT OF THE CEEBIOS OTHER RELATED ACTIVITIES Since 2010 VOLUNTEER – BIOMIMICRY EUROPA FRENCH COMITEE - www.biomimicry.eu Conferences for corporations, universities and engineering schools. Involvement in exhibitions and regular events, animation and network expansion. Since 2012 Expert member of the ISO TC 266 Biomimetics Since 2013 Editorial advisor for the French « Techniques de l’Ingénieur » journal 2014 Expert for the European Commission – Nature Based Solutions 45 Bio-inspired innovation implementation in R&D strategies A French landscape overview Kalina RASKINa, Françis PRUCHEa,b , Sylvie GAUTHIER-MORESTAINb, Gilles BOEUFc, Pascale LOISELEURa,b a CEEBIOS, City of Senlis, c University Pierre et Marie Curie, Paris b E-mail: [email protected] In order to face societal challenges, new trans-disciplinary and trans-sectorial approaches have become essential to conciliate human society prosperity, resources conservation and the decrease of human activity impacts over the long term. These innovative approaches should involve most of the scientific and social disciplines, as well as actors from private, public and political sectors. In this context, bio-inspired innovation is one of the most promising approaches. This strategy takes advantage of living technologies (chemistry, materials, processes…) and systems, selected by 3.8 billion years of adaptation and evolution in order to develop new innovative products, services and organizational models. Several scientific and methodological obstacles and hurdles regarding bioinspiration integration still remain to be overcome. In order to go beyond isolated and singular initiatives, it is required to analyze the mechanisms of biological knowledge transfer: case studies should allow to experiment and develop systematic tools to introduce biomimicry in R&D&I processes by setting up trans-disciplinar networks and teams. Furthermore, promoting the integration of this approach as a driver of responsible innovation by entrepreneurs, industries, local authorities, educators and political actors, but also its assimilation by the civil society (citizens, consumers ...) is still necessary. In September 2012, the City of Senlis, 40 km north of Paris, decided to convert an ancient military site into a center dedicated to bio-inspiration. Covering 10 hectares, the CEEBIOS, Centre Européen d’Excellence en Biomimétisme de Senlis, aims at becoming a campus that will gather research and higher education activities, innovative start-ups using bio-inspiration, SMEs but also major industrial groups. 46 Preliminary Study on 3D Data Sampling for Internal Morphology of Insects ● Background In the course of insect morphology, internal morphology on the system of muscles and viscera have been observed and measured only by destructive methods, for example dissection or preparation. In this study, non-destructive 3D sampling on the thorax of male horned beetle and the ovary of blister beetle were made by a micro-focused X-ray CT, SHIMADZU inspeXio SMX-100CT. Additionally, the external and internal structures of strepsipterans, Xenos oxyodontes (Insecta, Strepsiptera) parasitized to the abdomen of Vespa simillina were observed and correctly recorded. ● Results Shuhei Nomura & Yuta Nakase Address: Dept. Zoology, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba-shi, Ibaraki, Japan. E-mail: [email protected] ↑Ditto, ovary of blister beetle ←Ditto, male horn of horned beetle Section CT (above) and 3D (below) images of metathorax of male horned beetle In the thorax of horned beetle, structures and positions of flight muscles driving the hind wing were correctly recorded. In the head horn, the external wall and the internal honeycomb structure could be observed non-destructively. In the ovary of blister beetle, positions of digestive organ and ovary, and arrangement of eggs were recorded. The position and the shape of male and female of strepsipterans, Xenos oxyodontes parasitized to the abdomen of Vespa simillina were non-destructively observedand recorded. On the other hand, difficulty for minute and thin parts, and weak resolution of the microfocused X-ray CT for ultrastructure were found. Ditto, strepsipterans Xenos oxyodontes parasitized to the abdomen of Vespa Key words ・micro-focused X-ray CT ・3D data ・internal structure ● Summary Internal structures of three species of insects were observed and recorded non-destructively by a micro-focused X-ray CT. This method is very effective for macro-structures, for example, flight muscles, digestive organs and ovary. But weak point of the CT for microstructures were also recognized. 47 The surface structures of suckers and paired-fin pads in teleostean fishes Eri Katayama, Gento Shinohara and Keiichi Matsuura Fish collection of NSMT: great resource for biomimetics There are over 3 million wet specimens (preserved in alcohol) in NSMT. SEM images of the fish skins have been produced from the fish specimens. Using such images and the ecological keywords, we are developing the Biomimetics Database in cooperation with IT researchers. We are also studying the functional morphology together with engineering researchers. Contact Persons National Museum of Nature and Science (NSMT) Eri Katayama: [email protected] Gento Shinohara: [email protected] Keiichi Matsuura: [email protected] Morphology of shark skin (placoid scale) and ecology of shark A placoid scale of shark ● Mackerel sharks ● Cow sharks ● Carpet sharks (Lamnidae: Lamna ditropis) (Hexanchidae: Hexanchus griseus) (Orectolobidae: Orectolobus japonicus) KPM-NR 0054509 Photo by H. Senou The image of a scale of Nurse sharks by inspeXio SMX-100CT (Shimadzu Excellence in Science) Sharks: about 400 species Open ocean & fast swimming Deep waters & bottom dwelling (slow swimming) Bottom dwelling (not fast swimming) Diversity of the sucker and suction fins *Perciformes: ● Cling fishes (Gobiesocidae*: Aspasmichthys ciconiae) KPM-NR 0107074 about 10,000 species about 3,500 species **Cypriniformes: KPM-NR 0088198 Ventral of Lumpfish Lethotremus awae Photo by H. Senou ● Flat loaches (Balitoridae** : Balitoropsis leonardi) Photo by K. Yamasaki Pelvic fins were transformed to a sucker, making the fish attach to rocks or sea weeds. ×30 Paired-fins have filiform structures on the ventral surfaces ×100 ×500 Pectoral and pelvic fins have filiform surfaces, making the fish attach to the bottom of river. ×25 ×2,000 ×15,000 ×1000 ×500 KPM-NR: photos from Fish PIX of the Kanagawa Prefectural Museum of Natural History / Lamna ditropis, photo by F. Tashiro 48 〜Development of Antifouling Functional Surface using Biomimicking Microstructure〜 ● Purpose Excessive growth of fouling organisms on such as ship hulls, fisheries nets and power plants causes technical and economic problem worldwide. To prevent settlement of sessile organisms, paints containing organotin compounds and cuprous oxide compounds have been commonly used. However, the use of these metal-based compounds has been brought to public attention by many reports of environmental contamination. Therefore, antifouling technologies that are not only effective and but also environmentally friendly are urgently needed. In this research, we are trying to develop new type antifouling surface applying microstructure and chemical modification technology by mimicking marine organisms, such as sharks and dolphins. . Power plant Contact Persons Central Research Institute of Electric Power Industry Dr Yasuyuki Nogata [email protected] Ship hull Concepts of our research Microstructure surface http:/ / farm1.static.flickr.com/ 69/ 183199821_b949be5e48.jpg Investigation of relationship between microstructure and antifouling effect Evaluate antifouling effects Surface with chemical modification Development of new type antifouling surface from mimicking marine organisms Model surface of sharks and dolphins skins ● Research Details Evaluation of antifouling effects of microstructure using several fouling organisms New test systems using flow water Settlement test using diatoms The previous assay methods is tested in still water situation Barnacle larvae 5 mm pillar structure Incubate for one week ● Summary 15 mm pillar structure In order to development of environmental friendly antifouling surface, it is important to develop antifouling evaluation methods using some fouling organisms and flow water condition 49 Adult barnacles Self-Adjustable Adhesion of Polyampholyte Hydrogels ●Introduction Bacteria cells can attach with almost any surfaces, regardless the diversity in the surface chemistry. The self-adjustable capability of the extracellular polymeric matrix (EPM) of bacteria cells has made this possible. Inspired from nature, we intend to find out a self-adjustable hydrogel adhesive for adhesion to hydrogels and tissues. A selfadjustable surface is such a surface which can offer its species for the formation of attractive interaction depending on substrate charges through dynamic reorganization process. A possible design for achieving such a self-adjustable adhesive is a hydrogel composed of both positively and negatively charged monomers. Use polyampholyte based hydrogels as adhesive tissue •Laboratory of Soft and Wet Matter, Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan KUROKAWA Takayuki [email protected] PA gel Copolymerized from positive and negative monomers Ion-complex based system ●Results Can form strong ion-complex with either positive charge or negative charge. Can increase number of adhesion sites through non-specific attractive interaction. Self-adjustibility of PA hydrogel for adhesion 10 mm 10 mm No hydrogel PA hydrogel (±) 10 mm PNaAMPS hydrogel (-) PA hydrogel can stick with both positively charged PDMAEA-Q and negatively charged PNaAMPS hydrogels. 10 mm PDMAPAA-Q hydrogel (+) PA hydrogel strongly sticks to liver tissue for long time and closes notch. Negatively charged hydrogel does not stick to tissue surface. Positively charged hydrogel sticks to tissue surface but fails shortly. ●Summary A neutral PA hydrogel can act as wet adhesive material for the joining of PE hydrogels or biological tissues based on a self-adjustable ion-bond formation mechanism. This mechanism, driven by the Columbic interaction and the entropy gain of the counter-ion release, is specific for polyelectrolyte systems in aqueous environment. 50 Multi-Functionalities of Moth-eye Film ● Purpose The living body surface develops many functions with one structure. It is hoped that the structure formed by technique of biomimetics also develops many functions. We produce the moth-eye type AR films with the roll type molds, continuously. Moth-eye structures can prevent reflection. We have been developing a continuous manufacturing process of moth-eye structures on a polymer film with the roll mold. We verified the multi-functionality of our moth-eye films: reflection, contact angles with water, insect-slipping phenomena. Contact Persons Mitsubishi Rayon Co., Ltd Yokohama Research Laboratories Dr. Yoshihiro UOZU [email protected] ● Research Details As for the moth-eye surface consisting of a hydrophobic polymer, the contact angle of the water is around 140 degrees. On the contrary, the value for a hydrophilic polymer is around 20 degrees. These phenomena reflect characteristics of polymers. We put an insect on the plastic plate and turned the plastic plate 180 degrees. When the surface was smooth, the insect was getting on the plastic board. In contrast, on the moth-eye surface, the insect slipped down from a plastic board for 90 degrees. Most insects slipped down on moth-eye surfaces. Contact Angles for water Reflections of Fluorescent Lamps ● Summary We have verified the multi-functionality of the moth-eye surface. It is hoped that the structure formed by technique of biomimetics develops many functions. Acknowledgements: We thank Prof. Hariyama of Hamamatsu University School of Medicine for the observation of insect-slipping phenomena. 51 ∼ Formation of corneal nipples in insects ∼ ● Purpose Moth-eye structure which was discovered at the outer surfaces of moth eyes had an array of cuticular protuberances termed corneal nipples , and was known to serve anti-reflective, self-cleaning and/or water-repellent functions. Although the morphology and function of moth-eye structure are relatively studied, the mechanism of the formation is elusive. Elucidation of self-organizing mechanism on nipple formation in insects will inspire us to develop the engineering approach to produce the nanostructured products. 10µm! 3µm! : Hilgenfeldt S et al. PNAS 2008 0.2µm! Corneal lens in Drosophila melanogaster(nipples on the surface) ● Research Details Formation of envelop Corneal lens is formed during pupal stages! Various nipple patterns are formed by modification of gene activity Wild%type 1µm Accumulation of cuticular materials between envelop and micrivilli Formation of epicuticle! Secretion of materials through exocytosis! Nipple formation on the epicuticle Various patterns formed by Turing’s reaction-diffusion simulators created by Dr. S. Kondo Osaka Univ Accumulation of cuticular materials on the tip of cellular microvilli! Cuticular materials for corneal lens are produced by ! four cone cells! two 1ry pigment cells! self-assembly/self-organization! Changes of apical tension enlarge the size of nipples Formation of procuticular layer including chi in Apical tension by actin filaments through cell adhesion apparatus ↓ Tension at the self-organizing region of lens formation ↓ Pattern formation of corneal nipples ● Summary Corneal nipples are formed from cuticular materials secreted by lens cells through exocytosis, probably in self-organizing/self-assembling manners. Modification of some genetic activities changes the pattern of nipples. Apical tension by cytoskeletal actin filaments should affect the tension at organizing region and regulate the size of nipples. 52 Induction of resistance response of soybean by chemical in the oral secretion of insects ● Purpose It is well-known that insect herbivory commonly elicits rapid plant responses. Similar to many plants, soybean (Glycine max) leaves emit volatile terpenes when treated with fatty acid-amino acid conjugate (FAC) elicitors such as volicitin [N(17-hydroxylinolenoyl)-L-glutamine] present in the oral secretions and gut contents of Spodoptera litura. However, outside of few investigations, insectinducible metabolites in soybean remain poorly understood. The objective of this study was to establish a method to quantitatively evaluate responses of soybean varieties to S. litura herbivory. Interestingly, we found that artificial mechanical damage and treatment of extracts of S. litura gut contents on Soybean leaves induced the same responses as that induced by S. litura herbivory (Fig. 1). Mimic Contact Persons Kyoto University Ryu Nakata [email protected] Apply Extract S. litura Fig. 1 The mimetic method of S. litura herbivory With artificial mechanical damage ● Research Details Artificial damage and treatment of the gut content extracts on soybean leaves induced flavonoids, which were induced by the herbivory (Fig. 2) (Metabolites, 2014, 4, 532-546). These metabolites were analyzed by LCMS and PCA. O O O OH O HO HO O O OH Daidzein Daidzin Malonyldaidzin OH 4’,7-Dihydroxyflavone Fig. 2 Inducible flavonoids in soybean leaves treated with the extraction Ononin Formononetin O Malonylononin Moreover, treatment of gut content extracts with 13C9-phenylalanine (biosynthesis precursor of flavonoids) showed that labeled phenylalanine was incorporated into formononetin (Fig. 3). Chemicals in the gut contents activate the biosynthesis pathway of flavonoids in soybean. Treatment with phenylalanine Control 13C 9- Incorporation MS spectrum Non-labeled 9 mass unit MS spectrum Non-labeled 13C -Phenylalanine 9 Fig. 3 LCMS chromatograms and MS spectrums of formononetin and 13C9-formononetin. 13C9-Phenylalanine was incorporated into flavonoids biosynthesis and that was observed by mass shift of 9 mass unit in flavonoids. Labeled 12 13 14 min 12 13C -Formononetin 9 13 14 min ● Summary Insect herbivory in soybean can be mimicked by using extracts of the oral secretion and gut contents. By using the extracts, we will study the resistance of soybean to insect herbivory by evaluating the metabolite quantitatively and reveal the molecular basis of the resistance. 53 Mamiko Ozaki, Masaru K. Hojo, Yusuke Takeichi, Dept. Biol., Grad. Sch. Sci., Kobe Univ., Nada, Kobe 657-8501, Japan ● Purpose Olfactory sensory system has widely been developed in animals to detect environmental volatile chemicals. In ants as a social insect, their body surfaces are coved with nest-specific multi-components’ odors and a particular type of chemosensory sensillum is used for nestmate-and nonnestmate discrimination. With this sensillum, they exhibit aggressive behavior toward nonnestmates (strangers) but not towards nestmates (familiar workers). This implies that the ant sensillum can sensitively detect newly coming odors. Learning from the ant sensillum, we could find new technology for sensing of environmental volatile, which can alarm for unusual changes of environment. ● Research Background Our proposal for neo-biomimetic engineering of chemical sensing system Contact Persons: Dept. Biol., Grad. Sch. Sci., Kobe Univ. Dr. Mamiko Ozaki m[email protected] For realizing differential detection of odor in your experiences ● Research Details ● Summary It has been reported that in the Japanese carpenter ant,Camponotus japonicus, workers discriminate between nestmates and non-nestmates by the sensilla basiconica on the antennae. We indicated that this type of sensilla house 130 olfactory receptor neurons (ORNs) possessing >100 olfactory receptor molecules, respectively. Here we observed ultrastructure of the sensilla basiconica using serial block face scanning electron microscope (SBF-SEM) and constructed its 3D model showing the particular shape like a twisted thick rope of ORNs. Dendritic processes of those over hundred ORNs have no branches but characteristic swellings (1-7 swellings/dendritic process). In this swelling region, cell membranes of ORNs are closely adjacent with complicated borders. We supposed to exist some interaction among these ORNs at such a swelling region. If it happens, it may affect the functional mechanism of the sensilla basiconica as a sensory unit to detect difference between odors of self and others. 54 〜Development of Functional Material「SLUG」 Artificially Mimicking Biological Secretion System ● Purpose In this study, we report novel organogels named ナメクジ:SLUGs (Self-lubricating organogels), which are capable of spontaneously releasing liquids from inner gel matrices to their outer surfaces when triggered by a change in the surrounding conditions (e.g. temperature). Utilizing this phenomenon known as syneresis, novel materials can be prepared which possess excellent surface functionalities, including: 1) sustained anti-sticking properties against several viscous emulsions (mayonnaise, honey, ketchup, liquid glue, and worcester sauce) and their dry solidifications; 2) spontaneous formation/regeneration of superhydrophobicity; and 3) thermo-responsive anti-icing properties. Contact Persons National Institute of Advanced Industrial Science and Technology (AIST) Dr. Chihiro Urata and Dr. Atsushi Hozumi [email protected] These organogels possess autonomic/thermo-responsive liquid-leaching functions that are quite different from conventional materials prepared using post-treatments such as SLIPSs and swollen gels(J. Mater. Chem. A 2015, 3, 12626.)。 Biological Surface Growth・Stimuli (1) Functional Expression (2) Function Maintenance Secretion Soil Superhydropobicity secretion of plant wax by Self-cleaning properties by secretion of mucus ● Research Details Ice Pillar Tilt Cross section of SLUG Sliding of mayonnaise Sliding of ice pillar ● Summary Superhydrophobic and self-repairing properties Self-lubricating organogels (SLUGs) are successfully prepared via a simple crosslinking reaction of PDMS in the presence of several organic liquids. Due to the syneresis of organogels, a liquid layer is continuously formed on the topmost SLUG surfaces under appropriate conditions. The resulting surfaces show multi-liquid repellency, regenerative superhydrophobicity, and thermo-sensitive anti-icing properties. 55 〜Surface design for improving the heat transfer〜 ● Purpose To release heat generated from electric devices plays an important role in working properly. Two approaches for enhancement of releasing the heat is to activate the mobility of phonon, related to thermal conductivity, and to control electromagnetic waves, related to heat radiation, on the material surfaces. In this work, we attempted to construct surface design for improving the heat transfer. ・Enhancement of mean free path of phonon Contact Person Nagoya Institute of Technology Dr. Hirotaka Maeda [email protected] Saharan silver ants ・Excellent reflectivity and emissivity by a dense array of triangular hairs ・Consumption of heat Diatom → Utilizing motion of molecular chains for increasing the thermal diffusivity ・Light focusing effect due to surface geometry → Utilizing surface structure for controlling electromagnetic waves ● Research Details 70 *CxH2x+1 Glass substrate with a periodical structure o 14.2 C/sec o Temp / C 60 50 Glass substrate o 15.0 C/sec 40 Low High Effect of molecular chain lengths on thermal diffusivity. 30 1 10 Time / sec 100 Temperature change on graphic cards in computer. Mobility of alkyl chains ● Summary The motion of molecular chains at the material surface influenced the thermal diffusivity. The heat release rate on graphic cards was enhanced by the periodical structure on the surface. 56 〜Flexible wing-and body-based strategies for bio-inspired flight system: aerodynamics and flight stability ● Purpose Flying animals are capable of sophisticated, aerodynamic force production and precise, agile maneuvering, which are achieved through more straight-forward sensorimotor pathways to modulate power output from the steering muscles to the wing. Flight control requires complicated motor systems in response to multimodal sensory inputs and the coordination of multiple muscles across the body. Flexible structures of wing and body in flying animals have been pointed out to hold great potentials in enhancing aerodynamic performance and steering maneuverability in flapping-wing flight. The flexible strategies in Contact biological flights and bio-inspired flight system associated with Chiba University micro air vehicles very likely play an important role in the control Prof. Hao Liu [email protected] and sensorimotor of flapping-wing flight (Proc B 279, 2012). In this study we aim at unveiling the novel mechanisms in flexible wing-and body-based strategies on how the flexible wing and the body flexion work aerodynamically in terms of aerodynamic force-production and dynamic flight stability as well as application in designing bio-inspired flapping wings for micro air vehicles. ● Research Details Flexible wings enhance vortex and force generation in hummingbird hovering. ● Summary Body flexion affects hawkmoth hovering: Time varying and averaged thoracic angles. Wing flexibility in hovering flights of hawkmoth and hummingbird can create larger aerodynamic forces and achieve better aerodynamic efficiencies. Bio-inspired wing kinematics and deformations are more important rather than wing structures (vein, membrane, musculature). 57 Construction of a database supporting development of biomimetic products ●Purpose TRIZ method is useful to solve problems in sustainable engineering. This problem solving method was discovered that the evolution of technical ideas followed predictable patterns. The tools used to overcome technological contradictions are called “principles”, and 40 principles is utilize in problem solving. In this presentation, Construction of a database for the application of TRIZ for nature material design was described. From a biomimetic aspect, 40 principles would be useful for design of sustainable materials. Process for biomimetic products by International Organization for Standardization Takeshi Yamauchi Department of Materials Science and Technology Niiigata University yamauchi@ gs.niigata-u.ac.jp Problem Problem Formulation Reframing Technical committees 266 - Biomimetics- Biological Solution Search Hidetoshi Kobayashi School / Graduate School of Engineering Science, Osaka University hkoba@ me.es.osaka-u.ac.jp Defining Solution Search Toru Kobayashi Graduate school of Electrical and Electronic Engineering Program Nagasaki University toru@ cis.nagasaki-u.ac.jp Extract Principle Problem Application To solve a contradiction Database of biomimetic solutions by Nature BioTRIZ ●Research Details We have introduced a problem solution technique called bioTRIZ and constructed the database which could develop a biomimetic product of the ISO. ① Database for development of biomimetic products by I SO regulation ②Suggest the problem solution that can create the high quality patent by each process effectively Contradiction Matrix method for problem solution ●Summary We simplified the new database that an engineer has only put a technical problem in a technical contradiction matrix and it proposes new engineering ideas from nature to solve the problem. Search Idea from 40 principles Products Inventory 58 Biomimetics R&D and Standardization ●Introduction Standard development for biomimetics has started on October 2012 within ISO and new ISO standards will be published as early as the end of 2015. The first two ISO standards are on “definitions for biomimetics (WG1)” and “biomimetic optimization of industrial products (WG3)” which are closely related to industry. Launch of a new working group on “sustainability and biomimetics” is scheduled for the next TC266 Biomimetics meeting which will be held on October 2015. This poster provides a brief overview of current activities in TC266 Biomimetics and challenges for the future. Terpsiphone atrocaudata:Male black paradise flycatcher has bright blue eye ring and beak. The color is created by biological nanostructures. They build a nest by knitting up moss, cypress skin and spider silk. ●ISO/TC266 Biomimetics, activities now and the future ISO/TC266 Biomimetics 《Structure》 《Participating countries》 As of March 2015 As of September 2015 Japan’s ideas for future biomimetics standardization ▷Use international standards to foster innovation, not the other way around. << In emerging and interdisciplinary area, Technical Specification (TS) is preferable as it allows stakeholders to harmonize opinion. ▷Support “Transparency and Stakeholder Communication” << Make “better standards” at the initiative of Japan. ▷Develop a strategic approach to “sustainability issue” and appoint the right person. << Avoid implementation of rash and indiscreet management. ▷Standards development requires reflection of industry needs. << ISO standards rely on the voluntary activities based on industry and other stakeholders needs. We expect more participants for better ISO standards. ● Need further information ? *Subscribe to PEN [email protected] *Visit PENGIN http://pengin.ne.jp/ Note: PENGIN undergoes renovation, yet you can download back issues of PEN. Contact: CNT-Application Research Center, AIST Mizuki Sekiya<[email protected]> 59 〜Water transportation system of sponges〜 ●Purpose ・ Construction of robust and extensible network is demanded in various field such as traffic, telecommunication and water distributing pipe network. ・ Sponges are sessile aquatic animals. Sponges continuously flow ambient water through a vast canal system inside their body, and filter out and feed suspended organic particles. As sponges have no specialized organ such as digestive tract, they not only feed, but also breathe and breed by water flowing through the canal system. Their dependence on the canal system suggests that the sponge canal system should be optimized for efficient water transportation, which would potentially serve as a model system for designing a water transportation system with high energy efficiency. Schematic image Dr. Mirei Tsubaki Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Remi Tsubaki : [email protected] Flagellar moving generate water flow Choanocyte chamber ▲ Sea sponge NETWORK STRUCTURE Keywords ・Robustness ・Network Flagellum FLOW GENERATOR Robust and extensible network system inspired by sponge ●Research Details ・ Fundamental information on flagellar movement was obtained through high-speed recording. ・ We created a computer program to extract network structure from CT images. Image banalization of flagellar basement region Time course change of center position ▲ 3D image of sponge canal system. ▲ Extracted network structure Average frequency: ca. 20 per sec ●Summary We demonstrated some key principles of the sponge water transportation system from two different perspectives, canal network structure and flagellar beating. Further studies are needed to elucidate the functional mechanism of sponge canal network system. 60 Pressure-Sensitive Adhesive Powder ● Purpose Pressure-sensitive adhesives (PSAs) are viscoelastic polymer materials that instantly adhere to solid surfaces via van der Waals forces upon application of a light contact pressure. PSAs are commonly applied in the form of a thin layer on a substrate or spraying droplets. Although the PSAs are useful functional materials, their sticky nature often makes them intractable, and there is a strong demand for development of easy handling PSAs. Here, we introduce a new concept for synthesizing PSA powder based on liquid marble technology. PSA powder consists of particles with a soft adhesive polymer core and a hard nanoparticle shell morphology, and shows no adhesion in its original form and flows like a powder. Only after application of shear stress, it then shows its adhesive nature. Adhesion is induced by rupture of the nanoparticle coating of the powder and outflow of the inner soft polymer. Contact Persons Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology Dr. Syuji Fujii [email protected] Pressure-sensitive adhesive (PSA) powder consisting of particles with an adhesive polymer core and a hard nanoparticle shell morphology have been synthesized based on liquid marble technology. The PSA shows no adhesion in its original form, and shows its adhesive nature only after application of shear stress. Schematic representation of PSA powder consisting of particles with a soft sticky polymer core and a solid nanoparticle shell morphology. After application of shear stress, adhesive nature appeared because of outflow of the inner soft polymer. Optical photographs of such PSA materials are also shown. The PSA shows no adhesion in its original form and flows freely like a powder. (Inset shows single PSA particle.) Only after application of shear stress, it acts as an adhesive. ● Research Details (a,c) Digital photographs and (b,d) SEM images of a particle with a soft adhesive PBA core and a hard CaCO3 nanoparticle shell morphology (a,b) before and (c,d) after application of shear stress. ● Summary (a) Stress-displacement tack curves obtained for PSA liquid marble: (i) before and (ii-iv) after application of shear stress. Pressure applied to PSA liquid marbles: (i, ii) 5.1, (iii) 26 and (iv) 110 kPa. (b) Relationship between pressure applied to PSA materials and maximum stress in tack measurement. Samples: Liquid marble PSA (yellow bar) before and (green bar) after application of shear stress, (blue bar) PBA latex film with a thickness of 45 mm and (red bar) commercially available PSA tape (Scotch® Magic™ Tape 810) The PSA shows no adhesive character in its initial form and flows like a powder. After application of shear stress, the adhesive nature appeared induced by rupture of the CaCO3 nanoparticle coating and outflow of soft polymer. The PSA powder should be particularly useful in bonding in confined and intricate spaces (e.g. fastening screw and cracking of walls), where sticky polymeric materials are difficult to apply due to their high viscosity. 61 The NanoSuit® method to observe the living mammalian tissue and cell Chinatsu Nakane1, Yasuharu Takaku1, Masatsugu Shimomura2, Takahiko Hariyama1 1 Hamamatsu University School of Medicine, Department of Biology, 1-20-1 Handayama, Higashiku, Hamamatsu 431-3192, Japan. 2 Chitose Institute of Science and Technology, Departments of Bio- and Material Photonics, 758-65 Chitose, Hokkaido 066-8655, Japan Ⅰ Ⅲ Abstract A field emission scanning electron microscopy (FE-SEM) has been made remarkable progress, and has become an essential tool for observing the fine structure of biological materials. However, various complex procedures are necessary for the observation, therefore, preclude the observation 2 Experimental procedures Specimens: excised tissues from human stomach. Melanoma cell. Mouse liver. Drosophila and Hydra. of living organisms to date. We previously found the simple surface modification (the ‘NanoSuit ®’ Cancer cell (melanoma cell) A Conventional image B NanoSuit image Treatment: Specimens were dipped into the SSE solution for 1 min and irradiated by plasma to construct the NanoSuit. method) can render multicellular organisms strongly tolerant to high vacuum, resulting in a successful observation of living organisms by FE-SEM (Takaku et al., 2013; Suzuki et al., 2013; Ohta et al., 2014; Takaku et al., 2015). In brief, animals, which collapsed under high vacuum (10-3-10-7 Pa), A can survive and move continuously in FE-SEM if they possess their natural extracellular surface B C layer (or are covered with an artificial solution layer made from a dilute amphiphilic compounds such as polysorbitan monolaurate) and are irradiated by electron beam or plasma to enhance the polymer formation covering the whole animal body with NanoSuit. We recently succeeded to apply + NanoSuit this technique to the living mammalian tissues and cells, and found that the fine structure of the living specimen surface is completely different from that of traditionally fixed sample. The observed specimens were able to re-culture in a culturing medium, i.e. these specimens seem to reflect the Before Plasma treatment After 1µm real living structures. The specimens including the human body are observable with a real structure in a short time without any additional procedures when we use the NanoSuit method. These FE-SEM observation: All the specimens tolerated the high vacuum well, exhibiting fine structures (Max. x 100,000). findings should encourage the development of more sophisticated observation methods for studying living organisms in a FE-SEM. Ⅱ Ⅳ Introduction We can observe living and moving specimens with FE-SEM ! (1) Various complex procedures with fixing tissues have precluded the real fine structure of organisms by a field emission scanning electron microscope (FE-SEM). (2) We have reported a new method to observe living organisms; their surfaces are covered with a thin-layer of irradiated membrane (the NanoSuit® method: Takaku et al, 2013; Suzuki et al, 2013; Ohta et al, 2014, Takaku et al, 2015) . (3) Our method permits the use of a high vacuum(10-3~10-7Pa) and achieves fine structural observations on live specimens. (4) Here we present new results observed by the NanoSuit method. 1 Results Stomach cancer (human) Conventional image A B cancer cancer 1µm Fig. 4. Conventional method resulted in disruption of the surface (A), whereas NanoSuit technique maintained the nano fiber structures (B). 3µm Front line ? C normal 3 Basic concept of NanoSuit 0min 20µm B 3µm NanoSuit image untreated A A normal After modification of materials on the surface of organisms by exposure to electron beam or plasma ionization, the treated animals showed spontaneous movements in high vacuo (10-3-10-7 Pa). Nano fiber structures in developmental and regenerated tissue B C 60min D E D E High vacuum cancer cancer 10-3~-7 Pa control F 0min H G electron beam 60min 0.1mm 200nm Front line J I F 10-3~-7 Pa 0.1mm 20µm 0 → 30min M G 2 µm H Front line I cancer 0.5mm 1µm treated 0 → 30min Q i Front line K 0.2mm L R normal 0.3mm 0.2mm 200nm J P Ⅴ cancer normal 1µm 200nm Fig. 2. (K-M) A living larval mosquito Culex pipiens molestus (which has no natural ECS layer) treated by plasma irradiation for 3 min and observed by SEM for 30 min. (O-Q) Images of the larval mosquito, following early electron irradiation, protected by plasma-irradiated Tween 20. (M, Q) High magnification image of the body surface in each animal. In N and R, TEM images of the surfaces of each animal are shown. Layers between the arrowheads indicate the newly formed NanoSuit. An outer layer covering the animal an artificial extra cellular substance (Tween 20) in O. cancer cancer normal 50µm 20µm 20µm Fig. 3. In the conventional view, the position of the front line between normal and cancer tissues was indistinct because the specimen collapsed (A-C). In contrast, NanoSuit image clearly showed the line (D-F), suggesting that new method holds the surface faithfully intact. The combination NanoSuit method with HE staining directly revealed the area of cancer (G-L). 62 2 µm Fig. 5. Nano fiber structures were detected in developmental process of Drosophila eye (A) and Hydra regeneration (B). The fibers were also observed in the liver regeneration in mouse (C). However, it was not distinct on the cross section of non-regererative tissue (D). N 0.3mm + NanoSuit 3µm NanoSuit + HE image normal O normal 200nm untreated L D + NanoSuit 0.3mm control C normal Fig. 1. (A-D) Prior to SEM observation, a living larva (light micrograph in A) was placed in the observation chamber without electron beam irradiation for 60 min. The specimen collapsed completely when subsequently observed by SEM. (F-I) A different Drosophila larva was exposed to high vacuum with electron beam irradiation for 60 min. Each small white square in C, H, is shown magnified (D, I, respectively). (E, J) TEM images are shown of vertical sections through the surface of each animal. The layer between the arrowheads in J indicates the limits of the newly formed outer membrane, not present in E. An outer layer covering the animal represents extra cellular substances (ECS) in B, G. K 3µm High vacuum l 2 µm 2 µm 0.3mm treated Conclusion We have succeeded to apply NanoSuit technique to the living mammalian tissues and cells, and found that the fine structure of the living specimen surface is completely different from that of traditionally fixed sample. Furthermore, the method is simpler and less time-consuming than conventional SEM procedures and greatly facilitates the imaging of biological samples hitherto considered unsuitable for the high vacuum conditions of the conventional SEM. Contact: Takahiko Hariyama (Hamamatsu University School of Medicine) Tel:+81-53-435-2351, E-mail: [email protected] 4th Nagoya Biomimetics International Symposium (NaBIS) -------------------------------- October 30th (Fri), 2015 -------------------------------WINC AICHI (Aichi Industry & Labor Center), conference room 1001 Meieki 4-4-38, Nakamura-ku, Nagoya-shi, 450-0002 Japan Access: 5 minutes walk from JR Nagoya Station (As shown below) To JR Nagoya Station: from JR Tokyo via Shinkansen Bullet Train, or from Central Japan Airport (NGO) by Meitetsu Train http://www.winc-aichi.jp/access/ -------------------------------Organized by Nagoya Institute of Technology National Institute of Advanced Industrial Science and Technology 主催:名古屋工業大学、国立研究開発法人 産業技術総合研究所 構造材料研究部門 Co-organized by Innovative Materials Engineering Based on Biological Diversity, Ministry of Education, Culture, Sports, Science and Technology (MEXT, Japan) 共催:文部科学省 科学技術研究費補助金(新学術領域)「生物規範工学」 Cooperation by Research Group on Biomimetics of The Society of Polymer Science (Japan) NBCI at a glance 協賛:高分子学会 バイオミメティクス研究会、NBCIバイオミメティクス分科会 -------------------------------エンジニアリングネオバイオミメティクスを指向した表面・界面,材料に関する最先端の研究を展 開している国内外の第一線の研究者を招き講演会を開催する。また、産学官をはじめ、異分野領域 に所属する研究者、技術者の交流の場として広く開放する。 63 PROGRAM *************************************************************************** 9:00-9:05 Opening Remarks Prof. Masatsugu Shimomura (Chitose Institute of Science and Technology, Japan) <Chair:Dr. Matt England (AIST, Japan)> 09:05-09:40 Invite Talk1 Prof. Todd Emrick (UMass, USA) ············································································· 66 Merging synthetic polymers with functional groups from Nature 09:40-10:15 Invite Talk2 Prof. Su Zhaohui (Chinese Academy of Sciences, China) ·············································· 69 PEM-coated Meshes for Oil/Water Separation Coffee Break <Chair:Dr. Chihiro Urata (AIST, Japan)> 10:30-11:00 Invite Talk3 Dr. Shigeru Deguchi (JAMSTEC, Japan) ···································································· 72 Soft Materials Under Extreme Conditions Mimicking Deep-sea Hydrothermal Vents 11:00-11:30 Invite Talk4 Prof. Yusuke Yamauchi (NIMS, Japan) ······································································ 74 Synthesis of Novel Nanoporous Materials Based on a Self-assembly of Functional Molecules Lunch <Chair:Dr. Atsushi Hozumi (AIST, Japan)> 12:45-13:20 Invite Talk5 Prof. Lei Jiang (Chinese Academy of Sciences, China)·················································· 77 Smart Interfacial Materials from Super-Wettability to Binary Cooperative Complementary Systems 13:20-13:55 Invite Talk6 Prof. Haeshin Lee (KAIST, Korea) ············································································· 79 Mussel-inspired Adhesive Polymers: Five-year Story of Chitosan-catechol 13:55-14:30 Invite Talk7 Prof. Thomas J. McCarthy (UMass, USA) ·································································· 81 Do you know what PDMS is? 14:30-15:30 Poster session <Chair:Prof. Hirotaka Maeda (NITEC, Japan)> 15:30-16:00 Invite Talk8 Prof. Masanobu Kamitakahara (Tohoku University) ····················································· 83 Potential of Hydroxyapatite as a Scaffold Material for Microorganisms for Water Purification <Chair:Prof. Daisuke Ishii (NITEC, Japan)> 16:00-16:30 Invite Talk9 Prof. Kaori Kamata (TITech, Japan) ····································································· 85 Biotemplated 3D Microstructures for Unique Electromagnetic Responses 16:30-16:35 Closing remarks Dr. Atsushi Hozumi (AIST, Japan) 17:00-20:00 Get together 64 Poster Session *************************************************************************** October 30th (Fri) 14:30-15:30 1. Structural Color Materials based on Biomimetic Core-Shell Particles that Mimic Melanin Granules··································································· 87 Michinari Kohri* and Ayaka Kawamura (Graduate School of Engineering, Chiba University) 2. Anti-Stick Coatings Using Liquid-impregnated ······················································· 88 Chihiro Urata, Gary Dunderdale, Matt England, and Atsushi Hozumi* (National Institute of Advanced Industrial Science and Technology) 3. Surface Properties of Clay-containing Transparent Nanocomposite Thin Films ·············· 89 Matt W. England*, Chihiro Urata, Gary J. Dundersale, Avinash Patil, Stephan Mann and Atsushi Hozumi (National Institute of Advanced Industrial Science and Technology, Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol) 4. Novel Biomimetic Surfaces Based on Metal-Polymer Hybrid Materials Prepared by Self-Organization ······················································ 90 Ryo Kohsaka*, Yoshinori Fujihira, Ryuzo Furukawa, Takeshi Yamauchi, Hidetoshi Kobayashi, Daisuke Ishii, Yuta Uchiyama, Frank Ebinger (Kanazawa University, Tohoku University, Niigata University, Osaka University, Nagoya Institute of Technology, Technische Hochschule Nürnberg) 5. Relationship between the Inner Structure of Feathers and Color Change: Structural Coloration in the Peach-faced Lovebird ··················································· 91 Gen Morimoto*, Naoko Sanada and Yasuyuki Sanada (Yamashina Institute for Ornithology, Rikkyo University, Bird’s hospital-BIRD HOUSE) 6. Gas Barrier Properties of Plasma-polymerized Film “Nanosuits” Made of Amphiphilic Molecules············································································ 92 Hideto Shibagaki*, Shingo Ito, Ryohei Kawamura, Daisuke Ishii (Nagoya Institute of Technology) 7. Control of Friction on Shape-Tunable Wrinkles ······················································· 93 Takuya Ohzono*, Kosuke Suzuki, Yuji Hirai (Research Institute for Sustainable Chemistry, AIST, Department of Applied Chemistry and Bioscience, Chitose Inst. Sci. Tech.) 8. Fabrication and Friction Measurement of Durable Shark Skin Mimicking Surfaces ································································ 94 Aki Sato, Yuji Hirai, Takuya Ohzono, Masatsugu Shimomura (Chitose Institute of Science and Technology, The National Institute of Advanced Industrial Science and Technology) 9. Wettability on the Snail’s Shells with Various Surface Layers ····································· 95 Ryota Yamagishi, Hirotaka Maeda*, Daisuke Ishii, Toshihiro Kasuga and Yasutaka Matuo (Nagoya Institute of Technology, Hokkaido University) 65 Todd Emrick (a) Professional Preparation Juniata College University of Chicago University of California Berkeley Chemistry B.S. 1992 Organic Chemistry Ph.D. 1997 Organic/Polymer Chemistry 1997-2000 (b) Appointments Director: Materials Research Science & Engineering Center on Polymers 2009-present Professor Polymer Science & Engineering, UMass Amherst Associate Professor Polymer Science & Engineering, UMass Amherst Assistant Professor Polymer Science & Engineering, UMass Amherst 2011-present 2007-2011 2001-2007 (c) Products Five most closely related 1. Kratz, K.; Narasimhan, A.; Tangirala, R.; Moon, SC.; Revanu, R.; Kundu, S.; Kim, HS.; Crosby, AJ.; Russell, TP.; Emrick, T.; Kolmakov, G.; Balazs, AC. (2012) Probing and repairing damaged surfaces with nanoparticle-containing microcapsules Nature Nanotechnology 7, 87-90. doi: 10.1038/NNANO.2011.235. 2. Kosif, I.; Chang, C.C.; Bai, Y.; Ribbe, A.; Balazs, A.C.; Emrick, T. (2014) Picking up nanoparticles with functional droplets (2014) Advanced Materials Interfaces 1 (5) 1400121 DOI: 10.1002/admi.201400121. 3. Miesch, C.; Kosif, I.; Lee, E.; Kim, J.K.; Russell, T.P.; Hayward, R.C.; Emrick, T. (2012) Nanoparticle-stabilized Double Emulsions and Compressed Droplets Angewandte Chemie International Edition 51 (1) 145-149. doi: 10.1002/anie.201106665. 4. Hammer, B.A.G.; Reyes-Martinez, M.A.; Bokel, F.A.; Liu, F.; Russell, T.P.; Hayward, R.C.; Briseno, AL.; Emrick, T. (2014) ACS Applied Materials and Interfaces 6 (10) 7705-7711. doi: 10.1021/am500976w. 5. Lee, C.H.; Crosby, A.J.; Hayward, R.C.; Emrick, T. (2014) Patterning Nanoparticles into Rings by “2-D Pickering Emulsions” ACS Applied Materials and Interfaces 6 (7) 4850-4855. doi: 10.1021/am405828a. Five other significant products 1. Page, Z.A.; Liu, Y.; Duzhko, V.V.; Russell, T.P.; Emrick, T. (2014) Fulleropyrrolidine Interlayers: Tailoring Electrodes to Raise Organic Solar Cell Efficiency Science published online September 18 2014 doi 10.1126/science.1255826. 2. Chen, X.J.; Lawrence, J.; Parelkar, S.P.; Emrick, T. (2013) Novel Zwitterionic Copolymers with Dihydrolipoic Acid: Synthesis and Preparation of Non-fouling Nanorods Macromolecules 46 (1) 119-127 doi:10.1021/ma301288m. 3. Kosif, I.; Cui, M.M.; Russell, T.P.; Emrick, T. (2013) Triggered in situ Disruption and Inversion of Nanoparticle-Stabilized Droplets Angewandte Chemie International Edition 52 (26) 6620-6623. doi:10.1002/anie.201302112. 4. Cui, M.M.; Emrick, T.; Russell, T.P. (2013) Stabilizing Liquid Drops in Nonequilibrium Shapes by the Interfacial Jamming of Nanoparticles Science 342 (6157) 460-463. doi:10.1126/science.1242852. 5. Puodziukynaite, E.; Wang, H.W.; Lawrence, J.; Wise, A.J.; Russell, T.P.; Barnes, M.D.; Emrick, T. (2014) Azulene Methacrylate Polymers: Synthesis, Electronic Properties, and Solar Cell Fabrication, J. Am. Chem. Soc. 136 (31) 11043-11049 doi: 10.1021/ja504670k. 1 66 (d) Synergistic Activities 1. Mentor for Research Experience for Undergraduates, Research Experience for Teachers and Northeast Alliance (NEA) for Minority Training in the Sciences. Mentored 35 undergraduates, high school students, and high school teachers since 2002. 2. Polymer Community: Chair of 2011 Macromolecular Materials Gordon Research Conference. 3. Service: National Science Foundation MRSEC ‘Director of Directors’ (2012-2013). 4. Patent activity (14 awarded patents) led to selection to National Academy of Inventors. 5. American Chemical Society: 2012 PMSE Chair; 2013 PMSE Fellow; 2014 ACS Fellow; 2015 Marvel Creative Polymer Chemistry (e) Collaborators & Other Affiliations Collaborators (past 48 months) and Co-editors (past 24 months). Anna Balazs (U Pitt), Al Crosby (UMass), Michael Barnes (UMass), Alejandro Briseno (UMass), Anthony Dinsmore (UMass), Volodimyr Duzhko (UMass), Benny Freeman (U Texas Austin), Marxa Figueiredo (U Texas Galveston Medical), Greg Grason (UMass), Ryan Hayward (UMass), Arthi Jayaraman (Colorado Boulder), Won Ho Jo (Seoul National), Jayant Kumar (UMass Lowell), Ka Yee Lee (U Chicago), Jeremy Marks (U Chicago Medical), Alan Lesser (UMass), Mihri Ozkan (U California Riverside); Cengiz Ozkan (U California Riverside); Shelly Peyton (UMass), Darrin Pochan (U Delaware), Tom Russell (UMass), Sallie Schneider (UMass), Ken Shull (Northwestern), Huilin Tu (Schlumberger, Inc). Graduate advisors and Postdoctoral Sponsors Graduate: Philip E. Eaton, Department of Chemistry, University of Chicago Postdoctoral: Jean M. J. Fréchet, Department of Chemistry, U Cal Berkeley (now KAUST) Thesis Advisor and Postgraduate-Scholar Sponsor Thesis Advisor: Kurt Breitenkamp (Exponent, Inc), Rebecca Breitenkamp (Oberon Fuels), George Chang (UMass), Sirinya Chantarak (UMass), Beth Cooper (Dow), Ken Ellzey (ATK Thiokol), Aleksandr Gerasimenko (UMass), Elizabeth Glogowski (U Wisconsin Eau Claire), Brenton Hammer (MPI, Mainz), Cheol Hee-Lee (Samsung), Rui Hong (Ventana Medical Systems), Yunxia Hu (U North Carolina), Irem Kosif (UMass), Katrina Kratz (DuPont), Jimmy Lawrence (UMass), Rachel Letteri (UMass), Samantha McRae (Cantor Colburn), Caroline Miesch (Dow), Zachariah Page (UMass), Bryan Parrish (Chlorox), Christiam Santa (UMass), Ryan Selhorst (UMass), Kevin Sill (Intezyne), Habib Skaff (Intezyne), Matthew Skinner (UMass), Ravi Tangirala (Molecular Foundry), Hsin Wei Wang (UMass), Qingling Zhang (Cabot). Total number of students advised: 28 Postdoctoral in past 60 months: Delphine Chan-Seng (Institut Chalres Sadron); Xiangji Chen (Medtronic); Nathan Hammer (U Mississippi); Maisie Joralemon (Mt Holyoke College); Aabid Mir (UMass); Sangram Parelkar (UMass Medical); Emily Pentzer (Case Western Reserve); Egle Puodziukynaite (UMass); T. Ranganathan (Shocking Technologies); Hemali Rathanayake (Western Kentucky University); Beom-Young Ryu (KIST); Megan Syzndler (UMass); P.K. Sudeep (Cabot Electronics); Yue Zhao (UMass) Total number of postdoctoral scholars advised: 18 2 67 Merging synthetic polymers with functional groups from Nature Todd Emrick* Department of Polymer Science and Engineering Room: A613, Conte Research Center University of Massachusetts Amherst 120 Governors Drive Amherst, MA 01003 E-mail: [email protected] This presentation will describe the integration of functional groups from Nature into synthetic polymers. Such functionality includes 1) oligopeptides identified from as key sequences in virus particles; 2) zwitterions that play a major role in structural aspects of biology; and 3) moities that function in vital roles of signalling and transmittance. We seek to build libraries of such macromolecules, through adapting such natural moities to numerous synthetic polymer backbones, including polyester, polyolefin, and poly(methacrylate)-based structures. Biomimetic, biofriendly, and therapeutic systems are emerging from this research, and these will be described in the lecture. 68 ZHAOHUI SU Professor State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street, Changchun, Jilin 130022, China Tel: (0431)85262854 Fax: (0431)85262126 Email Address: [email protected] EDUCATION B.S. in Chemistry, Xiamen University, 1991 M.S. in Polymer Science and Engineering, University of Massachusetts Amherst, 1995 Ph.D. in Polymer Science and Engineering, University of Massachusetts Amherst, 1997 EXPERIENCE 1997.7-2003.7 Polymer Scientist, Technology Department, GE Plastics 2003.7Professor, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 2007.5-2007.7 Visiting Professor, Institute for Materials Chemistry and Engineering, Kyushu University 2013.12-2014.3 Visiting Professor, Department of Chemistry and Biochemistry, University of South Carolina RESEARCH INTERESTS Polymer-based nanoscopic structures; Polymer-based self-assemblies and thin films; Surface science of functional polymers; Spectroscopy of polymers. HONORS AND DISTINCTIONS Hundred Talents Program, Chinese Academy of Sciences (2004) Rated Excellent (2008) Jilin Distinguished Young Scholars Fund (2004-2006) Editorial Board Member, Chinese Journal of Applied Chemistry (2004-2009) Associate editor, Chinese Journal of Applied Chemistry (2009-) Zhuli-Yuehua Excellent Teacher Award (2012) PUBLICATIONS 1. B. Zhang, D. A. Hoagland, T. Wang, Z. Su*, Ionic Liquids as Plasticizers for Polyelectrolyte Complexes, J. Phys. Chem. B 2015, 119 (8), 3603-3607. 2. Y. Sun, G. Xiao, Y. Lin*, Z. Su, Q. Wang, Self-assembly of Large-scale P3HT Patterns by Confined Evaporation in the Capillary Tube, RSC Advances 2015, 5, 20491-20497. 3. M. Su, L. Wang, G. Zhang, Y. Huang, Z. Su*, Effects of Interfacial Tension on Formation of Poly(ethylene oxide)-block-Polystyrene Micelles from Emulsions, RSC Advances 2015, 5 (6), 4350-4354. 4. C. C. Chu, Z. H. Su*, Facile Synthesis of AuPt Alloy Nanoparticles in Polyelectrolyte Multilayers with Enhanced Catalytic Activity for Reduction of 4-Nitrophenol, Langmuir 2014, 30(50), 15345–15350. 5. L. Chen, X. Zhao, Y. Lin*, Z. Su, Q. Wang, Dual Stimuli-responsive Supramolecular Hydrogel of Bionanoparticles and Hyaluronan, Polym. Chem. 2014, 5 (23), 6754-6760. 6. G. Zhang, M. Li, B. Zhang, Y. Huang, Z. Su*, A Switchable Mesh for On-Demand Oil-Water Separation, J. Mater. Chem. A 2014, 2(37), 15284-15287. 7. J. Wei, L. Ren, C. Tang, Z. Su*, Electric-stimulus-responsive Multilayer Film Based on a Cobaltoceniumcontaining Polymer, Polym. Chem. 2014, 5(22), 6480-6488. 8. Y. Han, Y. Guo, Y. Chang, Y. Geng, Z. Su*, Chain Folding in Poly(3-hexylthiophene) Crystals, Macromolecules 2014, 47(11), 3708-3712. 69 9. G. Zhang, X. Zhang, M. Li, Z. Su*, A Surface with Superoleophilic-to-Superoleophobic Wettability Gradient, ACS Appl. Mater. Interfaces 2014, 6(3), 1729-1733. 10. M. Su, Z. Su*, Effects of Solvent Evaporation Rate and Poly(acrylic acid) on Formation of Poly(ethylene oxide)-block-polystyrene Micelles from Emulsion, Macromolecules 2014, 47, 1428-1432. 11. Y. Guo, L. Wang, Y. Han, Y. Geng, Z. Su*, Influence of Molecular Weight on Polymorphs and TemperatureInduced Structure Evolution of Regioregular Poly(3-dodecylthiophene), Polym. Chem. 2014, 5, 1938-1944. 12. W. Xu, B. Wang, Y. Lin, Y. Li, Z. Su, W. He, N. Tan, Q. Wang, Emulsions stabilized by mini cyclic proteins for bioactive compound delivery, RSC Adv. 2014, 4, 48000-48003. 13. N. N. Liu, Y. Chen, B. Peng, Y. Lin, Q. Wang, Z. H. Su, W. K. Zhang, H. B. Li, J. C. Shen, Single-Molecule Force Spectroscopy Study on the Mechanism of RNA Disassembly in Tobacco Mosaic Virus, Biophys. Chem. 2013, 105(12), 2790-2800. 14. Y. Guo, Y. Han, Z. Su*, Ordering of Poly(3-hexylthiophene) in Solution and on Substrates Induced by Concentrated Sulfuric Acid, J. Phys. Chem. B 2013, 117, 14842-14848. 15. J. Wei, L. Wang, X. Zhang, X. Ma, H. Wang, Z. Su*, Coarsening of silver nanoparticles in polyelectrolyte multilayers, Langmuir 2013, 29(36), 11413-11419. 16. G. Zhang, X. Zhang, Y. Huang, Z. Su*, A Surface Exhibiting Superoleophobicity Both in Air and in Seawater, ACS Appl. Mater. Interfaces 2013, 5(13), 6400-6403. 17. Y. M. Wang, M. Li, J. H. Rong*, G. T. Nie, J. Qiao, H. Y. Wang, D. Y Wu, Z. H. Su, Z. W. Niu*, Y. Huang, Enhanced orientation of PEO polymer chains induced by nanoclays in electrospun PEO/clay composite nanofibers, Colloid Polym. Sci. 2013, 291(6), 1541-1546. 18. X. Ma, Y. Guo, T. Wang, Z. Su*, Scanning tunneling microscopy investigation of self-assembled poly(3hexylthiophene) monolayer, J. Chem. Phys. 2013, 139, 014701. 19. Y. Guo, L. Jiang, X. Ma, W. Hu, Z. Su*, Poly(3-hexylthiophene) monolayer nanowhiskers, Polym. Chem. 2013, 4, 4308-4311. 20. M. Su, H. Huang, X. Ma, Q. Wang, Z. Su*, Poly(2-vinylpyridine)-block-poly(ε-caprolactone) single crystals in micellar solution, Macromol. Rapid Commun. 2013, 34(13), 1067-1071. 21. X. Zhang, G. Zhang, B. Zhang, Z. Su*, Synthesis of hollow Au-Ag bimetallic nanoparticles in polyelectrolyte multilayers, Langmuir 2013, 29, 6722-6727. 22. Y. Guo, X. Ma, Z. Su*, Interfacial Interactions between Poly(3-hexylthiophene) and Substrates, Macromolecules 2013, 46(7), 2733-2739. 23. H. Wu, Z. Su, Y. Terayama, A. Takahara*, Polystyrene-based blend nanorods with gradient composition distribution, Sci. China Chem. 2012, 55(5), 726-734. 24. H. Wu, Z. Su, A. Takahara*, Characterization of an isotactic polystyrene/poly(2,6-dimethylphenylene oxide) nanorod blend with gradient composition and crystallinity, RSC Advances 2012, 2(23), 8707-8712. 25. B. Wang, Z. Liu, Y. Xu, Y. Li, T. An*, Z. Su, B. Peng, Y. Lin, Q. Wang, Construction of glycoprotein multilayers using the layer-by-layer assembly technique, J. Mater. Chem. 2012, 22(34), 17954-17960. 26. X. Zan, D. A. Hoagland, T. Wang, Z. Su*, Ion dispositions in polyelectrolyte multilayer films, Macromolecules 2012, 45(21), 8805-8812. 27. G. Xiao, Y. Guo, Y. Lin*, X. Ma, Z. Su*, Q. Wang, Controlled evaporative self-assembly of poly(3hexylthiophene) monitored with confocal polarized Raman spectroscopy, Phys. Chem. Chem. Phys. 2012, 14, 16286-16293. 28. X. Zhang, C. Chu, K. Huang, Z. Su*, Preparation of Au@Pt core-shell nanoparticles using polyelectrolyte multilayers as nanoreactors, Chin. J. Appl. Chem. 2012, 29(12), 1433-1436. 29. M. Li, H. Wu, Y. Huang, Z. Su*, Effects of alkylated nanopore surface of anodized aluminum oxide template on crystal orientation of syndiotactic polystyrene, Chin. J. Appl. Chem. 2012, 29(12), 1406-1411. 70 PEM-coated Mesh for On-Demand Oil/Water Separation Zhaohui Su State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China In recent years separation of oil/water mixtures has become a topic of intense research due to increasing concerns on oil and oily wastewater spills. Meshes coated with various materials have proved effective for this purpose. These meshes, depending on the wetting characters of the surfaces, can remove (permeate) only oil or water from oil/water mixtures, but not both. Here we report a device capable of both oil and water removal on-demand from oil/water mixtures with high separation efficiency. The mesh, coated with alumina and then an ultrathin polyelectrolyte multilayer film, permeates typical oils such as diesel rapidly in the “oil-removing” mode. When handling viscous and sticky oils such as crude oil, the same mesh can be easily switched into “water-removing” mode to permeate water, avoiding block and contamination of the mesh by the oil. The switchable coating thus enables handling of all types of oil/water mixture by one single device. 71 Dr. Shigeru DEGUCHI R&D Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) E-mail: [email protected] Telephone: +81 (0)46-867-9679 Fax: +81 (0)46-867-9715 Website: http://www.jamstec.go.jp/rcmb/e/member/deguchi_shigeru.html Address: 2-15 Natsushima-cho, Yokosuka 237-0061, Japan Education & Academic Background 1990 Graduated from Department of Polymer Chemistry, Faculty of Engineering, Kyoto University 1992 Master of Engineering, Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University 1994-1995 Sweden Visiting Fellow, Department of Physical Chemistry 1, Lund University, Sweden (supported by the Japan-Sweden Foundation) 1996 Doctor of Engineering, Kyoto University 1997 JST Overseas Research Fellow, Department of Physical Chemistry 1, Lund University, Sweden 1999 Research Scientist, Frontier Research Program for Deep-Sea Extremophile, JAMSTEC 2001 Sub Leader, Frontier Research System for Extremophiles, JAMSTEC 2005 Group Leader, Extremobiosphere Research Center, JAMSTEC 2009 Team Leader, Soft Matter and Extremophiles Research Team, Institute of Biogeosciences, JAMSTEC 2014- Director, R&D Center for Marine Biosciences, JAMSTEC 2007- Adjunct Professor, Graduate School of Nanobioscience, Yokohama City University 2014- Visiting Researcher, National Institute for Materials Science Award: 2011 2008 2006 2006 Ichimura Prize in Technology - Meritorious Achievement Prize Takagi Award Osawa Award Young Scientist Award (Division of Colloid and Surface Chemistry, The Chemical Society of Japan) Recent Publications S. Deguchi, K. Tsujii, K. Horikoshi, “In situ Microscopic Observation of Chitin and Fungal Cells with Chitinous Cell Walls in Hydrothermal Conditions”, Sci. Rep. 11907; doi: 10.1038/srep11907 (2015). S. Mukai, T. Koyama, K. Tsujii, S. Deguchi, “Anomalous Long-Range Repulsion between Silica Surfaces Induced by Density Inhomogeneities in Supercritical Ethanol”, Soft Matter, 10 (35), 6645-6650 (2014). S. Deguchi, K. Kinoshita, T. Kubota, Aqua Extrema and Vita Incognita Deep below the Waves in “Aqua Incognita: Why Ice Floats on Water, and Galileo 400 Years on”, P. Lo Nostro, B. W. Ninham eds. (Connor Court, Ballarat, 2014), pp. 240-255. S. Deguchi, S. Mukai, Optical Reactors for Microscopic Visualization of Chemical Processes in Sub- and Supercritical Water in Near-Critical and Supercritical Water and Their Applications in Biorefineries, Z. Fang, C. Xu eds. (Springer-Verlag, Beijing,2014), pp. 133-156. S. Deguchi, N. Ifuku, “Bottom-Up Formation of Dodecane-in-Water Nanoemulsions from Hydrothermal Homogeneous Solutions”, Angew. Chem. Int. Ed. 52 (25), 6409-6412 (2013). K. Numata, K. Morisaki, S. Tomizawa, M. Ohtani, T. Demura, M. Miyazaki, Y. Nogi, S. Deguchi, Y. Doi, “Synthesis of Poly- and Oligo(hydroxyalkanoate)s by Deep-Sea Bacteria, Colwellia spp., Moritella spp. and Shewanella spp.” Polym. J. 45 (10), 1094-1100 (2013). S. Deguchi, H. Shimoshige, M. Tsudome, S. Mukai, R. W. Corkery, S. Ito, K. Horikoshi, “Microbial Growth at Hyperaccelerations up to 403,367 × g”, Proc. Natl. Acad. Sci. USA 108 (19), 7997-8002 (2011). S. Deguchi, S. Mukai, T. Yamazaki, M. Tsudome, K. Horikoshi, “Nanoparticles of Fullerene C60 from Engineering of Antiquity”, J. Phys. Chem. C 114 (2), 849-856 (2010). S. Deguchi, K. Tsujii, K. Horikoshi, “Cooking Cellulose in Hot and Compressed Water”, Chem. Commun. 2006, 3293-3295 (2006). 72 Soft Materials Under Extreme Conditions Mimicking Deep-sea Hydrothermal Vents Keigo Kinoshita and Shigeru Deguchi* R&D Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan, E-mail:[email protected] Ocean covers 70% of the earth’s surface. Its mean depth over the globe is 3800 meters, and the deep-sea represents the layer deeper than 200 meters. The deep sea is characterized by extreme physicochemical conditions that are very different from those of the surface. Hydrostatic pressure increases 0.1 MPa for every 10 meters of water depth, and reaches 110 MPa at the deepest spot of the ocean. The deep sea is also a lightless world as sunlight does not reach below 200 meters. Accordingly, the temperature of the deep water is always low at around 2-4ºC except hydrothermal vents, which are hot springs occurring in the bottom of the ocean. There, extremely hot water, sometimes in the supercritical state (Tc = 374°C, Pc = 22.1 MPa), gushes into cold deep-sea water and forms a steep thermocline (Fig. 1). Fig. 1. Photograph of a Nature is the source of inspiration for new hydrothermal activity at technological developments, and the extreme the depth of 1492 meters environments in the deep sea are no exceptions. In near Ryukyu Islands, this talk, novel processes for making organic soft Japan. materials, which were inspired by the hydrothermal vent, will be presented. MAGIQ (Monodisperse nAnodroplet Generation In Quenched hydrothermal solution) is a process for making nanoemulsions.1) It is completely different from conventional processes in that nano-sized oil droplets are formed by selfassembly of oil molecules. By using a flow-reactor that is designed to mimic temperature profiles around the hydrothermal vents, nanoemulsions can be prepared in just 10 seconds. Another process called HIP (Heat-pulse Initiated radical Polymerization) uses the same reactor, and allows to complete free radical polymerization within several seconds. 1) Deguchi, S.; Ifuku, N. Angew. Chem. Int. Ed. 2013, 52, 6409–6412. 73 Yusuke Yamauchi Date of birth: 24 Aug., 1980 Position: Professor / Group Leader Place: National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. E-mail: [email protected] Homepage: http://www.yamauchi-labo.com/ Education: 1999-2003 2003-2004 2004-2007 2004-2006 2006-2007 B. Eng., Department of Applied Chemistry, School of Science and Engineering, Waseda University M. Eng., Major in Nanoscience & Nanoengineering, Graduate School of Science & Engineering, Waseda University Ph.D., Major in Nanoscience & Nanoengineering, Graduate School of Science & Engineering, Waseda University 21COE Research Assistant, 21COE ‘Practical Nanochemistry’, Waseda University Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science (JSPS) Working History: 2007-Present Group Leader, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 2008-Present Associate Professor, Faculty of Science and Engineering, Waseda University, Japan 2012-Present Visiting Prof., Tianjin University, China 2013-Present Visiting Prof., University of Wollongong, Australia 2013-Present Associate Editor, APL Materials, The American Institute of Physics (AIP) 2014-Present Editorial Board Member, Scientific Reports, Nature Publishing Group (NPG) 2015-Present Visiting Prof., King Sudi University, Saudi Arabia Academic Awards The achievements and talent of Prof. Yamauchi have been recognized in Australia, Japan, and overseas. He has been awarded highly competitive fellowships/awards. 2007 Mizuno Award by Department of Applied Chemistry, Waseda University; 2010 The Ceramic Society of Japan (CerSJ) Award for Advancements in Ceramic Science and Technology; 2010 Inoue Research Award for Young Scientists; 2012 PCCP Prize by the Royal Society of Chemistry (RSC); 2012 The Tsukuba Encouragement Prize; 2013 The Young Scientists’ Prize by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and 2014 The Chemical Society of Japan (CSJ) Award for Young Chemists. Competitive Research Funding Since April 2007, he has received US$4,360,000 in total. Based on this experience, Prof. Yamauchi has substantial expertise in the design, synthesis, and characterization of functional nanoporous materials for diverse applications. He has invented several methods to prepare novel nanoporous materials. To date, he has been successful as principal/chief investigator in many competitive grants, a total of 20 grants from multiple sources, such as the Japan Society for the Promotion of Science (JSPS) and the Japan Science and Technology Agency (JST). Selected Recent Projects Y. Yamauchi, “Nanoscale design of nanomaterials toward the next generation of magnetic record media”, PRESTO Program 2008-2014, Japan Science and Technology Agency (JST) US$1,000,000 Y. Yamauchi, “Functional nanoporous materials toward environmental mediation”, National Project 2013-2015, Ministry of Education, Culture, Sports, Science and Technology (MEXT) US$400,000 Y. Yamauchi, “Nanoscale controls of functional porous materials”, The World Premier International Research Program 2013-2015, The Japan Society for the Promotion of Science (JSPS) US$400,000 Y. Yamauchi, “Electrochemical plating of mesoporous metals”, Grants-in-Aid for Scientific Research 2014-2016, The Japan Society for the Promotion of Science (JSPS) US$200,000 74 Y. Yamauchi, Liang Wang, “Nanostructured electrocatalysts for fuel cells”, Japan-China Joint Project 2014-2016, The Japan Society for the Promotion of Science (JSPS) US$200,000 Y. Yamauchi, “Nanoscale controls of porous metals”, Grants-in-Aid for Scientific Research 20142016, The Canon Foundation US$200,000 Y. Yamauchi, K. Ariga, “Fabrication of new biosensors using nanoporous materials”, Japan-Taiwan Joint Project 2014-2017, The Japan Society for the Promotion of Science (JSPS) US$200,000 Publications Lists Prof. Yamauchi has published more than 300 papers in international refereed journals with more than 6500 citations (h index =41). Top 7 journals in my carrier: Chemical Communications (30 papers) Chemistry - An Asian Journal (30 papers) Chemistry - A European Journal (23 papers) Journal of Materials Chemistry (22 papers) Journal of the American Chemical Society (16 papers) Chemistry of Materials (15 papers) Angewandte Chemie International Edition (11 papers) Other journals Small (5 papers) Nano Energy (3 papers) Advanced Materials (3 papers) Selected publications in the past 5 years (2011-2015) *[1] Polymeric Micelle Assembly with Inorganic Nanosheets for Construction of Mesoporous Architectures with Crystallized Walls Bishnu Prasad Bastakoti, Yunqi Li, Masataka Imura, Nobuyoshi Miyamoto, Teruyuki Nakato, Takayoshi Sasaki, and Yusuke Yamauchi* Angewandte Chemie-International Edition, in press (DOI: 10.1002/anie.201410942). *[2] Thermal Conversion of Core-Shell Metal-Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon Jing Tang, Rahul R. Salunkhe, Jian Liu, Nagy L. Torad, Masataka Imura, Shuhei Furukawa, and Yusuke Yamauchi* Journal of the American Chemical Society, in press. *[3] Synthesis of Nitrogen-Doped Mesoporous Carbon Spheres with Extra Large Pore Sizes through Diblock Copolymer Micelle Assembly Jing Tang, Jian Liu*, Cuiling Li, Yunqi Li, Moses O. Tade, Sheng Dai*, and Yusuke Yamauchi* Angewandte Chemie-International Edition, 54, 588-593 (2015). *[4] Nanoporous Carbon Tubes from Fullerene Crystals as the π-Electron Carbon Source Lok Kumar Shrestha,* Rekha Goswami Shrestha, Yusuke Yamauchi*, Jonathan P. Hill, Toshiyuki Nishimura, Kun’ichi Miyazawa, Takazumi Kawai, Susumu Okada, Katsunori Wakabayashi, and Katsuhiko Ariga* Angewandte Chemie-International Edition, in press (DOI: 10.1002/anie.201408856). [5] Gigantic Swelling of Inorganic Layered Materials: A Bridge to Molecularly Thin Two-Dimensional Nanosheets 75 Synthesis of Novel Nanoporous Materials Based on a SelfAssembly of Functional Molecules Yusuke Yamauchi* World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki E-mail: [email protected] Polymeric micelles are formed in solution when the hydrophobic portions are driven to an interior structure while hydrophilic portions are turned outward facing toward the water. So far, the polymeric micelles have been utilized for various applications, such as adsorbents, drug carriers. Recently, we have focused on the polymeric micelles as stable and rigid templates for obtaining mesoporous materials with ultra large pore sizes.[1-3] Our ‘polymeric micelle assembly’ approach is highly useful for preparation of novel mesoporous materials which are not easily obtained by general synthetic approaches. As one example, mesoporous gold (Au) films with tunable pores are expected to provide fascinating optical properties stimulated by the mesospaces, but they have not been realized yet because of the difficulty of controlling the Au crystal growth. Very recently, we reported a reliable synthesis of mesoporous Au films using stable micelles of polystyrene-block-poly(oxyethylene) (PSb-PEO) diblock copolymers, with electrochemical deposition advantageous for precise control of Au crystal growth.[3] In the electrolyte solution, HAuCl4 is dissolved into H3O+ and AuCl4- ions and then interacts with the EO shells of the micelles through hydrogen bonding. This interaction favours H3O+ rather than AuCl4-, and consequently creates positively charged micelles that can be directed to the working electrode surfaces, where the AuCl4- ions are reduced to metallic Au with the electrochemical deposition of the micelles. The resultant mesoporous Au films actually exhibit high scattering performance and thus high activity for molecular sensing. Significantly, enhanced electric field (Efield) amplitude is clearly seen inside or at the perimeter of the mesopores. The E-field amplitude and LSPR frequency are readily tunable by simply tuning the pore size and we demonstrate the new methodology for tailoring the optical functionality. In this presentation, we would like to introduce our recent progress on new mesoporous/nanoporous materials as well.[4, 5] Fig. 1 | (a) Schematic illustration for the fabrication of mesoporous Au films by using polymer micelle assemblies. (b, c) TEM images of PS-b-PEO micelles formed in aqueous solution (b) without and (c) with HAuCl4 source. The Tyndall effect is also shown as an inset image. References [1] J. Tang, Y. Yamauchi et al., Angew. Chem. Int. Ed., 54, 588 (2015). [2] B. P. Bastakoti, Y. Yamauchi et al., Angew. Chem. Int. Ed., 54, 4222 (2015). [3] C. Li, Y. Yamauchi et al., Nat. Commun., 6, 6608 (2015). [4] J. Tang, Y. Yamauchi et al., J. Am. Chem. Soc., 137, 1572 (2015). [5] L. K. Shrestha, Y. Yamauchi et al., Angew. Chem. Int. Ed., 54, 951 (2015). 76 Dr. Lei JIANG, Prof. Institute of Chemistry, Chinese Academy of Sciences School of Chemistry and Environment, Beihang University E-mail: [email protected] Telephone: +86-10-82621396 Fax: +86-10-82627566 Website: http://jianglei.iccas.ac.cn Address: Zhongguancun North First Street 2#, 100190 Beijing, P.R. China Education & Academic Background PROFESSIONAL EXPERIENCE Dean: School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics (2008-Present) Full professor: Institute of Chemistry, Chinese Academy of Science (1999-Present) Researcher: Prof. Hashimoto’s project, Kanagawa Academy of Sciences and Technology (1996-1999) Postdoctoral fellow: Prof. Akira Fujishima’s group in The University of Tokyo(1994-1996) EDUCATION 1990-1994, Jilin University,China & The University of Tokyo, Japan, Ph. D. Major: Physical chemistry 1987-1990, Jilin University, China, M.S. Major: Physical chemistry 1983-1987 Solid state physics, Jilin University, China, B.S. Major: Physics AWARDS AND HONORS 1. In 2000 won the “Excellent Youth Prize” of Chinese Chemistry Committee. 2. In 2000 won the “Ten Excellent Youths Prize” of Chinese Academy of Sciences. 3. In 2001 won the “Excellent Youth Funds” of National Natural Science Funding Committee. 4. In 2002 won the “Excellent Prize of the Plan of Hundreds Scientists in CAS”. 5. In 2003 won the “Prize for the Excellent Supervisor of Ph. D. Students in CAS”. 6. In 2003 won the “Youth Innovation Prize of BSF” 7. In 2003 won the “Youths Science and Technology Prize in China”. 8. In 2005 won the second-class prize of the “State Natural Science Award”. 9. In 2011 won the “ ‘Zhuliyuehua’ Award for the Outstanding Teacher in CAS”. 10. In 2011 won the “TWAS Prize in Chemistry”. (The Academy of Sciences for the developing world) 11. In 2012 won the first-class prize of the “Beijing Science and Technology Award”. 12. In 2013 won the Advanced Science and Technology Award of "THE HO LEUNG HO LEE FUNDATION" 13. In 2014 won The MRS Mid-Career Researcher Award (Materials Research Society, USA) 14. In 2014 won Thomson Reuters China Citation Laureates, Highly Cited Researcher Award (Chemistry) , Highly Cited Researcher Award ( Material Science), International Citation Impact Award. 15. In 2014 won Outstanding Science and Technology Achievement Prize of the Chinese Academy of Sciences. Publications Published more than 500 SCI journal articles, including 2 papers in Nature, 1 paper in Nature Nanotechnol., 1 paper in Nature Mater., 4 papers in Nature Commun., 1 paper in Chem. Rev., 5 papers in Chem. Soc. Rev., 6 papers in Acc. Chem. Res., 30 papers in Angew. Chem. Int. Ed., 22 papers in J. Am. Chem. Soc., 80 papers in Adv. Mater. The works have been cited more than 31000 times, the H factor is 80. 77 Smart Interfacial Materials from Super-Wettability to Binary Cooperative Complementary Systems Lei Jiang *a,b a b Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China School of Chemistry and Environment, Beihang University, Beijing 100191, China E-mail:[email protected] Learning from nature and based on lotus leaves and fish scale, we developed superwettability system: superhydrophobic, superoleophobic, superhydrophilic, superoleophilic surfaces in air and superoleophobic, superareophobic, superoleophilic, superareophilic surfaces under water [1]. Further, we fabricated artificial materials with smart switchable super-wettability [2], i.e., nature-inspired binary cooperative complementary nanomaterials (BCCNMs) that consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel concept for the building of promising materials [3-4]. The smart super-wettability system has great applications in various fields, such as selfcleaning glasses, water/oil separation, anti-biofouling interfaces, and water collection system [5]. The concept of BCCNMs was further extended into 1D system. Energy conversion systems that based on artificial ion channels have been fabricated [6]. Also, we discovered the spider silk’s and cactus's amazing water collection and transportation capability [7], and based on these nature systems, artificial water collection fibers and oil/water separation system have been designed successfully [8]. Learning from nature, the constructed smart multiscale interfacial materials system not only has new applications, but also presents new knowledge: Super wettability based chemistry including basic chemical reactions, crystallization, nanofabrication arrays such as small molecule, polymer, nanoparticles, and so on [9]. Reference: [1]. Adv. Mater. 2006, 18 (23), 3063-3078. [2]. Adv. Mater. 2008, 20 (15), 2842-2858. [3]. Pure Appl. Chem. 2000, 72 (1-2), 73-81. [4]. Small. 2015, 11, 1071-1096. [5]. Adv. Mater. 2011, 23 (6), 719-734. [6]. (a)Chem. Soc. Rev. 2011, 40 (5), 2385-2401; (b) Acc. Chem. Res. 2013, 46 (12), 2834-2846; (c) Adv. Mater. 2010, 22 (9), 1021-1024. (d) ACS Nano 2009, 3 (11), 3339-3342; (e) Angew. Chem. Int. Ed. 2012, 51 (22), 5296-5307; [7]. (a) Nature 2010, 463 (7281), 640-643; (b) Nat Commun 2012, 3, 1247. [8]. (a) Nat Commun 2013, 4, 2276; (b) Adv. Mater. 2010, 22 (48), 5521-5525. [9]. (a) Chem. Soc. Rev. 2012, 41 (23), 7832-7856; (b) Adv. Funct. Mater. 2011, 21 (17), 3297-3307; (c) Adv. Mater. 2012, 24 (4), 559-564; (d) Nano Research 2011, 4 (3), 266-273; (e) Soft Matter 2011, 7 (11), 5144-5149; (f) Soft Matter 2012, 8 (3), 631-635; (g) Adv. Mater. 2012, 24 (20), 2780-2785; (h) Adv. Mater. 2013, 25 (29), 3968-3972; (i) J. Mater. Chem. A 2013, 1 (30), 8581-8586; (j) Adv. Mater. 2013, 25 (45), 6526-6533; (k) Adv. Funct. Mater. 2012, 22 (21), 4569-4576; (l) Acs Nano 2012, 6 (10), 9005-9012. 78 Dr. Haeshin Lee, Prof. Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) E-mail: [email protected] Telephone: +82 (42)-350-2889 Website: http://sticky.kaist.ac.kr Address: 291 University Rd. Daejeon, 305-701, South Korea Education & Academic Background 1997 B.S. Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST) 2002-2003 Researcher, Department of Biochemistry and Molecular Biology, The University of Chicago 2008 Ph.D. Biomedical Engineering, Northwestern University 2009 Research Fellow, Department of Chemical Engineering, MIT (Advisor Robert S. Langer & Daniel G. Anderson) 2009 – present Associate Professor, Department of Chemistry, KAIST 2013 – present Director, Center for Nature-inspired Technology (CNiT), KAIST Institute of NanoCentury. Award: 2015 Excellence in Research Award (KAIST); 2014, 2011, 2010, Excellence in Teaching Award (KAIST); 2011, POSCO T.J.Park Young Scientist Award (ChungAm Foundation); 2008, NASA inventor Award; 2007, Future Scientist Award (The Ministry of Science and Education) Recent Publications G. Jin, M. Shin, S.-H. Kim, Haeshin Lee*, J.-H. Jang* “SpONGE: Spontaneous organization of numerous-layer generation by electrospray” Agnew. Chemie. Int. Ed. 2015, 54, 7587-7591. J. S. Lee, K. Kim, K. Kim, J. P. Park, K. Yang, S.-W. Cho*, Haeshin Lee* “Surface chemistry of vitamin: Pyridoxal 5’-phosphate (Vitamin B6) as a multifunctional compound for surface functionalization” Adv. Funct. Mater. 2015, 25, 4754-60. S. Ryu, J. B. Chou, K. Lee, D. Lee, S. H. Hong, R. Zhao, Haeshin Lee* “Direct insulation-to-conduction transformation of adhesive catecholamine for simultaneous increases of electrical conductivity and mechanical strength of CNT fibers” Adv. Mater. 2015, 27, 3250-3255. Seonki Hong, C. F. Schaber, K. Dening, E. Appel, Stanislav N. Gorb, Haeshin Lee* “Air/Water Interfacial formation of free-standing, stimuli-responsive, self-healing catecholamine Janus-faced microfilm” Adv. Mater. 2014 26, 7581-87. S. Hong, J. Kim, Y. S. Na, J. Park, S. Kim, K. Singha, G.-I. Im, W. J. Kim, Haeshin Lee, “Poly(norepinephrine): Ultra-smooth, Material-independent Surface Chemistry and Nano-depot for Nitric Oxide” Angew. Chemie. Int. Ed. 2013, 52, 9187-9191. S. Hong, Y. S. Na, S. Choi, I.-T. Song, W. Y. Kim, Haeshin Lee* “Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation” Adv. Func. Mater. 2012, 22, 4711-4717. I. You, S. M. Kang, S. Lee, Y. O. Cho, J. B. Kim, S. B. Lee, Y. S. Nam, Haeshin Lee “Polydopamine microfluidic system toward two-dimensional, gravity-driven mixing device” Angew. Chem. Int. Ed. 2012, 51, 6126-6130. S. M. Kang, I. You, Woo Kyung Cho, Hyun Kyong Shon, Tae Geol Lee, Insung S. Choi, Jeffrey M. Karp, Haeshin Lee “One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating” Angew. Chem. Int. Ed. 2010, 49, 9401-9404 Haeshin Lee “Intelligent glue” Nature, 2010, 465, 298-299 (pub. date 2010.05.19) Haeshin Lee, et al. “Mussel-inspired Surface Chemistry for Multifunctional Coatings” Science 2007, 318, 426-43). 79 Mussel-inspired Adhesive Polymers: Five-year Story of Chitosan-catechol Haeshin Leea,b a Department of Chemisry, Center for Nature-inspired Technology Korea Advanced Institute of Science and Technology (KAIST) Daejeon, Republic of Korea b E-mail: [email protected] Mussel-inspired adhesives representative as poly(dopamine) and poly(norepinephrine) have attracted worldwide attentions because of their materialindependent surface functionalization properties. The common chemical moieties of poly(dopamine) and poly(norepinephrine) are catecholamines, which are the major components of mussel-adhesive proteins. Poly(dopamine) and poly(norepinephrine) have been considered as adhesive materials, but they are in fact not adhesives but coating materials. The primary reason for the coating properties is their in situ polymerizing nature initiated by oxidative polymerization of dopamine and norepinephrine monomers. In my laboratory, we developed polymeric catecholamines that exhibit wet-resistant adhesive properties similar to mussel adhesive proteins. One example of catecholamine polymer is chitosan-catechol in which the amine groups exist along the chitosan backbone and the catechol moieties are chemically conjugated by carbodiimide coupling reaction utilizing 3,4-dihydroxycaffeic acid. In my talk, fiveyear history regarding development, optimization, application, and commercialization of chitosan-catechol will be presented. or 80 Thomas J. McCarthy Polymer Science and Engineering Department University of Massachusetts, Amherst [email protected] Education University of Massachusetts, Amherst, Chemistry, B.S. 1978 Massachusetts Institute of Technology, Organic Chemistry, Ph.D. 1982 Appointments Assistant Professor, University of Massachusetts, Amherst, June 1982 - August 1986 Associate Professor, University of Massachusetts, Amherst, September 1986 - August 1991 Professor, University of Massachusetts, Amherst, September 1991 - present Head, Polymer Science and Engineering, July 2000 - October 2003 Guest Professor, Changchun Institute of Applied Chemistry, September 2005 – present Visiting Professor, Kyushu University, October 2014 - December 2014 Notable Awards and Honors Society of Polymer Science, Japan, "SPSJ International Award" (2015) ACS Colloids and Surfaces Division, Langmuir Lecture (2006) Arthur K. Doolittle Award (1996) NSF Presidential Young Investigator Award (1986-1991) National Science Foundation Graduate Fellow (1978-1981) Notable Students and Postdoctoral Scholars (academics) Prof. Dhamodharan R. Iyengar, IIT Chennai, INDIA (former Ph.D. advisee) Prof. Molly S. Shoichet, FRSC, University of Toronto, CANADA (former Ph.D. advisee) Prof. James J. Watkins, University of Massachusetts, Amherst, USA (former Ph.D. advisee) Prof. Wei Chen, Mt. Holyoke College, USA (former Ph.D. advisee) Prof. Voravee P. Hoven, Chulalongkorn University, Bangkok, THAILAND (former Ph.D. advisee) Prof. Zhaohui Su, Changchun Inst. of Appl. Chem., Changchun, CHINA (former Ph.D. advisee) Prof. Jeffrey P. Youngblood, Purdue University, USA (former Ph.D. advisee) Prof. Xinqiao Jia, University of Delaware, USA (former Ph.D. advisee) Prof. Katrina Viviano, University of Wisconsin, USA (former Ph.D. advisee) Prof. Ilke Anac, Gebze Institute of Technology, TURKEY (former Ph.D. advisee) Prof. Margarita Hererra, Johns Hopkins University, USA (former Ph.D. advisee) Prof. Joseph W. Krumpfer, Pace University, USA (former Ph.D. advisee) Prof. Alexander Fadeev, Seton Hall University, USA (former postdoctoral advisee) Prof. Padma Rajagopalan, Virginia Tech, USA (former postdoctoral advisee) Prof. Yasuhiko Iwasaki, Kansei University, JAPAN (former postdoctoral advisee) Selected Publications Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 2664 (with L. Wang) "Capillary Bridge - Derived Particles with Negative Gaussian Curvature" J. Am. Chem. Soc. 2012, 134, 2024 (with P. Zheng) "A Surprise from 1954: Siloxane Equilibration Is a Simple, Robust, and Obvious Polymer Self-Healing Mechanism" J. Am. Chem. Soc. 2011, 133, 5764 (with J. W. Krumpfer) "Dip-Coating Crystallization on a 2 Superhydrophobic Surface: A Million Mounted Crystals in a 1 cm Array" Langmuir 2010, 26, 2567 (with P. Bian) “Polymerization of Monomer-Based Ferrofluids” Surf. Finish. Soc. Jpn. 2009, 60, 16 (with A. Hozumi) "Hydrophobization of Metal/Metal Oxide Surfaces Using Monolayer Films" Langmuir 2007, 23, 10445 (with L. Gao) “Ionic Liquid Marbles” Langmuir 2007, 23, 3762 (with L. Gao) “How Wenzel and Cassie Were Wrong” J. Am. Chem. Soc. 2006, 128, 9052 (with L. Gao) “A Perfectly Hydrophobic Surface: θA/ θR = 180°/180°” Macromolecules 2003, 36, 4253 (with S.I. Moon) “Template Synthesis and Self-Assembly of Nanoscopic Polymer “Pencils" Langmuir 2002, 18, 683 (with X. Jia) “Buried Interface Modification Using Supercritical Carbon Dioxide" 81 Do you know what PDMS is? Thomas J. McCarthy Polymer Science and Engineering Department University of Massachusetts Amherst, Massachusetts 01003 [email protected] Several examples of recently completed and on-going research will be described in the area of methylsilicones. Strategies to prepare self-healing materials will be emphasized. These materials can be considered copolymers of 4 monomers, M, D, T and Q, which are abbreviations first used by General Electric, the company that invented these materials in the 1940s. Linear silicone polymers are formed from D units, crosslinks are introduced using T and Q units and M units form chain ends. Linear polymers, M-Dn-M, are oils (liquids), DnT and DnQ polymers are elastomers and Q-rich polymers, such as TQ resins are hard solids used, for example, as scratch-resistant coatings. Qn is silica. One particular interest of ours concerns (controlling) the topology of crosslinked materials and we are preparing MQ resins with the objective of using them as reactive monomers to form materials with regions of high crosslinking. The chemical structure of a low molecular weight sample is: MQ resins, although they are commercially available, commodity additives that are used in silicone formulations, cosmetics, and pressure-sensitive adhesives, have not been studied in academics, yet they are a much richer platform for materials objectives that are T8 silsesquioxanes (POSS) molecules, that have been overstudied and hyped as nanoparticles. 82 Dr. Masanobu KAMITAKAHARA Associate Professor Graduate School of Environmental Studies Tohoku University E-mail: [email protected] Telephone: +81 (0)22-795-7375 Fax: +81 (0)22-795-7375 Website: http://ehtp.kankyo.tohoku.ac.jp/ioku/index.html Address: 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan Education & Professional Experiences 1998 (March): Bachelor degree of Engineering, Undergraduate Department of Industrial Chemistry, Faculty of Engineering, Kyoto University 2000 (March): Master of Engineering, Department of Material Chemistry, Graduate School of Engineering, Kyoto University 2003 (March): Ph.D, Department of Material Chemistry, Graduate School of Engineering, Kyoto University 2003 (April)-2006 (October): Assistant Professor, Graduate School of Materials Science, Nara Institute of Science and Technology 2006 (November)-2011 (March): Assistant Professor, Graduate School of Environmental Studies, Tohoku University 2011 (April)-Present: Associate Professor, Graduate School of Environmental Studies, Tohoku University Award: 2010 The 64th Award for Young Investigator of The Ceramics Society of Japan Recent Publications Masanobu Kamitakahara, Takuya Nagamori, Taishi Yokoi, Koji Ioku, “Carbonate-containing hydroxyapatite synthesized by the hydrothermal treatment of different calcium carbonates in a phosphate-containing solution”, J. Asian Ceram. Soc., 3, 287-291 (2015) Taishi Yokoi, Masanobu Kamitakahara, Chikara Ohtsuki, “Continuous expansion of the interplanar spacing of octacalcium phosphate by incorporation of dicarboxylate ions with a side chain”, Dalton Trans., 44, 7943-7950 (2015). Sota Terasaka, Masanobu Kamitakahara, Taishi Yokoi, Hideaki Matsubara, “Ability of hydroxyapatite synthesized from waste oyster shells to remove fluoride ions”, Mater. Trans., 56, 1509-1512 (2015). Masanobu Kamitakahara, Yuika Uno, Koji Ioku, “Behavior of osteoblast-like cells on calcium-deficient hydroxyapatite ceramics composed of particles with different shapes and sizes”, J. Mater. Sci.: Mater. Med., 25, 239-245 (2014). Natsuko Ito, Masanobu Kamitakahara, Koji Ioku, “Preparation and evaluation of spherical porous granules of octacalcium phosphate/hydroxyapatite as drug carriers in bone cancer treatment”, Mater. Lett., 120, 94-96 (2014). Taishi Yokoi, Masanobu Kamitakahara, “Formation of stacked disc-shaped layered double hydroxides by homogeneous precipitation method”, Chem. Lett., 43, 234-236 (2014). Natsuko Ito, Masanobu Kamitakahara, Masahiro Yoshimura, Koji Ioku, “Importance of nucleation in transformation of octacalcium phosphate to hydroxyapatite”, Mater. Sci. Eng. C, 40, 121-126 (2014). Sota Terasaka, Masanobu Kamitakahara, Taishi Yokoi, Koji Ioku, “Effect of preparation temperature on the ability of bone char to remove fluoride ion and organic contaminants”, J. Ceram. Soc. Japan, 122, 995-999 (2014). Masanobu Kamitakahara, Ryohei Imai, Koji Ioku, “Preparation and evaluation of spherical Ca-deficient hydroxyapatite granules with controlled surface microstructure as drug carriers”, Mater. Sci. Eng. C, 33, 2446-2450 (2013). Taishi Yokoi, Masanobu Kamitakahara, Masakazu Kawashita, Chikara Ohtsuki, “Formation of organically modified octacalcium phosphate in solutions containing various amounts of benzenedicarboxylic acids”, J. Ceram. Soc. Japan, 121, 219-225 (2013). 83 Potential of Hydroxyapatite as a Scaffold Material for Microorganisms for Water Purification Masanobu Kamitakahara Graduate School of Environmental Studies, Tohoku University 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan, E-mail: [email protected] The technology for the water purification is important for our lives. In the treatment of the sewage, microorganisms are widely used. It has been reported that the scaffold for microorganisms can raise the treatment efficiency. However, the effects of support materials on microorganisms are still unclear. We focused on hydroxyapatite (HA, Ca10(PO)6(OH)2) as a support material. HA is an inorganic component of bones and shows excellent biocompatibility, a property that would be advantageous in a support material for microorganisms. Additionally, HA has the ability to adsorb organic substances, which would consequently be utilized effectively by microorganisms. At first, we investigated the adhesion behavior of Escherichia coli (E. coli) on HA, polyurethane (PU), poly(vinyl chloride) (PVC), and carbon (Carbon) to obtain basic knowledge for the design of support materials. The number of E. coli adhering on the samples followed the order of HA ≈ Carbon > PVC > PU. These results implies that HA has a potential as a support material for microorganisms. Based on the above results, we prepared a scaffold made of HA for the microorganisms. Spherical porous -tricalcium phosphate granules were prepared, and then they were treated with saturated water vapor under the hydrothermal condition. The spherical porous HA granules composed of rod-like particles were obtained. After these granules were immersed in a suspension containing microorganisms, the microorganisms adhering on the surfaces of the HA granules were observed (Fig. 1). It is suggested that the HA granules can act as a scaffold for microorganisms. Fig.1 SEM images of microorganisms adhering on the surface of HA granule. 84 Dr. Kaori Kamata JST-ERATO Iyoda Supra-Integrated Molecular Project, Tokyo Institute of Technology E-mail: [email protected] Telephone: +81-45-924-5277 Fax: +81-45-924-5277 Website: http://www.jst.go.jp/erato/iyoda/ Address: 4259 Nagatsuta-Cho, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan Education & Academic Background 1997 Bachelor of Engineering, Department of Chemistry and Chemical Engineering, Faculty of Engineering, Yamagata University 1999 Master of Engineering, Department of Applied Chemistry, Graduate School of Engineering, Tokyo Metropolitan University 2002 Doctor of Engineering, Department of Applied Chemistry, Graduate School of Engineering, Tokyo Metropolitan University 2002-2003 Research Associate, Department of Chemistry, University of Washington 2003-2011 Assistant Professor, Chemical Resources Laboratory, Tokyo Institute of Technology 2006-2010 JST-PRESTO Researcher, PRESTO Project “Structure Control and Function” 2011Group Leader, JST-ERATO Iyoda Supra-Integrated Molecular Project Associate Professor, Tokyo Institute of Technology Award: 2000 2003 2006 2007 2007 2010 2013 The World Polymer Congress IUPAC MACRO2000 Poster Award MRS-ICAM Young Scientist Award ICNME 2006 Award, The 7th International Conference on Nano-Molecular Electronics ACS-232nd National Meeting, PMSE Division, Arthur K. Doolittle Award Prizes for Science and Technology, The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology (shared award) Excellent Paper Award of The Electrochemical Society of Japan (shared award) Nano Tech Award 2013: Category Award on “Nano Fabrication Technology” (shared award) Recent Publications Komiyama, H., Komura, M., Akimoto, Y., Kamata, K., Iyoda, T., Chem. Mater. 27, 4972-4982 (2015). Kamata, K., Piao, Z., Iyoda, T., et al., Scientific Reports 4, 4919 (2014). Komiyama, H., Sakai, R., Hadano, S., Asaoka, S., Kamata, K., Iyoda, T., Macromolecules 47, 1777-1782 (2014). Kamata, K., Akimoto, Y., Iyoda, T., Cellulose Commun. 20, 69 (2013). Komiyama, H., Iyoda, T., Kamata, K., Chem. Lett. 41, 110-112 (2012). Kamata, K., Nakagawa, M., Iyoda, T., Yamada, A., et al., Adv. Mater. 23, 5509-5513 (2011). Zou, W., Wang, Y., Wang, Z., Zhou, A., Li, J., Chang, A., Wang, Q., Komura, M., Ito, K., Iyoda, T. Nanotechnology 22, 335301-335306 (2011). Watanabe, R., Iyoda, T., Ito, K., Electrochemistry 77, 214-218 (2009). Suzuki, S., Kamata, K., Yamauchi, H., Iyoda, T., Chem. Lett. 36, 978-979 (2007). Li, J., Kamata, K., Komura, M., Yamada, T., Yoshida, H., Iyoda, T., Macromolecules 40, 8125-8128 (2007). Kamata, K., Iyoda, T., Nanomaterials Research toward Applications Chapter 5, page 171-223 (Ed. by, Hosono, H., Mishima, Y., Takezoe, H., & MacKenzie, J. D. K., Elsevier, 2006). 85 Biotemplated 3D Microstructures for Unique Electromagnetic Responses Kaori Kamata JST-ERATO Iyoda Supra-Integrated Material Project, Tokyo Institute of Technology 4259 Nagatsuta-Cho, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan, E-mail: [email protected] Microstructures in nature have been attracting attention of scientists in all different fields due to the mystery in mechanism of generation and the sophisticated system. In the light of material engineering, most of the natural microstructures are difficult Figure 1 Spirulina-based biotemplating process. tasks to be mimicked with artificial materials. Three-dimensional microstructures are good targeting motifs, especially helical structures.1,2 Here, we propose the utilization of Spirulina, blue-green algae and forming air core helix, as biotemplate. The structural parameters of Spirulina such as diameter, helical pitch, and length can Figure 2 SEM images of (A) LH and (B) RH microcoils. The Spirulina be controlled by cultivation templates were cultivated under the controlled condition for tightening the conditions,3 which should be the helical pitches (15 μm). The insets indicate the magnified images. greatest benefit for size-tuning of resulting materials. The biotemplating process in our study was carried out through three steps including fixation of Spirulina, surface activation, and electroless plating (Fig. 1). The metal coating was successfully formed on Spirulina surface with the three-step process, which gave metallic microcoil with air core helical structure (Fig. 2). The dimensions of metallic microcoils are controllable in the range of 30-60 μm in diameter, 5-80 μm in coil pitch, and 50-300 μm with narrow size distributions. We examined electromagnetic properties of the resulting microcoils. It was found that the microcoil dispersion sheets effectively absorbed terahertz wave with optical activities based on the size and also handedness of microcoils. The current biotemplating process can overcome poor controllability of structural design and difficulty in mass fabrication, which are the problems in conventional manufacturing approaches like photolithography or direct printing processes for 2D patterns. References [1] Kamata, K., Suzuki, S., Ohtsuka, M., Nakagawa, M., Iyoda, T., Yamada, A. Adv. Mater. 23, 5509-5513 (2011). [2] Kamata, K., Piao, Z., Iyoda, T., et al., Scientific Reports 4, 4919 (2014). [3] Ma, Z., Gao, K. Planta 230, 329-337 (2009). 86 Structural Color Materials based on Biomimetic Core-Shell Particles that Mimic Melanin Granules Michinari Kohri* and Ayaka Kawamura Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan E-mail: [email protected] Nature produces structural colors, which are thought to depend on the size and arrangement of nanostructural elements. For instance, the beautiful iridescent structural colors of male peacock feathers are created by arrays of rod-like black melanin granules that are produced by DOPA. Herein, we describe a novel and simple method to create bright structural colors using biomimetic core-shell particles composed of polystyrene (PSt) core and polydopamine (PDA) shell that mimic black melanin granules (Figure 1). Figure 2 shows the structural color pellets that were prepared using PSt@PDA core-shell particles. While PSt particles with different diameters were worked as components of structural color materials, black PDA shell layers absorbed light scattering efficiently, giving rise to pellets having bright structural colors. Changing the PSt core particle diameters and thicknesses of PDA shell layers easily controlled the structural colors. This simple and novel process of using core-shell particles containing PDA black shell layers is useful for understanding biological systems and can be used in basic research on structural color materials and practical applications. About Corresponding Author: Dr. Michinari KOHRI, Assoc. Prof. Graduate School of Engineering, Chiba University E-mail: [email protected] Telephone: +81 (0)43-290-3393 Fax: +81 (0)43-290-3393 Website: http://chem.tf.chiba-u.jp/gacb03/saito/toppu.html Address: 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan Education, Academic Backgrownd and Awards 2007 Research Assistant Professor, IMRAM, Tohoku University 2008 Assistant Professor, Graduate School of Engineering, Chiba University 2012.8-11 Visiting Researcher, University Lyon 1 2015- Associate Professor, Graduate School of Engineering, Chiba University Award: Presentation Award (The Chemical Society of Japan, 2012), The Selected Lectures by Young Chemists (The Chemical Society of Japan, 2013), and the Award for Encouragement of Research in Polymer Science (The Society of Polymer Science, 2013) Publications 1) M. Kohri et al., J. Mater. Chem. C, 3, 720-724 (2015). 2) M. Kohri et al., Colloids Surf. A, 449, 114-120 (2014). 3) M. Kohri et al., Polym. Chem., 4, 2696-2702 (2013). 4) M. Kohri et al., Macromol. Rapid Commun., 34, 1220-1224 (2013). 5) M. Kohri et al., Polym. Chem., 3, 900-906 (2012). 6) M. Kohri et al., Polym. Chem., 3, 1123-1125 (2012). 87 Anti-Stick Coatings Using Liquid-impregnated Transparent Organogels Chihiro Urata, Gary Dunderdale, Matt England, and Atsushi Hozumi* National Institute of Advanced Industrial Science and Technology (AIST) 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya 463-8560, Japan E-mail: [email protected] Functional coatings with exceptional surface properties, such as liquid-repellency and low-friction/adhesion, have been commonly prepared by combining textured surfaces with long-chain perfluorinated compounds (LPFCs). However, unfortunately, the chemical and physical effects of the LPFCs on human health and environment have been viewed lately with concern. In addition, once such artificial surfaces are physically and chemically damaged, they permanently lose their surface properties. In contrast, some living things maintain their surface properties through secretion of plant waxes and mucus. Here, we report on novel coatings in-spired by such biological systems. To realize long-lasting surface properties, we have particularly focused on the syneresis of organogels, which were prepared by hydrosilylation of 2 types of silicones, and several guest organic liquids (Scheme1). As compatibility between guest liquids and polymer matrixes (cross-linked polydimethylsiloxane) is decreased to a certain critical point which is induced by the chemical and/or physical effects, the guest liquids begin to gradually leach out to the outmost organogel surface. Thanks to this selflubricating property, adhesion of various objects was effectively reduced, resulting in the excellent anti-sticking properties. In addition, by using a reactive organic liquid, nano/micro-architectures showing superhydrophobicity were self-assembled on the upmost surface of organogel. About Corresponding Author: Dr. Chihiro Urata, Researcher, Department of Materials and Chemistry Structural Materials Research Institute Advanced Surface and Interface Chemistry Group, National Institute of Advanced Industrial Science and Technology (AIST) Scheme 1. Conceptual image of this study E-mail: [email protected] Telephone: +81 (0)52-736-7594 Fax: +81 (0)52-736-7406 Website: https://unit.aist.go.jp/smri/ja/group/asichem.html Address: 2266-98 Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan Education, Academic Backgrownd and Awards 2011 Ph.D. Applied Chemistry, Waseda Univ, Japan 2011- National Institute of Advanced Industrial Science and Technology (AIST) Publication 1) C. Urata, G.J. Dunderdale, M.T. England, A. Hozumi, J. Mater. Chem., 3, 12626 (2015). 2) C. Urata, B. Masheder, D. F Cheng, D. F. Miranda, G. J Dunderdale, T. Miyamae, A. Hozumi, Langmuir, 30, 4049 (2014). 3) C. Urata, B. Masheder, D. F. Cheng, A. Hozumi, Langmuir., 29, 12472 (2013). 88 Surface Properties of Clay-containing Transparent Nanocomposite Thin Films Matt W. England1, Chihiro Urata1, Gary J. Dundersale1, Avinash Patil2, Stephan Mann2 and Atsushi Hozumi1 1 National Institute of Advanced Industrial Science and Technology (AIST), Anagohora, Shimoshidami, Moriyama-ku, Nagoya-shi, 2266-98, JAPAN 2 Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom, BS8 1TS. E-mail: [email protected] Extensive research on artificial superhydrophobic coatings for anti-fogging applications has been reported so far. However, textured surfaces with high static contact angles (CAs, S) of more than 150° are not ideal for high humidity conditions, because such rough structures may help promote water condensation, which obscures visibility. In contrast, superhydrophilic surfaces, with S < 5°, have been shown to prevent fogging by promoting the formation of a continuous and transparent aqueous film across the surface, rather than individual droplets. However, such surfaces can be complex to produce, and generally lose their functionalities when damaged or over extended time periods. To overcome these shortcomings, we have fabricated superhydrophilic nanocomposite gel thin films, made from positively-charged nanoscale clay platelets and polyvinylpyrrolidone. At lower concentrations, it can be spin-coated onto a flat surface, and due to its high hydrophilicity ( S < 5°), the resulting thin film displayed excellent anti-fogging properties, as well as high transparency and reasonable surface toughness. The films exhibited excellent light transmission (> 90%) and adhesion to the substrates, and the thickness of the films could also be controlled in the range of ~3– 1000 nm by varying the concentration of the precursor solutions. After suffering damage, the film also exhibited self-healing properties when exposed to humid air. In addition, when cooled to ~3°C and exposed to humid air, the films showed repeatable antifogging properties, which were retained for several months after film deposition. We expect such remarkable properties to be readily applicable to a wide variety of industrial applications. (a) (b) About Corresponding Author: Matt W. ENGLAND, Dr. National Institute of Advanced Industrial Science and Technology (AIST), Anagohora, Shimoshidami, Moriyama-ku, Nagoya, 2266-98, JAPAN Figure 1. (a) Structure of the synthetic AMP-clay. (b) Upon removal from a refrigerator, the glass slide partially covered with our nanocomposite thin film (bottom part) showed an excellent anti-fogging property. E-mail: [email protected] Telephone: +81 (0) 52-736-7388 Fax: +81 (0) 52-736-7406 Education, Academic Background and Awards 2009 MSci, University of Bristol 2014 Doctor of Chemistry, University of Bristol 89 Novel Biomimetic Surfaces Based on Metal-Polymer Hybrid Materials Prepared by Self-Organization Ryo Kohsaka*a, Yoshinori Fujihiraa, Ryuzo Furukawab, Takeshi Yamauchic, Hidetoshi Kobayashid, Daisuke Ishiie, Yuta Uchiyamaa, Frank Ebingerf a Kanazawa University, bTohoku University, cNiigata University, dOsaka University eNagoya Institute of Technology, fTechnische Hochschule Nürnberg E-mail:[email protected] The latest trends related to biomimetics and related innovations are reviewed and analyzed in this paper. The conceptual framework of the project “Innovative Materials Engineering Based on Biological Diversity” is introduced. The framework is composed of three pillars, taxonomy, material innovation and interlinkage with the society, where intellectual property rights play a key role. We conducted the comparative analysis of the biomimetics related patents versus number of related scientific articles in Japan, the USA, European, China and Korea contexts. The trend of the patent application indirectly indicates the approaches of companies for biomimetics and the biomimetics applications. The trend of related scientific articles reflects the movement of research and development in scientific fields. We examined the contexts of the social implementation by comprehending the trend of the patent application and number of the scientific articles. From the analysis, it is pointed out that the trends of the research and patents are correlated in general (particularly in the USA and Europe). Japan has relatively small number of patents and articles but has comparatively more activities in patents application than in article publications. Private sectors from different areas are utilizing such technologies. About Corresponding Author: Dr. Ryo KOHSAKA, Associate Prof. Institute of Human and Social Sciences, Kanazawa University E-mail: [email protected] Telephone: +81 76 264 5508 Fax: +81 76 264 4100 Website: http://www.4kbro.com/Pages/default.aspx Address: Kakuma-machi, Kanazawa 920-1192, Japan Education, Academic Backgrownd and Awards 2008 -12 Associate Professor at Graduate School of Economics, Nagoya City University 2006 -2008 UNEP SCBD (Portfolio: Agricultural and Forest Biodiversity, Sustainable Use) 2004 – 2005 Programme Coordinator/ Post Doc. Univ. Tokyo Chuo Univ. 2000 –2004 Research Fellow at the Institute of Forestry Economics, Freiburg, Germany 1997- 1998 Project Officer at the Regional Environmental Centre for Central and Eastern Europe (REC) in Szentendre, Hungary. Award ) Honoured as REC Life Fellow 2000 Publications Kohsaka,R. Tomiyoshi,M. Saito,O. Hashimoto,S. Mohammed,L. (2015) Interactions of Knowledge System in Shiitake Mushroom Production : A Case Study on the Noto Peninsula, Japan, Journal of Forest Research, Vol.20, No.3, ISSN: 1341-6979, DOI: 10.1007/s10310-015-0491-4, pp.491-502 Kohsaka,R. (2010) Developing Biodiversity Indicators for Cities: Applying the DPSIR Model in Nagoya and Integration of Social and Ecological Aspects. Ecological Research Vol.25 No.5 pp.925-936 90 Relationship between the inner structure of feathers and color change: Structural coloration in the Peach-faced Lovebird Gen Morimotoa,b*, Naoko Sanadac and Yasuyuki Sanadac a Yahmashina Institute for Ornithology, b Rikkyo University, c Bird’s hospital-BIRD HOUSE E-mail:[email protected] Structural coloration is a common color-producing mechanism in birds, which depends on nano/micro-level structures of feathers. Many parrot species are green, which is a structural color. Sometimes, the feather color of diseased individuals changes. In an ill Peach-faced Lovebird (Agapornis roseicollis), parts of the body were an abnormal red color, but the feathers returned to their normal green color with medication. We hypothesized that the color change is related to differences in the inner nanostructures of abnormal red feathers and normal green feathers. We measured the barb nano/microstructure of the bird feathers using scanning electron microscopy (SEM) and optical microscopy and found that the mesh-like structure (the sponge layer), which is the inner part of the barb, was slightly different between abnormal red and normal green feathers. Hypothyroidism may affect feather structure and coloration. About Corresponding Author: Dr. Gen MORIMOTO, Resercher. Division of Avian Conservation, Yahmashina Institute for Ornithology E-mail: [email protected] Telephone: +81 (0)4-7182-1107 Fax: +81 (0)4-7182-4342 Website: http://www.yamashina.or.jp Address: Konoyama115, Abiko, Chiba 270-1145, Japan Education, Academic Backgrownd Fig. 1. In a diseased Peach-faced Lovebird (Agapornis roseicollis), parts of the body were an abnormal red color, whereas other regions were the normal green color. 2007 Doctor of Science, Rikkyo University 2007- Visiting researcher, Toho University 2008 Postdoctoral research fellow, Rikkyo University 2011 Supprt researcher, National museum of nature and science, Japan. 2011 Supprt researcher, Yamashina Institute for Ornithology Publications 1) G. Morimoto, Y. Takahashi, K Tsurui, Japanese Journal of Ecology, 65(1), 39-46 (2015). 2) T. Ueta, G. Fujii, G. Morimoto et al. EPL (Europhysics Letters), 107(3), 34004.(2014) . 3) G. Morimoto, N. Yamaguchi, K. Ueda. Journal of ethology, 24(3), 261-266. (2006). 91 Gas barrier properties of plasma-polymerized film “nanosuits” made of amphiphilic molecules Hideto Shibagaki, Shingo Ito, Ryohei Kawamura, Daisuke Ishii* Nagoya Institute of Technology E-mail:[email protected] Lately, it has been reported that a thin film “nanosuits” of amphiphilic molecules is fabricated by irradiation of an electron beam or plasma under high vacuum conditions. The nanosuits possessed water evaporation suppression effect and it enables us to observe living things by scanning electron microscope. However, it isn’t clearly sure why nanosuits prevent water from evaporating under a high vacuum condition. We tried to evaluate the relativity between water evaporation suppression and the inner structures of the nanosuits by comparison with the change of transmission amount of water vapor through the various nanosuits at high temperature and high humidity. In the case of 80ºC and 60%RH, the water vapor transmission rate (WVTR) of nanosuits fabricated on polymer substrates (polystyrene, PS and cellulose triacetate, CTA) changes dynamically between in one day and in four days. GI-SAXS showed that the inner structure of nanosutis in four days became ordered structure at an in-plane direction. On the other hand, at 40ºC and 60%RH, the WVTR is constant such as that at 40ºC and 90%RH. These results indicate that the inner structure of nanosuits changes by annealing over 80ºC and the ordered structure at an in-plane direction produces caused higher WVTR. About Corresponding Author: Dr. Daisuke ISHII, Associate Prof. Department of Materials Science and Engineering, Nagoya Institute of Technology E-mail: [email protected] Telephone: +81 (0)52-735-5392 Website: http://wakate.adm.nitech.ac.jp/node/280 Address: Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan Education, Academic Backgrownd and Awards 2006 Doctor of Engineering, Tokyo Institute of Technology 2006-2008 Special Postdoctoral Researcher, RIKEN Institute 2008-2012 Assistant Professor, Tohoku Universi 2012-2015 Assistant Professor, Nagoya Institute of Technology 2012- Associate Professor, Nagoya Institute of Technology Award: 2013 Young Investigator Award: BAMN2013 2013 OSTEC Award: 2nd Nature Industry Award Fig.1 Water vapor transmission rate of sample under various condition Publications 1) D. Ishii, T. Hariyama, M. Shimomura et al., Scientific Reports, 3, 3024 (2013). 2) H. Suzuki, Y. Takaku, I. Ohta, D. Ishii et al., PLoS ONE, 8(11), e78563 (2013). 3) Y. Takaku, H. Suzuki, I. Ohta, D. Ishii, Y. Muranaka, M. Shimomura, T. Hariyama, Proc. Natl. Acad. Sci. USA, 110(19), 7631-7635 (2013). 4) D. Ishii, M. Shimomura, Chem. Mater., 25(3), 509-513 (2013). 5) D. Ishii, H. Yabu, M. Shimomura, Chem. Mater., 21(9), 1799-1801 (2009). 92 Control of Friction on Shape-Tunable Wrinkles Takuya Ohzonoa*, Kosuke Suzukia, Yuji Hiraib a Research Institute for Sustainable Chemistry, AIST Department of Applied Chemistry and Bioscience, Chitose Inst. Sci. Tech. a E-mail: [email protected] The excellent performance of soft-microstructures on living surfaces in terms of their adhesion and friction has attracted considerable attention, as these are key elements in many tribological applications. On this point of view we consider a system, in which a soft-microstructure is dynamically tunable, to further explore the possibility of dynamic controlling of, e.g., friction, adhesion, and lubrication. As a model system of the shape-tunable soft-microstructures found in living systems, the buckling-induced wrinkles are attracted attention, which is generated on a compressed elastomer having a hard top layer. The wrinkles show a wide variety of periodically-undulated structures, depending on the material, while also allowing the alignment direction of the grooves and the sinusoidal shape to be varied. Here the recent progresses regarding the sliding friction on the soft deformable wrinkles are presented, especially the effect of the relative length of the periodic wrinkles to the apex of the sliding indentor on the frictional dynamics. About Corresponding Author: Dr. Takuya OHZONO, Group Leader Dynamic Functional Materials Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), E-mail: [email protected] Telephone: +81 (0)72-751-9402 or +81(0)29-861-2865 Address: Cntr.5 1-1-1 Higashi, Tsukuba 305-8565, Japan Education, Academic Backgrond 2000 2000-2001 2001-2007 2007-2010 2010-2014 Doctor of Engineering, Tokyo Institute of Technology Postdoc., Mechanical Science and Engineering Lab., NIST, US Researcher, Frontier Research System, RIKEN Institute, Japan Researcher, Nanotechnology Research Institute, AIST, Group Leader, Soft Mechanics Group, Nanosystem Research Institute (NRI), AIST, Japan R&D division, Ministry of Economy, Trade and Industry (METI) Group Leader, RI Sustainable Chemistry, AIST, Japan 2014-2015 2015- Figure. Shape-tunability of wrinkles and schematic illustration of the sliding friction system. Recent Publications 1) K. Suzuki, Y. Hirai, M. Shimomura, T. Ohzono, Tribol. Lett. in press 2015. 2) K. Suzuki, Y. Hirai, T. Ohzono, ACS Appl. Mater. Interface, 6, 10121, 2014. 3) T. Ohzono, Y. Hirai, K. Suzuki, M. Shimomura, N. Uchida, Soft Matter, 10, 7165, 2014. 4) T. Ohzono, T. Yamamoto, J. Fukuda, Nature Commun. 5, 3755, 2014. 5) T. Ohzono, et al. Adv. Opt. Mater. 1, 374, 2013. 6) T. Ohzono, J. Fukuda, Nature Commun. 3, 701, 2012. 93 Fabrication and friction measurement of durable shark skin mimicking surfaces Aki Sato1, Yuji Hirai1, Takuya Ohzono2, Masatsugu Shimomura1 1 Chitose Institute of Science and Technology, 758-65, Bibi, Chitose 066-8655, Hokkaido, Japan 2 The National Institute of Advanced Industrial Science and Technology (AIST) It is well known that shark skin has drag reduction property, which is generated by surface riblet structures. Recently, we observed shark skin surfaces by using a scanning electron microscope (SEM). As a result, it is revealed that some shark skin surfaces have hierarchical structures of micro-dimple structures and sub-mm scale riblet structures. In this report, we show the preparation of the hierarchically structured shark skin surfaces by combinations of dimple structures and wrinkle structures for investigation of shark skin surface’s (a) (b) (a) Compress (b) property. Honeycomb-patterned films were Release prepared by simple casting method [1]. Figure 1. SEM images of (a)before and (b) after appling After peeling off the honeycomb film in-plane 10 percent compressive stress surface, the surface structures were transferred to polydimethylsiloxane (PDMS), and then micro lensarrays (MLAs) were obtained. A polyimide film was fixed on a PDMS block surface by using glue. The polyimide precursor was casted on the sample and thermaly cross-linked with MLAs as template. After that, the polyimide pincushion structure on the polyimide film / PDMS substrate was formed. Figure 2. The difference in the frictional drag between dimple structure surface and plane surfaces. When the samples were applied inplane compressive stress, sub-mm scale [1] H. Yabu, Y.Hirai, M. Shimomura, Langmuir, 2006, 22(23),9760-9764 [2] T. Ohzono and M. Shimomura, Phys. Rev. B., 2004, 69(13), buckling (wrinkle structure) was formed 132202-132206 at the surface [2]. By releasing external About Corresponding Author: compressive stress, the wrinkle Aki Sato structure was reversed (fig. 1). As Graduate school of Photonics Science, Chitose institute of science and technology results, deformable hierarchical dimple (Master course) and wrinkle structures were obtained. E-mail: [email protected] Telephone: +81-123-27-6068 According to the surface tribological Address: 758-65, Bibi, Chitose 066-8655, Japan measurement results, it is suggested that Education, Academic Backgrownd and if the surface has microstructures, the Awards 2012 13 Chitose International Forum Poster Award friction force were decreased (fig. 2). 2014 Nature-inspired Technology (ISNIT) 2014 and Engineering Neo-biomimetics V Poster Award Detail results will be discussed. 15 Chitose International Forum Poster Award 15 µm th th 94 15 µm 圧縮 圧縮 解放 解放 15 µm 15 µm Wettability on the Snail’s Shells with Various Surface Layers Ryota Yamagishia, Hirotaka Maeda*a, Daisuke Ishiia, Toshihiro Kasugaa and Yasutaka Matuob a Nagoya Institute of Technology, Gokiso, Syowa-ku, Nagoya, 466-8555, Japan, E-mail:[email protected] b Hokkaido University, N21W10, Kita-Ward, Sapporo, 001-0020, Japan The surface of snail’s shells has three-types of grooves with the different pitches, 10, 100 and 500 μm (Fig. 1). The surface of snail’s shells is covered with an organic layer containing a large amount of chitin. Much attention has been paid to its selfcleaning properties, such as no attachment of oil droplet on the surface in water, and so on. Snail’s shells also have an excellent water spreading ability, despite of 85 o of contact angle. There is no available information for the spreading mechanism. In this work, snail’s shells coated with HfO2 and trifluoroacetoxytrimethylsilane (FAS17) were prepared by atomic layer deposition and chemical vapor deposition to clarify the effect of surface free energy on the wettability. The contact angles of water droplets on the snail’s shells coated with HfO2 and FAS17 were estimated to be 91 ± 4 and 124 ± 5o, respectively. The contact angles on the flat HfO2 and FAS17 surface were reported to be 74 and 115o (Sci. Eng. A (1998)). These results indicated that water droplets on the snail’s shells are the Cassie-Baxter state. The evaluation on apparent water volume showed that liquid volume on snail’s shells decreases with increasing time. This implies that water droplet penetrated into their grooves. The spreading lengths of water droplets on snail’s shells was longer than those on snail’s shells coated with HfO2 and FAS17. The organic layer of snail’s shells is assumed to have heterogeneous surface free energy. Hafnium and silicon are detected homogeneously on the surface of snail’s shells coated with HfO2 and FAS17, respectively, by X-ray fluoresence analysis. It was proposed that the water spreading ability of snail’s shells originates from heterogeneous surface free energy. 10 μm 20 μm 100 μm 500 μm 200 μm Fig. 1. The SEM images of snail’s shell. About Corresponding Author: Dr. Hirotaka MAEDA Department of Frontier Materials Graduate School of Engineering Nagoya Institute of Technology E-mail: [email protected] Telephone: +81 (0)52-735-5198 Fax: +81 (0) 52-735-5198 Website: http://ebm.web.nitech.ac.jp/PB/top.html Address: Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan 95 (4)トピックス(PEN より) 96 FEATURES 寄稿 鳥類における色彩と機能 公益財団法人山階鳥類研究所 森本 元 まわりを見渡せば世界は色で溢れています。日々、私たち 私が研究材料としている鳥は「ルリビタキ」という青い鳥 は「色」から様々な刺激を受けています。若葉の緑色の芽 です。この鳥は全身を包む美しい青色ゆえか、 バードウォッ 吹きに春を感じたり、色鮮やかな料理を美味しそうだと チャーの皆さんにはとても人気があります。最近では幸せ 思ったり、薄暗く陰った空模様に憂鬱になったり、色はさ の青い鳥などと呼ばれることもあるようです。メーテルリ まざまな効果をもたらします。生物学的な視点で見れば、 ンクのおとぎ話「青い鳥」における主人公の兄妹チルチル いわば、 「色」が信号として機能しているといえます。こ とミチルのごとく、長年に渡りこの鳥を追いかけて研究を れは人間に限った事ではなく、この地球上に暮らす他の生 続けています。そのきっかけは、この鳥の不思議な色発現 物たちも同じです。 パターンに興味を持ったことでした。 少しばかり自己紹介をさせていただきたいと思います。私 日本の青い鳥には、ルリビタキをはじめオオルリ、コルリ、 はもともと野外で鳥類を中心に観察型の研究を行ってきた イソヒヨドリ、カワセミなど多くがいますが、いずれも異 生態学者です。そんな私が今回、本稿を執筆させていただ なる色味を持つだけでなく、生態も異なります。そこでま いたきっかけは、現在私も参加させていただいている生物 ず本種の生態をご紹介しましょう。私が初めてルリビタキ 規範工学(biomimetics)のプロジェクト「生物多様性を に出会ったのは子供のころです。野鳥少年だった私は、一 規範とする革新的材料技術」です。さらにはそれ以前か 年中、近所の林へ野鳥観察に出かけていました。冬のある ら、研究対象としている鳥種の発色への疑問をきっかけと 日、林道を歩いていると目の前の茂みから飛び出てきた茶 して、工学系の研究者の方々へ鳥の羽色についてご相談さ 色っぽい小鳥。その鳥がこちらを向くと、鮮やかな青色の せていただいたことが、今、わたしがこの原稿を執筆させ 尾羽が目に飛び込んできました。 「ルリビタキだ」 と興奮し、 ていただいた根になっていると思います。そこで今回は鳥 その美しさに驚いたことを今でもよく覚えています。この 類における色彩信号の機能についてご紹介したいと思いま 尾羽が青で全身はオリーブ褐色の外観。これは実は雌なの す。 97 です(図 1a) 。以下、 簡便に表記するために褐色とします) 。 PEN February 2014 3 1a 1c 1b 図 1 a:ルリビタキの雌、b:高齢な雄。c:雌に極似した姿をもつ若い雄。 (a、c:著者撮影、b:阿多誠文氏提供) 他方、雄は全身が美しい青色です ( 図 1b)。人間とは勝手 ないのは当然の結果だったのです。他の場所へ探しに行く なもので、褐色のルリビタキを見たあとは、図鑑に載って べきだったのですね。そして春になれば、鳥達は繁殖地へ いるのと同じ全身が青色の雄を見てみたいと思うのは当然 と渡っていきます。これが褐色のルリビタキが春先にいな の欲求でした。そして私は冬の間中おなじ場所に通いまし くなった理由です。 た。しかし出会えたのは、なぜか青くないルリビタキばか 4 りでした。青い雄を求めて、自分のフィールドをずいぶん ルリビタキがどんな鳥なのかをご理解いただくために、鳥 歩き回ったのですが、結局、残念なことにその年は一冬を 類の色彩の一般的な話をしたいと思います。同種内の雌雄 費やしたにもかかわらず、青いルリビタキに出会えなかっ で外観が違う事を「性的二型」と呼びます。たとえば男性 たのです。しかも、春になると褐色のルリビタキさえもい ならば子供の頃に夢中になったであろうカブトムシ。雄は なくなってしまいました。青い鳥を追いかけるチルチルミ 立派な角があり、雌にはありません。おなじように、青い チルは、いつもその鳥を手に入れることができませんが、 鳥のオオルリは、雌が茶褐色で雄が青色をしています。こ 私も同じようなことになったのです。実は、これは今にし のように、雌雄の外観が違うのが性的二型です。そして、 て思えば当然の結果でした。本種はなわばり性の鳥で、冬 その違いには機能が存在します。カブトムシの雄は餌場を は半径数百メートルの範囲を 1 個体が一つ保持して、同じ めぐって雄同士が争うときに、その角を使って戦います。 場所で暮らすのです。同じ場所に通い詰めるということは、 角が大きな雄の方が勝ちやすいという研究例があります。 つねに同一個体を見続けるだけですから、青い雄を見られ また、性的二型があるコクホウジャクなどの鳥では、雄の PEN February 2014 98 中で派手な個体の方が雌にモテるということが知られてい ぜ雄は年齢によって色が違うのか」は、ルリビタキならで ます。雌はより派手な雄をつがい相手として選ぶというわ はの大きな謎といえます。研究の結果、この雄の外観の違 けです。これは鮮やかな個体の方が、栄養状態がよかった いは、雄間闘争に関係があることがわかってきました。 り多くの餌を雛へ運べたりと、雌にとって婚姻相手として 具体的には、なわばり争いの方法に影響していたのです。 メリットがあるからという研究成果があります。 ルリビタキの雄同士が争う際は、まず脇羽をふくらませ、 このように性的二型が明瞭な鳥では、雄は派手、雌は地味 お互いを威嚇するディスプレイから始まります。さらに争 というのが一般的です。雄の個体間で派手さに差があると いが激しくなると、素早く飛び回り相手を「追いかけ」回 いっても、それは同性内での小さな違いに過ぎません。雌 す行動へと発展します。さらに激しさを増すと、ついには 雄の違いの方はそれ以上に明瞭であり、ぱっとみてすぐに お互いを脚でつかみあったり、つつきあったりする身体的 雌雄を見分けられる種が一般的です。たとえば、ニワトリ な接触を伴う「けんか(直接闘争) 」に至ります ( 図 2 参照 )。 の雄には赤く大きな鶏冠がありますが,雌にはありません。 つつきあいなどによる激しい闘争は、鳥にとって怪我に結 オオルリでは雄は青色で雌が茶色。雌雄が明瞭に違うので びつく危険性が高い行動であり、できれば避けたい行為で す。しかしルリビタキはそうではありません。ややこしい す。実際、多くの動物の雄同士の争いは、危険な直接闘争 ことに、ルリビタキの場合、若い雄は雌にそっくりな褐色 ではなく儀式化されたディスプレイのみで行われることも をしており(図 1c) 、後年、年をとると全身が青色に大き 多く、直接闘争を避けるように進化していると考えられて く変化します(図 1) 。このように年齢によって外観が変 います。また、より鮮やかな雄や高齢な雄の方が、雄同士 化する現象は遅延羽色成熟(Delayed Plumage Maturation: の関係においてより優位な雄(強い雄)である傾向が、多 DPM)と呼ばれています。虫や魚などでは、性的に成熟し くの動物で知られています。こうした状況下では、劣位で ていない幼体(繁殖年齢に達していない)が、成魚・成虫 地味な若い雄が、わざわざ派手な強い雄と直接闘争を行う とは全く異なる外観をしていることがありますが、ルリビ ことは、リスクが大きいのかもしれません。実際、ルリビ タキでは褐色の雄も青色の雄も繁殖している点が異なりま タキでは、雄と雄が争う際に、争っている雄同士の色の組 す。 み合わせの違い(青 vs 青、青 vs オリーブ褐色、オリーブ 褐色 vs オリーブ褐色:図 2)によって、闘争方法の激し このため、繁殖期になると、青い雄も褐色の雄も、各雄が さが異なっていました。同じ色同士の闘争では、最も激し 1 羽一つのなわばりを所有することになります。冬には関 い闘争方法である「つつきあい」まで発展することが多かっ 東以西の平地の公園などで見る事ができたルリビタキが、 たのですが、異なる色同士の争いでは、そこまで激しくな 夏になると姿をみなくなります。これは彼らが繁殖地であ らずに「追いかけ」あう段階で勝敗が決する事がほとんど る山の上へ移動したからなのです。子供だった私が通い詰 でした(図 2) 。これは、ルリビタキが互いの色を雄間闘 めて観察したルリビタキが、春にいなくなったこともこれ 争における信号として利用しており、互いの地位が外観か が理由です。本種は高山・亜高山で繁殖する、いわゆる高 ら予想できる際にはリスクの高い「直接闘争」に至る前に、 山鳥です。本州中域では標高約 1,500m 以上の森林で繁殖 勝敗を決している可能性を示唆しています。 しています(地域によって標高は上下します) 。その環境 はシラビソやコメツガ・ダケカンバといった樹種を中心と もう一歩踏み込んで考えてみますと、これは青色の有無が した針葉樹林・針広混交林です。まだ雪の残る春先の山の 個体間の地位を伝達する信号として機能した例です。さら 中で、なわばりを宣言して盛んにさえずる様子は、春の山 に踏み込んで考えると、この青色は構造色ですので、構造 の風物詩といえるでしょう。繁殖様式は一夫一妻です。つ 色の有無が信号として機能したといえます。鳥類の色彩は がいを形成しおえると、雌は地面の木の根や岩のくぼみを 主に、カロチノイド、メラニン、構造色によって発色され 利用して、穴の中にお椀型の巣をつくります。抱卵は雌の ています。前者 2 つは色素による発色です。鳥類の色彩研 みで行い、雄は手伝いません。雛の孵化後は、雌雄が共同 究においては、性的二型などの研究が先行し、派手なこと で給餌などの育雛を行います。雛たちは約 2 週間で巣立ち に機能があることが多数の研究よりわかってきました。そ を迎えます。その繁殖の初期、なわばり形成を行う際に、 の後、研究が進むにつれて、発色のメカニズムによって機 雄同士の争いが起こるのです。私はこの点に着目して研究 能が異なるらしいこともわかってきました。たとえば、赤 を進めました。 色を生じるカロチノイドの例をご紹介しましょう。カロチ ノイドは体内で生産できないので、食物として体外から得 る必要があります。このため、厳しい自然環境下で生きる ルリビタキの生態の面白さ、それは前述した通り、雄にお ける褐色と青色という二型の存在でしょう (図 1) 。この 「な 99 野生動物にとって、 よりよく餌を食べた個体(餌量が多かっ PEN February 2014 5 闘 争 回 数 図 2 雄同士の闘争時の体色の組み合わせと、闘争パターンの違い。雄間闘争は、威嚇→追いかけ→直接闘争の順でより激 しい。同色同士では、もっとも激しい直接闘争まで発展することが多いが(上図・下図) 、異色同士の争いでは激しくなら ない傾向がある(中図) 。 たり、質の良い餌を捕ったり、効率良く採食する等)の方 は一般化し、近年では学際的な様相を呈しています。野生 が鮮やかになり、その結果、個体間でカロチノイド量に差 鳥類学おいて工学的研究分野との連携は少なめですが、構 が生じて鮮やかさの個体差につながります。この鮮やかさ 造色研究や羽毛の保温・撥水機能など多くの研究テーマで の個体差が、雄間闘争や雌による選択の際に、視覚信号と 連携が可能なことでしょう。自然界は不思議な生物で溢れ して機能するのです。他方、メラニン色素は体内で生産さ ており、身近な生物が、あっと驚くような能力を秘めてい れるのでストレスなどが影響することが知られています。 ることは多々あります。 「生物」や「自然」をキーワード このように色素系の発色機構はその機能に関する知見が多 として、異分野の研究者同士が「気付き」を共有する事で、 数蓄積されており、発色メカニズムによって機能が異なる 互いの理解を深めるとともに連携するきっかけになると信 ことが分かりつつあります。しかし、構造色は近年になっ じています。 てようやく研究が進展してきた分野なのです。羽の内部の 微細構造が作り出す構造色は、その発色機構と相まって機 能の解明が求められています。 一昔前、双眼鏡一つあれば研究ができることは野生鳥類学 の利点の一つでした。これは今も変わりません。その一方 で、生理学的・遺伝学的研究分野との連携はこの数十年で 劇的に増加し、野生鳥類学者が DNA やホルモンを扱う事 6 PEN February 2014 100 FEATURES 寄稿 モミジの葉の展開特性 大阪大学基礎工学部 小林 秀敏、新潟大学工学部 山内 健 の葉は葉柄の先端を要とする扇のように蛇腹状に折畳まれ 1. はじめに ている [2](図 1) 。また黄金虫やバッタ等の昆虫の翅 [3-5] 多くの樹木は、厳しい冬を前に生命活動を下げ、落葉する にも折畳み構造が観察できる。もちろん、植物の葉や花は、 ことにより激しい風雪に耐える。落葉した痕には、越冬用 折畳み・展開様式を最適化するためだけに進化し、現在の の厚い皮で覆われた冬芽が秋のうちに準備され、春の訪れ 形状を造り上げたのではなく、ありとあらゆる生活環境へ とともに、新しい葉が一斉に冬芽から発芽する。この発芽 の適合の掛け合わせにより、現在の形状を造り上げたと考 の様子を観察してみると、春先には 10mm にも満たない えられる。そして、多くの植物にとってそれらは、生命活 冬芽から、初夏には 100 ∼ 150mm にも及ぶ葉が、幾つ 動を営む際に非常に重要な光合成器官であり生殖器官であ もついていることが容易に確認できる。サイズ拡大の主役 るから、それらの展開過程の中に、新たな折畳み・展開様 は植物自体の成長にあるが、多くの植物は、葉を小さいツ 式の創成に有益な示唆やヒントが隠されていることは容易 ボミ内部に効率的に格納するために、様々な方法で折畳ま に想像できる。植物の葉や花の展開構造に関して、生物学 れている。例えば、柳の葉などは細長く巻いているし、ポ 的立場からの研究は比較的多くなされているが、力学的側 プラの葉は両端から中央脈に向かって巻き込んでいるし、 面に焦点を当てた研究は少ない。それゆえ、植物の葉や花 シデの葉等は規則正しく波板状に [1] 折り畳まれ、モミジ の折畳み・展開様式(構造)に関する力学的考察は、宇宙 (a) (b) (c) 図 1 様々な葉の折畳みと展開: (a)ポプラの葉、 (b)シデの葉、 101 (c)モミジの葉 PEN February 2014 7 (a) 図 2 イロハモミジの葉: (a) 完 全 展 開 (b) 時の葉、 (b)展開途中の葉 空間において、重量や大きさに極度の制限をうける人工衛 線に関する、葉の表側から見た展開角θ V と、葉身が折り 星の太陽電池パネル [6] やアンテナ [7] などの宇宙構造物 曲げられた山折線における、葉の裏側から見た展開角θ C をはじめ、大型会場施設の開閉式天井構造、非常用として は必ずしも等しくない。もし両者が等しければ、扇のよう コンパクトに格納されなければならないテントやゴムボー に全ての谷折線が一つの平面上を移動し、最終的に葉が平 トの他、傘等の一般日常品に至るまで適用される可能性が 面になるという二次元的な展開様式を示すはずである。こ あり、工学的に非常に重要な構造形式の一つと考えられる。 のように、モミジの葉はまず角錐体のような三次元的な形 ここでは、モミジの葉が有する折畳み・展開様式に着目し 状に展開後、ゆっくりと時間をかけて図 2(a)のような て、ツボミから展開する様子の観察や、植物の葉の近似モ 平面の葉に展開している。展開時の各部の動線は短い方が デルを用いた展開数値シミュレーション等から得られた、 エネルギ的には有利であるとすると、二次元的な展開様式 興味深い結果について概説する。 の方が有利と考えられるにもかかわらず、である。なぜ、 イロハモミジはこのような展開様式を採用しているのであ ろうか?この 2 段式展開とも言うべき展開様式に、はたし て合理性はあるのだろうか? 2. モミジの葉の展開様式 イロハモミジの葉は、図2に示すように、葉柄の先端から 放射状に伸びた掌状脈に沿って谷折線が、また脈間の葉身 3. 葉の形状計測 の切れ込みに向かって山折線が配されており、蛇腹状に比 較的規則正しく折り畳まれている。ここで、ある折線を挟 モミジの葉の展開様式と、展開に要するエネルギとの関係 む二つの葉身要素面間の開き角を、その折線に関する展開 を知るために、まず葉の形状計測を行い、モデル葉の製作 角と呼ぶことにする。実際にモミジの葉の展開の様子を観 を試みた。葉の外形は、一番長い中央脈に対してほぼ対称 察すると、図 2(b)から分かるように、葉脈を含む谷折 なので、ここでは、図 3(a)に示すように中央脈を含む (a) 図 3 イロハモミジの半葉部位とモデル: (a)半葉内の各部位、 (b)測定結果を基 にした半葉モデル 8 PEN February 2014 102 (b) 図 4 葉の葉脈とその間の折線長さの分布 図 5 各要素の面積割合 図 6 各要素の要素角の分布 半分の葉を計測対象とした。この半分の葉は、7 本の折線 くなっている。図 5 に、各要素の面積を、半分の葉の面積 と外形線で区切られた①∼⑦の 7 つの葉身要素から構成さ A 1 で除して無次元化した A e*(=A e/A 1)を示す。実線は、 れており、ここでは、葉の中心から伸びる中央脈上の折線 測定した 17 枚の葉の測定値の平均値を結んだ線で、谷折 を [1] 番とし、折線ではないが便宜上第 7 葉身要素の外形 線を挟む第 2、第 3 要素や、第4、第 5 要素などの面積は 線を [8] 番とした。また、各要素の山折線と谷折線の間の ほぼ等しく、中央脈から離れるにしたがって、階段状に減 角を要素角αと呼ぶことにする。17 枚の半分の葉につい 少していくことがわかる。図6は、各要素の要素角の分布、 て、各葉身要素の面積、折線の長さ、要素角を計測した。 即ち、各要素角α をそれらの合計α 0 で除して無次元化し 図 4 に、[1] ∼ [8] 番の折線の長さ L の測定結果を示す。 たα * を示している。実線は、測定データの平均値を結ん 全てのデータは、葉のサイズの影響を除くために [1] 番の だ線である。要素角は図 5 で示した葉身要素の面積分布と 折線の長さ L 0 で除して無次元化している。実線は、各測 反対に、中央脈から離れるにしたがって、ジグザグになり 定値の平均値を結んだ線で、奇数番の谷折線に沿う葉脈の ながらもしだいに大きくなる傾向にある。なお、測定した 長さは、概ね 1:0.95:0.82:0.56 の比で小さくなっている。 17 枚の葉のα 0 の平均値は約 121̊ であり、このことから、 一方、偶数番目の山折線は、図 2(a)からも明らかなよ イロハモミジの葉は、概ね全周の 2/3 程度の中心角を持っ うに、葉身の深い切れ込みのため、谷折線に比べ極端に短 ていることがわかる。 103 PEN February 2014 9 質点とみなした場合の展開時の運動エネルギ w を求めた。 4.展開シミュレーション 図7は、β = 1.0 の平面的な展開とβ = 0.8 の場合に得ら 葉の展開時の消費エネルギを直接見積もることは困難なの れた w をβ = 1.0 の場合の初期値 w 0 で除して無次元化し で、ここでは、展開時の葉の各部位の展開運動エネルギ w て示している。横軸は、無次元時間 T で、T = 1.0 で葉身 が、植物の成長展界エネルギの指標となっていると考えて、 モデルは完全展開平面となる。当然、T = 1.0 までの時間 この w の展開時における変化を求めることにする。その はどちらの場合も同じにしてある。この図から、β = 0.8 ために、モミジの葉の各部位の測定値に基づいて、図 3(b) の場合は、全体に渡って大きなエネルギが必要であり、特 に示す数値半葉モデルを作製した。即ち、各葉身要素を三 に T = 0.8 = β = T 1 以降にかなり大きなエネルギを必要と 角形で近似し、各要素の面積比や要素角の測定値、図4で することがわかる。これは、T = T = 0.8 で、谷折線部の展 示した谷折線の比を用いた。また、[1] 番の折線の長さを 開角θ V が山折線部のθ C より先に 180̊ に達し、 これ以後、 2 L 0 = 100 mm、 半葉の全面積 A 0 = 3000 mm 、要素角の総 山折線部のみが展開し、葉身が角錐体形状から平面へ展開 和α 0 = 121̊ とした。この半葉モデルの面積分布は、図5 するためと考えられる。 の破線で示すように、必ずしも測定値のジグザグ分布に等 しくないが、ほぼそのジグザグ分布の中心を通っており、 次に、展開時の葉身面積を考える。葉の最大の機能は光合 また、モデル葉の形状は、スキャナーで取り込んだ実際の 成であり、一日を通して考えれば、太陽光はあらゆる方向 葉の形状(図 3(a) )をよく表しており、このモデルでイ から照射される。したがって、葉の形状が一つの平面でな ロハモミジの葉の展開様式を概ね表現できると考えられ く立体的であっても葉の表面に凹型の窪みがなければ、照 る。この半葉モデルを用いて、ベクトル解析により、展開 射面積は葉身の全面積 A 0 に等しいと考えることも不自然 時における各葉身要素や折線の位置を求めた。その解析の ではない。このことを考慮して、ここでは、展開葉身面積 数学的な式の導出等はここでは省略したが、三角関数と空 A として、一つの谷折線を挟む2つの葉身要素の中央面(折 間図形の知識を駆使すれば、比較的容易に計算式を導くこ 線を含むθ V /2 の面)に垂直な平面への、葉身要素の投影 とができる。以下、それらを用いて展開シミュレーション 面積の総和を採用し、展開葉身面積比 A * (= A /A 0) の時間 行った結果である。 的変化を図8に示す。β = 0.8 の場合に、T = 0.8 =T 1 で A * = 1.0 となっているのは、この時点で、葉は、完全な平面 さて、図 2(b)から明らかなように、モミジは必ずしも になっていないけれども、凹型の窪みのない三次元立体形 平面的には展開せず、モミジの葉は角錐体のような三次元 状となっていることを示している。このことから、β = 0.8 的な展開様式を示している。このとき、谷折線に関する展 の場合は、β = 1.0 の場合に比べて、展開面積に関しては、 開角θ V (≤ 180̊)と山折線における展開角θ C(≤ 180̊) 約 20% 短い時間で展開できると考える。 は、θ C > θ C であるから、まず両者の比である展開角比 を β = θ C / θ V と定義し、β を一定に保ちながら等速度 そこで、完全に平面になるまでの T = 1.0 までに必要な聡 で展開する場合を考え、各葉身要素をその重心位置にある エネルギ W と、θ V = 180̊(T =T 1)までの展開エネルギ 図 7 展開時の運動エネルギの変化 10 PEN February 2014 104 図 8 展開時の投影面積の変化 図 9 総展開エネルギへの角速度比の影響 図 10 展開中の展開角の遅れ変化 の総和 W を各β の値について求め、β =1.0 の場合の値 即ち、モミジの葉は、始めに葉脈を含む谷折線を挟む面だ W 0 で除して無次元化した値、W *、W * を図9に示す。こ けが開き始め、その展開角がθ v ≥55̊ になった時に山折線 れから、T = 1.0 までの総エネルギは、圧倒的にβ = 1.0 の を挟む面が展開を開始し、そこから同じ角速度で展開する。 場合が小さく最適であることを示している。さらに、たと そして谷折線を挟む面が先に展開を終え、次に山折線を挟 え、T = 1.0 までではなく T =T 1 までの展開エネルギを考え む面が展開を終えて完全な平面となる。この展開角の差を たとしても、 β ≥ 0.7 の W * は 1.0 よりやや大きく、 β = 1.0 遅れ角⊿θ = θ v - θ c と定義し、展開エネルギ W * や展 の二次元的な展開に対して、β < 1.0 の三次元的な展開が 開面積 A * に及ぼすこの遅れ角⊿θ の影響について解析的 特に有利であるとは考えられない。また、T =T 1 での展開 検討を行った。 状況としては、⑦の葉身同士が重ならないことが暗黙の条 件となっており、θ V = 180̊ のときに、θ c はおおざっぱ これらの測定結果を基に、葉の展開時の運動エネルギと展 に言って 180̊ ‒ 360̊/7 = 128.6̊ 以下であってはならな 開様式の関係を明らかにするために、⊿θ = 0̊ と⊿θ = いから、 β ≥ 128.6̊/180̊ ≈ 0.7 である。それゆえ、 β < 0.7 55̊ の場合について、展開過程における葉身要素の運動エ で W * が W * < 1.0 となっているが、この部分は、現実的 ネルギ w の履歴を求めた。図7と同様に、それらを⊿θ = には意味の無い領域である。では、なぜモミジは先にθ V 0̊ の場合の初期値 w 0 で無次元化して、無次元時間 T を横 = 180̊ となるような展開様式を採用しているのであろう の場合、 点 A の T ≈ 0.23 軸にとって図 11 に示す。⊿θ =55° か? と点 B の T ≈ 0.77 の 2 カ所で、w * の値が急激に大きく なっている。葉は折り畳まれた状態から、最初、葉脈を含 む谷折線を挟む面だけが開き始め、点 A から山折線も展開 を始めるため最初の w * の増加が生じ、続いて点 B の T =T 1 5. 展開遅れ角のある展開様式 ≈0.77 で、谷折線部が展開を終えθ v = 180̊ となる。この 展開の様子を確実にとらえるために、少し開きかけたモミ とき、山折線部のθ c はまだ 180̊ に達しておらず、これ ジの葉を採取し、水分と糖分を補給しながら室内でモミジ 以後、山折線部の展開により葉身が角錐状から平面状へ変 の葉の展開中の様子をビデオ撮影した。得られた画像と動 化するため、点 B で w * の急増が生じたと考えられる。 体解析ソフト(Move-Tr32)を用いて、展開時の葉の各点 の位置を求め、このデータから、谷折線(葉脈)に関する そこで、折り畳まれた葉の凹部がなくなる時刻の T 1 と、 展開角θ V と、切れ込み部にある山折線に関する展開角θ T =T 1 までの総エネルギ W を⊿θ =0̊ の場合の総エネルギ c の時間的変化を求め、図 10 に示す。この図から、ある W 0 で除して無次元化した W * を併せて図 12 に示す。こ 時間におけるθ v 、θ c の値は異なるが、展開角の速度は の図から、⊿θ の値が大きくなるにつれて、T =T 1 までの θ v とθ c の差は約 55̊ であることがわかる。 ほぼ等しく、 105 総エネルギ W もまた展開時間 T 1 も一様に小さくなってお PEN February 2014 11 図 11 遅れ角がある場合の展開時の運動エネルギの変化 図 12 総展開エネルギと展開時間の遅れ角による影響 り、⊿θ =55̊ の場合は、⊿θ =0̊ の場合に比べ、約 25% の展開にも、エネルギ最小の大原則が脈々と貫かれている 少ないエネルギで展開でき、展開時間 T 1 も約 22% 減少す ことがわかり、自然の営みの素晴らしさに、改めて感動さ ると考えられる。しかしながら⊿θ は無限に大きくできな せられた。 くて、その最大値は、葉の端が重ならず、どこも同じ遅れ 角であると考えると、360̊/7 ≈ 51̊ であるから、図 10 の 測定値である 55̊ は⊿θ の限界値と考えられる。 References: [1] Kobayashi H, Kresling B. & Vincent J.F.V. , The 以上のことから、光合成を最大の機能とする葉においては、 Geometry of Unfolding Tree Leaves, Proc. Roy. Soc. Lond. B, 出来るだけ早期に、しかも小さなエネルギで受光面積を大 256 (1998), 147-154. きく出来ることが最良と考えると、モミジの葉の展開角θ [2] 小林秀敏、臺丸谷政志、機構論、No.982-1、(1998-9)、 v とθ c の関係は、展開時間と展開エネルギーを最小にす p.129-130. る最適な関係を採用していると言える。 [3] Wootton R.J., Support and deformability in insect wings, J. Zool. Lond., 193 (1981), 447-468. [4] Brackenbury J.H. "Wing folding and free-flight knematics in Coleoptera (Insecta): a comparative study", J. 6. まとめ Zool. Lond., 232 (1994), 253-283. 日頃の観察から、イロハモミジの葉は、必ずしも一気に平 [5] Hass F., "Geometry and mechanics of hind-wing folding 面的には展開せず、一旦、角錐体のような三次元的な形状 in Dermaptera and Caleopteta", M.Phil thesis, Exeter Univ., に展開した後、平面的な葉に展開する二段式展開様式を示 (1994). すことがわかり、その不思議さを理解するために、展開時 [6] Miura K. and Natori M., 2-D Array Experiment on 間や展開エネルギの観点から考察した。その結果、自然の Board a Space Flyer Unit, Space Solar Power Review, 5 中では、四方八方のあらゆる方向から太陽光が当たるため、 (1985), 345-356. 光合成の観点だけから考えれば、葉身は、凹みの無い角錐 [7] You Z. and Pellegrino, Dynamic Deployment of the 体状に展開すれば、必ずしも平面になる必要は無いことが CRTS Reflector, Proc. 35th Structures, Structural Dynamics 判明。その考え方に立つと、モミジの葉は、最初に葉脈を and Mater. Conf., Part 3, (1994), 1497-1505. 挟む凹み部が展開し、約 50̊ 程度遅れて山折部が展開する 展開様式を採用し、この展開様式が、展開エネルギや展開 時間の観点から考えて、最良の方法であることが明らかに なった。大自然の中の極々小さな事象である、モミジの葉 12 PEN February 2014 106 FEATURES 寄稿 カブトムシにやどる「匠」 国立科学博物館動物研究部 野村周平 図 1 クヌギの樹液に来たカブトムシ(東京都品川区) カブトムシ(図 1)というのは、日本でもっとも有名な甲 1. カブトムシはどんな虫か? 虫であるといっても過言ではない。日本人であれば、子供 連載「生物規範工学」に引き続き、本誌に寄稿させていた からお年寄りまで実によく知っている。子供の時につかま だけることになった。大変光栄なことである。とはいって えて遊んだだけではなく、大人になっても外国のカブトム も難しい物理や工学の話は書けないので、当方が専門の昆 シを熱心に集めたり、飼育している人たちも少なくない。 虫の話をさせていただきたい。 12 PEN January 2014 107 カブトムシについてはもう研究しつくされていて、これ 図 2 カブトムシ♂の頭と胸のツノ(茨城県つくば市) 以上一体何を研究することがあるのか?と訝っておられる 方々も多いのではないだろうか。多分それはそうでもない。 1999 年頃から、それまで植物防疫法で一律に禁止されて いた、外国産カブトムシの輸入が緩和され、外国産の生き たカブトムシ、特に中南米産の大型のヘラクレスオオカブ トムシや、熱帯アジア産のアトラスオオカブトムシが輸入 され、日本全国のペットショップなどで売買されるように なった。このできごとについて賛否両論激しく対立してい ることは言うまでもない。しかし、我々のように生物多様 性を研究する立場からすれば、大変怪しからんことで、地 域固有の生物多様性を破壊する恐れが多分にあると考えて いる。同じ時期に規制が緩和され、全国に生き虫が流通す るようになった外国産のクワガタは、時に生体が野外で発 見され、日本古来のオオクワガタやヒラタクワガタとの遺 伝子交流がすでに起こっているのではないかと大変心配さ れている。 それはそれとして、日本古来のカブトムシは、ボディサイ ズが外国産よりはずっと小さいので、注目度はかなり後退 していると言わざるを得ない。がしかし、今でも子供たち のよき遊び相手であることには間違いない。ペット動物と 図 3 つくば実験植物園で行われた「昆虫の飛翔に関する 108 ワークショップ」実習風景 PEN January 2014 13 してのカブトムシの特性には注目すべき点がいくつもあ を作って調べてみることにした。カブトムシの角は確かに る。まず、カブトムシは針で刺したりきばでかみついたり 非常に硬いが、どんな道具を使ってもまったく壊れない、 しない。きれい好きなので、ばい菌をまきちらすこともな というほどではない。それで、 大型のペンチで挟んでぼきっ く、安全この上ない子供たちの友達である。 とやる、原始的な方法でやってみた。 そしてカブトムシのオスには立派ないかめしいツノがある そうするとぽっきりと見事に折れた(図 4)が、その断面 (図2) 。カブトムシの体は子供がいじくったくらいでは容 はどうなっているか、想像がつくだろうか?金属棒を破断 易にこわれないほど頑丈にできている。セミやスズムシの した時のように、中身は無垢でまったく空洞はないだろう ようにうるさく鳴いたりしない。どんなにひどいことをし か?それとも中は空洞で、パイプ状になっているだろう ても泣き声一つあげない。こんなすばらしい友達が他にい か?空洞になっているとしたらその空間には何が入ってい るだろうか。カブトムシがすごいのは、そのように人間に るのだろうか? 何一つ悪さをしない、おとなしい友達なのに、それでいて 私たちと同じ日本の野山にくらす野生動物であるという 破断面を SEM で観察してみる。すると外側は厚い体壁に ことだ。ペットというのはしばしば人間が手を加えて、犬 なっているが、中心部は空洞で、よく見ると粗い蜂の巣状 や猫は何百年も人が飼いならした結果、今のように従順に に薄い膜が張り巡らされたような構造、すなわちハニカム なっているのだが、カブトムシにはそのような家畜のよう 構造になっている(図 5,6) 。サンプルはよく乾燥させた な部分は1%もなく、100%野生動物である。親の代から ものだが、もともとは体液があってそれが乾ききったとい 家の中で育てたカブトムシであっても、野に放てば 註1 、次 うような様子ではなく、初めから空気が入っているものの の瞬間から野生動物として暮らし始める。これはすごいこ ようである。 とではないだろうか。 ここで生きているときのカブトムシの振る舞いについて思 このように私たちが日ごろからよく見知っているはずのカ い起こしてみよう。♂は頭に大きなツノ、胸(前胸背)に ブトムシには、実はこれまであまり調べられたことのない、 小さなツノを備えている。他のオスと戦って交尾相手を勝 驚くような秘密が隠されている。2013 年 8 月に当館つく ち取るため、あるいは樹液のレストランで、群がるカナブ ばキャンパスで、実際にカブトムシを捕まえ、さまざまな ンやハエなどの小者を追い払うためにツノは必要だ。しか 特性を調べる実習を行った(図 3)が、実習を指導しなけ しそうであっても、頭の上にこんな大げさなものが乗っ ればいけない立場の私の方が驚きの連続だった。カブトム かっているのはいかにも邪魔くさそうである。しかもカブ シの体と機能はあまりにも精巧にできている。そこには一 トムシはこれをたたんだり、しまうこともせず、前方へ掲 流の工芸家や技術者の仕事を目の当たりにするような感動 げたままで空中を飛び回らなければならない。カブトムシ がある。その一端をぜひここで読者諸兄にご紹介させてい にはしかし、それを気にするような気配はない。頭の角は ただきたい。 意外に軽量なのではないだろうか?外側の体壁さえがっち りと硬いものであれば、中は空洞で、全体に軽量化したほ うが都合がよかったのではないだろうか? 2. カブトムシの角はなぜ硬い? カブトムシの角は非常に硬い。上にも書いたが、乱暴な子 3. カブトムシ外皮の強化構造 供が少々いたずらをしたくらいでは、傷もつかないほど硬 い。そもそもカブトムシの角の構造はどのようになってい カブトムシ♂頭角の外壁破断面を SEM 観察してみると、 るのだろうか?そのことを調べるためにまずは角の破断面 繊維のようなものが同じ方向に並んだ薄い層が見える。こ の層は一重ではなく、何重にも重なっている。そして、繊 維の方向がおおよそ 90°位ずつ入れ替わりながら重なって いるようなのである(図 7) 。つまり、グラスファイバー の釣竿や、炭素繊維による航空機の外壁などと同様の構造 註1:飼育個体を野外に放すことを奨励しているわけでは を、カブトムシは何万年も前から保持していたことになる。 ない。上に述べている通り、 飼育個体はたとえ在来種であっ 自然物と人工物のこの見事な一致は、単なる偶然によるも ても、自然の生態系に悪影響を及ぼす可能性があるので、 のではなく、薄い構造を丈夫にするという共通の必然性に 野外に放すことは厳に慎むべきである。 14 PEN January 2014 109 よるものと考えられる。 図 4 カブトムシ♂頭角破断面の観察部位 図 6 カブトムシ♂頭角破断面の SEM 写真(100 倍) 図 5 カブトムシ♂頭角破断面の SEM 写真(45 倍) 図 7 カブトムシ♂頭角破断面の SEM 写真(200 倍) 実はこの構造は以前からよく知られていて、昆虫の体壁構 側の都合に過ぎない。0°と 90°の繰り返しだけでは、0° 造の基本的な概念である。カブトムシについても実はすで と 90°に対してしか、十分な強度を保ちえない。斜め 45° に調べられているのだが、その論文を見て、私は自然の叡 からの攻撃に対する強度は保障されていない。 智に感激した。その論文はツノではなく、カブトムシの前 翅についてのものであったが、ほぼ同様であると思ってい ところがカブトムシの外皮は、薄層の重ね合わせが 10°ほ ただいて間違いない。カブトムシの前翅では、ツノと同様、 どずつ、ずれることによって、だんだんとそれがずれてゆ 同じ方向に並んだ繊維の薄膜がある角度をもって重ねあわ き、結果的にはより多くの方向への強度を支えている。こ されている。それによって、クワガタに挟みつけられても れは見方によっては、自然現象の中の誤差であって、たま 容易に穴があいたり破れたりしない、丈夫な外皮を構成し たまそうなったと考える向きもあるかもしれない。しかし ている。その互い違いの角度が 90°ではないというのであ 結果的によりすぐれた結果を生んでいるならば、それは自 る。一定ではないが、毎回約 10° ほどずつズレながら、10 然選択に勝ち残り、自然の生きものの特性として遺伝子に ∼ 20 枚ほどの薄層が重ねあわされているという [1]。 引き継がれていくだろう。ここに私は、単なる「結果オー ライ」というのではなく、何かむしろ「神業」と呼ぶにふ ご存知のとおり、ベニヤ板のような人工物は、このような さわしい匠の技を見るような気がするのである。 場合には 0°と 90°の繰り返しに決まっている。そうする ことが最も経済的だからだ。しかしそれはあくまでも人間 110 PEN January 2014 15 4. ツノの断面を撮影 以上説明したようなカブトムシ♂の頭角構造が一目でわか るようなわかりやすいイメージはないだろうか?端的に言 えば上で示したようなツノの断面のもっときれいな写真は 撮れないだろうか?実はカブトムシのツノは外壁があまり にも硬い点と、中にあまりにも柔らかいこわれやすい構造 が同居しているために、その断面切片を作るのがきわめて 難しい。これまでの技術ではそれは全く不可能だった。 しかし、国立科学博物館の棘皮動物の研究室や地学研究部 で非常勤職員をしている田尻理恵さんが編み出した方法に よって、それはほぼ可能になった。田尻さんは、岩石の薄 片を作る技術を応用して、カブトムシのような硬い動物構 造の断面を写真撮影することに成功した(図 8) 。それは かいつまんで言えば次のような方法である [2]。 図 8 カブトムシ♂頭角断面写真の切断面を示す アルコール液浸のカブトムシのツノを、まずはアセトン上 昇系列に浸漬して脱水を行う。次に減圧により樹脂を含浸 させアセトンと置換する。樹脂を加熱重合させ、硬化させ る。樹脂に包埋されたサンプルの見たい部分を挟むように して、両側を岩石カッターで切り落とし、まずは分厚い資 料片を作る。このままだと光を透過しないので、観察や写 真撮影は難しい。そこで岩石薄片の技術を用いて、カーボ ン研磨剤とグラインダーで削っていって、光を透過する厚 さまで薄くする(カブトムシの角で 0.2 mm 程度、技術的 には 0.01 mm まで可能) 。 そのようにして作った薄片は、1 枚作るのに、大変な手間 がかかるのは事実だが、硬いカブトムシの頭角を一刀両断 したような見事な断面写真を撮影することができた(図 9) 。これを見ると、カブトムシの♂頭角の外壁が、意外に 図 9 カブトムシ♂頭角断面写真(光学顕微鏡) 幅の薄いものであることが見て取れる。さらにその一部を 拡大して、やはり岩石の切片を観察するための偏光顕微鏡 を用いて写真撮影すると、繊維の方向の異なる薄膜が 15 枚以上重なった様子をはっきりと観察することができた (図 10) 。 5. カブトムシのツノ表面には何がある? 以上のように、カブトムシの頭角は、これまであまり調べ られてこなかった内部構造によって、丈夫な、そして軽量 な器官として成立していることが分かった。カブトムシの ツノは先にも述べたように、♂同士のけんか(競争)や、 競合他種との競争に勝つための「武器」である。そうする と人間の悪い癖として、人間の持っている道具に例えてし 111 図 10 カブトムシ♂頭角断面拡大(偏光顕微鏡) 16 PEN January 2014 図 12 カ ブ ト ム シ ♂ 頭 角 先 端 部 表 面 感 覚 子 SEM 写 真 図 11 カブトムシ♂頭角先端部表面 SEM 写真(200 倍) (5,000 倍) まって、あたかも生物の持っているそれが、人間の道具と あるいは、と想像をたくましくする。古の剣豪や拳法の達 同様のものだと思い込んでしまう。つまり、カブトムシの 人は、仕合う時、1、2 回、剣を、あるいは拳を交えるだ ツノは、あたかも人間の武器と同様であると思い込んでし けで相手の力量がわかるという。その感覚は剣豪または達 まっているのではないか?はたしてそうだろうか? 人本人しか知りえないことなので、凡人たる我々には知り 得べくもないが、そういうことはあるかもしれないなと想 カブトムシのツノはカブトムシの身体の一器官であって、 像することはできる。カブトムシのツノ先の感覚はそうい 取り替え可能な人間の武器とは大いに異なる。そのことを うものであるかもしれない。カブトムシは♂同士戦う際に、 忘れてはいけない。確かにカブトムシは時として、ツノを どちらかが倒れるまでやりあうのではなく、力量の差が明 突き合わせて互いに戦い、時に深く傷つく。ツノ自体は何 らかな場合には、無駄な争いを避け、1,2 度ツノつき合 も感じない、刀や槍のようなものかというと、どうもそう わせただけで戦いをやめてしまう場合も多いからである。 ではないらしいのである。 ツノつき合わせた時に、相手が何であるかを知り、相手の 力量を量ることができる、それを感知するセンサーとして、 カブトムシの頭角を SEM 観察してみると、その表面は多 このような感覚子が備わっているとしても何もおかしくは 少の起伏があって、ごつごつした感じである。観察した部 ない。 位について言えば、おおよそ無毛である。がしかし、毛先 が根元で欠けたような微小器官が、まばらに、ほぼ等間隔 に並んでいる(図 11) 。しかも、それに付随して、小さな 6. カブトムシの知られざる世界 孔が表面に一つずつあいている(図 12) 。私の経験から言 えばこれは、感覚器官(受容器)である。どのような機能 実は本稿のお話をいただいたときに、カブトムシの♂の頭 をもつのか、具体的には分からないが、ツノ表面の環境条 角の他にもある、あまり知られていない驚くべき性質につ 件や状態変化を感知する器官であると推定される。 いても言及するつもりだった。例えばカブトムシが鳴くこ とであるとか、成虫だけではなく幼虫も、蛹も鳴くことで 昆虫は外骨格の生物なので、カブトムシの頭角のような、 あるとか、日本甲虫学会誌に投稿中の、前翅の開閉メカニ きわめて硬い外殻であっても、その表面には微妙な環境変 ズムとかである。しかしそれらをここで解説しても、いた 化を感知する機構を備えている。同様な器官は、セミ♀の ずらに冗長になってしまうだけなので、それらは別の機会 硬い産卵管の表面にもあり、極めて微小な丸い感覚子が、 に譲りたい。いずれにしても、カブトムシという、あまり まばらに等間隔で並んでいる。想像するに、昆虫の硬い外 にもよく知られた虫であっても、いまだに広くは知られて 殻表面といえども、人間が手探りでものを探す程度には何 いない、あるいは未解明の部分でさえ多くあることがお分 か外界の情報をそこから得ているのではないだろうか。少 かりいただけたことと思う。 なくともそれくらいのことができる道具は備わっているよ うである。 112 末筆ながら、今回の投稿について機会を与えて下さった産 PEN January 2014 17 総研の阿多誠文様、関谷瑞木様、日頃よりバイオミメティ クスについて多大なご指導をいただいている、東北大学の 下村政嗣先生、札幌の下澤楯夫先生、浜松医大の針山孝彦 先生に厚く感謝の意を申し上げる次第である。カブトムシ 頭角の薄片作成について懇切にご教示いただいた、国立科 学博物館の田尻理恵氏にも深謝したい。また今回特に、工 学研究者のためのテキスト執筆を通じて、多くの示唆を与 えて下さった、 ワシントン大学(シアトル)の田谷稔教授に、 この場を借りて厚く御礼申し上げたい。本研究の一部は、 文部科学省科学研究費新学術領域の計画研究「バイオミメ ティクス・データベース構築」 (課題番号:24120002; 代表者:野村周平)および JST 受託研究費「階層的に構造 化されたバイオミメティック・ナノ表面創製技術の開発」 の助成を受けている。 References: [1] 倪慶清・陳錦祥,2011.カブトムシから学ぶ構造材料. バイオミメティクス研究会編 次世代バイオミメティクス 研究の最前線―生物多様性に学ぶ―.シーエムシー出版, 東京,pp. 252-259. [2] 田尻理恵・藤田敏彦,2013.樹脂包埋と研磨による動 物組織観察資料作成法―硬組織と軟組織の同時観察―.タ クサ(日本動物分類学会誌) ,35: 24-34. 113 18 PEN January 2014 (5)国内研究動向紹介 114 15-1 バ イ オ ミ メ テ ィ ク ス 研 究 会 「 生 態 系 バ イ オ ミ メ テ ィ ク ス 持 続 可 能 性 に 向 け た 新 し い ト レ ン ド 」 に 参 加 し て 国立研究開発法人 産業技術総合研究所 ナノチューブ実用化研究センター 関谷瑞木<[email protected]> 2015 年 7 月 7 日、産業技術総合研究所臨海副都心センター別館で、バイオミメティクス研究会「生 態系バイオミメティクス持続可能性に向けた新しいトレンド」が開催された。今回の研究会は、 「生 態系バイオミメティクス」をテーマに、バイオミメティクスの持続可能性への寄与について、トラン ス・サイエンスの視点から議論する機会を提供するものであった。本研究会は、高分子学会バイオミ メティクス研究会と ISO/TC 266 Biomimetics 国内審議委員会の主催で行われた。 研究会はバイオミメティクス研究会運営委員長であり、科学研究費新学術領域「生物規範工学」の領 域代表も務める下村政嗣氏の挨拶に始まり、8 名の講演者が登壇した。前半ではバイオミメティクス 研究開発と社会をつなぐ様々な仕組みや動きを紹介する講演が、後半は様々な生物の不思議を紐解く 最先端の研究開発動向を紹介する講演が行われた。 富士通研究所の渦巻拓也氏から、 「環境省の自然模倣技術動向調査と企業から見た同技術への期待」と のテーマで、環境省の委託を受けて実施されたバイオミメティクス研究開発の動向調査の結果とその 結果を分析して作成された提言を紹介するとともに、民間事業者からバイオミメティクスへどのよう なことが期待されているのかが述べられた。また、あらゆるものがインターネットでつながった世界 に富士通研究所が描く、新しいイノベーションのアプローチが紹介された。 筆者から「バイオミメティクスの国際標準化と持続可能性 ナノテクノロジーの事例から学ぶこと」 と題して、現在国際標準化機構(ISO)で進んでいるバイオミメティクスの国際標準化の動向や標準作 成の課題について、今後の戦略を練る際に参考となる同じ新興の科学技術であるナノテクノロジーの 国際標準化の事例を交えつつ、紹介した。 2015 年 4 月に、日本のナノテクノロジー関連企業の団体であるナノテクノロジービジネス推進協議 会(NBCI)内に、バイオミメティクス分科会が立ち上げられた。NBCI バイオミメティクス分科会主 査でもある日立製作所の宮内昭浩氏より、分科会の構成や活動内容について紹介された。現在、分科 会にはバイオミメティクスの研究開発や応用に対して様々なスタンスの 16 社が参画している。宮内氏 によると、参画企業それぞれのバイオミメティクスへの期待には多少の温度差はあるものの、企業の 抱える技術的な課題をバイオミメティクスの活用によって解決したいと考えていることに違いはなく、 両者を結び付ける仕組みが重要だと考えているという。 115 国立科学博物館の田中法生氏より「生物の水草の生態と適応進化」とのタイトルで、水草の分類学上 の位置づけの解説、さらには水草の不思議な受粉のための仕組みが紹介された。また、一部の水草で 観察することができる水を媒介とする受粉のための「水媒送粉機構」の獲得に至る水草の進化につい て紹介がなされた。 広島大学の植木龍也氏より「ホヤ類の被嚢の微細構造および化学的性質新規接着・防汚染物質の開発 を目指して」と題して、接着・付着防止という 2 種類の相反する機構が同一の個体に存在するメカニ ズムを解明する研究が紹介された。ホヤ類はセルロースを体内で合成することができ、そのセルロー スを主成分とする被嚢で体表を保護し、体表面に他の動植物を付着させないという特徴がある。 海洋研究開発機構の椿玲未氏より、 「スポンジボブだけでない、海綿のバイオミメティクス」と題して、 海綿の特異な水循環機構についての研究が紹介された。海綿は、体内に網の目のようになった水路状 の空隙をもち、その水路に海水を循環させて、海水中の有機物を濾しとって食べている。海綿は海水 の循環を鞭毛の非対称な運動によって行っているという。 東北学院大学の松尾行雄氏が、 「音響学におけるバイオミメティクス」とのテーマで、生物のエコーロ ケーションに関する最新の研究動向を交えつつ、その仕組みの解説を行った。コウモリとイルカを取 り上げ、それぞれどのような仕組みでエコーロケーションを行っているのかについての詳しい解説と、 生物のエコーロケーションの産業への具体的な応用の可能性についても言及された。 最後に、技術情報協会から出版されている『生態模倣技術と新材料・新製品開発への応用』に執筆さ れている京都工芸繊維大学の萩原良道氏から、話題提供が行われた。 「不凍タンパク質による氷結晶抑 制とその応用の可能性」と題して、これまでよりも高いエネルギー効率を実現するための新規材料と して注目されている生物が低温環境で生きるために獲得した耐凍性に着目した研究の最新の成果が発 表された。 研究会では、環境に優しくかつ高機能な新規材料の開発のヒントと期待される研究成果に対して、特 に質疑が活発であった。国内外の環境規制が今後も継続的に強化されると見込まれる状況にあって、 出席者のかなりを占めた企業からの参加者は本分野に対して、生物の仕組みに学んで様々な技術的課 題の解決を図りたいと期待していると、鮮明に感じられた。 116 所属班:公募班 所属機関:浜松医科大学 氏名:高久 康春 医学部 生物学 科学研究費「生物規範工学」画像検討会(1日目 7/16)について 初日の画像検討会では、野村周平先生(A班科博)、椿玲未先生(JAMSTEC)、森 直樹先生(京都大学)、村上麻季先生(北大博物館)による新データの紹介がありま した。本稿では、浜松医大研究チームについての報告を行います。 ® 図1 . 発表 の順 番を待 つ竹原 さん 浜松医大では、NanoSuit 法による各種「生きたまま ® の生物」の観察・解析が試みられています。NanoSuit 法は、生物が生来持つ「対・真空」能力を利用し、電 子顕微鏡(FE-SEM)により超高解像度で観察するこ とが可能です。しかし、生命は多様であり、高真空下 で生命維持するという新しい概念の基では、まだまだ 分からないことがたくさんあります。本画像検討会で は、本学・医学科2年の竹原さゆりさん(図1・図2) が代表になって、生きた植物の FE-SEM による超微細 構造を中心に研究発表を行いました。研究チームにと って、植物の詳細な報告はこれが初めての機会でした。 (緊 張 し てい ます! ) ® NanoSuit 法の基本原理は、生物が体表に持ってい る細胞外物質(ECS)に、プラズマもしくは電子線を照射し、ナノスケールの薄膜を ® 形成させることによって脱水・脱気を防ぎます。NanoSuit で保護した桜やバラ、タ ンポポなどの生きた花弁の FE-SEM 像と、これまでの方法による(化学固定・脱水・ ® 乾燥させた)試料とを比べると、NanoSuit 試料は瑞々しく立体的な構造を維持してい ました。このことから、植物においても ® NanoSuit が効果を発揮することが明らか になりました。さらに、植物により花弁のサ ブセルラー・サイズ構造はユニークに異なっ ており、新たなバイオミメティクス材料とし ての可能性が示唆されました(図3)。 図2 . マシ ントラ ブルに は、針 山先生 が優しく 対応! 117 ® これまで NanoSuit チームは、医学・ 生物学・化学・物理学、および電子顕微 鏡のエキスパートからなる「異分野連携 の研究ネットワーク」によって支えられ てきました。今回発表を担当してくれた 竹原さゆりさんをはじめ、現在、幾人か の若い医学生さんが精力的に実験に参 加してくれるようになり、新しい展開を みせています。 図3. 新規・植物画像の説明をする竹原さん。発表 の後には、下村先生(左から2番目)に、新規サブ セルラー・サイズ構造について熱烈な質問をいただ きました。 また、画像検討会の後には、画像検索システム演示会が開催されました。出席者そ れぞれが質問画像数点を持ち寄り、各自プロジェクターで画像システムを演示しなが ら、類似画像の検索を行いました。出席者からのコメントを基にした 双方向 の議論 が成されました。 118 所属班:公募班 所属機関:大阪工業大学 氏名:藤井秀司 工学部 応用化学科 科学研究費「生物規範工学」全体会議(2 日目 に参加して 7/17) 2015 年 7 月 15 日(水)∼17 日(金)に北海道大学(札幌市)にて、全体会議および画 像検討会が開催された。本稿では、全体会議 2 日目(7/17 開催)について報告を行 う。 ・ 「生物規範階層ダイナミクス ∼異分野連携による新たな学術領域の研究開発展開∼」 国立研究開発法人 物質・材料研究機構 細田 奈麻絵 「生物に学ぶ接着機構の開発」をテーマとし、異分野を融合した組織化による研究 が推進され「異分野連携の研究ネットワーク」が構築されていることが報告された。 異分野連携の中で、大学院生に複数の異なる分野の専門家に直接指導を受ける機会が 与えられ、「若手研究者の育成」が良好に推進していることが述べられた。 ・「ロバストな表面機能を持つバイオミメティクス材料の開発」 国立研究開発法人 産業技術総合研究所 穂積 篤 生物の多くは,様々な物質を体表に分泌することで表面機能を維持している。生物 の分泌による自己修復メカニズムに学び,機能性分子を何らかの刺激により徐放し, 機能を維持するようなこれまでにないロバストなバイオミメティクス材料について 最近の研究の進捗が報告された。 ・「応力応答性粉末状粘着剤の創出」 大阪工業大学 工学部 応用化学科 藤井秀司 高粘度液体である蜜を内部液にしてリキッドマーブルを作製するアブラムシの技 術に倣い、高粘度液体である粘着剤を内部液として含んだリキッドマーブルを作製す ることで、粘着剤の粉末化を行う研究について報告された。また、粉末状粘着剤の構 造・粘着力の応力応答性について述べられた。 ・「生物における「サブセルラー・サイズ構造」の機能解析」 京都大学農学研究科応用生命科学専攻 森 直樹 ガ類昆虫におけるフェロモンブレンドの受容機構の解明と数理モデルの構築を目 指し、2∼4 成分でそれぞれ異なる構成比率から成るフェロモンブレンドを利用する 119 ガ類から性フェロモン受容体の同定を試みる研究について紹介された。また、昆虫の 振動受容について、コオロギの鼓膜器官の機能発現の解明に向けた研究についても報 告があった。 ・「培養細胞の常温保存への挑戦: ネムリユスリカの乾燥耐性機構から学ぶ」 独立行政法人農業生物資源研究所 奥田 隆 極限的な乾燥耐性のある生物を模倣しての「簡便な自然乾燥法による培養細胞の常 温保存法」について報告があった。具体的には、ネムリユスリカ由来培養細胞(Pv11) を用い、その常温保存技術の確立と共にその仕組みを模倣して、乾燥耐性を持たない 培養細胞の乾燥耐性の付与を試みる取り組みについて紹介があった。 ・ 「生物規範飛行メカニクス•システム̶スケーリング法則,バイオメカニクス及びバ イオミメティクス̶」 千葉大学工学研究科 劉 浩 生物羽ばたき飛行における流動性と波動性に関する運動、力学およびエネルギーに 対してスケーリング法則を導入することで得られた普遍的な生物運動原理、フクロウ 翼表面セレーション構造のバイオメカニクス、そして鳥翼を規範とした風車翼のバイ オミメティクス•デザインについて紹介された。 ・「分化フラストレート幹細胞のメカノシグナルの計測と制御」 九州大学先導物質化学研究所 木戸秋 悟 幹細胞の品質保持のための培養技術には、生体内においてどのように幹細胞性の保 持がなされ得るかを探求し、その原理を生かした培養材料を開発することが重要であ る。幹細 胞の未分化維持・増殖の原理として、『幹細胞分化フラストレーション』仮説に基づ き、その誘導のための基材設計と現象の実証への取り組みについて報告された。 ・「生物規範工学での学域での研究・活動 今年度計画と来年度の計画」 金沢大学 人間社会研究域 香坂 玲 実装に向けたエンジニア/科学者の再架橋・特許の動向とデータベースの連動、ISO 等の企業・行政による規格・標準化の効果の評価、社会に科学的な概念と機能を伝え 広く普及させるデルファイ、バックキャスティング、参加型シナリオ構築等 複数の 手法の評価について、今後の研究活動計画が述べられた。 最後に、総括班内部評価委員から講評を頂き、参加者一同、改めて身を引き締めた。 また、外部評価意見への対応について話があった。 120 所属班:公募班 所属機関:旭川医科大学医学部化学教室 氏名:室崎 喬之 開催場所:北海道大学 日時:2015/ 7/ 16 ‒ 17 生物規範工学全体会議に参加して 7月の爽やかな天候の中、北海道大学にて全体会議が開催された。全体会議初日は、 北海道大学工学部フロンティア応用科学研究棟 鈴木章ホールにて開かれ、研究棟入 口では鈴木章先生の銅像が我々を出迎えてくれた。本会議にて行われた講演に関し以 下に紹介する。 初日は、下村領域代表より開会の挨拶後、中間評価に対する対応についてのコメント があり、本会の開催と同時にサイトビジットが行われる件についてのアナウンスがあ った。その後、各計画班、公募班からの講演が行われた。 A01 班: 野村班長より、バイオミメティクスデータベースの講演が行われ、マイク ロ CT による昆虫の3D 画像データの紹介があった。続いて同じく A01 班の長谷山 先生より最新のバイオミメティクス画像検索の紹介があり、また使用方法に関する質 疑応答等が行われた。 公募班:山階鳥類研究所の森本先生より鳥類の色彩・構造色に関する発表が行われ、 鳥の色の発生メカニズムや鳥の構造色に関する研究が紹介された。 公募班:浜松医科大学の高久先生より、ナノスーツ法の様々な応用例(猫の毛、花弁 など)が紹介された。また本講演では浜松医科大学の学生による発表も行われた。 C01 班:石田先生より持続可能な社会に求められるライフスタイルに関する研究発 表があり、今後の厳しい環境資源制約のある中で豊かである為にはどうすればいいの かという事に関し講演が行われた。 121 C01 班:山内先生よりバイオミメティクス製品支援の研究について講演され、バイ オ TRIZ に関する研究発表が行われた。 公募班:旭川医科大学の室崎より、自己組織化表面微細構造による海洋付着生物の付 着阻害材料に関する研究発表が行われた。 B01-1 班:小林先生より、海洋生物の表面を模倣したポリマーブラシを用いた親水 性防汚材料研究、流体抵抗低減に関する研究発表が行われた。レオメーターを用いた 流体抵抗試験結果などが示された。 B01-1 班:黒川先生より、魚の吸盤を模倣したゲル材料の研究発表があった。水中 で強い接着性を示す脱着可能な材料として期待される。 B01-2 班:木村先生は、昆虫の複眼レンズ表面のニップル構造形成メカニズムにつ いて発表され、ショウジョウバエをモデルに用い発生の過程におけるニップル構造の TEM 像などについて説明がされた。 B01-2 班:針山先生より昆虫のモスアイ構造の表面構造と乱れについての発表があ り、モスアイ構造の構造乱れの定量化などについて議論が行われた。 公募班:海洋研究開発機構の椿先生より、海綿の水輸送機構に関する研究発表があり、 カイメン内水路の3D 像や襟細胞の鞭毛運動による水輸送メカニズムなどについて 説明があった。その後、内部評価委員の先生達より講評を頂いた。 2日目は、場所を創成研究機構大会議室に移し、講演が行われた。 B01-3 班:細田先生より、異分野連携による研究ネットワークの構築、若手研究者 の育成、生物規範工学の国際標準化に関する研究発表が行われた。 B01-3 班:穂積先生からは、蓮の葉とは別のアプローチによる、自己修復機能を兼 ね備えた撥液表面に関する研究発表がなされ、離漿現象を利用した材料表面にてマヨ ネーズやケチャップが滑落する様子が紹介された。 公募班:大阪工業大学の藤井先生からは、アブラムシにヒントを得たリキッドマーブ 122 ルの研究について講演され、リキッドマーブルによるハンドリングが簡便な、粉末状 接着剤の研究が紹介された。 B01-4 班:森先生からは、昆虫と昆虫間、植物間に見られる相互作用についての講 演が行われ、蛾におけるフェロモンブレンドの紹介や、昆虫に食害を受ける植物の葉 に見られる毛茸(トライコーム)の紹介があり、トライコームによって食害する昆虫 が消化不良を起こしている様子等が示された。 B01-4 班:奥田先生からはネムリユスリカの乾燥耐性に関する講演があり、ネムリ ユスリカがトレハロースや LEA タンパク質を生産する事によって組織を保護した状 態でガラス化する様子などが示された。 B01-5 班:劉先生から、羽ばたき飛行ロボットに関する講演があり、超低速風洞で の実験やフクロウの羽のセレーション機構と PIV 流体計測、また鳥規範型のマイクロ 風車の研究について説明があった。 B01-5 班:木戸秋先生から幹細胞の分化制御に関する講演があり、幹細胞に弾性率 の異なる基材によってメカノシグナルの振動を入力する事により、未分化保持する事 が示された。 公募班:金沢大学の香坂先生からは、生物規範工学に関する特許の動向などについて 講演があり、生物多様性条約に比べバイオミメティクス標準化は発展途上国の参加が 少ない事などが説明された。 最後に、内部評価委員の諸先生より講評を頂いた後、下村代表より今後の画像検討会、 全体会議などのスケジュールについてアナウンスがあり、閉会した。 新たな公募班の先生方を迎え、よりこの領域の多様性が増したという事と、残りの2 年間で本当の意味での生物規範工学を発展させていく研究者育成を行うという決意 が感じられた 会議であった。 123 (6)新聞・報道 124 【新聞・報道】 総括班 (1) 化学工業日報(2015 年 4 月 21 日) 「東京で文化勲章受賞記念シンポ」 平成 27 年 4 月 17 日に東京コンベンションホールで開催された、國武豊喜先生文化勲章 受章記念シンポジウム−分子組織化学ならびにナノ高分子科学の創成と発展−が報道さ れました。 (2) 日刊工業新聞(2015 年 7 月 10 日) モノづくり日本会議「ネイチャー・テクノロジー研究会」が主催した、第3回「2030 年の『心豊かなライフスタイル』コンテスト」の表彰式が行われ、審査委員長の石田秀輝 先生(C01 班、総括班)の総合講評と領域代表の審査講評が掲載されました。 B01-5 班 (1) TBS TV(2015 年 9 月 19 日) EARTH Lab −次の100年を考える−において、劉先生が開発したホバリング 能力を有するハチドリ型ロボットが災害現場で活躍する可能性が紹介されました。 http://www.tbs.co.jp/tv/20150919_D33F.html C01 班 (1) 日刊工業新聞(2015 年 7 月 10 日) モノづくり日本会議「ネイチャー・テクノロジー研究会」が主催した、第3回「2030 年の『心豊かなライフスタイル』コンテスト」の表彰式が行われ、審査委員長の石田秀輝 先生(C01 班、総括班)の総合講評と領域代表の審査講評が掲載されました。 公募班 (1) 接着剤新聞(2015 年 10 月 1 日) 「アブラムシの習性に注目:粘着剤の粉末化に成功」 125 (7)アウトリーチ活動 126 【アウトリーチ活動報告】 (1) 2015 年 9 月 12 日−23 日、名古屋市科学館にて企画展「バイオなものづくり∼生物の 多様性から学ぶ」が開催されました。 14,909人の来場者があり、盛況な企画展となった。愛知県はものづくりの地域でもあ り、ここに暮らす人々にとっても、バイオミメティクスは新鮮な視点であったようで、熱 心に見学される方が多く見受けられた。 http://www.ncsm.city.nagoya.jp/visit/attraction/special_exhibition/post_30.html ※NHK の取材は下記の通り。 http://www3.nhk.or.jp/tokai-news/20150921/4952422.html (2) 2015 年 7 月 8 日−10 日、第 60 回高分子夏季大学(新潟観光コンベンションセンター (朱 鷺メッセ))において、分科会「バイオミメティクス」が開催され、下村政嗣先生(千歳 科学技術大・総括班)、針山孝彦先生(浜松医科大・B01-2 班)、椿玲未先生(海洋研究 開発機構・公募班)らが講演を行いました。 http://main.spsj.or.jp/kaki/program.html (3) 2015 年 5 月 27 日−29 日、 第 64 回高分子学会年次大会(札幌コンベンションセンタ ー)にて「バイオミメティクスが拓く技術革新」特別セッションが開催され、井須紀文先 生(㈱LIXIL・産学連携 G)、長谷山美紀先生(北大・A01 班)、亀井信一先生(㈱三菱総 合研究所・評価 G)らが講演を行いました。 http://main.spsj.or.jp/nenkai/64nenkai/jp/64im_p.pdf (4) 進進研ゼミ小学講座(ベネッセコーポレーション)チャレンジ5年生「未来!発見 BOOK」 の特集「モノ 生き物でパワーアップ!!」でバイオミメティクスが紹介され、LIXIL の 建材や石田秀輝先生が監修した「ヤモリの指から不思議なテープ」などが紹介されました。 またこの特集は領域代表が監修しました。 関連者名 :石田秀輝(C01 班)、井須紀文(B01-3 班)、下村政嗣(B01-2 班、総括班) 127 (8)各種案内 128 129 130 「生物多様性を規範とする革新的材料技術」ニュースレター Vol. 4 No. 2 発行日 2015 年 10 月 13 日 発行責任者 下村政嗣(千歳科学技術大学) 編集責任者 穂積 制作 篤(国立研究開発法人 産業技術総合研究所) 「生物規範工学」領域事務局 北海道大学電子科学研究所内 〒001-0021 札幌市北区北21条西10丁目 電話 011-706-9360 FAX URL http://biomimetics.es.hokudai.ac.jp/index.html 131 011-706-9361
© Copyright 2024 ExpyDoc